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Περίληψη 

Οι καλωδιωτές κατασκευές χαίρουν της εκτίµησης των µηχανικών και των αρχιτεκτόνων, καθώς προσφέρουν 
υψηλή αισθητική και πλεονεκτήµατα σε προβλήµατα µεγάλων ανοιγµάτων, όπως οροφές σταδίων. Οι 
σχεδιαστές πρέπει να προσεγγίσουν αυτού του είδους τις κατασκευές µε ένα µη συµβατικό τρόπο, λόγω της 
γεωµετρικής µη γραµµικότητας των καλωδίων. Ο σκοπός αυτής της διπλωµατικής εργασίας είναι να εξετάσει 
αυτού του είδους τη µη γραµµικότητα έχοντας ως αφετηρία το βασικό στοιχείο των καλωδιωτών κατασκευών, 
που είναι ένα ανηρτηµένο µεµονωµένο καλώδιο, και επεκτείνοντας την ανάλυση σε 1-DOF και πιο σύνθετα 
δίκτυα καλωδίων. 
 
Το πρώτο βήµα της µελέτης είναι ο προσδιορισµός της πηγής της γεωµετρικής µη γραµµικότητας 
συγκρίνοντας την απόκριση ενός καλωδίου και µίας δοκού σε εξωτερικά φορτία. Έπειτα, εξετάζεται ένα 
µεµονωµένο καλώδιο, ανηρτηµένο από τα δύο του άκρα. Προσδιορίζονται οι αναλυτικές εξισώσεις για διάφορα 
φορτία (συγκεντρωµένο φορτίο, κατανεµηµένο φορτίο κατά µήκος της οριζόντιας προβολής και κατά µήκος 
τόξου καλωδίου, µετατόπιση άκρου), για διάφορες θέσεις εφαρµογής του συγκεντρωµένου φορτίου (στο 
µέσο, σε τυχαία θέση) και για διάφορες κλίσεις καλωδίου (οριζόντιο, κεκλιµένο). Στην περίπτωση µετατόπισης 
άκρου καλωδίου, η απόκριση προσοµοιάστηκε µε αυτή ενός ελατηρίου και προέκυψε µία ισοδύναµη σταθερά 
ελατηρίου.  
 
Οι αναλυτικές εξισώσεις για το ανηρτηµένο µεµονωµένο καλώδιο επεκτείνονται σε ένα δίκτυο καλωδίων ενός 
βαθµού ελευθερίας (1-DOF). Προσδιορίζονται οι εξισώσεις για την εύρεση σχήµατος και τη στατική ανάλυση, 
ενώ αναπτύσσεται λογισµικό µη γραµµικής στατικής ανάλυσης 1-DOF δικτύου καλωδίου, µε τη χρήση του 
λογισµικού MATLAB. Μια παρατήρηση στη µορφή ενός 1-DOF δικτύου καλωδίων οδηγεί στη µη γραµµική 
ανάλυση ενός τηλεπικοινωνιακού ιστού µε προεντεταµένα υποστηρικτικά καλώδια, µία ευρέως διαδεδοµένη 
κατασκευή. Τα αποτελέσµατα της ανάλυσης αυτής παρουσιάζονται στην παρούσα διπλωµατική εργασία. Εν 
αντιθέσει, τα σύνθετα δίκτυα καλωδίων δεν µπορούν να προσεγγιστούν µε την αναλυτική µέθοδο που 
αναπτύχθηκε στις προηγούµενες εφαρµογές και, έτσι, αντικαθίσταται από τη µέθοδο πυκνότητας δύναµης. 
Βάσει αυτής της µεθόδου, προσοµοιάστηκε το δίκτυο καλωδίων της οροφής του Σταδίου Ειρήνης και Φιλίας, 
το οποίο βρίσκεται στην Αθήνα. 
 
Στο πλαίσιο αυτής της διπλωµατικής εργασίας, οι αναλυτικές λύσεις επιβεβαιώθηκαν από αριθµητικά µοντέλα. 
Για αυτόν τον λόγο, χρησιµοποιήθηκαν τα λογισµικά πεπερασµένων στοιχείων SAP και ADINA. Η σύγκριση 
έδειξε ταύτιση µεταξύ των αναλυτικών εξισώσεων και των αριθµητικών µοντέλων, εκτός από την περίπτωση 
κεκλιµένου µεµονωµένου καλωδίου υπό κατανεµηµένο φορτίο. Η αιτία εντοπίζεται στην αγνόηση της 
οριζόντιας µετατόπισης, στην αναλυτική λύση, λόγω της πολυπλοκότητας των µη γραµµικών εξισώσεων. 
Απαιτείται περεταίρω έρευνα, η οποία ξεπερνά τα όρια αυτής της διπλωµατικής εργασίας. 
 
Παράλληλα µε τις αναλυτικές εξισώσεις και τα αριθµητικά µοντέλα, παρουσιάζονται και σχολιάζονται 
παραµετρικά διαγράµµατα. Αυτού του είδους τα διαγράµµατα επεξηγούν, µε ένα σφαιρικό τρόπο, την 
απόκριση των καλωδιωτών κατασκευών σε εξωτερικά φορτία. Θεωρήθηκαν διάφορες τιµές προέντασης, 
αρχικής κρέµασης καλωδίου, απαραµόρφωτου µήκους, κλίσης, θέσης εφαρµογής του συγκεντρωµένου 
φορτίου, µέτρου ελαστικότητας και διαµέτρου.   
 
Λέξεις κλειδιά  
 
ανηρτηµένο µεµονωµένο καλώδιο, 1-DOF δίκτυο καλωδίων, τηλεπικοινωνιακός ιστός, δίκτυο καλωδίων, 
γεωµετρική µη γραµµικότητα, στατική ανάλυση, αναλυτικές λύσεις, αριθµητικές λύσεις,  συγκεντρωµένα 
φορτία, κατανεµηµένα φορτία, µετατοπίσεις άκρου, ισοδύναµη σταθερά ελατηρίου, προεντεταµένο καλώδιο, 
παραµετρικά διαγράµµατα 
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Abstract 

Cable structures have gained the regard of engineers and architects, as they offer high aesthetic and benefits 
in large openings, such as stadium roofs. Designers have to approach this kind of constructions in an 
unconventional way, due to the geometric nonlinearity of cables. The aim of this diploma thesis is to examine 
this kind of nonlinearity starting from the basic element of cable structures, which is a simple suspended 
cable, and expanding the analysis to 1-DOF and more complex cable nets. 
 
The first step of the study is the detection of the source of the geometric nonlinearity by comparing cable and 
beam response to external loads. Then, a simple suspended cable is considered. Analytical equations are 
determined for different kind of loads (concentrated load, distributed load along horizontal projection and arc 
length of the cable, imposed end displacement), for different application points of concentrated load (in the 
middle, arbitrary) and for different inclinations (horizontal, inclined). In case of imposed end displacement, 
cable response is simulated with this of a spring and an equivalent spring constant is found. 
 
The analytical equations for a simple suspended cable are extended for a cable net with one degree of 
freedom (1-DOF). Form finding and static analysis equations are determined, while software for nonlinear 
static analysis of 1-DOF cable net is developed, based on MATLAB software. An observation in the form of a 
1-DOF cable net leads to the nonlinear analysis of a radio mast with pre-tensioned cables, a widely spread 
construction. The results of the analysis are presented in this diploma thesis. On the other hand, complex 
cable nets cannot be approached by the analytical method developed in previous applications and, so, it is 
replaced by the force density method. Based on this method, the cable net of the roof from the Stadium of 
Peace and Friendship, in Athens, is simulated. 
 
In the context of this diploma thesis, the analytical solutions are verified by numerical models. For this 
purpose, the finite element software SAP and ADINA are used. The comparison showed identification between 
analytical equations and numerical models, apart from the case of an inclined simple suspended cable under 
distributed load. The reason is located at the omission of the horizontal deflection, in the analytical solution, 
due to the complexity of nonlinear equations. Further investigation, which exceeds the limits of this diploma 
thesis, is required. 
 
Parallel to analytical equations and numerical models, parametric figures are presented and annotated. This 
kind of figures illustrates, in a spherical way, the response of cable structures to external loads. Different 
values of pre-tension, initial cable sag, unstressed length, inclination, application point of concentrated load, 
modulus of elasticity and diameter are considered.  
 
 
 
 
 
 
 
 
 
 
Key words 
 
simple suspended cable, 1-DOF cable net, radio mast, cable net, geometric nonlinearity, static analysis, 
analytical solutions, numerical solutions, concentrated loads, distributed loads, imposed end displacements, 
equivalent spring constant, pre-tensioned cable, parametric figures 
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1 INTRODUCTION 

 
1.1 HISTORICAL SURVEY 
 

Nature has always granted to the humanity examples to solve problems of covering spans. 

The vaulted caves were used as shelters, the trunks of the fallen trees formed bridges to 
cross streamlets or even rivers at the narrow passages and the interlaced vines constituted a 

sort of suspended roof, while the trees, standing upright, represented the necessary masts to 
support these roofs. These images, among many others, stimulated the human imagination 

and triggered structural engineering. The need for progress and evolution, along with the 

development of technology, which brought new, more efficient materials, generated the 
opportunity to elaborate new concepts, find new solutions, overcome the existing limits and 

always set new ones.  
 

The examples are numerous, still standing over the centuries, testifying the course of the 
human inventiveness. Since the ancient Roman years, curves dominated in the field of 

engineering and architecture, substituting straight lines, made of stones or wood, which were 

proved to be inadequate in some cases. Arcades, arches, and domes were the best solution 
to cover large spans, such as aqueducts, bridges, churches, etc. Later, thin shells, made of 

concrete, gained the interest of architects, giving a different aspect to their creations with 
their lightness and captivating elegance. The function of these structures was to carry loads 

in pure compression, thus avoiding bending of the members. The reverse solution was 

realized by structures with members that operate in pure tension, which belong to the family 
of tensile structures. The sails of ships were among the first membrane structures ever used, 

providing resistance to wind, developing only tension and moving the ship over the seas. The 
first suspended bridges, made of ropes, were used to cross canyons, while the first 

suspended roof was the “velarium” of the Coliseum, built in 70 B.C. in Rome (Figure 1-1), 
used to protect the spectators from rain and sun. During the last six centuries, many 

suspended bridges were constructed, but only in the second half of the twentieth century, 

tensile structures became a pioneer in the field of structural engineering, opening new 
frontiers [1]. 
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Figure 1-1: The “velarium” of the Coliseum in Rome, Italy  

 

Cable problems have been the vehicle by which some well-known techniques, equations and 
mathematical functions were introduced. For example, Stevin in 1586 established the triangle 

of forces by experimenting with loaded strings, although Leonardo da Vinci’s fifteenth-century 
sketches anticipated this result and several others, including the catenary and the concept of 

the collapse mechanism in a voussoir arch. It seems likely, according to Truesdell, that 
Beeckman had by 1615 solved the suspension bridge problem, namely, that in responding to 

load uniformly distributed in plan, a cable hangs in a parabolic arc. But nearly two centuries 

were to pass before this solution became well known. It was rediscovered in 1794 by the 
Russian engineer Fuss, who was charged with the responsibility of attempting to span the 

Neva River, at St. Petersburg. Galileo, in Discourses on Two New Sciences, published in 1638, 
muses on the shape of a hanging chain and concluded that it is parabolic – primarily by an 

analogy to the flight of a projectile. The years 1690 and 1691, Bernoullis, Leibnitz and 

Huygens more or less jointly discovered the catenary. In the discovery of the catenary 
different approaches were employed, with Huygens relying on geometrical principles, and 

Leibnitz and the Bernoullis using the calculus, then a comparatively recent invention. 
 

The vibration of taut strings was studied extensively in the early part of the eighteenth 

century. In 1738 Daniel Bernoulli published a solution for the natural frequencies of a chain 
that hangs from one end. Lagrange used, a discrete, string of beads model of the taut string 

as an illustration of the application of his equations of motion. One could go on, but the list is 
sufficient to illustrate the point. 

 
In Europe cable theory had at least a firm grounding by the nineteenth century. Outside 

Europe the practical aspects had received considerable attention at a much earlier date. The 

early civilizations of the Far East and Central and South America mastered suspension bridge 
construction. Needham records the existence of sophisticated suspension bridges in China 

before the start of the Christian era. The Native Americans did, and still do, make intricate 
rope pathways. Iron chain suspension bridges date from A.D. 65, when a bridge built in 

Yunnan, China. Thang-stong rGyal-po, a Tibetan monk in the fifteenth century, was 

renowned as a builder of iron chain suspension bridges. One of his iron chain suspension 
bridges, Chakzam Bridge, about 65 km from Lhasa, at Tsangpo, still existed in 1948     

(Figure 1-2). The evolution of the suspension bridge has been given an admirable treatment 
by Hauri and Peters [2]. 

 

 
Figure 1-2: Old Chain-Bridge at Chaksam 
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1.2 CABLES AND CABLE STRUCTURES  
 
1.2.1 Cables 

 
1.2.1.1  Cable types 

 

The basic element for cables is the steel wire with a tensile strength larger than that of 
ordinary structural steel. The steel wire has a cylindrical shape with a diameter of between    

3 and 7 mm. A single straight wire, surrounded by a single layer of six wires with the same 
pitch and direction of helix, makes up the seven-wire strand, as shown in Figure 1-3. 

 

 
Figure 1-3: Seven-wire strand 

 

A straight wire core surrounded by successive spinning of layers, generally with opposite 

direction of helix, creates the multi wire helical strands, called spiral strands. Due to the 
twisting of the layers, the helical strand becomes self-compacting and thus there is no need 

to wrap or apply bands around the strand to hold the wires together. Typical values of the 
elastic modulus E for a spiral strand are E = 145 – 170 GPa, depending on the size, almost    

15 – 25 % lower than the one for the single wire. In addition, the strength of the helical 

strand is approximately 10 % lower than the sum of the breaking strengths of the individual 
wires. The way of winding defines the type of the strand. The main types of strands are 

those with one layer of wires (single layer strand), with two layers consisting of the same 
number of wires for each layer (seale strand), with two layers of wires having the same 

diameter for each layer (filler wire strand), with two layers of wires having different diameters 

in the outer layer (Warrington strand) and the multi-layer strands (combined patterns 
strand), as illustrated in Figure 1-4. Alternatively, the wire rope is composed by a number of 

steel wires spun together to form six strands, which in turn are spun together around a fiber 
core to form a rope (Figure 1-5). 

 

 
Figure 1-4: Basic strand construction 

 

 

 
Figure 1-5: Wire rope 

 

Locked coil strands are composed of two types of twisted wire: in the core normal round 
wires arranged as in a normal helical strand, and in the outer layers wires of a special         

Z-shape. This Z-shape is chosen so that the wires interlock which, in combination with the 
self-compacting effect from the spiral arrangement, ensures a tight surface (Figure 1-6). The 

locked-coil strands are more compact than any other type of strand. The elastic modulus E is 
approximately E = 160 – 180 MPa.  
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Figure 1-6: Typical cross-sections of locked coil strands 

 
The term lay refers to the direction of the twist of the wires in a strand and to the direction 

that the strands are laid in the rope. In some cases, both wires in the strand and strands in 
the rope are laid in the same direction; otherwise, the wires are laid in one direction and the 

strands are laid in the opposite direction, depending on the intended use of the rope. The six 
types of lays used in wire ropes are as follows: 1) Right Regular Lay (RRL): The strands are 

laid in clockwise direction around the core and the wires in the strand are laid in a counter 

clockwise direction. 2) Left Regular Lay (LRL): The strands are laid in a counter clockwise 
direction around the core and the wires in the strand are laid in a clockwise direction. In this 

lay, each step of fabrication is exactly opposite from the right regular lay. In these two ways, 
the wires are parallel to the longitudinal axis of the strand. 3) Right Lang Lay (RLL): The 

strands are laid in a clockwise direction around the core and the wires in the strands are laid 

in clockwise direction. 4) Left Lang Lay (LLL): The strands are laid in a counter clockwise 
direction around the core and the wires in the strand are laid in a counter clockwise direction. 

These two lays are more resistant to the bending fatigue and to the abrasion than the 
previous two. 5) Right Alternate Lay (RAL): The strands are laid in clockwise direction. The 

wire in the strands are laid in a clockwise and counter clockwise direction in alternating 
strands and 6) Left Alternate Lay (LAL): The strands are laid in a counter clockwise direction, 

while the wire in the strands are laid in a counter clockwise direction in alternating strands. 

These six different lays of wire rope are shown in Figure 1-7. 
 

 
Figure 1-7: Lays of wire rope 

 
The length of a rope lay is the distance measured parallel to the centre line of a wire rope in 

which a strand makes one complete spiral or turn around the rope (Figure 1-8). The length of 
a strand lay is the distance measured parallel to the centre line of the strand in which one 

wire makes one complete spiral or turnaround the strand. The lay length of a rope is the 

basic factor controlling the breaking load and extension characteristics of the finished cable. 
The breaking load is relatively low for short lay lengths and greater for longer lay lengths. 

Spiral strand constructions normally have lay lengths in the range 9 - 12 times the cable 
diameter, depending on the size of the finished strand and the number of the layers of wires. 

A small size strand may have long lay length, and thus large values of modulus and breaking 
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loads. As the spiral becomes larger and more complex, the lay has to be shortened in order 

to produce a good, tight strand, which leads to low values of modulus and breaking load. On 
the other hand, the locked coil construction may have longer lays, not depending on the size 

of the cable, due to the interlocking of the outer wires. 
 

 
Figure 1-8: Lay length measurement 

 
Eurocode 3, Part 1.11 [3] gives design rules for structures with tension components made of 

steel, which are adjustable and replaceable. These products are prefabricated, and installed 
into the structure on-site. For cable nets, two types of cables are recommended: the spiral 

strand ropes (having the characteristics of Table 1-1) and the full-locked coil ropes (with 

characteristics listed in Table 1-2). 
 

 
Table 1-1: Spiral strand ropes (reported from [3]) 

 

 
Table 1-2: Full-locked coil ropes (reported from [3]) 

 
The value of the rope self weight is related to the metallic cross-section and the unit length, 

taking account of the weight densities of steel and the corrosion protection system. For spiral 

strands or locked coil strands the following approximate expression for the nominal self 
weight may be used: 

 

k kg = w A                                                                                                               (1–1) 

 
where wk is the unit weight in kN/(m*mm²), given in Table 1-3, and A is the metallic        

cross-sectional area in m², calculated as: 
 

2
Ad

A = π f
4

                                                                                                             (1–2)   
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 where dA is the external diameter of the rope or strand, including sheathing for corrosion 

protection if used. The fill-factor f is defined as the ratio of the sum of the nominal metallic 

cross-sectional areas of all the wires in a rope (A) and the circumscribed area (Au) of the rope 
based on its nominal diameter (dA), also given in Table 1-3. 

 

 
Table 1-3: Unit weight wk and fill-factors f (reported from [3]) 

 

Regarding the modulus of elasticity E, the exact values should be derived from tests. Notional 

values of elastic modulus E, for first estimations, when test results are not available, are 
given in Table 1-4 for locked coil strands and bundles of strands. 

 

 
Table 1-4: Notional values for the modulus of elasticity E in the range of variable loads 

(reported from [3]) 

 
The characteristic values of the yield stress fy and the ultimate tensile strength fu shall be 

taken from the relevant technical specifications. The following values fu are recommended: 

 

 
Table 1-5: Recommended nominal tensile strength values fu for steel and stainless steel wires 

(reported from [3]) 

 

The minimum breaking load of the cable, in kN, is obtained as follows: 

 
2

min A r rd R K
F =

1000
                                   (1–3) 

 
where, 

  

dA is the diameter of the rope in mm 
Kr is the breaking force factor 

Rr is the rope grade in N/mm², which is designated by a number (e.g. 1770 N/mm²) 
          [1] 

 
1.2.1.2  Materials of construction 

 

Regarding the materials of construction, cables have been made of: 
 

• Steel 

• Kevlar (registered DuPont trademark; a synthetic aramid fiber) 

• Fiberglass 

• Polyester 
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A high-tensile breaking strength is a primary property of the wire rope. There are other 

important properties: 
 

• Small cross-section 

• Low weight  

• Long fatigue life 

• Resistance to corrosion and abrasion 

• High flexibility 

• Good stretch and rotational behavior 

 
These properties depend on the rope manufacture and wire control. Cables act principally as 

axial elements; however, because of the helical wires, a torque may be induced as the helical 
wires try to "unwind" during axial loading. The effects of induced or externally applied torque 

may be significant; induced torque decreases the ultimate strength. A torque-balanced cable 

is one designed to yield zero or very small amounts of rotation under load. In addition to the 
stresses in the wires due to the axial force, the wound wires are subjected to bending 

stresses which are difficult to evaluate because of relative movements of the individual 
strands. Cable materials typically have linear stress-strain relationships over only a portion of 

their usable strength. Beyond the elastic limit, the proportional relationships do not hold. 

Breaking-strength efficiency is the ratio of cable strength to the sum of the individual wire 
strengths and is greater for ropes and strand lay. The breaking-strength efficiency is reduced 

as the number of wires in the strand is increased. A rope made up of brittle wires will be less 
able to bear pre-stressing due to unequal distribution of strains and consequently will develop 

lower breaking- strength efficiency than could be obtained with more ductile wire [4]. 

 
1.2.1.3  Elastic cable model  

 
In this diploma thesis, a number of cables, with different properties, is examined. Regarding 

the cable response to external loads, it is considered that nonlinearity exists only in geometry 
and not in material. So, it is assumed that cable response is elastic until the value of the yield 

stress fy = 1.58 GPa. If tension exceeds this limit, the cable breaks (Figure 1-9).  

 

 
Figure 1-9: Elastic cable response 

 
Hooke’s law gives: 

 

⇒
ymax max

y

f
f = Eε ε =

E
                                                          (1–4) 

 

Cable’s axial force capacity Ncap comes out from the following formula: 
 
                  (1–5) 
 

⇒
cap

cap

y y

N
f = N = f A

A
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where A is the cross-section which is calculated as bellow: 

 

 
                                                                                                (1–6) 

 

where dA is the diameter of the cable. 

 
Table 1-6 presents values of the modulus of elasticity E, diameter dA and initial unstressed 

length S0 that, mainly, have been chosen in the context of this diploma thesis. 
 

E (GPa) dA (mm) S0 (m) 

150 10 10.0 

165 20 20.0 

180 30 30.0 

Table 1-6: Characteristic values of cable parameters 

In practice, cables made of elastic materials do not exist. Paragraph 1.2.1.4 describes the 

post-elastic response of a cable, in order to acquire a complete knowledge of their behavior.  
 

1.2.1.4  Post-elastic cable response  

 
After the elastic limit of the cable is reached, the problem of the response becomes more 

difficult since it is nonlinear both with respect to geometry and material properties. The 
loading that causes a cable segment to reach the elastic limit may be found with the theory 

presented in this diploma thesis, but, to determine the largest load consideration must be 
given to the post-elastic response.  

 

The load causing failure is always greater, sometimes substantially so, than the load 
pertaining to the elastic limit. A suspended cable resists applied load by changes in tension 

and geometry. Beyond the elastic limit changes in tension and geometry can still occur to 
accommodate the increased load. Tension changes occur because of the pronounced    

strain-hardening characteristic of the high strength steels frequently used in cables, for which 

there is no clearly defined yield plateau. Failure occurs when the ultimate strain is reached in 
some portion of the cable. For the steel typically used in cables, the ratio of strain at ultimate 

to strain at elastic limit is small, being of the order of 10. This may be contrasted with mild 
steels (which have a clearly defined yield plateau) where typically this ratio may be of the 

order of 100 or more. A characteristic of relatively flat suspended cables is that small changes 

in cable length give rise to substantial changes in cable geometry. Therefore, even though 
the strain ratio at ultimate may be small (and the non-recoverable strain itself be small), this 

behavior together with the strain-hardening effect makes it possible for the load that causes 
failure to be often substantially in excess of that which just exceeds the elastic limit.  

 
Because the elastic limit is not clearly defined (see Figure 1-10), the modulus of elasticity is 

usually calculated from the slope of the straight line that connects the 10 % breaking load 

with the 90 % pre-stretching load of the cable specimen. A pre-stretching load of about 55 % 
of the breaking load is usually applied to remove constructional looseness in the cables—a 

very important prerequisite. Typically the elastic limit σe, is reached at about 50 % of the 
ultimate tensile strength σu. Ultimate tensile strengths of 1.500 MPa are regularly achieved, 

with ultimate strains around 3 % for rope and 6 % for strand; tests show that strand is 

stronger than the more flexible rope of the same size. Strength and stiffness, based as they 
are on the nominal cross-sectional areas, are affected by the class of zinc coating [2]. 

 
 

2

A
d

A = π
4
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Figure 1-10: Typical stress-strain properties of structural rope and strand [2] 

 

 

1.2.2 Cable structures 
 

1.2.2.1  Types of cable structures 
 

Tension structures are ones in which the main load-carrying members transmit applied loads 

to the foundations or other supporting structures by direct tensile stress without flexure or 
compression. Their cross-sectional dimensions and method of fabrication are such that their 

shear and flexural rigidities, as well as their buckling resistance, are negligible. There are two 
broad classes of tension structures: cable structures comprised of uniaxially stressed 

members, and membrane structures comprised of biaxially stressed members. The general 

class of cable structures can be further divided into four subclasses: 
 

1)   Single cables in which single cable segments, or several simply connected segments, are 
subjected to loads predominantly in a single plane of action, e.g., suspension cables, tether 

or mooring lines, guy lines for towers or tents. 
 

2)   Cable trusses in which pre-stressed segments are multiply connected in a single plane 

and loaded in that same plane, e.g., cable-stayed bridges, double-layer cable-supported 
roofs. 

 
3)   Cable nets in which pre-stressed segments are multiply connected in a curved surface 

(synclastic or anticlastic) and loaded predominantly normal to that surface, e.g., hanging 

roofs, suspended nets. 
 

4) Cable networks in which cable segments are multiply connected to form a                 
three-dimensional framework, e.g., suspension networks, trawl nets, multiple-leg.  

 
 

There are four subclasses of membrane structures: 

 
1)  Air-supported structures in which an enclosing membrane is supported by a small 

differential air (or fluid) pressure, eg., stadia roofs, inflated temporary shelters or 
storehouses. 
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2)  Inflated structures in which highly pressurized tubes or dual-walled mats are used as 

structural members in a space structure, e.g., inflated beams, columns, or arches;         

dual—walled shells; air cushion roofs. 
 

3)  Pre-stressed membranes in which fabric or rubberlike sheets are stretched over rigid 
frameworks and columns to form enclosures or diaphragms, e.g., tents, masted roofs. 

 
4)   Hybrid systems in which membrane panels span between primary load-carrying members 

such as pre-stressed cables and rigid members, e.g., reinforced fabric roofs, fluid storage 

tanks. 
[4] 

 
1.2.2.2 Applications of cable structures 

 

Tension structures are well suited to support broadly distributed dead loads and live loads 
such as wind, ocean currents, and drift forces due to waves. It should not be surprising that 

lightweight tension structures resemble biological forms, since such forms also support loads 
by tension in pneumatically pre-stressed skins and fibers. Some of the advantages of tension 

members for use as structural components are: 

 
1)    They are lightweight and collapsible and therefore easy to transport and erect. 

 
2)   They can be prefabricated in a factory, have low installation costs, and are potentially 

relocatable. 
 

3)  For air-supported structures, the primary load—carrying mechanism is the habitable 

environment itself, i.e., a pressurized mixture of gases. 
 

4)    The environmental loads are efficiently carried by direct stress without bending. 
 

5)   They are load-adaptive in that the members change geometry to better if accommodates 

changes in load patterns and magnitudes. 
 

[4] 
 

1.2.2.3 Examples of cable structures 
 

In this chapter, images of cables structures all over the world are presented. 
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Figure 1-11: Cable structures around the world 
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Figure 1-12: Cable structures around Greece 

 

 
 

1.3 CABLE NETS  
 

1.3.1 General aspects 
 

Cable nets belong to the family of tensile structures. They are characterized by their capacity 
to cover long spans without intermediate supports and to carry loads much heavier than their 

own weight. They are structures that always stimulate the interest and the imagination of 

both structural engineers and architects, demanding their collaboration, as their structural 
behavior and geometry are closely related. The shape of the final surface depends on the 

geometry of their boundaries, the curvatures, the levels of cable pre-tension and the eventual 
internal supports. The most common shape of cable nets is the hyperbolic paraboloid with a 

surface that is convex about one axis and concave about the other, with a rectangular, 

rhomboid, circular or elliptical plan. The net consists of two families of pre-stressed cables, 
the main or carrying cables, which are suspended from the highest points of the boundary 

and the secondary or stabilizing ones, which are anchored at the lowest points of the 
boundary. The difference of height between the highest or lowest points and the central node 

is called sag of the roof in the direction of the main or stabilizing cables, respectively. The 
boundary is usually a pre-stressed reinforced concrete ring with a box cross-section. These 

structures are very efficient, because the loads are transmitted through tension of the cables, 

usually made of high-strength steel, having thus the best exploitation of the material. In 
addition, with their unusual forms they differ from all other, conventional structures, 

something that makes them extremely elegant.  
 

These characteristics render them one of the most attractive alternatives for covering 

hangars, stadiums, swimming pools, ice rinks, exhibition halls, theatres, concert halls, 
churches and other long-span structures. On the other hand, these structures experience 

large deformations, mainly because, due to their lack of shear rigidity, the cables change 
their shape in order to equilibrate the loads without shear. The large deflections can be 

alleviated by appropriate level of pre-tension. The design of such structures aims at 
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maintaining all cables in tension under any load combination; in case of cable slackening, the 

net may exhibit large deformations. Opposite curvatures enable pre-tension in both 
directions, providing bearing capacity for loads directed downwards, such as snow and wind 

pressure and upwards, such as wind suction. Flat or nearly flat regions of the cable net 
surface should be avoided, because their stiffness is insufficient and they may easily flutter. 

In general, however, the suspended roofs cannot be calculated on the basis of linear theory, 

due to the large difference between their un-deformed and their deformed shape. Thus, their 
analysis should be geometrical nonlinear. The principle of superposition does not apply and 

separate nonlinear analyses must be performed for each loading combination [1]. 
 

 
1.3.2 Components of a cable net 

 

A saddle-form cable network consists of two families of pre-stressed cables, which projected 
in plan create an orthogonal grid. The cables that are suspended from the highest points of 

the boundary are called carrying or main cables, while the stabilizing or secondary cables are 
anchored at the lowest points of the boundary (Figure 1-13). 

 

 
(a)                                                               (b) 

Figure 1-13: Components of a cable net: (a) main cables, (b) secondary cables 
 
The cables are anchored to a boundary ring usually made of pre-stressed concrete with a 

closed box cross-section. It is supported by columns arranged radially and it is either rigidly 
connected with the columns or it seats on bearings placed on the top of the columns [1]. 

 

 
1.3.3 Methods of structural analysis of cable nets 

 
Cable nets are multiply connected systems. In a multiply connected system more than two 

segments may meet at a node and closed loops may be formed. Such systems are highly 

redundant, and the deformations of the individual segments play an important role in 
determining the stresses in the segments. lf the segments all lie in a single curved surface 

and are loaded principally transverse to that surface, then analytical and numerical methods 
based on a membrane analogy can be used. That is, the net is replaced by an equivalent    

pre-stressed membrane and solution methods available for that type of problem can be 
adopted. 

 

More generally, multiply connected segments will form a three-dimensional network. Methods 
of redundant structural analysis are needed to predict both the pre-stressed configuration 

and the in-service response. The pre-stressed configuration and stress state can be 
determined either by an inverse method or by nonlinear analysis. Sometimes a combination 

of both is needed. Often, if in the in-service phase the added loads are small, the response 

can be modeled by linearized equations. But the essential nonlinearity of the system remains, 
and care must be exercised in superposing responses and extreme in-service loads must also 

be handled with nonlinear techniques. 
 

Of the two principal methods redundant structural analysis, flexibility and stiffness methods, 
stiffness methods have proved to be more useful in the analysis of highly redundant cable 

systems. In stiffness methods the fundamental unknowns of the equations formulated are the 

displacements of the nodal points connecting segments. In that class of methods, the lumped 
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parameter method (analogous to the finite difference method) was the first to be applied to 

cable systems. In the lumped parameter method all loads (concentrated and distributed) are 

"lumped" at the nodal points, and attention is focused on the static equilibrium of the nodes. 
The effects of the segments are replaced by forces in equivalent straight and weightless 

springs, which may be nonlinear, and a system of simultaneous algebraic equations is 
generated from the nodal equilibrium conditions. 

 
The finite element method of stiffness analysis has gradually supplanted the lumped 

parameter method in the analysis of cable systems. The advantages of the finite element 

method are (1) the numerical modeling has a clearer physical interpretation; (2) the 
approximations for a particular problem are more flexible (refined approximating functions 

can be used for higher-order effects such as segment curvature); (3) the refinement of the 
elements in regions of particular interest is more readily implemented; (4) comparable 

accuracy can be obtained with less computational effort and mesh refinement; (5) efficient 

matrix manipulation and solution routines can be used; and (6) variable grid sizes and layouts 
can be easily generated and changed. Also, the finite element method is less problem-

dependent, i.e., with a set of standard cable elements as subroutines in a computer program 
it is possible to handle with a single program various configurations and loadings of networks 

and to include other structural elements, such as beams, in the model [4]. 

 
 

 

1.4 SOURCE OF GEOMETRIC NONLINEARITY IN CABLES 
 

Because of their reduced stiffness, tension structures are susceptible to large motions due to 
concentrated loads and dynamic effects. Figure 1-14 illustrates the difference in the response 

to an external vertical uniformly distributed load between a beam and a cable. Beam 

develops shear and moment tensions in order to lift loads to its supports. In contrast, cable, 
due to its cross-section, cannot develop shear and moment. The only way to lift external 

loads is to change its geometry so the multiplication of the sag and the horizontal component 
of the axial tension at any arbitrary position equals to the moment of external loads [5]. 

 

  
 

 
   

 
 

 
        (a)    beam                     (b)    cable 

Figure 1-14: Response of beam and cable to external vertical load [5] 

 
Cables respond in a nonlinear fashion to both pre-stressing forces and in-service forces, 

regardless of linearity of material or loads. Pre-stressing forces are those forces (edge loads, 
self weight, or pressure) which act on a predominant configuration of static equilibrium for 

the structure. They stabilize the structure and provide stiffness against further deflection. The 

response of a tension structure to pre-stressing forces is always nonlinear in that the 
equilibrium configurations, as well as the state of stress, are depended on those forces. 

 
In-service forces are those variable live loads, static or dynamics, which the structure may be 

expected to encounter during its service life. They are superposed upon the pre-stressing 

forces. The response to in-service forces may be nonlinear or quasi-linear, depending on the 
directions and magnitudes of the in-service forces relative to the state of stress in, and 

configuration of, the pre-stressed structure.  
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It is usually sufficient to consider only linear (possibly piecewise linear) material behavior for 

tension structures. There are instances, however, where nonlinear material characteristics 
should be considered: hyperelastic and viscoelastic behavior of polymer cables and 

membranes; nonisotropic woven fabrics; and thermal-elastic and elastoplastic behavior under 
extreme loads. Another potential source of nonlinearities of response is the interaction of 

tension structures with hydrostatic and hydrodynamic loads. Not only are the magnitudes of 

drag force nonlinear, but they are also nonconservative in that directions of pressure loads 
are dependent on orientations of the cable axes and membrane surfaces, which may undergo 

considerable rotation during loading [4]. 
 

 
 

1.5 IMPICATIONS OF GEOMETRIC NONLINEARITY FOR THE STATIC 

BEHAVIOR 
 
The unstressed and stressed geometry of cable structures differ, significantly, due to large 

displacements, when external loads are applied. Cable’s equilibrium under external load is 
implemented at stressed geometry and, as a consequence, equations of cable structures 

must refer to the stressed and not to the unstressed geometry. However, the stressed 

geometry cannot be defined in advance. So, static analysis of such structures involves loops 
in order to find the final state. The equilibrium path is a curve, in contrast to the linear figure 

of structures having small displacements, such as beams, as illustrated in Figure 1-15. 
 

 

 
 

 
 

 
 

 

 
 
                                          (a)    beam                                 (b)    cable 

Figure 1-15: Equilibrium path of a beam and a cable 

 
The response is not linear and, therefore, superposition of results for different in-service 

loading conditions is not strictly valid and, if it is done, must be done carefully. Conventional 

methods of static analysis have no implementation in cable structures. This particularity is 
known as geometric nonlinearity and is the main feature of the static response of tension 

structures.  
 

Figure 1-16 indicates the error that appears in case that the geometric nonlinearity is 

neglected and the calculation of cable’s response is based on the unstressed geometry and 
the initial stiffness matrix. Given an external load P, the response z2, based on the linear 

theory, can be significantly larger than the real one, which is z1. It is considered that cable’s 
length is larger than the distance spanned and, so, the equilibrium path starts from a positive 

value of displacement [5].  
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Figure 1-16: Implication of geometric nonlinearity into cable response 
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2 ANALYTICAL SOLUTIONS FOR THE 

STATIC BEHAVIOR OF SIMPLE CABLES 

 
2.1 INTRODUCTION 

 

In this chapter, simple suspended cables are studied. Their geometry and loading retain that 
the unstressed geometry, the loads and the stressed geometry belong to one single plane. 

Analytical solutions of the problem provide qualitative features of the response of cable 
structures, through diagrams, comparisons etc. Such solutions are used leading to figures 

that show the relationship between important parameters, dimensional or not.  

 
The self weight of the cable is neglected, comparing it to the external pre-tension and live 

loads. The reader can include cable self weight into his analysis using the analytical solutions 
of Paragraphs 2.3.3 and 2.3.4, as it is a uniformly distributed load along its arc length. 

Figures of Chapter 2 present the position of the examined point using the horizontal u and 
the vertical v deflection, which are defined as: 

 

u = x – x*                                         (2-1) 
v = z – z*                     (2-2) 

 
where, 

 

x, z    are the coordinates of the examined point after the application of the load P, p or q,       
         in m 

x*, z*  are the coordinates of the point from which cable tension, due to the load P, p or q,  
         occurs, in m. 

 

regardless if it is defined with x- and z- coordinates in analytical equations. This happens as 
the comparison between cables, varying in properties, becomes more comprehensive because 

curves have as common starting point the start of the axes. For instance, cables differing in 
inclination, but with the same loading condition, conclude to z-coordinates of the examined 

point within a wide range of values.  
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2.2 SIMPLE CABLES UNDER CONCENTRATED LOADS 
 
2.2.1 Horizontal cable under concentrated load in the middle 

 

A concentrated load P is applied at middle span of a horizontal cable, which stretches, until 
an equilibrium position is obtained with z-coordinate at the midpoint, as shown in Figure 2-1. 

At point i, the reaction Ni, the horizontal reaction Hi and the vertical reaction Vi are 
developed, where i = A, B. The static response of the cable is described by using three 

different equations: (a) the equation of static equilibrium, (b) the geometric compatibility 
equation, (c) the material constitutive equation. The cable spans the distance SAB = L, where 

SAB is the distance between points A and B.  
 

 
Figure 2-1: Equilibrium position of a cable under concentrated load at middle span 

 

Due to the symmetric geometry and loading, there is no horizontal deflection u. The vertical 

deflection v of the cable, due to the concentrated load P, is significant and cannot be 
neglected. This is the reason why the equations of static equilibrium must refer to the 

stressed geometry and not to the unstressed geometry. This characteristic of cable structures 
is called geometric nonlinearity and leads to different static analysis methods comparing to 

the conventional structures.  
 

The vertical component V of axial force N is: 
 

P
V =

2                       
(2-3) 

 

where A B
V = V = V .

                           

(2-4) 

 

The sum of moments about the equilibrium point gives: 
 

⇒
 
 
 

L P L
Hz = V H=

2 4 z
                   (2-5) 

 

where A B
H = H = H , from the equilibrium of horizontal forces.

                  

(2-6) 

  

The axial force N of the cable is: 
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2
2 2

2

P L
N = V +H = 1+

2 4z                                

(2-7) 

 

where A B
N = N = N .

                                    

(2-8) 

 

Eq. (2-7) contains an unknown parameter, the z-coordinate at the midpoint. Additional 

equations are needed in order to define the solution, in contrast with conventional structures 
which are solved using only the equations of equilibrium. So, assuming the material as 

linearly elastic and using the material constitutive equation, Hooke’s law gives: 
 

⇒ ⇒ 0

0 0

S - SN ∆S
σ = Eε = Ε N = EA

Α S S
                              (2-9) 

 

where,  

 
A is the cross-section of the cable, in m2  

E is the modulus of elasticity of the cable, in GPa  
S is the stressed length of the cable, in m. 

 

Τhe geometric compatibility equation gives: 
 

⇒
 
 
 

2 2
2

2

S L L
= + z S = 2z 1 +

2 2 4z
                (2-10) 

 

Combining Eqs. (2-7), (2-9) and (2-10) and eliminating N and S, the following equation 
occurs: 
 

⇒

 
  
        
 

2 2

2 2 2
0 0 2

P L 2z L 2 1
1 + = EA 1 + - 1 P = 2EA - z

2 S S4z 4z L
z +

4

                         (2-11) 

Eq. (2-11) relates the external concentrated load P with the z-coordinate the midpoint. This is 

a nonlinear relationship. Contrary to cable structures, conventional structures provide a linear 
relationship between P and z, the response is proportional to the load, and the superposition 

principle is valid. Obviously, in cable structures this principle cannot be used. Defining:   
 

' ' '0
0

z PS
z = ,  S = ,  P =  

LL EA
                      (2-12) 

 

Eq. (2-11) turns into non-dimensional: 
 

( )
( )

 
 
 
 
 
 

⇒ ' '

' 2
'0

2 1
2-11  P = 2z -

S 1
z +

4

                                                                                    

(2-13) 
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Figure 2-2: Applied load P’ as function of vertical deflection v’,                                                                   

in case that S0 = SAB 

 
 

Figure 2-2 shows the equilibrium path of the cable. Here, z* = 0 as S0 = SAB and, so, v = z or 

v’ = z’, where 
' v

v =
L

 is the vertical deflection in non-dimensional form. Easy to notice that 

diagram are not line but a curve. The slope, which indicates cable’s stiffness, increases as 

load P’ increases. So, the cable becomes stiffer as the load and the corresponding deflection 
increase. Giving a qualitative explanation, larger deflection means the increment of the slope 

of cable’s segments left and right from the applied load, leading to the increment of the 

vertical component of cable’s axial force, the component that balances the external load.   
 

Replacing Eq. (2-11) into Eq. (2-7), the axial force N of the cable is calculated: 
 

 
  
 

2

2

0

2z L
N = EA 1 + - 1

S 4z
                             (2-14) 

 

So, not only the concentrated load P but also the axial force N of the cable, which means the 

total response, is described by nonlinear equations. Defining: 
 

' N
N =

EA
                  (2-15) 

 

the previous equation turns into non-dimensional, as below: 

 

( )
( )

⇒
'

'

' 2
'

0 z

2z 1
2-14 N = 1 + - 1

S 4
                                                                 (2-16) 
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Figure 2-3: Cable’s axial force N’ as function of vertical deflection v’,                                                           

in case that S0 = SAB 

 

 
Figure 2-3 describes the cable’s axial force N’ as function of vertical deflection v’. Here, z* = 0 

as S0 = SAB and, so, v = z or v’ = z’. The slope of the curve increases as the vertical  
deflection v’, in other words the concentrated load P, increases due to the geometric 

nonlinearity. 
 

 

Figure 2-4: Cable’s axial force N’ as function of applied load P’,                                                                       
in case that S0 = SAB 

 

The slope of Figure 2-4 decreases as applied load P increases, indicating that the rate of axial 
force’s increment decreases as the load increases. This observation verifies that cable 

structures respond to the increment of external loads by mainly adapting their geometry and 
less by changing their developed tensions. 

 
 The stiffness K of the cable is tangential to the diagram P-z. So: 
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 
 

  
    

           

∂
⇒

∂

⇒

                  

3-
2 22

2 3

0

3

3
0 2 2

P 2 L 1 L 2
K = = 2EA - 1 + - -

z S 2 44z z

L
4EA L 2z

K = -
SL

L
1+

2z

                                             (2-17)

 

Defining:   
 

K'
K =

EA
L                  

(2-18) 

 

Eq. (2-17) turns into non-dimensional, as: 
 

( ) ⇒

 
  
    
 
   
   

     

3

'
'

' 3
2 20

'

1

1 2z
2-17 K = 4 -

S
1

1 +
2z

                

(2-19) 

 

 

Figure 2-5: Cable’s stiffness K’ as function of vertical deflection v’,                                                                 

in case that S0 = SAB 

 

Figure 2-5 describes the cable’s stiffness K’ as function of vertical deflection v’. Here, z* = 0 as 

S0 = SAB and, so, v = z or v’ = z’. The stiffness K’ increases as the vertical deflection v’, in 

other words the concentrated load P, increases due to the geometric nonlinearity. The 

increase of stiffness K’ is presented, in Figures 2-2 and 2-3, with the increase of the slope of 

the curves. The abrupt decrease of the slope in Figure 2-4, or correspondingly the abrupt 

increase of the slope in Figures 2-2 and 2-3, near the start of the axes is consistent with the 

abrupt increase of the slope in Figure 2-5. This observation indicates that geometric 

nonlinearity is evident, mainly, for small values of concentrated load P and for larger values   

of P the response tends to be linear. Pre-tensioned cables make advantage of this incident 

responding, almost, linear with large values of stiffness K. 
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( ) ⇒
'

'

'

P
2-5 H =

4z                                                                                                                   
(2-20) 

 

where 
' H

H =
EA

.                          (2-21) 

 

 
Figure 2-6: Horizontal component H’ of the axial force as function of vertical deflection v’,                              

in case that S0 = SAB 

 
 

Figure 2-6 describes the horizontal component H’ of the axial force as function of vertical 
deflection v’. Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’. The slope of the curve 

increases as the vertical deflection v’, in other words the concentrated load P, increases due 
to the geometric nonlinearity. 

 

Next paragraph generalizes the cable geometry and loading conditions. The implementation 
of the cable model, as presented in Paragraph 2.2.1, into the general equations leads to the 

same results. 
 

  

2.2.2 Inclined cable under concentrated load at arbitrary position 

 

A simple inclined cable is subjected to a concentrated load P at arbitrary position, as 

illustrated in Figure 2-7. The cable spans the distance SAB, which is the distance between 
points A and B. There is not only vertical deflection v but also horizontal u from the 

application point, determined by the physical path of response. After load application, the 

redefined application point can lie over or below the horizontal level of support B. Here, both 
cases are examined. If the application point stands at the level of support B, the mentioned 

alternative procedures give same results. Notice that diagrams are designed through ADINA 
models, for case A, and SAP model, for case B, (contained in the accompanied CD, 

commented in the list of numerical models with ‘analytical’), due to the complexity of the     

2-degree polynomial solution. ADINA cable models contain all the appropriate information, 
regarding loading conditions and cable properties. Paragraph 3.2.3 verifies the identification 

between analytical solution and numerical models. 
 

A) Application point lies over the horizontal level of support B 
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Figure 2-7: Simple inclined cable under concentrated load at arbitrary position, for case A 

 

 

The equilibrium of horizontal forces leads to:  

 

A B
H = H = H

                                                                                                         
(2-22) 

 
Vertical reactions are defined from the equations of static equilibrium: 

 

⇒
Α B

Px
ΣΜ = 0 V = Htanθ -

L                                                                                   
(2-23)

 
 

( )
⇒

B A

P L-x
ΣΜ = 0 V = Htanθ +

L                                                                           
(2-24)

 
 

The proportionality of the sides of the two pairs of similar triangles, as shown below: 

 

 
Figure 2-8: Similar triangles in stressed situation, for case A 

 

 

gives for left pair: 

 

⇒
A

A

H x x
= H = V

V z z
                                                                                              

(2-25)

 
 

and for right pair: 

 

⇒
B

B

H L - x L - x
= H = V

V tanθL - z tanθL - z
                                                                          

(2-26)
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The axial force and its vertical component of the cable segment, supported at point i, are 

equal to the corresponding reactions at point i, where i = A, B. So:

  

( )    
    

    

2 2
2 2

A A A

P L-xx x
N = V + H = V 1 + = Htanθ+ 1 +

z L z
                                           

(2-27)

 
 

    
    
    

2 2
2 2

B B B

L-x Px L-x
N = V + H = V 1 + = Htanθ- 1 +

tanθL-z L tanθL-z
                          

(2-28)

 
 
Assuming the material as linearly elastic and using the material constitutive equation, Hooke’s 

law gives: 

 

⇒ ⇒

⇒ ⇒
 
 
 

i i
i i

0i

i 0i i
i i 0i

0i

N ∆S
σ = Eε = Ε

Α S

S - S N
N = EA S = S 1+ ,   where  i = A, B

S EA
                                               

(2-29) 

 
Using the geometric compatibility equation: 

 

⇒
 
 
 

2 2
2 2 A

A 0A 0A
A

N x + z
S = x + z = S 1+ S =

NEA
1+

EA             

(2-30) 

 

( ) ( )
( ) ( )

⇒
 
 
 

2 2

2 2
B

B 0B 0B
B

L - x + tanθL - zN
S = L - x + tanθL - z = S 1 + S =

NEA
1 +

EA

          

(2-31)  

                                         
 

Adding Eqs. (2-30) and (2-31): 
 

0 0A 0B
S = S + S

                                                                                                      
(2-32) 

 

Replacing NA and NB from Eqs. (2-27) and (2-28), correspondingly, the following equation 
occurs: 

 

( )
( )

⇒
   
   

     
   
   

0

2 2

z tanθL - z
2-32 S = +

1 1P L-x1 1 Px
+ Htanθ+ + Htanθ-

L LEA EAx L-x
+1 +1

z tanθL-z

    (2-33) 

 

This nonlinear equation describes the equilibrium path of the cable. For simplification reasons, 
the following non-dimensional parameters are considered: 
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( ) ( )

' ' ' '

' ' ' 0
0

1 22 2
'

' γ

x z L - x tanθL - z
x = ,  z = ,  β = = 1 - x ,  γ = = tanθ - z ,

L L L L

P H S
P = ,  H = ,  S = ,

LEA EA

1 1
c = ,  c =

βx +1+1
z

                                    

(2-34) 

 

 

So, Eq. (2-33) turns into the following simplified equation: 
 

( ) ⇒
'

'

0 ' ' ' ' '

1 2

z γ
2-33 S = +

c + H tanθ + P β c + H tanθ - P x
                                                

(2-35) 

 

 

Replacing VA from Eq. (2-24) into (2-25), H can be defined as function of P, as shown below: 

 

( ) ( ) 
 
 

⇒
P L-x x P L-x x1

zH = xHtanθ + H =
z-xtanθL L                                                    

(2-36) 

 

Replacing Eq. (2-34) into (2-36): 

 

( ) ⇒ ⇒
' '

' ' ' ' ' ' '

' '

x βP
2-36 z H = x H tanθ + x βP H =

z -x tanθ                                                                        

(2-37) 

 

 
Figure 2-9: Horizontal component H’ of the axial force as function of vertical deflection v’                      

for different values of α, in case that θ = 45 deg and S0 = SAB 
 

 

Figure 2-9 describes the horizontal component H’ of the axial force as function of vertical 

deflection v’ for different values of α. The parameter α is defined as: 

 
*

x
α = 

L
                                                                                            (2-38) 
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The coordinates x*, z* are identical to the coordinates xP, zP, which are the coordinates of the 

starting application point of the concentrated load P, as defined in ADINA cable models. In a 
general cable model with S0 > SAB, z

* ≠ zP.    

 
 

The combination of Eqs. (2-35) and (2-37) gives: 

 

⇒

⇒

'
'

0 ' ' ' '
' ' '

1 2' ' ' '

'
'

0 ' '

1 2

z γ
S = +

x βP x βP
c + tanθ + P β c + tanθ - P x

z -x tanθ z -x tanθ

z γ
S = +

c + P Γ c + P ∆

                                   (2-39) 

 

where  
'

' '

x βtanθ
Γ = + β

z -x tanθ    

and  
'

'

' '

x βtanθ
∆ = - x

z -x tanθ
.

                                                                    

(2-40) 

 

 
P’ can be expressed, transforming Eq. (2-39), into a form of a 2-degree polynomial equation. 

Elaboration of Eq. (2-39) leads to: 
 

( )2 ''Θ P + ΛP +Ξ = 0                                                                                                (2-41) 

 
where, 

 
'

0
Θ=S Γ∆                                                                                                               (2-42) 

' ' '

0 1 0 2
Λ = S c ∆ + S c Γ - z ∆ - γΓ                                                                                   (2-43) 

'

0

'

1 2 2 1
Ξ = S c c - z c - γc .

                                                                               
(2-44) 

 

Now, the 2-degree polynomial equation indicates a relationship between P’, x’ and z’, bearing 
in mind the geometry of the cable that defines the rest parameters.  

 

 
Figure 2-10: Applied load P’ as function of horizontal deflection u’                                                                

for different values of α, in case that θ = 45 deg and S0 = SAB 

 
 

0.000

0.001

0.002

0.003

0.004

0.005

-0.08 -0.06 -0.04 -0.02 0.00

P
'

u' 

0.1 0.3 0.5 0.7 0.9



28                                                          Chapter2 

 

 

Diploma Thesis of Christos Papakitsos       N.T.U.A. 2013 

 

 
Figure 2-11: Applied load P’ as function of vertical deflection v’                                                                     

for different values of α, in case that θ = 45 deg and S0 = SAB 

 

 
Figures 2-10 and 2-11 present the applied load P’ as function of horizontal u’ and vertical v’ 

deflection for different values of α, where 
' u

u =
L

 is the horizontal deflection in                

non-dimensional form. 

 

Cable’s axial force can be easily determined, as function of P’, by replacing Eqs. (2-34) and 
(2-40) into Eqs. (2-27) and (2-28): 

 

( ) ⇒
'

'

A
1

P Γ
2-27 N =

c
                      

(2-45)

 
 

where  
' A
A

N
N =

EA                                       
(2-46) 

 

 
Figure 2-12: Cable’s axial force 

'

AN as function of vertical deflection v’                                                              

for different values of α, in case that θ = 45 deg and S0 = SAB  

 

Figures 2-12 presents the cable’s axial force 
'

AN as function of vertical deflection v’ for 

different values of α.   
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( ) ⇒
'

'

B
2

P ∆
2-28 N =

c                   
(2-47) 

 

where  
' B
B

N
N =

EA                      
(2-48) 

 

 
Figure 2-13: Cable’s axial force '

BN as function of vertical deflection v’                                                          

for different values of α, in case that θ = 45 deg and S0 = SAB 

 

Figures 2-13 presents the cable’s axial force 
'

BN as function of vertical deflection v’ for 

different values of α.  

 
A common observation in Figures 2-9 to 2-13 is that, the nearer to the points of support the 

application point of the concentrated load P is the larger cable stiffness K is developed. In 

general, the shorter a cable is the smaller deflections can develop, increasing its stiffness K. 
As the concentrated load P reaches point A, the length of the left cable segment shortens 

provoking smaller positive vertical deflections v, increasing the stiffness in this kind of 
deflection. In case that the concentrated load P reaches point B, the length of the right cable 

segment shortens provoking smaller negative horizontal deflections u, increasing the stiffness 

in this kind of deflection. Comparing Figures 2-10 and 2-11, the stiffness in horizontal 
deflection u, as shown in Figure 2-10, is larger in case of α = 0.9, as the concentrated load P 

reaches point B, and the stiffness in vertical deflection v, as shown in Figure 2-11, is larger in 
case of α = 0.1, as the concentrated load P reaches point A. The response of the cable to a 

deflection is the development of the corresponding tension. So, a vertical (horizontal) 
deflection v (u) provokes increase of the vertical (horizontal) component Vi (Hi) of the axial 

force Ni, where i = A, B, increasing the stiffness in vertical (horizontal) deflections v (u). For a 

vertical concentrated load, large values of angle θ give large values of the vertical   
component Vi and small values of the horizontal Hi one, concluding to large stiffness in 

vertical deflections v. The total deflection is the vector sum of horizontal u and the vertical v 
one and, so, the increase of stiffness in one deflection leads to the increase of stiffness in the 

other due to stretch limitations. This is the reason why, in Figure 2-10, cable with α = 0.1 

seems to be stiffer in horizontal deflections u that the cable with α = 0.5.  
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Figure 2-14: Cable’s axial forces 

'

iN as function of vertical deflection v’,                                                     

in case that θ = 45 deg, S0 = SAB and α = 0.1 

 
 

Figure 2-14 describes cable’s axial forces 
'

iN as function of vertical deflection v’, in case that   

θ = 45 deg, S0 = SAB and α = 0.1, where i = A, B. The left cable segment, with axial       

force
'

AN , is stiffer in vertical deflections v, as the concentrated load P is near point A.  

  
Parametric diagrams of cables with different angle θ can be found in Paragraph 2.5.3- case 2. 

 
B) Application point lies below the horizontal level of support B 

 

 

Figure 2-15: Simple inclined cable under concentrated load at arbitrary position, for case B 

 

 

The procedure for case B differs from this of case A in the following equation of static 

equilibrium: 
 

⇒
Α B

Px
ΣΜ = 0 V = - Htanθ

L                
(2-49)

 
 
and in pairs of similar triangles, as: 

 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.00 0.01 0.02 0.03

N
' i

v'

A B



Analytical Solutions for the Static Behavior of Simple Cables                                           31 

 

Nonlinear static analysis of cables and cable nets 

 
Figure 2-16: Similar triangles in stressed situation, for case B 

 

So,  

 

⇒
B

B

H L - x L - x
= H = V

V z - tanθL z - tanθL
                                                                          

(2-50) 

 
 

Final equations, in case B, are presented below: 
 

( ) ( )⇒
2# # ' #'2-41 Θ P +Λ P +Ξ = 0                                                                              (2-51) 

 
where, 

 

( ) ⇒ # ' # #

0
2-42 Θ =S Γ ∆                                                                                                (2-52) 

( ) ⇒ # ' # # ' # # ' # # #

0 1 0 2
2-43 Λ = S c ∆ + S c Γ - z ∆ - γ Γ                                                         (2-53) 

( ) ⇒ '

0

# # # ' # # #

1 2 2 1
2-44 Ξ = S c c - z c - γ c                                                          (2-54) 

 

and 

 

( )

( )

⇒

 
 
 

# ' # '

# #

1 22 2
' #

' #

,

2-34  β = 1 - x , γ = z - tanθ,

1 1
c = c =

x β+ 1 + 1
z γ

    

                                                                

(2-55) 

 

( ) ⇒
' # ' #

# # # '

' ' ' '

xβ tanθ x β tanθ
2-40 Γ = + β , ∆ = x -

z -x tanθ z -x tanθ
                                                                     

 

(2-56)
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Figure 2-17: Applied load P’ as function of horizontal deflection u’,                                                              

in case that θ = 5 deg, S0 = SAB and α = 0.6 

 

 
Figure 2-18: Applied load P’ as function of vertical deflection v’,                                                              

in case that θ = 5 deg, S0 = SAB and α = 0.6 

 

Figures 2-17 and 2-18 show the equilibrium path of the cable, in case that θ = 5 deg,          
S0 = SAB and α = 0.6. The slope, which indicates cable’s stiffness K, increases as load P’ 

increases, due to the geometric nonlinearity. 

 

Axial forces

 

'

iN , where i = A, B, are calculated from the following equations:

 
 

( ) ⇒
' #

'

A #
1

P Γ
2-45 N =

c                         
(2-57)

 
 

( ) ⇒
' #

'

B #
2

P ∆
2-47 N =

c
                                   

(2-58)
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Figure 2-19: Cable’s axial forces 

'

iN as function of vertical deflection v’,                                                                

in case that θ = 5 deg, S0 = SAB and α = 0.6 

 

Figure 2-19 describes cable’s axial forces 
'

iN as function of vertical deflection v’, in case that   

θ = 5 deg, S0 = SAB and α = 0.6, where i = A, B. The slope of the curves increases as the 

vertical deflection v’, in other words the concentrated load P, increases due to the geometric 

nonlinearity. The difference between two cable segments is slight, as the cable is almost 
horizontal (θ = 5 deg) and the concentrated load P is applied near the midpoint (α = 0.6), 

eliminating the differences in stiffness in horizontal u and vertical v deflections. 
 

The horizontal component H’ of the axial force is defined as: 

 

( ) ⇒
' # '

'

' '

x β P
2-37 H =

z -x tanθ                                                                                                                           

(2-59) 

 

 

 
Figure 2-20: Horizontal component H’ of the axial force as function of vertical deflection v’,                                      

in case that θ = 5 deg, S0 = SAB and α = 0.6 

 

Figure 2-20 describes the horizontal component H’ of the axial force as function of vertical 

deflection v’, in case that θ = 5 deg, S0 = SAB and α = 0.6. The slope of the curve increases 
as the vertical deflection v’, in other words the concentrated load P, increases due to the 

geometric nonlinearity. The smooth angle in the curve is due to load steps in SAP model. 
 

Unspecified parameters remain the same as in case A. 
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2.2.3 Horizontal cable under concentrated load at arbitrary position 

 
A simple horizontal cable is subjected to a concentrated load at arbitrary position, as shown 

in Figure 2-21. The cable spans the distance SAB, which is the distance between points A   
and B. The analytical equations derive from Paragraph 2.2.2 - case B, taking into account the 

new geometry. Notice that diagrams are designed through ADINA models (contained in the 

accompanied CD, commented in the list of numerical models with ‘analytical’), due to the 
complexity of the 2-degree polynomial solution. ADINA cable models contain all the 

appropriate information, regarding loading conditions and cable properties. Paragraph 3.2.4 
verifies the identification between analytical solution and numerical models. 

 
 

 
Figure 2-21: Simple horizontal cable under concentrated load at arbitrary position 

 

Replacing θ = 0 deg into the equations of Paragraph 2.2.2 – case B, the analytical solution 
for a horizontal cable under concentrated load at arbitrary position occurs. 

 

( ) ( )⇒
2h h ' h'2-51 Θ P +Λ P +Ξ =0                                                                               

 

(2-60) 

 

where, 
 

( ) ⇒ h ' h h

0
2-52 Θ =S Γ ∆                                                                                                 (2-61) 

( ) ⇒ h ' h h ' h h ' h h h

0 1 0 2
2-53 Λ = S c ∆ + S c Γ - z ∆ - γ Γ                                                           (2-62) 

( ) ⇒ '

0

h h h ' h h h

1 2 2 1
2-54 Ξ = S c c - z c - γ c                                 (2-63) 

 

and 
 

( )

( )

⇒

 
 
 

h ' h '

h h

1 22 2
' h

' h

,

2-55  β = 1 - x , γ = z ,

1 1
c = c =

x β+ 1 + 1
z γ

    

                                                                 

(2-64) 

 

( ) ⇒ h h h '
2-56 Γ = β , ∆ = x                                                                                                                      

 

(2-65)
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Figure 2-22: Applied load P’ as function of horizontal deflection u’                                                                   

for different values of α, in case that S0 = SAB 

 

 

 
Figure 2-23: Applied load P’ as function of vertical deflection v’                                                                    

for different values of α, in case that S0 = SAB 

 
Figures 2-22 and 2-23 present the applied load P’ as function of horizontal u’ and vertical v’ 

deflection, correspondingly, for different values of α. Here, z* = 0 as S0 = SAB and, so, v = z 

or v’ = z’.  

 

Axial forces

 

'

iN , where i = A, B, are calculated from the following equations:

  

( ) ⇒
' h

'

A h
1

P Γ
2-57 N =

c                         
(2-66)
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Figure 2-24: Cable’s axial force 

'

AN as function of vertical deflection v’                                                            

for different values of α, in case that S0 = SAB  

 

Figures 2-24 presents the cable’s axial force 
'

AN as function of vertical deflection v’ for 

different values of α. Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’. The smooth angle, in 

case that α = 0.1, is due to load steps in ADINA models. 
 

 

( ) ⇒
' h

'

B h
2

P ∆
2-58 N =

c
                                   

(2-67)

 
 
 

 
Figure 2-25: Cable’s axial force 

'

BN as function of vertical deflection v’                                                           

for different values of α, in case that S0 = SAB  

 

Figures 2-25 presents the cable’s axial force 
'

BN as function of vertical deflection v’ for 

different values of α. Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’. The smooth angle, in 

case that α = 0.1, is due to load steps in ADINA models. 
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A common observation in Figures 2-23 to 2-25 is that, the nearer to the point of support the 

application point of the concentrated load P is the larger cable stiffness K in vertical   
deflection v is developed. In the other hand, according to Figure 2-22, the farther from the 

point of support the application point of the concentrated load P is the larger cable stiffness K 
in horizontal deflection u is developed. In general, the shorter a cable is the smaller 

deflections can develop, increasing its stiffness K. As the concentrated load P reaches point A, 

the length of the left cable segment shortens provoking smaller positive vertical deflections v, 
increasing the stiffness in this kind of deflection. In case that the concentrated load P reaches 

the midpoint, the length of the right cable segment shortens provoking smaller negative 
horizontal deflections u, increasing the stiffness in this kind of deflection. Comparing     

Figures 2-22 and 2-23, the stiffness in horizontal deflection u, as shown in Figure 2-22, is 
larger in case of α = 0.3, as the concentrated load P reaches the midpoint, and the stiffness 

in vertical deflection v, as shown in Figure 2-23, is larger in case of α = 0.1, as the 

concentrated load P reaches point A. For α = 0.5 there is no horizontal deflection u due to 
the geometry cable symmetry. Here, θ = 0 deg and the development of stiffness in one kind 

of deflection is independent from the stiffness in the other deflection.    

 

 
Figure 2-26: Cable’s axial forces 

'

iN as function of vertical deflection v’,                                                                

in case that S0 = SAB and α = 0.1 

 

Figure 2-26 describes cable’s axial forces 
'

iN  as function of vertical deflection v’, in case that   

S0 = SAB and α = 0.1, where i = A, B. Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’. The 

slope of the curves increases as the vertical deflection v’, in other words the concentrated 
load P, increases due to the geometric nonlinearity. There is difference between two cable 

segments, as the concentrated load P is applied near to the point A (α = 0.1), increasing the 
stiffness in vertical v deflections of the left cable segment. The smooth angle is due to load 

steps in ADINA models. 
 

 
The horizontal component H’ of the axial force is defined as: 
 

( ) ⇒
' h '

'

'

x β P
2-59 H =

z                                                                                                                                 

(2-68) 

 
 

0.000

0.002

0.004

0.006

0.008

0.010

0.00 0.01 0.02 0.03 0.04 0.05

N
' i

v' 

A B



38                                                          Chapter2 

 

 

Diploma Thesis of Christos Papakitsos       N.T.U.A. 2013 

 

 
Figure 2-27: Horizontal component H’ of the axial force as function of vertical deflection v’                      

for different values of α, in case that S0 = SAB 

 
Figure 2-27 describes the horizontal component H’ of the axial force as function of vertical 
deflection v’ for different values of α, following the reasoning of Figures 2-23 to 2-25. Here,  

z* = 0 as S0 = SAB and, so, v = z or v’ = z’.  
 

The smooth angle in the figures of Paragraph 2.2.3 is caused by the load steps in ADINA 
models. 

 

 

2.2.4 Inclined cable under imposed end displacement 

 

2.2.4.1 Response of an inclined cable under imposed end displacement 
 

In this paragraph, two kinds of imposed end displacement are presented, the vertical v and 

horizontal u. Vertical imposed end displacements v can be detected at the deck of a         
cable-braced bridge while a horizontal imposed end displacement u can occur at a radio mast, 

for instance due to a seismic load. The analytical solution can be derived considering the half 
of a horizontal cable under concentrated load in the middle - Paragraph 2.2.1.  

 

A) Vertical imposed end displacement v 
 

A simple inclined cable, with initial unstressed length S0, is subjected to a vertical imposed 
end displacement v by the application of a concentrated load P, as shown in Figure 2-28. 
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Figure 2-28: Simple inclined cable under vertical imposed end displacement v 

 

Replacing the following parameters for the half cable: 

 

→ → →0
0

SP L
P,  L,  S

2 2 2

  
equations for a vertical imposed end displacement v are acquired.  

 
The concentrated load P as function of the z-coordinate of the equilibrium point is defined as: 

 

( ) ⇒
 
 
 2 2

0

1 1
2-11 P = EA - z

S z + L
                                                                                            (2-69)

  
 

Using the replacements of Eq. (2-12), the non-dimensional form of Eq. (2-69) occurs: 

 

( )

( )
⇒

'
'

' 2
0

'

z 1
2-69  P = -

S 1
1 +

z
                 

(2-70) 

 

 

 
Figure 2-29: Applied load P’ as function of vertical deflection v’,  

in case that S0 = SAB and θ = 30 deg 
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Figures 2-29 presents the applied load P’ as function of vertical v’ deflection, in case that       

S0 = SAB and θ = 30 deg. The response is almost linear, as the geometric nonlinearity is mild. 
 

The axial force N is expressed as function of the z-coordinate of the equilibrium point as: 
 

( )
 

      
⇒

2

0

z L
1+ -1

S z
2-14 N = EA

                                         

(2-71) 

Using the replacements of Eqs. (2-12) and (2-15), the non-dimensional form of Eq. (2-71) 

occurs: 
 

( ) ( )⇒
' 2

'

''

0

z 12-71  N = 1 + - 1
zS                  

(2-72) 

 

 

 
Figure 2-30: Cable’s axial force N’ as function of vertical deflection v’, 

in case that S0 = SAB and θ = 30 deg 

 
Figures 2-30 presents the axial force N’ as function of vertical v’ deflection, in case that         

S0 = SAB and θ = 30 deg. The response is almost linear, as the geometric nonlinearity is mild. 

 
The horizontal component H of the axial force as function of the z-coordinate of the 

equilibrium point is shown below: 
 

( )⇒
PL

2-5  H =
z                   

(2-73) 

 

Using the replacements of Eqs. (2-12) and (2-21), the non-dimensional form of Eq. (2-73) 

occurs: 

 

( )⇒
'

'

'

P
2-73  H =

z                   
(2-74) 
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Figure 2-31: Horizontal component H’ of the axial force as function of vertical deflection v’,                      

in case that S0 = SAB and θ = 30 deg 

 
 

Figures 2-31 presents the horizontal component H’ of the axial force as function of vertical v’ 
deflection, in case that S0 = SAB and θ = 30 deg. The response is almost linear, as the 

geometric nonlinearity is mild. 

 
Figures 2-29 to 2-31 indicate an almost linear cable response. The vertical imposed end 

displacement v is the vector sum of a displacement perpendicular to the cable, which rotates 

it, and a displacement parallel to the cable, which elongates it in a linear way. This is the 
reason why the geometric nonlinearity is not intense.  

 

Eqs. (2-69) to (2-74) are valid for ≥ * 2 2

0
z  z = S -L . In case that S0 ≠ SAB, z

* ≠ cosθSAB. 

 

B) Horizontal imposed end displacement u 

 
In this case, a simple inclined cable, with initial unstressed length S0, is subjected to a 

horizontal imposed end displacement u. The cause of this displacement is the concentrated 
load P, as shown in Figure 2-32. 

 

 

Figure 2-32: Simple inclined cable under horizontal imposed end displacement u 
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The corresponding cable equations, based on case A, are presented below. 

 
For the concentrated load P: 

 

( ) ⇒
 
 
 2 2

0

x

x

1 1
2-69 P = EA -

S + L
                                                                                            (2-75)

  
 

( )

( )
⇒

'
'

' 2
0

'

x 1
2-70  P = -

S 1
1 +

x
                 

(2-76) 

 

For the axial force N: 

 

( )
 

      
⇒

2

0

x L
1+ -1

S x
2-71 N = EA

                                         

(2-77) 

 

( ) ( )⇒
' 2

'

''

0

x 12-72  N = 1 + - 1
xS                  

(2-78) 

 

For the horizontal component H of the axial force: 
 

( )⇒
PL

2-73  H =
x                   

(2-79) 

 

( )⇒
'

'

'

P
2-74  H =

x                   
(2-80) 

 

Eqs. (2-75) to (2-80) are valid for ≥ * 2 2

0
x x = S - L .  In case that S0 ≠ SAB, x

* ≠ cosθSAB. 

 

Diagrams, and their qualitative explanation, are the same with case A. 

 

2.2.4.2 Examination of a simple inclined cable as spring 

 

An inclined cable under imposed end displacement can be simulated with an equivalent 

spring, simplifying the analysis procedure in case of a construction with many cables, for 

instance a cable-braced bridge. Generally, spring’s reaction is subjected to Hooke’s law, which 

states that: 

 

F =KSu                             (2-81) 

 

where, 
 

u is the displacement of the spring's end from its equilibrium position, in m 

F is the restoring force exerted by the spring on that end, in kN, and 

KS is a constant called the rate or spring constant, in kN/m. 
 

The spring simulation concerns the calculation of the equivalent spring constant KS of the 

cable. It is assumed that cable’s material is linearly elastic. In case of an end displacement 

parallel to the cable (θ = 0 deg), the material constitutive equation gives: 
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S

0

∆S
N = EA = K ∆S

S
                                                      (2-82) 

 

where, 

 

S

0

EA
K =

S
      

and

      

∆S = u or v .

                                 

(2-83) 

 
KS is the equivalent spring constant of the cable, in kN/m. The response is linear.  
 

In case of an inclined cable imposed to a vertical/horizontal end displacement the analysis is 
more complicated. Eqs. (2-69) and (2-75) are equivalent to Eq. (2-81), as the restoring   

force F corresponds to the external load P and the displacement of spring’s end u to the 
horizontal u or vertical v end displacement. Considering a vertical imposed end    

displacement v, the expansion of Eq. (2-69) in Taylor series around the point z = z* gives: 

 

( ) ( ) ( )

( ) ( )
( )

( )

( )

( )
( )

 
 
 
 
 
  
  
    

 
 
 
 
 
    
    
        

⇒

2
*

*
3/2 220

* 2* 2

3
*

* 2
*

3/2 5/2
2 2

* 2 * 2

z1 1
2-69 P = P z = EA + - z-z +

S
z +Lz +L

3 zEA 3z
+ - z - z + ...

2

z +L z +L

                                      

(2-84) 

 

The first term of Eq. (2-84) represents the approximate equivalent linear spring, as: 
 

( ) ⇒
S

2-84 P = K v                      (2-85) 

 
with equivalent spring constant KS, in kN/m: 

 

( )

( ) ( )

( )

 
 
       

     
  
    

2
* 22

0 AB
S 3/2 3220 0* 2* 2

z1 1
+ -

S
z +Lz +L

S - sinθS
K = EA = EA

S

                                          

(2-86) 

 

where AB
L = sinθS , from Figure 2-28.  

 

For θ = 0 deg, Eq. (2-86) turns into Eq. (2-83). 
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Figure 2-33: P – v curves considering the accurate solution and the equivalent linear spring equation,    

in case that θ = 30 deg, S0 = SAB = 20 m, E = 165 GPa and d = 20 mm 

 

 

Figure 2-33 compares the accurate solution, from Eq. (2-69), with the equivalent linear 

spring, from Eq. (2-85), in case that θ = 30 deg, S0 = SAB = 20 m, E = 165 GPa and             
d = 20 mm. Curves are almost identical, proving the lack of geometric nonlinearity in 

diagrams of Paragraph 2.2.4.1 – case A. 
 

 
Figure 2-34: P – v curves of the equivalent spring for different values of angle θ,                                                        

in case that S0 = SAB = 20 m, E = 165 GPa and d = 20 mm 
 

 
Figure 2-34 presents the response of the equivalent spring for different values of angle θ,                                                        

in case that S0 = SAB = 20 m, E = 165 GPa and d = 20 mm. The slope of curves is invariable 
and equals to the equivalent spring constant KS. The smaller the angle θ is the stiffer the 

equivalent spring becomes. The response of the cable to a vertical imposed end   

displacement v is the development of the corresponding tension, which is the vertical 
component V of the axial force N, increasing the stiffness in this kind of deflections. A small 

value of angle θ means large value of the vertical component V and small value of the 
horizontal H one, concluding to large stiffness in vertical deflections v. This is the reason why 

cables with small inclination are stiffer in vertical imposed end displacements v.  
 

In non-dimensional form: 

 

( ) ⇒ ' ' '

S
2-85 P = K v

                
(2-87) 
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where, 

 

( )
( )

2
'
0'

S 3
'
0

S -1
K =   

S

                  (2-88) 

 

Eqs. (2-84) to (2-88) are valid for ≥ * 2 2

0
z  z = S -L .

 
Starting from Eq. (2-75), the equivalent 

spring constant KS for horizontal displacement u occurs.  
 

2.2.4.3 Implementations in cable structures 
 

The analytical solutions of Paragraphs 2.2.4.1 and 2.2.4.2 can be implemented in cable 

structures. The static analysis of a cable-braced bridge, subjected to vertical end 
displacements v, is an example. In such structures, which contain long cables, self weight 

provokes curvature and cannot be omitted during the design procedure.    
 

Figure 2-35 illustrates a model of a cable-braced bridge. The weight of a moving vehicle can 

be regarded as a concentrated load Pi applied on bridge’s deck. This load provokes vertical 
displacement of the deck and, as a consequence, vertical end displacement vi of cable i. 

Replacing cable i with a spring having equivalent spring constant KSi, as shown in Figure 2-36, 
the vertical imposed end displacement vi can be calculated. Rest cables are replaced with the 

corresponding springs. 
 

 

 
Figure 2-35: Cable-braced bridge subjected to moving concentrated load Pi 

 

 
Figure 2-36: Equivalent model of a cable-braced bridge with linear springs 

 
In a real model case, cables are pre-tensioned due to the weight of the deck. Initially 

unstressed cables are placed in order to deliver dead loads of the deck. These loads provoke 

permanent vertical imposed end displacements v, and corresponding pre-tensions, at cables. 
During the service phase, live loads add vertical imposed end displacements v and tensions to 

the pre-tensioned cables. 
 

Regarding the horizontal imposed end displacements u, a radio mast is a cable structure 
subjected in such displacements. A detailed analysis, taking into account the pre-tension, is 

presented in Chapter 5.  
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2.3 SIMPLE CABLES UNDER UNIFORMLY DISTRIBUTED LOADS 
 

2.3.1 Inclined cable under uniformly distributed load along its horizontal 

projection 

 

A simple inclined cable, with initial unstressed length S0, spans the distance SAB, where SAB is 

the distance between points A and B. A uniformly distributed load p along cable’s horizontal 
projection is applied, as shown in Figure 2-37. The horizontal deflection u of the cable is not 

taken into account in this analysis, for simplification reasons.   
 

 

 

 

 
Figure 2 -37: Inclined cable under uniformly distributed load p along its horizontal projection 

 

 

The x-coordinate is assumed as independent variable. The horizontal component H and 
vertical component V of the axial force, the z-coordinate and the stressed cable length S are 

considered as dependent variables.  

 
The equilibrium of forces on the differential length ds is expressed as:  

⇒ A B

dH
= 0 H = H = H

dx
 

                                                                               
(2-89) 

⇒ A

dV
dx = -pdx V = V - px

dx
                                                                                                                              (2-90)
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where HA and VA are the horizontal and vertical reactions at point A. So: 

 
2 2

A A A
N = H + V                                                                                                                                             (2-91) 

 

The axial force N at distance x from endpoint A, is given as: 

( )22 2 2
AN = H + V = H + V -px                                                                                                            (2-92) 

 

Using the equations of geometry and taking into account that the force N is axial, in other 

words tangent to the stressed cable, the following equations occur:  
 

⇒
 
 
 

A
A

V - pxdz V x px
= = z = V -

dx H H H 2
                                                                                                  (2-93) 

 

⇒
  
  

  

A A B B

A A

V N - V Nds N H N - V
= s = + log

dx H 2p H N - V
                                                                        (2-94) 

 

where s is the stressed length of the cable from the start of the axes to the point (x,z). 

 

The analytical form of Eqs. (2-93) and (2-94) derives from their integration from x = 0 to x, 
where for x = 0: 

 
z = s = 0                   (2-95) 

N = NA                                                                                                                                                                             (2-96) 

H = HA                                                                                                                                                                               (2-97) 
V = VA                                                                                                                  (2-98) 

 
Applying the boundary conditions of right support B:  
 
z=Ltanθ     and     x=L                (2-99) 
                                                                                             

Eq. (2-93) turns into: 

( ) ⇒
A

pL
2-93 V = Htanθ +

2
                                                                                                                 (2-100) 

 

Combing Eqs. (2-92) and (2-100), cable’s axial force N at distance x from endpoint A is 

defined as: 
 

  
    

2

pL 2x
N = H 1 + tanθ + 1 -

2H L
                                                                                                          (2-101) 

 

Replacing Eq. (2-100) into (2-93), the z-coordinate of the point (x,z) is: 

 

z = xtanθ + d                                                                                                      (2-102)

   
where,  
 

( )xp L-x
d =

2H
                                                                                                       (2-103)
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Notice from Figure 2-37 that, d is the vertical distance of the stressed cable from the      

chord AB. In case that, S0 ≤ SAB, d = v. 
 

Eqs. (2-101) and (2-102) describe the axial force N and the z-coordinate as function of the 
horizontal component H of the axial force, which is generally not known. In some occasions, 

H can be defined from the reader directly or indirectly, for instance if d is known at some 

point. 
 

If the vertical distance d of the cable at midpoint is defined as: 
 

 
'

m m
d = d L                                                                                                                                                      (2-104) 

 
the horizontal component H of the axial force comes out from the following equation:

  

( ) ⇒ ⇒
 
 
 

m '

m

pL L pL
2-103 d = L - H =

4H 2 8d
                                                                                             (2-105) 

 

and previous equations turn into: 

 

( ) ⇒
  

  
  

2

'

m'

m

pL 2x
2-101 N = 1 + tanθ + 4d 1 -

L8d
                                                     (2-106) 

 

( ) ⇒
  

  
  

'

m

x
2-102 z = x tanθ + 4d 1 -

L
                                                                                           (2-107) 

 

In case that, the horizontal component H of the axial force and/or the vertical distance d for 

each point are unknown, the material constitutive equation is used in calculations. Assuming 

the material as linearly elastic, Hooke’s law gives for the differential length ds of DETAIL “a” - 

Figure 2-37: 

 

⇒ ⇒
   
   

  
0 0

0

ds - ds dsds N
σ = Εε N = EA = 1 +

ds dx dx EA
                                                            (2-108)

 
 

The combination of Eqs. (2-94) and (2-108) leads to: 
 

⇒
 
    

 
 

0 0

N

ds dsN N H= 1 + =
NH dx EA dx

1 +
EA

                                                                                   (2-109)

 

 

Replacing Eq. (2-101) into (2-109) and integrating from x = 0 to L, in the left part derives the 

known cable’s unstressed length S0 and in the right part a function of the horizontal 

component H of the axial force. Eq. (2-109) is too complex to determine an analytical solution 

from its integral. The right part should be simplified. Expanding to series according to: 

 

2 31
= 1 - x + x - x + ...

1 + x
                                                                                   (2-110) 

[6] 
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and assuming that 
N

EA
<<1, the terms 

N

EA
 of higher order are neglected. Then, Eq. (2-109) 

becomes: 
 

( ) ⇒  
 
 

0
ds N N

2-109 = 1 -
dx H EA

                                                                                                                 (2-111)

 
 

Replacing the horizontal component H of the axial force from Eq. (2-105) and the axial     

force N from Eq. (2-106) into (2-111): 

 

( )
 

   
   

    

⇒
  

  
  

2
2

'0 '
mm '

m

ds 2x pL 2x
2-111 = 1 + tanθ + 4d 1 - 1- 1+ tanθ+4d 1-

L8d EAdx L
            (2-112)

 

 

For simplification reasons, the following non-dimensional parameters are used: 
 

 
 
 

'

'

m

pL
p =

2EA

2x
ρ = tanθ + 4d 1 -

L

                                                                                       (2-113)

 

 

Then, the horizontal component H’ of the axial force in non-dimensional form is defined as: 

 

( ) ⇒
'

'

'

m

p
2-105 H =

4d
                                 

(2-114) 

 

 
Figure 2-38: Horizontal component H’ of the axial force as function of vertical deflection v’ (= '

m
d )                       

for different values of angle θ, in case that S0 = SAB 

 

Figure 2-38 describes the horizontal component H’ of the axial force as function of vertical 

deflection v’ (=
'

m
d ) for different values of angle θ, in case that S0 = SAB.  

 

Eq. (2-112) turns into: 
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( ) ⇒
 
 
 

'
2 20

'

m

ds p
2-112 = 1 + ρ 1 - 1 + ρ

dx 4d
                                                                                    (2-115)

 
 

The integration of Eq. (2-115) from x = 0 to L gives: 

 

( ) ( )

( )

⇒
          

 
 
 

2
' 2 2 A A
0 A A B B' 2

m B B

3 3'
B A

B A'

m

ρ + 1 + ρ1
2-115 S = ρ 1 + ρ - ρ 1 + ρ + ln +

16d ρ + 1 + ρ

ρ - ρp
+ ρ - ρ +

32d

                               (2-116)

 

 

where, 
 

( )
( )

'

A m

'

B m

ρ = ρ x = 0 = tanθ + 4d

ρ = ρ x = L = tanθ - 4d
                                                                                                              (2-117)                                                                                     

 

 

Figure 2-39: Applied load p’ as function of vertical deflection v’ (=
'

m
d )                                                      

for different values of angle θ, in case that S0 = SAB 

 

Figure 2-39 describes the equilibrium path of the cable for different values of angle θ, in case 

that S0 = SAB.  

 

Cable’s axial force gets the maximum value at endpoint A, according to Eq. (2-106): 

 

( ) ( )⇒
2max '

m'

m

pL
2-106 N = 1 + tanθ+4d

8d
                                                               (2-118) 

 

or in non-dimensional form: 

( ) ⇒
'

max' 2

Α'

m

p
2-118 N = 1 + ρ

4d
                                                                                                       

(2-119) 
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Figure 2-40: Maximum axial force Nmax’ as function of vertical deflection v’ (=
'

m
d )                                        

for different values of angle θ, in case that S0 = SAB 

 

 
Figure 2-40 describes the maximum axial force Nmax’ as function of vertical                    

deflection v’ (=
'

m
d ) for different values of angle θ, in case that S0 = SAB.  

 
Figures 2-38 to 2-40 have the same qualitative behavior. The slope of the curves increase as 
the vertical deflection v’, in other words the applied load p, increases due to the geometric 

nonlinearity. For larger values of the vertical deflection v’, the curves tend to become linear, 
as the geometric nonlinearity is eliminated. Moreover, the smaller the angle θ is the stiffer the 

cable becomes. According to Figure 2-41, applied load p is analyzed into a component ⊥p

perpendicular to the differential length ds and a parallel one 
�

p , where: 

 

⊥p = cosθp                 (2-120) 

�
p = sinθp                 (2-121) 

 

 

Figure 2-41: Analysis of the applied load p into ⊥p  and 
�

p  components 

  

The component ⊥p displaces the differential length ds along its direction, while the         

component 
�

p  elongates it according to Hooke’s law, Eq. (2-108). Larger values of angle θ 

lead to larger values of the component 
�

p  and, given a constant value of the modulus of 

elasticity E, larger elongations ε. As elongations ε increase, cable’s stiffness K decreases. This 
is the reason why the smaller the angle θ is the stiffer the cable becomes. Notice that, in case 

of a concentrated load P the opposite qualitative behavior occurs, according to        
Paragraph 2.5.3 – case 2, as the response mechanism of the cable differs.    
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2.3.2 Horizontal cable under uniformly distributed load along its horizontal 

projection 

 

In this section, a horizontal cable under uniformly distributed load p along its horizontal 

projection is examined. The model of the cable is illustrated on Figure 2-37, for θ = 0 deg. 
Due to the geometric symmetry, there are no horizontal deflection u. Eq. (2-116) is simplified 

as follows: 
 

( ) ( ) ( )
( )

( )
            

   
     

⇒

2 2' ' '
2 m m m' ' ' '

m m0 ' 2
' 'm
m m

1+ 4d +4d 4d1
2-116 S = 8d 1+ 4d +ln -4p 1+

316d
1+ 4d -4d

                (2-122) 

 

 

 

Figure 2-42: Applied load p’ as function of vertical deflection v’ (=
'

m
d ),                                                       

in case that S0 = SAB 
 

Figure 2-42 shows the equilibrium path of the cable, in case that S0 = SAB. The slope, which 

indicates cable’s stiffness K, increases as the applied load p’ increases, due to the geometric 
nonlinearity. Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’.  
 

Using Eq. (2-106), the expression of the cable’s axial force N is: 

 

( )
( )

⇒
 
 
 

2

2
'
m

pL 1 2x
2-106 N = + 1 -

2 L4d
                                                                                          (2-123)

 

 
and is maximum at endpoint A: 

 

( )
( )

⇒ max

2
'
m

pL 1
2-123 N = +1

2 4d
                                                                         (2-124) 

 

or in non-dimensional form: 

( )
( )

⇒ max' '

2
'
m

1
2-124 N = p + 1

4d
                                                                                                   

(2-125) 
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Figure 2-43: Maximum axial force Nmax’ as function of vertical deflection v’ (=
'

m
d ),                                      

in case that S0 = SAB 

 

 
Figure 2-43 describes cable’s maximum axial forces Nmax’ as function of vertical                 

deflection v’ (=
'

m
d ), in case that S0 = SAB. The slope of the curve increases as the vertical 

deflection v’, in other words the applied load p’, increases due to the geometric nonlinearity. 

Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’.  

 
The horizontal component H of the axial force comes out from: 

 

( ) ⇒
'

m

pL
2-105 H =

8d
                                                                                                    (2-126) 

 

or in non-dimensional form: 

( ) ⇒
'

'

'

m

p
2-126 H =

4d
                                 

(2-127) 

 

 

 
Figure 2-44: Horizontal component H’ of the axial force as function of vertical deflection v’ (=

'

m
d ),           

in case that S0 = SAB 
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Figure 2-44 describes the horizontal component H’ of the axial forces as function of vertical                 

deflection v’ (=
'

m
d ), in case that S0 = SAB. The slope of the curve increases as the vertical 

deflection v’, in other words the applied load p’, increases due to the geometric nonlinearity. 

Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’.  
 

 

In case that the vertical deflection 
'

m
d at midpoint is small, in other words 

'

m
d <<1,                  

Eq. (2-122) can be developed in Taylor series, after multiplication with 16
'

m
d . The result is: 

 

( ) ( ) ( ) ( ) ( )⇒
3 5 72' ' ' ' ' ' ' ' '

m 0 m m m m m

64 128 512 4096
2-122 16d S = -4p +16d - p d + d - d + d +...

3 3 5 7
                     

         (2-128)

  

Neglecting the terms of fifth and higher order, Eq. (2-128) is a 3rd degree equation and can 

be written as follows: 
 

( ) ( ) ( ) ( ) ( )⇒
3 2

' ' ' ' ' '

m m 0 m
2-128 4d - 2p 4d - 6 S -1 4d - 6p = 0                                                         (2-129) 

 

The solution of Eq. (2-129) defines the vertical deflection 
'

m
d in case that the initial 

unstressed length S0 and the load p’ are known. 

 
 

For horizontal inextensible cables, which are cables with quite large stiffness with EA → ∞ 

and, so, p’ = 0, Eq. (2-122) turns into:   
 

( ) ( ) ( )
( )

  
   

  
  
    

⇒

2
' '

2 m m' ' '
m m0 ' 2

' 'm
m m

1+ 4d +4d1
2-122 S = 8d 1+ 4d +ln

16d 1+ 4d -4d

                                            (2-130) 

 

The corresponding approximate Eq. (2-129) turns into: 

 

( ) ( )⇒ ' '

m 0

3
2-129 d = S - 1

8
                                                                                                               (2-131)

 
 
or, alternatively: 
 

( ) ( )⇒
2' '

m0

8
2-131 S = 1 + d

3
                                                                                                                   (2-132) 
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Figure 2-45: Comparison between accurate and approximate solution,                                                           

in case of a horizontal inextensible cable 

 

 

Figure 2-45 indicates the difference between the accurate solution, Eq. (2-130), and the 
approximation using Taylor series, Eq. (2-132), in case of a horizontal inextensible cable. 

Notice that, 3rd degree approximation is sufficient for f ≤ 0.2. 

 

In case of an inclined inextensible cable: 

 

( ) 
  

2' '
0m

3 1
d = S -1- tanθ

28
                                                (2-133) 

or 

( ) ( ) ( )⇒
22' '

m0

8 1
2 - 133 S = 1 + d + tanθ

3 2
                                              (2-134) 

which are equivalent to Eqs. (2-131) and (2-132), [4].  

 

 
It is useful to present the comparison of the response of a horizontal inextensible cable 

subjected to a uniformly distributed load p along its horizontal projection and to an equivalent 

concentrated load P = pL at midpoint, in case that S0 = SAB. Here, z* = 0 and, so, v = z = 
m

d  

or v’ = z’ = 
'

m
d . Eq. (2-13) for P’ = 0, as EA → ∞, gives the vertical deflection 

'

mP
d for the 

equivalent concentrated load P’ at midpoint as: 

 

( ) ( )⇒
2

' '

mP 0

1
2-13 d = S - 1

2
                                                                                                                (2-135) 

 

The corresponding axial force NP comes out from the combination of Eqs. (2-7) and (2-104) 
as: 
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( )
( )
( )

2
'

0

P 2 2
' '
mP 0

SpL 1 pL
N = 1 + =

2 24 d S - 1

                                                                                          (2-136) 

 
The combination of Eqs. (2-124) and (2-131) gives the maximum axial force Nmax, in case of a 

uniformly distributed load p along cable’s horizontal projection as: 

 

( )
max

'

0

pL 1
N = +1

2 6 S - 1               

(2-137) 

 

The ratios of the vertical deflection and the axial force are: 
 

( )

( )
( )

2
'

' 0
'mP
0'

'm
0

1
S - 1

d 22= = S +1
3d 3

S - 1
8

                                                                                                     (2-138) 

 

( )
( )

( )

( )
( ) ( )   

   

2
'

0

2
' '
0 0'P

0max 2
' '

0 0
'

0

SpL

2 S - 1 6 S - 1N
= = S

N pL 1 S - 1 1 + 6 S - 1+1
2 6 S - 1

                                                 (2-139)

 

 

Eqs. (2-138) and (2-139) are presented graphically below. 
 

 

 
Figure 2-46: Ratio of the vertical deflection of a horizontal inextensible cable subjected to                  

distributed p and to equivalent concentrated P load 
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Figure 2-47: Ratio of the axial force of a horizontal inextensible cable subjected to                             

distributed p and to equivalent concentrated P load 

 

 

Figures 2-46 and 2-47 indicate that the vertical deflection and the axial force due to a 

uniformly distributed load p along cable’s horizontal projection are smaller than these due to 
an equivalent concentrated load P at midpoint. So, distributed loads are delivered from a 

simple cable in a smoother way, in comparison to concentrated loads.   

 
 

2.3.3 Inclined cable under uniformly distributed load along its arc length 

 

A simple inclined cable, with initial unstressed length S0, spans the distance SAB, where SAB is 
the distance between points A and B. A uniformly distributed load q along cable’s arc length is 

applied, as shown in Figure 2-48. The horizontal deflection u of the cable is not taken into 
account in this analysis, for simplification reasons.  
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Figure 2-48: Inclined cable under uniformly distributed load q along its arc length 

 

 

The stressed length s of the cable from the start of the axes to the point (x,z) is assumed as 
independent variable. 
 

The equilibrium of forces on the differential length ds is expressed as:  
 

⇒ A B

dH
= 0 H = H = H

dx
                                                                                                                          (2-140) 

 

dV ds
= -q

dx dx
                                                                                                                                                 (2-141) 

 
Using the equations of geometry and taking into account that the force N is axial, in other 
words tangent to the stressed cable, the following equations occur:  

 

dz V dz
= V = H

dx H dx
⇒                                                                                                                                (2-142) 

 



Analytical Solutions for the Static Behavior of Simple Cables                                           59 

 

Nonlinear static analysis of cables and cable nets 

ds N
=

dx H                   

(2-143)

 
 

The derivative of x of Eq. (2-142) is: 

 

( ) ⇒
2

2

dV d z
2-142 = H

dx dx
                                                                                                                          (2-144)

 
 

The combination of Eqs. (2-141) and (2-144) leads to: 
 

2

2

d z ds
H = -q

dxdx
                                                                                                                                            (2-145) 

 

According to Figure 2-48 – DETAIL “b”,

 

the differential length ds equals to:

  

2 2
ds = dx +dz                                                                                          (2-146) 

 
So, Eq. (2-145) turns into: 

 

( ) ⇒  
 
 

22

2

d z q dz
2-145 + 1 + = 0

H dxdx
                                                                                                 (2-147) 

 

Eq. (2-147) is the equilibrium differential equation of a cable subjected to its self weight or to 

a uniformly distributed load q along its arc length. The solution of this equation is called 

catenary, as describes the curve of a hanging chain subjected to its own weight.  
 

Assuming that the horizontal component H of the axial force is given, the integration of      

Eq. (2-147) twice and the application of the boundary conditions: 
 

z = 0 at x = 0                (2-148) 
z = Ltanθ at x = L               (2-149) 

 
define the solution of the equilibrium differential equation as: 

 

( ) ( )⇒
   
      

L 2x
2-147 z = d + xtanθ = cosh ζ + δ - cosh ζ + δ 1 -

2δ L
                                 (2-150) 

 

where, 
 

 
 
 

-1

qL
δ =

2H

δ
ζ = sinh tanθ

sinhδ

                                                                                                                        (2-151) 

[4] 

  

Appendix A presents the main properties of hyperbolic functions. Notice from Figure 2-48 

that, d is the vertical distance of the stressed cable from the chord AB. In case that, S0 ≤ SAB, 

d = v. 
 

The axial force N is defined as: 
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⇒
   
   
   

2 2

2 2 2 2dz dz
N = V + H = H + H N = H 1 +

dx dx
                                                             (2-152) 

 

The derivative of x of Eq. (2-150) is: 
 

( )  
 
 

⇒  
 

dz 2x
2-150 = sinh ζ + δ 1-

Ldx
                                                                                                  (2-153)     

 

So: 
 

( ) ⇒
  

    

2xqL
2-152 N = cosh ζ + δ 1 -

2δ L
                                                                                          (2-154)     

 

( ) ⇒
  

    

2xqL
2-142 V = sinh ζ + δ 1 -

2δ L
                                                                                              (2-155)     

 

where, 
 

( ) ⇒
qL

2-151 H =
2δ                                 

(2-156)     

 

 

In case that, the horizontal component H of the axial force is unknown, the material 

constitutive equation is used in calculations. Assuming the material as linearly elastic, Hooke’s 

law gives for the differential length ds of DETAIL “b” - Figure 2-48: 

 

⇒ ⇒
   
   

  
0 0

0

ds - ds dsds N
σ = Εε N = EA = 1 +

ds dx dx EA
                                                            (2-157)

 
 

Replacing Eqs. (2-143), (2-154) and (2-156) into (2-157) and integrating from x = 0 to L, the 

analytical solution for the response of the cable is determined. The integration is too complex 

and, so, the right part should be simplified. Expanding to series according to Eq. (2-110) and 

assuming that 
N

EA
<<1, Eq. (2-157) becomes: 

 

( ) ⇒  
 
 

0
ds N N

2-157 = 1 -
dx H EA

                                                                                                                 (2-158)

 
 

Substituting the axial force N from Eq. (2-154) and using Eq. (2-156), the solution of the 

differential equation Eq. (2-158) is: 
 

( ) ( ) ( ) ( )⇒ 

   
      

0
-

-

1
2-158 S x = -4δHx + 4EALsinh ζ + δ - HLsinh 2ζ + 2δ

8EAδ

2δx 4δx
4EALsinh ζ + δ - + HLsinh 2ζ + 2δ -

L L

                        (2-159)     

 

The condition S0 (L) = S0 gives: 
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( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) 

 
  

⇒

⇒

⇒





0

0

1
2-159 S = -4δHL + 4EALsinh ζ + δ - HLsinh 2ζ + 2δ -

8EAδ

-4EALsinh ζ - δ + HLsinh 2ζ - 2δ

S sinh ζ+δ -sinh ζ-δ sinh 2ζ-2δ -sinh 2ζ+2δH H
= - + +

2EA 2δ 2EA 4δL

                          (2-160)     

 

Defining 
' qL

q =
2EA

 , Eq. (2-160) is changed as follows: 

 

( ) ( ) ( ) ( ) ( ) 
 
  

⇒ ' '

0

sinh 2ζ-2δ -sinh 2δ+2ζ
2-160 2δS - sinh ζ + δ + sinh ζ - δ = q -1

4δ

       

         (2-161)  

   

In case that S0 is defined, q is calculated from Eq. (2-161) using numerical methods. The 

vertical distance 
' m
m

d
d =

L
 at midpoint is defined from Eq. (2-150) for 

L
x =

2
: 

 

( ) ( ) ( )⇒   
'

m

1 1
2-150 d = cosh ζ + δ - cosh ζ - tanθ

2δ 2
                                                (2-162) 

 

 

 
Figure 2-49: Applied load q’ as function of vertical deflection v’ (=

'

m
d )                                                        

for different values of angle θ, in case that S0 = SAB 

 

 

Figure 2-49 describes the equilibrium path of the cable for different values of angle θ, in case 

that S0 = SAB.  
 

Cable’s axial force gets the maximum value at endpoint A, according to Eq. (2-154): 

( ) ( )⇒ max qL
2-154 N = cosh ζ+δ

2δ
                                                                            (2-163) 

 

or in non-dimensional form: 

0.000

0.001

0.002

0.003

0.00 0.05 0.10 0.15

q
'

v'

0 deg 30 deg 45 deg 60 deg



62                                                          Chapter2 

 

 

Diploma Thesis of Christos Papakitsos       N.T.U.A. 2013 

 

( ) ( )⇒
'

max' q
2-163 N = cosh ζ+δ

δ
                                                                                                     

(2-164) 

 

 

 

Figure 2-50: Maximum axial force Nmax’ as function of vertical deflection v’ (=
'

m
d )                                         

for different values of angle θ, in case that S0 = SAB 

 
 

Figure 2-50 describes the maximum axial force Nmax’ as function of vertical                    

deflection v’ (=
'

m
d ) for different values of angle θ, in case that S0 = SAB.  

 

The horizontal component H of the axial force, in non-dimensional form, comes out from      
Eq. (2-156) as: 

 

( ) ⇒
'

' q
2-156 H =

δ                                     

(2-165) 

 

 
Figure 2-51: Horizontal component H’ of the axial force as function of vertical deflection v’ (= '

m
d )                  

for different values of angle θ, in case that S0 = SAB 
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Figure 2-51 describes the horizontal component H’ of the axial force as function of vertical 

deflection v’ (=
'

m
d ) for different values of angle θ, in case that S0 = SAB.  

 
Figures 2-49 to 2-51 have the same qualitative behavior. The slope of the curves increase as 

the vertical deflection v’, in other words the applied load q, increases due to the geometric 
nonlinearity. For larger values of the vertical deflection v’, the curves tend to become linear, 

as the geometric nonlinearity is eliminated. Moreover, the smaller the angle θ is the stiffer the 

cable becomes. According to Figure 2-52, applied load q is analyzed into a component ⊥q

perpendicular to the differential length ds and a parallel one 
�

q , where: 

 

⊥q = cosθq                 (2-166) 

�
q = sinθq                 (2-167) 

 

 

Figure 2-52: Analysis of the applied load q into ⊥q  and 
�

q  components 

  

The component ⊥q displaces the differential length ds along its direction, while the         

component 
�

q  elongates it according to Hooke’s law, Eq. (2-157). Larger values of angle θ 

lead to larger values of the component 
�

q  and, given a constant value of the modulus of 

elasticity E, larger elongations ε. As elongations ε increase, cable’s stiffness K decreases. This 

is the reason why the smaller the angle θ is the stiffer the cable becomes. Notice that, in case 
of a concentrated load P the opposite qualitative behavior occurs, according to        

Paragraph 2.5.3 – case 2, as the response mechanism of the cable differs.    

 
 

2.3.4 Horizontal cable under uniformly distributed load along its arc length 

 

A horizontal cable under uniformly distributed load q along its arc length is examined. The 

model of the cable is illustrated on Figure 2-48, for θ = 0 deg. Due to the geometric 

symmetry, there are no horizontal deflection u. Equations of Paragraph 2.3.3 are simplified, 
replacing θ = 0 deg, as follows: 

 

( ) ⇒2-151 ζ = 0

                        

(2-168)    

  

( ) ⇒
   
      

L 2x
2-150 z = d = coshδ - cosh δ 1 -

2δ L
                                                                     (2-169) 

 

( ) ⇒
  
    

2xqL
2-154 N = cosh δ 1 -

2δ L
                                                                                                 (2-170)     
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( ) ⇒
  
    

2xqL
2-155 V = sinh δ 1 -

2δ L
                                                                                                    (2-171)     

 

( ) ( ) ( ) 
 
  

⇒ ''
0

sinh 2δ
2-161 2 sinhδ-S δ = q +1

2δ

       

                                                                       (2-172)  

 

( ) ⇒ '

m

coshδ - 1
2-162 d =

2δ
                                                        (2-173) 

 

 

Figure 2-53: Applied load q’ as function of vertical deflection v’ (=
'

m
d ),                                                          

in case that S0 = SAB 

 

 

Figure 2-53 shows the equilibrium path of the cable, in case that S0 = SAB. The slope, which 
indicates cable’s stiffness K, increases as the applied load q’ increases, due to the geometric 

nonlinearity. Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’.  
 

Cable’s axial force is maximum at endpoint A, where: 

 

( ) ⇒ max qL
2-170 N = coshδ  

2δ
                                                                                                              (2-174)     

 

or in non-dimensional form: 

( ) ⇒
'

max' q
2-174 N = coshδ

δ
                                                                                                               

(2-175) 
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Figure 2-54: Maximum axial force Nmax’ as function of vertical deflection v’ (=
'

m
d ),                                      

in case that S0 = SAB 

 

 

Figure 2-54 describes cable’s maximum axial forces Nmax’ as function of vertical                 

deflection v’ (=
'

m
d ), in case that S0 = SAB. The slope of the curve increases as the vertical 

deflection v’, in other words the applied load q’, increases due to the geometric nonlinearity. 
Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’.  

 

The horizontal component H of the axial force is defined from Eq. (2-156) or from Eq. (2-165) 
in non-dimensional form. 

 
 

 
Figure 2-55: Horizontal component H’ of the axial force as function of vertical deflection v’ (=

'

m
d ),           

in case that S0 = SAB 
 

 

Figure 2-55 describes the horizontal component H’ of the axial forces as function of vertical                 

deflection v’ (=
'

m
d ), in case that S0 = SAB. The slope of the curve increases as the vertical 

deflection v’, in other words the applied load q’, increases due to the geometric nonlinearity. 

Here, z* = 0 as S0 = SAB and, so, v = z or v’ = z’. Appendix A presents the main properties of 

hyperbolic functions. 
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2.4 EQUIVALENT BEAM METHOD 

 

Cable response in concentrated or distributed loads shows similarities with this of a simply 
supported beam. Regarding a concentrated load P at arbitrary position, as presented in 

Paragraph 2.2.3: 

 
• the stressed geometry of the cable is similar to the bending moment diagram of an 

equivalent simple supported beam with the same span and loads 

• the horizontal component H of the axial force remains unchanged along cable’s length, 

as external horizontal loads do not exist 
 

The previous observations are expressed as: 

 

Hz = M                  (2-176) 

 
where M is the bending moment of the equivalent beam, in kNm. 
 

According to Eq. (2-177), in case that z–coordinate, for each cable point, is unknown, the 
stressed geometry is defined from the known value of H. 
 

( )

( )

≤ ≤

≤ ≤







PP
P

P

PP
P

P

Px L-x x
            0 x x

L x
Hz = M =

Px L-x L - x
       x x L 

L L - x              

(2-177) 

 

 

 
Figure 2-56: Bending moment diagram of a simple supported beam 

 

In case of an inclined cable subjected to uniformly distributed load p along its horizontal 

projection, as defined in Paragraph 2.3.1, the vertical distance d of the stressed cable from 
the chord AB is given as: 

 

M
d =

H                                               
(2-178) 

where M is the moment of an equivalent simply supported beam, in kNm.  

 

In other words, the bending moment M, due to external distributed load p applied at an 
equivalent simply supported beam, is equal to the bending moment M of the horizontal 

component H of the axial force applied at vertical distance d from the chord AB [5]. 
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2.5 PARAMETRIC FIGURES OF A SIMPLE SUSPENDED CABLE 
 

2.5.1 General matters 

 

Paragraph 2.5 examines the impact of important cable parameters, such as the initial 
unstressed length S0, the modulus of elasticity E, the diameter dA and the angle θ, into its 

response to external loads. The results are presented in parametric figures, in which one 
single parameter changes each time. Paragraphs 2.2 and 2.3 present general equations of 

cable response to different types of loads and the corresponding figures for S0 = SAB. In these 

equations, the initial unstressed cable length S0 is assumed as accidental. The general case of 
a cable with initial unstressed length S0, spanning the distance SAB, which is the distance 

between points A and B, is shown in Figure 2-57. The geometry gives: 
 

AB
L = S cosθ     

               

(2-179)  

 

In case of a horizontal cable, in other words θ = 0 deg, SAB = L. 
 

 
Figure 2-57: Initial unstressed state of a cable 

 

 

The correlation between lengths S0 and SAB determines the response of the cable to external 
loads. Three cases can be detected: 
 

1) S0 ≤ SAB 

 

In this case, the cable acquires pre-tension. Pre-tensioned cables respond more efficient to 
external loads, as their stiffness is increased and, so, develop smaller deflections. Pre-tension 

can be implemented either by the elongation of an initially unstressed cable or by the 
application of an initial external load. This paragraph examines the first one. According to   

Eq. (2-17), the stiffness K of a cable equals to the slope of its equilibrium path. So: 

 

∆P
∆z =    

K
                   (2-180) 

Figures 2-11 and 2-18 of Paragraph 2.2.2, which refer to the general case of an inclined cable 

under concentrated load P at arbitrary position, show that as the applied load P increases, 
cable’s stiffness K increases and, for constant additional load ∆Ρ, additional deflection ∆z 

decreases, according to Eq. (2-180). Pre-tension gives initial stiffness to the cable, which 

develops smaller deflections. For large values of pre-tension and/or external loads, cable 
response tends to be linear. The same behavior occurs for distributed loads p and q. 
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Assuming the cable material as linearly elastic, Hooke’s law gives:  

 

 
 
 
 

⇒ ⇒
pre

pre pre AB

0
0

N ∆S S
σ = Eε = Ε N = EA -1

SΑ S
            

(2-181) 

 

where A is the cross-section and E the modulus of elasticity of the cable. 

 
It is useful to express the axial force Npre of the cable due to pre-tension as a percentage wpre 

of the axial force capacity Ncap, which is defined below: 
 

cap

y
N = Af

                                 

(2-182) 

 

where fy is the yield stress of the cable. 
 

So: 
 

   
   
   
   ⇒

AB AB

pre
0 0pre pre

cap

y y

S S
EA -1 E -1

S SN
w = 100 = 100 w = 100

N Af f
           

(2-183) 

 

2) S0 = SAB 
 

Cable’s initial unstressed length S0 equals to the distance SAB spanned. In this case, the cable 

remains unstressed until the application of the external loads. There is no pre-tension, as: 

 

 ( )

 
 
 
 ⇒

0

0pre

y

S
E -1

S
2-183 w = 100 = 0 %

f
             

(2-184) 

 
3) S0 ≥ SAB 

 
Cable’s initial unstressed length S0 is larger than the distance SAB spanned. Cable remains 

unstressed until its total deployment, caused by the application of external loads. Then, it 

responds with the development of tension. Cable’s equations are valid for ≥ *
z z and ≥ *

x x , 

where *
z , *

x

 
define the coordinates of the point from which cable tension, due to the load P, 

p or q, occurs. In other case, cable’s tension and joint reactions are zero. 

 

The coordinates *
z , *

x

 
are calculated from the geometric compatibility equations, in case of a 

concentrated load P, as below: 

  

• Horizontal cable under concentrated load P in the middle – Figure 2-1 

 

2 2

* 0
S - L  

z =
2

                 

(2-185) 

 
• Inclined cable under concentrated load P at arbitrary position - Figures 2-7 and 2-15 

 

( ) ( ) ( ) ( )2 2 2 2
* * * *

0
S = x + z  + L-x + tanθL-z

                         

(2-186) 
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• Horizontal cable under concentrated load P at arbitrary position – Figure 2-21 

 

( ) ( ) ( ) ( )2 2 2 2
* * * *

0
S = x + z  + L-x + z

                                  

(2-187) 

 

• Inclined cable under imposed end displacement v or u - Figures 2-28 and 2-32 

 
* 2 2

0
z = S - L

 

or

    

* 2 2

0
x = S - L

              

(2-188) 

 

where *

P
x = x , except for Eq. (2-188). The coordinates zP, xp refer to the starting application 

point of the concentrated load P. In case that S0 > SAB, z
* ≠ zP.  

 

 
The impact of cable’s initial unstressed length S0 and of other parameters into its response to 

external loads is illustrated in the following diagrams, for a number of cable types and loads. 

Dimensional and non-dimensional diagrams are presented. Curves’ limits are defined by the 
axial force capacity Ncap of each cable. Default values of cable parameters, mentioned in  

Table 2-1, are valid for the following diagrams in case that they are not specified in the text.  

 

E 165 GPa 

fy 1.58 GPa 

dA 20 mm 

SAB 20.0 m 

wpre 10.0 % 

α 0.10 - 

θ 45 deg 

S0/SAB 1.10 - 
Table 2-1: Default values of cable parameters 

 

The annotation of the parametric figures is placed at Paragraph 2.5.10, in order to highlight 

the common qualitative behavior of a cable in different kinds of load.   
 

 

2.5.2 Diagrams of a horizontal cable under concentrated load in the middle 

 

In this section, parametric diagrams for the case of Paragraph 2.2.1 are presented. The cable 
is horizontal, in other words SAB = L.  
 

1) S0 ≤ SAB 
 

Here, z* = 0 as S0 ≤ SAB and, so, v’ = z’. 
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Figure 2-58: Applied load P’ as function of vertical deflection v’ 

for different values of pre-tension wpre 

 

 

 

Figure 2-59: Cable’s axial force N’ as function of vertical deflection v’ 

for different values of pre-tension wpre 

 

2) S0 = SAB
  

 

Here, z* = 0 as S0 = SAB and, so, v = z. 
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Figure 2-60: Applied load P as function of vertical deflection v 

for different values of the modulus of elasticity E 

 
 

 

Figure 2-61: Applied load P as function of vertical deflection v 
for different values of diameter dA 

 
 

 

Figure 2-62: Applied load P as function of vertical deflection v 
for different values of initial unstressed length S0 
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3) S0 ≥ SAB 

 

 

Figure 2-63: Applied load P’ as function of vertical deflection v’ 
for different values of ratio S0/SAB 

 
 

 

Figure 2-64: Cable’s axial force N’ as function of vertical deflection v’ 

for different values of ratio S0/SAB 

 

 

2.5.3 Diagrams of an inclined cable under concentrated load at arbitrary position 
 

The following diagrams refer to the analysis of Paragraph 2.2.2 – case A. Notice that 

diagrams are designed through ADINA models (contained in the accompanied CD, 
commented in the list of numerical models with ‘analytical’) due to the complexity of the      

2-degree polynomial solution. Paragraph 3.2.3 verifies the identification between analytical 
solution and numerical models. 
 

1) S0 ≤ SAB 
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Figure 2-65: Applied load P’ as function of horizontal deflection u’ 

for different values of pre-tension wpre 

 
 

 

Figure 2-66: Applied load P’ as function of vertical deflection v’ 
for different values of pre-tension wpre 

 
 

 

Figure 2-67: Cable’s axial force 
'

AN  as function of vertical deflection v’                                                        

for different values of pre-tension wpre 
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Figure 2-68: Cable’s axial force 
'

BN  as function of vertical deflection v’                                                        

for different values of pre-tension wpre 

 

 
The initial curve angle, in case of wpre = 5%, derives from the number of load steps in ADINA 

model. 

 
2) S0 = SAB 

 

 
Figure 2-69: Applied load P’ as function of horizontal deflection u’ 

for different values of angle θ 
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Figure 2-70: Applied load P’ as function of vertical deflection v’ 

for different values of angle θ 

 

 

 

Figure 2-71: Cable’s axial force 
'

AN  as function of vertical deflection v’                                                        

for different values of angle θ 

 

 

The initial common curve section derives from the number of load steps in ADINA model. 
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Figure 2-72: Cable’s axial force 
'

BN  as function of vertical deflection v’                                                        

for different values of angle θ 

 

 

The initial common curve section derives from the number of load steps in ADINA model. 
 

 

 
Figure 2-73: Applied load P as function of horizontal deflection u 

for different values of the modulus of elasticity E 
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Figure 2-74 Applied load P as function of vertical deflection v 
for different values of the modulus of elasticity E 

 

 

 

Figure 2-75: Applied load P as function of horizontal deflection u 

for different values of diameter dA 

 

 

 

Figure 2-76: Applied load P as function of vertical deflection v 

for different values of diameter dA 
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Figure 2-77: Applied load P as function of horizontal deflection u 
for different values of initial unstressed length S0 

 

 

 
Figure 2-78: Applied load P as function of vertical deflection v 

for different values of initial unstressed length S0 

 

3) S0 ≥ SAB 
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Figure 2-79: Applied load P’ as function of horizontal deflection u’ 

for different values of ratio S0/SAB 

 
 

 

Figure 2-80: Applied load P’ as function of vertical deflection v’ 

for different values of ratio S0/SAB 

 

 

 
Figure 2-81: Cable’s axial force 

'

AN  as function of vertical deflection v’                                                        

for different values of ratio S0/SAB 
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The initial curve angle, in case of S0/SAB = 1.0, derives from the number of load steps in 

ADINA model. 
 

 

 
Figure 2-82: Cable’s axial force 

'

BN  as function of vertical deflection v’                                                        

for different values of ratio S0/SAB 

 
 

The initial curve angle, in case of S0/SAB = 1.0, derives from the number of load steps in 

ADINA model. 
 

 

2.5.4 Diagrams of a horizontal cable under concentrated load at arbitrary

 position 

 
Diagrams for the case of Paragraph 2.2.3 are presented. Notice that diagrams are designed 

through ADINA models (contained in the accompanied CD, commented in the list of 

numerical models with ‘analytical’) due to the complexity of the 2-degree polynomial solution. 
Paragraph 3.2.4 verifies the identification between analytical solution and numerical models. 

  
1) S0 ≤ SAB 

 
Here, z* = 0 as S0 ≤ SAB and, so, v’ = z’. 
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Figure 2-83: Applied load P’ as function of horizontal deflection u’ 

for different values of pre-tension wpre, in case that α = 0.65 

 
 

 

Figure 2-84: Applied load P’ as function of vertical deflection v’ 
for different values of pre-tension wpre, in case that α = 0.65 

 
 

 

Figure 2-85: Cable’s axial force 
'

AN  as function of vertical deflection v’                                                        

for different values of pre-tension wpre, in case that α = 0.65 
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The initial curve angle, in case of wpre = 5%, derives from the number of load steps in ADINA 

model. 
 

 

 

Figure 2-86: Cable’s axial force 
'

BN  as function of vertical deflection v’                                                        

for different values of pre-tension wpre, in case that α = 0.65 

 
 

The initial curve angle, in case of wpre = 5%, derives from the number of load steps in ADINA 

model. 
 

2) S0 = SAB 
 

Here, z* = 0 as S0 = SAB and, so, v = z. 

 

 
Figure 2-87: Applied load P as function of horizontal deflection u 

for different values of the modulus of elasticity E, in case that α = 0.30 
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Figure 2-88 Applied load P as function of vertical deflection v 
for different values of the modulus of elasticity E, in case that α = 0.30 

 
 

 

Figure 2-89: Applied load P as function of horizontal deflection u 
for different values of diameter dA, in case that α = 0.30 

 

 

 

Figure 2-90: Applied load P as function of vertical deflection v 

for different values of diameter dA, in case that α = 0.30 
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Figure 2-91: Applied load P as function of horizontal deflection u 

for different values of initial unstressed length S0, in case that α = 0.30 

 
 

 
Figure 2-92: Applied load P as function of vertical deflection v 

for different values of initial unstressed length S0, in case that α = 0.30 

 

3) S0 ≥ SAB 
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Figure 2-93: Applied load P’ as function of horizontal deflection u’ 

for different values of ratio S0/SAB, in case that α = 0.30 

 
 

 

Figure 2-94: Applied load P’ as function of vertical deflection v’ 
for different values of ratio S0/SAB, in case that α = 0.30 

 
 

 
Figure 2-95: Cable’s axial force 

'

AN  as function of vertical deflection v’                                                        

for different values of ratio S0/SAB, in case that α = 0.30 
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The initial curve angle, in case of S0/SAB = 1.0, derives from the number of load steps in 

ADINA model. 
 

 

 
Figure 2-96: Cable’s axial force 

'

BN  as function of vertical deflection v’                                                        

for different values of ratio S0/SAB, in case that α = 0.30 

 
 

The initial curve angle, in case of S0/SAB = 1.0, derives from the number of load steps in 
ADINA model. 

 

 

2.5.5 Diagrams of an inclined cable under imposed end displacement 

 

Using the analysis of Paragraph 2.2.4.1 – case A, the corresponding diagrams are designed. 
For case B, in other words for an inclined cable under horizontal imposed end displacement u, 

parametric diagrams are identical with these of case A. Moreover, based on Figure 2-33, 
which shows identification between the solution for case A and the equivalent linear spring, 

the following parametric diagrams are valid for this kind of spring.   

 
1) S0 ≤ SAB 

 
Cables, in this case, are not pre-tensioned as support B is free to move vertical and balance 

to an unstressed position. Inclined pre-tensioned cables under imposed end displacement are 

presented analytically in Chapter 5.  
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Figure 2-97: Applied load P’ as function of vertical deflection v’ 
for different values of ratio S0/SAB 

 
 

 
Figure 2-98: Cable’s axial force N’ as function of vertical deflection v’                                                        

for different values of ratio S0/SAB 

 

2) S0 = SAB 
 

Figure for the case of θ = 0 deg cannot be designed as L = 0 and, so, 
' v

v =
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defined. 
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Figure 2-99: Applied load P’ as function of vertical deflection v’ 

for different values of angle θ 

 
 

 
Figure 2-100: Cable’s axial force N’ as function of vertical deflection v’                                                        

for different values of angle θ 

 

 

 
Figure 2-101: Applied load P as function of vertical deflection v 

for different values of the modulus of elasticity E 
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Figure 2-102: Applied load P as function of vertical deflection v 

for different values of diameter dA 
 

 

 
Figure 2-103: Applied load P as function of vertical deflection v 

for different values of initial unstressed length S0 
 
3) S0 ≥ SAB 
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Figure 2-104: Applied load P’ as function of vertical deflection v’ 
for different values of ratio S0/SAB 

 
 

 

Figure 2-105: Cable’s axial force N’ as function of vertical deflection v’                                                        
for different values of ratio S0/SAB, 

 
 

2.5.6 Diagrams of an inclined cable under uniformly distributed load along its                                                     

 horizontal projection 
 

Diagrams for the cable of Paragraph 2.3.1 are presented.  
 

1) S0 ≤ SAB 

 

Here, v’ =
'

m
d as S0 ≤ SAB. 
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Figure 2-106: Applied load p’ as function of vertical deflection v’                                                                  

for different values of pre-tension wpre 

 
 

 
Figure 2-107: Maximum axial force Nmax’ as function of vertical deflection v’                               

for different values of pre-tension wpre 
 

2) S0 = SAB 

 

Here, v =
m

d as S0 = SAB. 
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Figure 2-108: Applied load p as function of vertical deflection v                                                                  
for different values of the modulus of elasticity E 

 
 

 
Figure 2-109: Applied load p as function of vertical deflection v                                                                  

for different values of diameter dA 

 

 

 
Figure 2-110: Applied load p as function of vertical deflection v                                                                  

for different values of initial unstressed length S0 
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3) S0 ≥ SAB 

 

 
Figure 2-111: Applied load p’ as function of vertical deflection v’ 

for different values of ratio S0/SAB 

 

 

 
Figure 2-112: Maximum axial force Nmax’ as function of vertical deflection v’                                        

for different values of ratio S0/SAB 
 

 

2.5.7 Diagrams of a horizontal cable under uniformly distributed load along its 

 horizontal projection 

 
Diagrams for the case of Paragraph 2.3.2 are designed using the corresponding formulas.  

 
1) S0 ≤ SAB 

 

Here, z* = 0 as S0 ≤ SAB and, so, v’ = z’ = '

m
d . 
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Figure 2-113: Applied load p’ as function of vertical deflection v’                                                                  

for different values of pre-tension wpre 

 

 

 
Figure 2-114: Maximum axial force Nmax’ as function of vertical deflection v’                               

for different values of pre-tension wpre 
 

2) S0 = SAB 

 

Here, z* = 0 as S0 = SAB and, so, v = z=
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Figure 2-115: Applied load p as function of vertical deflection v                                                                  

for different values of the modulus of elasticity E 

 

 

 
Figure 2-116: Applied load p as function of vertical deflection v                                                                  

for different values of diameter dA 

 

 

 
Figure 2-117: Applied load p as function of vertical deflection v                                                                  

for different values of initial unstressed length S0 
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3) S0 ≥ SAB 

 

 
Figure 2-118: Applied load p’ as function of vertical deflection v’ 

for different values of ratio S0/SAB 

 

 

 
Figure 2-119: Maximum axial force Nmax’ as function of vertical deflection v’                                        

for different values of ratio S0/SAB 
 
 

2.5.8 Diagrams of an inclined cable under uniformly distributed load along its arc

 length 
 

Using analysis of Paragraph 2.3.3, the following comparison diagrams are designed.  
 

1) S0 ≤ SAB 

 

Here, v’ =
'

m
d as S0 ≤ SAB. 
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Figure 2-120: Applied load q’ as function of vertical deflection v’                                                                  

for different values of pre-tension wpre 

 

 

 
Figure 2-121: Maximum axial force Nmax’ as function of vertical deflection v’                               

for different values of pre-tension wpre 
 

2) S0 = SAB 
 

Here, v =
m

d as S0 = SAB. 
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Figure 2-122: Applied load q as function of vertical deflection v                                                                  

for different values of the modulus of elasticity E 

 

 

 
Figure 2-123: Applied load q as function of vertical deflection v                                                                  

for different values of diameter dA 

 

 

 
Figure 2-124: Applied load q as function of vertical deflection v                                                                  

for different values of initial unstressed length S0 
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3) S0 ≥ SAB 

 

 
Figure 2-125: Applied load q’ as function of vertical deflection v’ 

for different values of ratio S0/SAB 

 

 

 
Figure 2-126: Maximum axial force Nmax’ as function of vertical deflection v’                                        

for different values of ratio S0/SAB 
 

 

2.5.9 Diagrams of a horizontal cable under uniformly distributed load along its 

arc length 

 
The response of a horizontal cable under uniformly distributed load along its length is 

illustrated by the following diagrams, based on Paragraph 2.3.4.  
 

1) S0 ≤ SAB 

 

Here, z* = 0 as S0 ≤ SAB and, so, v’ = z’ = '
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Figure 2-127: Applied load q’ as function of vertical deflection v’                                                                  

for different values of pre-tension wpre 

 

 

 
Figure 2-128: Maximum axial force Nmax’ as function of vertical deflection v’                               

for different values of pre-tension wpre 
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Figure 2-129: Applied load q as function of vertical deflection v                                                                  

for different values of the modulus of elasticity E 

 

 

 
Figure 2-130: Applied load q as function of vertical deflection v                                                                  

for different values of diameter dA 

 

 

 
Figure 2-131: Applied load q as function of vertical deflection v                                                                  

for different values of initial unstressed length S0 
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3) S0 ≥ SAB 

 

 
Figure 2-132: Applied load q’ as function of vertical deflection v’ 

for different values of ratio S0/SAB 

 

 

 
Figure 2-133: Maximum axial force Nmax’ as function of vertical deflection v’                                        

for different values of ratio S0/SAB 
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inclination of the cable, except from the case of imposed end displacement. Paragraph 2.5.10 

describes cable response, in different circumstances, and gives a physical explanation for 
each one. The aim of this paragraph is to define a catholic behavior of the simple suspended 

cable.      
 

A simple suspended cable responses to an external load with a combination of geometric 

adaption and elongation ε of the linearly elastic material. The development of deflection 
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causes axial force N of the cable, which can be analyzed into its horizontal component H and 

its vertical one V. The more horizontal a cable is the larger the horizontal component H is and 
the smaller the vertical one V is. The adaption of the cable, which occurs by the development 

of deflection, introduces the geometric nonlinearity and, according to Eqs. (2-176) to (2-178) 
of the equivalent beam method, in combination with the horizontal component H of the axial 

force balance the bending moment of an equivalent beam. In the other hand, the vertical 

component V of the axial force is opponent to the deflection and is responsible for the 
development of stiffness in this kind of deflection. The axial force N causes the elongation ε 

of the cable.  
 

1) S0 ≤ SAB 
 

• Applied load as function of deflection for different values of pre-tension wpre 
 

Paragraph 2.5.2 \ Figure 2-58 
Paragraph 2.5.3 \ Figures 2-65 and 2-66 

Paragraph 2.5.4 \ Figures 2-83 and 2-84 
Paragraph 2.5.6 \ Figure 2-106 

Paragraph 2.5.7 \ Figure 2-113 

Paragraph 2.5.8 \ Figure 2-120 
Paragraph 2.5.9 \ Figure 2-127 

 
Given a constant value of applied load, the larger the pre-tension wpre is the smaller deflection 

(in absolute values) occurs. Pre-tension wpre gives initial stiffness to the cable. It is applied by 
the elongation of an initial unstressed cable, with length S0 ≤ SAB. The stressed state of a    

pre-tensioned cable is equivalent to this of a non pre-tensioned cable imposed to a load, in 

other words the corresponding point at equilibrium path is placed at an intermediate position 
with increased stiffness. This stiffness is regarding as the initial one due to                           

pre-tension wpre. Curves seems to be parallel, as pre-tension wpre does not affect the way the 
stiffness increases, and shifted in a constant value, as pre-tension step is constant.            

Pre-tension cables fulfill more efficient service demands.  

 
Paragraph 2.5.5 \ Figure 2-97 

 
Given a constant value of applied load, the smaller the ratio S0/SAB is the larger deflection 

occurs. As the ratio S0/SAB decreases, the cable is more horizontal. So, the vertical  

component V of the axial force decreases, in other words the stiffness in vertical deflection 
decreases, and the horizontal component H of the axial force increases. So, geometric 

nonlinearity is more intense, as for S0/SAB = 0.8 the curve is less linear. Bear in mind that, as 
the ratio S0/SAB decreases the initial unstressed length S0 decreases and for a constant 

elongation ε, where: 
 

0

∆S
ε =

S
,

                

(2-189) 

 

the amount ∆S, in other words the deflection, decreases. In the same time two contradictory 
tendencies, regarding the relationship S0/SAB and deflection, take place. In Figure 2-97, the 

first one prevails. 
 

• Axial force of the cable as function of deflection for different values of pre-tension wpre
 

 

Paragraph 2.5.2 \ Figure 2-59 
Paragraph 2.5.3 \ Figures 2-67 and 2-68 

Paragraph 2.5.4 \ Figures 2-85 and 2-86 
Paragraph 2.5.6 \ Figure 2-107 

Paragraph 2.5.7 \ Figure 2-114 
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Paragraph 2.5.8 \ Figure 2-121 

Paragraph 2.5.9 \ Figure 2-128 
 

Given a constant value of deflection, the larger the pre-tension wpre is the larger axial force of 
the cable occurs. Larger values of pre-tension wpre means larger value of elongation ∆S and, 

based on Hooke’s law, in case of pre-tension wpre:  

 

⇒
pre

pre

0

N ∆S
σ = Eε = Ε

Α S
              

(2-190)

 

  

 
larger value of Npre. This increase provokes corresponding increase in the axial force of the 

cable imposed to a load.    

 
Paragraph 2.5.5 \ Figure 2-98 

 
Given a constant value of axial force of the cable, the smaller the ratio S0/SAB is the larger 

deflection occurs and the more intense the geometric nonlinearity is. Figure 2-98 follows the 

qualitative behavior and the reasoning of Figure 2-97. 
 

2) S0 = SAB  
 

• Applied load as function of deflection for different values of angle θ 

 

Paragraph 2.5.3 \ Figures 2-69  
 

Given a constant value of applied load, the smaller the angle θ is, in other words the more 
horizontal the cable is, the smaller horizontal deflection occurs. The horizontal component H 

of the axial force increases, in other words the stiffness in horizontal deflection increases. 
 

Paragraph 2.5.3 \ Figures 2-70  

 
Given a constant value of applied load, the smaller the angle θ is, in other words the more 

horizontal the cable is, the larger vertical deflection occurs. The vertical component V of the 
axial force decreases, in other words the stiffness in vertical deflection decreases. Notice that, 

in case of distributed loads the opposite qualitative behavior occurs, according to         

Figures 2-39 and 2-49, as the response mechanism of the cable differs.    
 

Paragraph 2.5.5 \ Figure 2-99 
 

Given a constant value of applied load, the smaller the angle θ is, in other words the less 
horizontal the cable is, the smaller deflection occurs. Figure 2-99 follows the qualitative 

behavior and the reasoning of Figure 2-97. 

 
• Axial force of the cable as function of deflection for different values of angle θ 

 

Paragraph 2.5.3 \ Figures 2-71 and 2-72 
 

Given a constant value of axial force of the cable, the smaller the angle θ is, in other words 

the more horizontal the cable is, the larger deflection occurs. The vertical component V of the 
axial force decreases, in other words the stiffness in vertical deflection decreases. Notice that, 

in case of distributed loads the opposite qualitative behavior occurs, according to          
Figures 2-40 and 2-50, as the response mechanism of the cable differs.    

 
Paragraph 2.5.5 \ Figure 2-100 

 



Analytical Solutions for the Static Behavior of Simple Cables                                           105 

 

Nonlinear static analysis of cables and cable nets 

Figure 2-100 follows the qualitative behavior and the reasoning of Figure 2-97. There is not 

clear prevalence of one single tendency, regarding the relationship S0/SAB and deflection. 
 

• Applied load as function of deflection for different values of the modulus of elasticity E 

 
Paragraph 2.5.2 \ Figure 2-60 

Paragraph 2.5.3 \ Figures 2-73 and 2-74 

Paragraph 2.5.4 \ Figures 2-87 and 2-88 
Paragraph 2.5.5 \ Figure 2-101 

Paragraph 2.5.6 \ Figure 2-108 
Paragraph 2.5.7 \ Figure 2-115 

Paragraph 2.5.8 \ Figure 2-122 
Paragraph 2.5.9 \ Figure 2-129 

 

Given a constant value of applied load, the larger the modulus of elasticity E the smaller 
deflection (in absolute values) occurs. Assuming that constant value of applied load gives 

constant value of axial force of the cable, the increase of the modulus of elasticity E in 
Hooke’s law:  

 

⇒
0

∆SN
σ = Eε σ = = Ε

A S
                                                       

(2-191)

 
 
leads to decrease of the elongation ε, in other words to the deflection. In case of an imposed 

end displacement, curves are almost linear as the applied load P is delivered mainly by the 
elongation ε of the cable, whose material is linearly elastic, and less by adapting cable 

geometry, which causes nonlinearity.     

 
• Applied load as function of deflection for different values of diameter dA 

 

Paragraph 2.5.2 \ Figure 2-61 
Paragraph 2.5.3 \ Figures 2-75 and 2-76 

Paragraph 2.5.4 \ Figures 2-89 and 2-90 

Paragraph 2.5.5 \ Figure 2-102 
Paragraph 2.5.6 \ Figure 2-109 

Paragraph 2.5.7 \ Figure 2-116 
Paragraph 2.5.8 \ Figure 2-123 

Paragraph 2.5.9 \ Figure 2-130 
 

Given a constant value of applied load, the larger the diameter dA the smaller deflection (in 

absolute values) occurs. Assuming that constant value of applied load gives constant value of 
axial force of the cable, the increase of diameter dA, in other words of the cross-section A, in 

Hooke’s law of Eq. (2-191) leads to decrease of the elongation ε, in other words to the 
deflection. In case of an imposed end displacement, curves are almost linear as the applied 

load P is delivered mainly by the elongation ε of the cable, whose material is linearly elastic, 

and less by adapting cable geometry, which causes nonlinearity.        
 

• Applied load as function of deflection for different values of initial unstressed length S0 

 
Paragraph 2.5.2 \ Figure 2-62 

Paragraph 2.5.3 \ Figures 2-77 and 2-78 
Paragraph 2.5.4 \ Figures 2-91 and 2-92 

Paragraph 2.5.5 \ Figure 2-103 

Paragraph 2.5.6 \ Figure 2-110 
Paragraph 2.5.7 \ Figure 2-117 

Paragraph 2.5.8 \ Figure 2-124 
Paragraph 2.5.9 \ Figure 2-131 
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Given a constant value of applied load, the larger the initial unstressed length S0 the larger 

deflection (in absolute values) occurs. Assuming that constant value of applied load gives 
constant value of axial force of the cable, the elongation ε is constant in Hooke’s law of      

Eq. (2-191). The increase of initial unstressed length S0 leads to the increase of the        
amount ∆S, which indicates the deflection. In case of an imposed end displacement, curves 

are almost linear as the applied load P is delivered mainly by the elongation ε of the cable, 

whose material is linearly elastic, and less by adapting cable geometry, which causes 
nonlinearity.        

 
3) S0 ≥ SAB 

 
• Applied load as function of deflection for different values of ratio S0/SAB  

 

Paragraph 2.5.2 \ Figure 2-63 

Paragraph 2.5.3 \ Figures 2-79 and 2-80 
Paragraph 2.5.4 \ Figures 2-93 and 2-94 

Paragraph 2.5.6 \ Figure 2-111 
Paragraph 2.5.7 \ Figure 2-118 

Paragraph 2.5.8 \ Figure 2-125 

Paragraph 2.5.9 \ Figure 2-132 
 

Given a constant value of applied load, the larger the ratio S0/SAB is the smaller deflection 
occurs and the less intense the geometric nonlinearity is. As the ratio S0/SAB increases, cable 

segments, after its deployment and before the development of axial force N, is less 
horizontal. So, the vertical component V of the axial force increases, in other words the 

stiffness in vertical deflection increases, and the horizontal component H of the axial force 

significantly decreases. So, geometric nonlinearity is eliminated, as in case that             
S0/SAB = 1.1 and 1.2. In the same time, the second tendency, regarding the relationship 

S0/SAB and deflection, which is analyzed in Eq. (2-189), takes place reasoning the curve for 
S0/SAB = 1.1 in relevance with this for S0/SAB = 1.2. 

 

Paragraph 2.5.5 \ Figure 2-104 
 

Figure 2-104 follows the qualitative behavior and the reasoning of Figure 2-97. 
 

• Axial force of the cable as function of deflection for different values of ratio S0/SAB 
 
Paragraph 2.5.2 \ Figure 2-64 

Paragraph 2.5.3 \ Figures 2-81 and 2-82 

Paragraph 2.5.4 \ Figures 2-95 and 2-96 
Paragraph 2.5.6 \ Figure 2-112 

Paragraph 2.5.7 \ Figure 2-119 
Paragraph 2.5.8 \ Figure 2-126 

Paragraph 2.5.9 \ Figure 2-133 

 
Figures follow the qualitative behavior and the reasoning of figures for applied load as 

function of deflection for different values of ratio S0/SAB. 
 

Paragraph 2.5.5 \ Figure 2-105 

 
Given a constant value of axial force of the cable, the smaller the ratio S0/SAB is the smaller 

deflection occurs. Here, taking into account Hooke’s law of Eq. (2-191), the second tendency, 
regarding the relationship S0/SAB and deflection, which is analyzed in Eq. (2-189), prevails. 

 
 
 

 



Nonlinear static analysis of cables and cable nets 

 

 
 

 
 
 
 

 
 
 

3. NUMERICAL SOLUTIONS FOR THE STATIC 

BEHAVIOUR OF SIMPLE CABLES 

 
3.1 NUMERICAL MODELING OF CABLES 
 

This chapter presents the numerical solutions for the static behavior of simple suspended 
cables. In Chapter 2, analytical expressions for simple cables have been derived, describing 

their response taking into account their geometric nonlinearity. However, material 
nonlinearity was neglected and simplifications were made in order to overcome the difficulty 

of complex mathematics.  

 
The scope of this chapter is to compare the results from finite element software with these 

derived from analytical solutions, thus to confirm the rightness of cable analytical equations. 
The comparison is carried out for a simple suspended cable for different properties and load 

conditions. Cables are modeled to sustain only tension. 

 
The finite element analysis software that used are ADINA and SAP, which can perform linear 

and nonlinear analyses of structures, including effects of material nonlinearities and large 
deformations. They offer versatile and, generally, applicable finite elements for solids, 

trusses, beams, pipes, plates, shells, etc. Material models for steel, concrete etc. are 
available. They can include initial strains or stresses in order to consider a deformed state 

from a previous analysis. The results can be plotted in figures or listed in tables. Snapshots of 

the cable model can also be taken. More information can be found at references [7] and [8]. 
 

Regarding the numerical analyses performed in this chapter, the following assumptions are 
adopted: 

 

• the cables are modeled as 10 truss elements 

• the cross-sectional area of the element remains unchanged 

• large displacements – small strains are assumed 
 

Each model case is analyzed by both programs, ADINA and SAP. The name given to models 
indentifies the paragraph of the corresponding analytical solution and their major properties. 

Here are the parameters which are taken into account during the cable modeling. 
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loading: a cable is imposed under concentrated loads varying in their application position α, 

end displacements and uniformly distributed loads along its horizontal projection and along its 
arc length 

 
cable’s properties: there is a variation in the inclination (angle θ), the initial unstressed   

length S0, the modulus of elasticity E and the diameter dA of the cross-section  

 
effects of cable length: cable’s initial unstressed length S0 is considered shorter (pre-tension), 

equal and larger than the distance spanned SAB 
 

X-axis in numerical models is identical with this defined in Chapter 2 but z-axis is opposite 
and, so, change in ± signs of the numerical results should be made before the design of 

figures. The coordinates x*, z*, which define the coordinates of the point from which cable 

tension, due to the load P, p or q, occurs, are identical to the coordinates xP, zP, which are 
the coordinates of the starting application point of the concentrated load P, and they are 

defined in numerical cable models. The number of load steps is chosen depended on the 
wished detailed results. Then, 10 load values and the corresponding cable analysis results are 

used to design the figures. Exception is the SAP models of a simple cable under uniformly 

distributed load along its arc length, where 10 separate one step analyses are made. In this 
kind of load, SAP program does not divide equidistantly the maximum load value. Curves’ 

limits are defined by the axial force capacity Ncap of each cable.  ADINA and SAP programs 
extract results as deflections u and v. 

 
In the accompanied CD, there is a list of the numerical models, which contains the attributes 

of each model case. The models used in this chapter are commented with the word 

‘comparison’. In the same CD, the .idb file for ADINA and the .sdb file for SAP can be found, 
for each model case. Tutorials for ADINA and SAP programs, oriented to simple cables, can 

be found at the link of reference [9] or requested from the author via e-mail. 
 
Note: In some operating systems, user must save SAP models with a simple name, without symbols, at 

the following path: 
 

c:\Program Files\ Computers and Structures\ 
 

in order to run the analysis. 

 

 
 

 

3.2 SIMPLE CABLES UNDER CONCENTRATED LOADS 
 

3.2.1 Results of comparison between analytical and numerical solutions 
 

The comparison between analytical and numerical curves, in case of concentrated loads or 
imposed end displacements, verifies the rightness of the analytical solutions developed in 

Paragraph 2.2. Reader can use either analytical formulas or the finite element software 

ADINA and SAP for the analysis of a simple cable under concentrated loads or imposed end 
displacements, as identical results occur.  

 
 

3.2.2 Comparison diagrams of a horizontal cable under concentrated load in the 

middle 

 
Analytical solution: Paragraph 2.2.1 

Parametric figures: Paragraph 2.5.2 
 

1) S0 ≤ SAB 
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Here, z* = 0 as S0 ≤ SAB and, so, v = z. 

 
 

 

Table 3-1: Properties of the numerical cable model 

 

 

 

Figure 3-1: Applied load P as function of vertical deflection v 

 

 

 

Figure 3-2: Cable’s axial force N as function of vertical deflection v 
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2.2.1~SAB=30m~θ=0deg~α=0.5~15% 
θ 0 deg 

S0 29.957 m 

SAB 30.000 m 

wpre 15.0 % 

Npre 74.418 kN 

E 165 GPa 

dA 20 mm 

α 0.50 - 

Pmax 125 kN 



110                                                                Chapter 3 

 

 
Diploma Thesis of Christos Papakitsos                                                N.T.U.A. 2013 

 

2) S0 = SAB 
    

Here, z* = 0 as S0 ≤ SAB and, so, v = z. 
  

   

 

 

Table 3-2: Properties of the numerical cable model 

 

 

 
Figure 3-3: Applied load P as function of vertical deflection v 

 

 

 

Figure 3-4: Cable’s axial force N as function of vertical deflection v 

 
 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

0.00 0.20 0.40 0.60 0.80

P
 (

k
N

)

v (m)

ANALYTICAL SOLUTION SAP ADINA

0.0

25.0

50.0

75.0

100.0

125.0

150.0

0.00 0.20 0.40 0.60 0.80

N
 (

k
N

)

v (m)

ANALYTICAL SOLUTION SAP ADINA

2.2.1~SAB=10m~θ=0deg~α=0.5~0% 
θ 0 deg 

S0 10.000 m 

E 150 GPa 

dA 10 mm 

α 0.50 - 

Pmax 35.5 kN 



Numerical Solutions for the Static Behavior of Simple Cables                                          111 

 

Nonlinear static analysis of cables and cable nets 

 

3) S0 ≥ SAB 
 

 

2.2.1~SAB=20m~θ=0deg~α=0.5~1.2 

θ 0 deg 

S0 24.000 m 

SAB 20.000 m 

S0/SAB 1.20 - 

E 165 GPa 

dA 20 mm 

α 0.50 - 

Pmax 560 kN 

Table 3-3: Properties of the numerical cable model 

 

 

 

Figure 3-5: Applied load P as function of vertical deflection v 

 

 

 

Figure 3-6: Cable’s axial force N as function of vertical deflection v 
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3.2.3 Comparison diagrams of an inclined cable under concentrated load at 

arbitrary position                                                                                                                                                                                                             
 

Analytical solution: Paragraph 2.2.2 
Parametric figures: Paragraph 2.5.3 

 

The complexity of the analytical solution prohibits the immediate design of the curves from it. 
Thus, the following design procedure is applied: pairs (u,v) are taken from the numerical 

solution, ADINA or SAP, and taking into account the point (x*,z*), from the numerical model, 
pairs (x,z) are extracted. These pairs are input in the 2-degree polynomial equation,          

Eq. (2-41) in case A and Eq. (2-51) in case B, with output the value of the concentrated      

load P’, in non-dimensional form. The values of the concentrated load P, in dimensional form, 
and of the cable’s axial forces NA and NB derive from the corresponding equations of 

Paragraph 2.2.2. 
 

1) S0 ≤ SAB 

                                        
 

 
 

 
 

 

 
 

 

 

 

Table 3-4: Properties of the numerical cable model 

 

 

 
Figure 3-7: Applied load P as function of horizontal deflection u 
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Figure 3-8: Applied load P as function of vertical deflection v 

 

 

 
Figure 3-9: Cable’s axial force NA as function of vertical deflection v 

 

 

 
Figure 3-10: Cable’s axial force NB as function of vertical deflection v 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0.00 0.50 1.00 1.50 2.00 2.50

P
 (

k
N

)

v (m)

ANALYTICAL SOLUTION SAP ADINA

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0.00 0.50 1.00 1.50 2.00 2.50

N
A

(k
N

)

v (m)

ANALYTICAL SOLUTION SAP ADINA

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0.00 0.50 1.00 1.50 2.00 2.50

N
B

(k
N

)

v (m)

ANALYTICAL SOLUTION SAP ADINA



114                                                                Chapter 3 

 

 
Diploma Thesis of Christos Papakitsos                                                N.T.U.A. 2013 

 

2) S0 = SAB 

 
 

 
 

 

 
 

 
 

 
 

Table 3-5: Properties of the numerical cable model 

 

 

 
Figure 3-11: Applied load P as function of horizontal deflection u 

 

 

 
Figure 3-12: Applied load P as function of vertical deflection v 
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Figure 3-13: Cable’s axial force NA as function of vertical deflection v 

 

 

 
  Figure 3-14: Cable’s axial force NB as function of vertical deflection v 

 

3) S0 ≥ SAB 
 

 

2.2.2~SAB=20m~θ=20deg~α=0.4~1.1 

- case B - 

θ 20 deg 

S0 22.000 m 

SAB 20.000 m 

S0/SAB 1.10 - 
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dA 20 mm 

α 0.40 - 

Pmax 388 kN 

Table 3-6: Properties of the numerical cable model 
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     Figure 3-15: Applied load P as function of horizontal deflection u 

 

 

 
Figure 3-16: Applied load P as function of vertical deflection v 

 

 

 
Figure 3-17: Cable’s axial force NA as function of vertical deflection v 
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Figure 3-18: Cable’s axial force NB as function of vertical deflection v 

 

 

3.2.4 Comparison diagrams of a horizontal cable under concentrated load at 
arbitrary position 

 

Analytical solution: Paragraph 2.2.3 
Parametric figures: Paragraph 2.5.4 

 
The complexity of the analytical solution prohibits the immediate design of the curves from it. 

Thus, the following design procedure is applied: pairs (u,v) are taken from the numerical 

solution, ADINA or SAP, and taking into account the point (x*,z*), from the numerical model, 
pairs (x,z) are extracted. These pairs are input in the 2-degree polynomial equation,          

Eq. (2-60), with output the value of the concentrated load P’, in non-dimensional form. The 
values of the concentrated load P in dimensional form and of the cable’s axial forces NA     

and NB derive from the corresponding equations of Paragraph 2.2.3. 
 

1) S0 ≤ SAB 
 

Here, z* = 0 as S0 ≤ SAB and, so, v = z. 
 

 

 
 

 
 

 
 

 

 
 

 
 

                     Table 3-7: Properties of the numerical cable model 
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2.2.3~SAB=10m~θ=0deg~α=0.65~15% 
θ 0 deg 

S0 9.987 m 

SΑΒ 10.000 m 

wpre 15.0 % 

Npre 74.418 kN 

E 180 GPa 

dA 20 mm 

α 0.65 - 

Pmax 125 kN 
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Figure 3-19: Applied load P as function of horizontal deflection u 

 

 

 

Figure 3-20: Applied load P as function of vertical deflection v 

 

 

 

Figure 3-21: Cable’s axial force NA as function of vertical deflection v 
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Figure 3-22: Cable’s axial force NB as function of vertical deflection v 

 

2) S0 = SAB 

 
Here, z* = 0 as S0 ≤ SAB and, so, v = z. 

 
 

 

 

 

 

Table 3-8: Properties of the numerical cable model 

 

 

 

Figure 3-23: Applied load P as function of horizontal deflection u 
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2.2.3~SAB=20m~θ=0deg~α=0.3~0% 
θ 0 deg 

S0 20.000 m 

E 165 GPa 

dA 20 mm 

α 0.30 - 

Pmax 145 kN 
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Figure 3-24: Applied load P as function of vertical deflection v 

 

 

 

Figure 3-25: Cable’s axial force NA as function of vertical deflection v 

 

 

 

Figure 3-26: Cable’s axial force NB as function of vertical deflection v 
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3) S0 ≥ SAB 
 

 

2.2.3~SAB=30m~θ=0deg~α=0.4~1.1 

θ 0 deg 

S0 33.000 m 

SΑΒ 30.000 m 

S0/SΑΒ 1.10 - 

E 165 GPa 

dA 20 mm 

α 0.40 - 

Pmax 421 kN 

Table 3-9: Properties of the numerical cable model 

 

 

 

Figure 3-27: Applied load P as function of horizontal deflection u 

 

 

 
Figure 3-28: Applied load P as function of vertical deflection v 
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Figure 3-29: Cable’s axial force NA as function of vertical deflection v 

 

 

 
Figure 3-30: Cable’s axial force NB as function of vertical deflection v 

 

 

3.2.5 Comparison diagrams of an inclined cable under imposed end displacement 

 

Analytical solution: Paragraph 2.2.4.1 
Parametric figures: Paragraph 2.5.5 

 
1) S0 ≤ SAB   

 

Cables, in this case, are not pre-tensioned as support B is free to move vertical and balance 
to an unstressed position. Inclined pre-tensioned cables under imposed end displacement are 

presented analytically in Chapter 5.  
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Table 3-10: Properties of the numerical cable model 

 

 

 
Figure 3-31: Applied load P as function of vertical deflection v 

 

 

 
Figure 3-32: Cable’s axial force N as function of vertical deflection v 

 

2) S0 = SAB 
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2.2.4~SAB=20m~θ=45deg~0.9 
- case A - 

θ 45 deg 

S0 18.000 m 

SΑΒ 20.000 m 

S0/SΑΒ 0.90 - 

E 165 GPa 

dA 20 mm 

Pmax 310 kN 
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Table 3-11: Properties of the numerical cable model 
 

.    

 
Figure 3-33: Applied load P as function of vertical deflection v 

 

 

 
 

Figure 3-34: Cable’s axial force N as function of vertical deflection v 

 

3) S0 ≥ SAB 
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2.2.4~SAB=20m~θ=45deg~0% 
- case A - 

θ 45 deg 

S0 20.000 m 

E 165 GPa 

dA 20 mm 

Pmax 354 kN 
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Table 3-12: Properties of the numerical cable model 

 

 

 
Figure 3-35: Applied load P as function of vertical deflection v 

 

 

 
Figure 3-36: Cable’s axial force N as function of vertical deflection v 
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2.2.4~SAB=20m~θ=45deg~1.1 
- case A - 

θ 45 deg 

S0 22.000 m 

SΑΒ 20.000 m 

S0/SΑΒ 1.10 - 

E 165 GPa 

dA 20 mm 

Pmax 380 kN 
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3.3 SIMPLE CABLES UNDER UNIFORMLY DISTRIBUTED LOADS 
 
3.3.1 Results of comparison between analytical and numerical solutions 

 
The comparison between analytical and numerical curves, for the case of uniformly 

distributed loads along cable’s horizontal projection and cable’s arc length, arises an 

inaccuracy of the analytical solution due to an assumption that made.  
 

The analytical procedure, that presented in Paragraph 2.3, takes into account only the 
vertical deflection v of the cable and omits its horizontal u one. Under virtual circumstances, a 

simple cable responses to a uniformly distributed load by deploying not only vertical v but 

also horizontal u deflections. The accurate analytical solution, containing both deflections, is 
too complex and is out of the context of this diploma thesis. So, the simplification in 

mathematics leads to a deviation in cable’s curves, as shown below. 
 

The comparison between curves of an inclined cable under uniformly distributed load 
indicates that, the bigger the angle θ is the larger the deviation between analytical and 

numerical curves becomes. In other words, the effect of the horizontal deflection u in the 

analytical solution increases as cable inclination increases. Figures referring to applied      
load p/q as function of horizontal deflection u confirm the agreement between ADINA and 

SAP programs. In case of a horizontal cable, there is identification between analytical and 
numerical curves, which is an expected result, as a horizontal cable lacks of horizontal 

deflection u, due to its symmetric geometry and loading.  

 
The examination of a cable with initial unstressed length S0 equal to the distance spanned SAB 

is sufficient to illustrate the disagreement between analytical and numerical solutions and 
provide the reader a qualitative guide to his design procedure. The comparison for a                 

pre-tensioned cable or a cable with initial unstressed length S0 larger than the distance 
spanned SAB is not considered as requisite as leads to similar results. 

 

 

3.3.2 Comparison diagrams of an inclined cable under uniformly distributed load 

along its horizontal projection 
  

Analytical solution: Paragraph 2.3.1 

Parametric figures: Paragraph 2.5.6 
 

Here, v =
m

d as S0 ≤ SAB. 

 

 

2.3.1~SAB=20m~θ=20deg~0% 

θ 20 deg 

S0 20.000 m 

E 165 GPa 

dA 20 mm 

pmax 11.280 kN/m 

Table 3-13: Properties of the numerical cable model 

 
 



Numerical Solutions for the Static Behavior of Simple Cables                                          127 

 

Nonlinear static analysis of cables and cable nets 

 

 
Figure 3-37: Applied load p as function of horizontal deflection u 

 

 

 
Figure 3-38: Applied load p as function of vertical deflection v 

 

 

 
 

Figure 3-39: Maximum axial force Nmax as function of vertical deflection v 
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2.3.1~SAB=20m~θ=40deg~0% 

θ 40 deg 

S0 20.000 m 

E 165 GPa 

dA 20 mm 

pmax 15.850 kN/m 

Table 3-14: Properties of the numerical cable model 

 

 

 
 

Figure 3-40: Applied load p as function of horizontal deflection u 

 

 

 
Figure 3-41: Applied load p as function of vertical deflection v 
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Figure 3-42: Maximum axial force Nmax as function of vertical deflection v 

 
 

3.3.3 Comparison diagrams of a horizontal cable under uniformly distributed 

load along its horizontal projection 
  

Analytical solution: Paragraph 2.3.2 

Parametric figures: Paragraph 2.5.7 
 

Here, z* = 0 as S0 ≤ SAB and, so, v = z =
m

d . 

 

 

2.3.2~SAB=20m~θ=0deg~0% 

θ 0 deg 

S0 20.000 m 

E 165 GPa 

dA 20 mm 

pmax 11.750 kN/m 

Table 3-15: Properties of the numerical cable model 
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Figure 3-43: Applied load p as function of vertical deflection v 

 

 

 
 

Figure 3-44: Maximum axial force Nmax as function of vertical deflection v 

 

 

3.3.4 Comparison diagrams of an inclined cable under uniformly distributed load 
along its arc length  

 

Analytical solution: Paragraph 2.3.3 
Parametric figures: Paragraph 2.5.8 
 

Here, v =
m

d as S0 = SAB. 
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2.3.3~SAB=20m~θ=20deg~0% 

θ 20 deg 

S0 20.000 m 

E 165 GPa 

dA 20 mm 

qmax 10.582 kN/m 

Table 3-16: Properties of the numerical cable model 

 

 

 
Figure 3-45: Applied load q as function of horizontal deflection u 

 

 

 

Figure 3-46: Applied load q as function of vertical deflection v 
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Figure 3-47: Maximum axial force Nmax as function of vertical deflection v 

 

 

 

2.3.3~SAB=20m~θ=40deg~0% 

θ 40 deg 

S0 20.000 m 

E 165 GPa 

dA 20 mm 

qmax 11.947 kN/m 

Table 3-17: Properties of the numerical cable model 

 

 

 
Figure 3-48: Applied load q as function of horizontal deflection u 
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Figure 3-49: Applied load q as function of vertical deflection v 

 

 

 
 

Figure 3-50: Maximum axial force Nmax as function of vertical deflection v 

 

 

3.3.5 Comparison diagrams of a horizontal cable under uniformly distributed 

load along its arc length  
 

Analytical solution: Paragraph 2.3.4 

Parametric figures: Paragraph 2.5.9 
 

Here, z* = 0 as S0 = SAB and, so, v = z=
m

d . 
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2.3.4~SAB=20m~θ=0deg~0% 

θ 0 deg 

S0 20.000 m 

E 165 GPa 

dA 20 mm 

qmax 9.891 kN/m 

Table 3-18: Properties of the numerical cable model 

 

 

 
Figure 3-51: Applied load q as function of vertical deflection v 

 

 

 
 

Figure 3-52: Maximum axial force Nmax as function of vertical deflection v 
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4 STATIC BEHAVIOR OF SIMPLE 1-DOF 

CABLE NET UNDER CONCENTRATED 

LOAD 

 
4.1 SIMPLE 1-DOF CABLE NET MODEL 
 
Figure 4-1 illustrates a simple 1-DOF cable net model in 2-D. The 3 Cartesian axes are 
defined in the figure. The plane which is perpendicular to z-axis and includes points A and A’ 
is the reference plane for z-coordinates. Supports B and B’ could lay over or under this 
reference plane. Here, the first case is shown. Equations of Chapter 4 are valid for both 
cases. Cables’ supports have coordinates: 
 
A (xA,0,0) 
A’ (-xA,0,0) 
B (0,yB,zB) 
B’ (0,-yB,zB) 
 
Cable 1 has as supports points A and A’ while cable 2 has points B and B’. The geometry of 
the cable net gives: 
 

A1
L = 2 x

                                                                                                                                                        
(4-1)

 

B2
L = 2 y

                                                                                                                                                        
(4-2)
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Figure 4-1: Geometry of a simple 1-DOF cable net 

 
In addition, the following cables’ characteristics are noted on Figure 4-1: 
 
E$: modulus of elasticity of cable $ 
A$: cross-section of cable $ 
S0$: initial unstressed length of cable $ 
S$: length of cable $ at the equilibrium state 
 
where $ = 1, 2. 
 
 
 

4.2 FORM FINDING 
 

Form finding is the initial step for nonlinear analysis of a simple 1-DOF cable net under 
concentrated load. Cables, with initial unstressed length S0$ ≥ L$, have pre-tension w$

pre. The   
pre-tension w$

pre is defined as:      
 

pre
pre $

$ cap
$

N
w = 100

N                                                                                                                                             
(4-3) 

 
where,  
 

N$
cap is cable’s axial force capacity: 

cap

$ $ y$
N = A f

                                                                              
(4-4) 
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fy$ is the material’s yield strength 
 
and $ = 1, 2. 
 
Figure 4-2 shows each single cable, in the equilibrium state, with the corresponding forces in 
case of cable 2 over the reference plane. The nodal point has coordinates: 
 
 O (0,0,zO

*). 
 
 
 

  
 

Figure 4-2: Equilibrium state of a simple 1-DOF cable net without concentrated load                       
(cables are not in the same plane) 

 
Assuming cables’ material as linearly elastic, Hooke’s law gives: 
 

 
 
 
 

⇒ ⇒
pre

pre pre pre$ $ 0$ $

$ $ $ $ $ $ $
0$

$ 0$

N S - S S
σ = E ε = Ε N = E A -1

SΑ S
                                         

(4-5) 

 
where S$ is defined as: 
 

( )2* 2
O A1

S = 2 z +x
                                                                                                                                     

(4-6)
 

( )2* 2
B O B2

S = 2 z -z +y
                                                                                                                               

(4-7) 

  
The combination of Eqs. (4-3) and (4-5) leads to: 
 

$

0$ pre

$ y$

$

S
S =

w f
+ 1

100E
                                                                                                   

(4-8)

 

 
The equation of static equilibrium in z-axis gives: 
 

⇒pre pre pre pre

1 2 1 22V = 2V V = V
                     

(4-9) 
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where, 
 

*pre
O1

pre
1

1

zV
=

SN
2

   

and
 

*pre
B O2

pre
2

2

z -zV
=

SN
2

                                                                                         

(4-10) 

 

The combination of Eqs. (4-6), (4-7), (4-9) and (4-10) gives: 
 

( ) ( )

* pre * pre

O 1 B O 2

2 2
* 2 * 2

O A B O B

z N z - z N
=

z +x z -z +y                                                                                                

(4-11) 

 
Cables’ axial force N$

pre comes from Eq. (4-3), given the pre-tension w$
pre, or from Eq. (4-5), 

given initial unstressed length S0$. The solution of nonlinear Eq. (4-11) is the unknown         
z-coordinate of nodal point O zO

*.  
 
 
 

4.3 NONLINEAR ANALYSIS 
 
Usual loads of a simple 1-DOF cable net are the snow and the wind. Tension structures are 
not sensitive in seismic loads. The snow and the wind are distributed loads applied 

perpendicularly on the membrane which covers the cable net. The shape of the membrane is 
assumed rhombus, as shown in Figure 4-3, and the 50% of the distributed load is delivered 
by the central node. The other 50% goes, through the cables, to the supports. The 
equivalent concentrated load P on the nodal point O has value: 
 

n 1 2

1
P = q L L

4                                                                                                                                   
(4-12) 

 
where qn is the distributed snow/wind load (pressure). 
  

 
Figure 4-3: Distributed load and its equivalent concentrated 

 
The analysis of Paragraph 2.2.1 is implemented, given the initial unstressed length S0$ from 
Eq. (4-8). The nodal point has coordinates: 
 
 O (0,0,zO). 
 
Assuming cables’ material as linearly elastic, Hooke’s law gives: 
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 
 
 
 

⇒ ⇒$ $ 0$ $

$ $ $ $ $ $ $
0$

$ 0$

N S - S S
σ = E ε = Ε N = E A -1

SΑ S
                                              (4-13) 

 
where S$ is the length of cable $ at the equilibrium state: 
 

2 2
O A1

S = 2 z +x                                                                                                   (4-14) 

( )2 2
B O B2

S = 2 z -z +y                                                                                            (4-15) 

 
The geometry of cable net, for both load directions, gives: 
 

O1

1
1

V z
=

SN
2     

and

   

B O2

2
2

V z -z
=

SN
2                                                                                                  

(4-16) 

 
The vertical component V$ of axial force N$ derives from Eqs. (4-13) to (4-16). So: 
 

 
 
 

1 O 1 1 2 2
O A01

1 1
V = 2 z E A -

S 2 z +x
                                                                                     

(4-17) 

 

( )

 
 
 
 
 
  

2 B O 2 2
2 202

B O B

1 1V = 2 z - z E A -
S

2 z -z +y
                                                                         

(4-18) 

 
Cable’s axial force N$ can be expressed as the percentage w$ of cable’s axial force      
capacity N$

cap as:      
 

$

$ cap
$

N
w = 100

N
                                                                                                     (4-19)             

 
where $ = 1, 2.       
 
                                                                                                       
A simple 1-DOF cable net under concentrated load in the direction –z, for instance snow or 
external wind, is illustrated in Figure 4-4.  
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Figure 4-4: Equilibrium state of a simple 1-DOF cable net under concentrated load in the direction –z 
(cables are not in the same plane) 

 
The equation of static equilibrium in z-axis gives: 
 

1 2
2V + P = 2V

                                     
(4-20) 

 
Using Eq. (2-11), the concentrated load P applied at the middle of simple cable 2 derives 

from: 

( )

( )
( )

 
 
 
 
 
 
 
  

⇒− B O2 2 2
02 2 2

B O

2 12 11 P = 2E A - z -z
S L

z -z +
4

                                                         (4-21) 

Replacing Eqs. (4-17), (4-18) and (4-21) into (4-20) and solving nonlinear Eq. (4-20), the 
new value of z-coordinate of nodal point O zO is calculated.   
 
 
In case of a concentrated load in the direction +z, for example internal wind, the equation of 
static equilibrium in z-axis is: 
 

2 1
2V + P = 2V

                               
(4-22)
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Figure 4-5: Equilibrium state of a simple 1-DOF cable net under concentrated load in the direction +z 

(cables are not in the same plane) 

 
V1 and V2 come from Eqs. (4-17) and (4-18) correspondingly. The concentrated load P 
applied at the middle of simple cable 1 comes from Eq. (2-11): 
 

( )− ⇒

 
 
 
 
 
 

1 1 O2
01 2 1

O

2 1
2 11 P = 2E A - z

S L
z +

4

                                                               (4-23) 

The solution of nonlinear Eq. (4-22) gives the new value of z-coordinate of nodal point O zO. 
 
 
 

4.4 MODELING WITH MATLAB 
 
Eqs. (4-11), (4-20) and (4-22) are nonlinear and, so, the finding of the solution is a complex 
and time-consuming procedure. In such cases, MATLAB can provide accurate and quick 
solutions. MATLAB is a high-performance language for technical computing. It integrates 
computation, visualization, and programming in an easy-to-use environment where problems 
and solutions are expressed in familiar mathematical notation. MATLAB is an interactive 
system whose basic data element is an array that does not require dimensioning. This allows 
user to solve many technical computing problems, especially those with matrix and vector 
formulations, in a fraction of the time it would take to write a program in a scalar 
noninteractive language such as C or FORTRAN [10]. 
 
In the context of this diploma thesis, the form finding of Paragraph 4.2 and the nonlinear 
analysis of Paragraph 4.3 are modeled in MATLAB. For this purpose, software for the 
nonlinear static analysis of 1-DOF cable net is developed. User can easily define input values, 
take instant nonlinear solutions, check if they are acceptable, change specific cables’ 
parameters or applied loads and produce graphical results. The software and its manual are 
contained in the accompanied CD or can be found at the link of reference [9]. 
 
 
EXAMPLE 
 
A simple 1-DOF cable net is analyzed. At first, the form of the 1-DOF cable net is found 
without external loads and, afterwards, distributed loads at ±z direction are imposed. The 
input data and the results of the analyses are presented in the following screenshots. 
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Figure 4-6: Screenshot for 1-DOF cable net geometry 

 
 

 
Figure 4-7: Screenshot for loads 

 
 
STEP 1: FORM FINDING 
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Figure 4-8: Screenshot for form finding 

 
 

 
Figure 4-9: Screenshot for parametric figure 

 
 

STEP 2: NONLINEAR ANALYSIS FOR CONCENTRATED LOADS P 
 
–z direction  
 
pressure q = 3.0 kN/m2 
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Figure 4-10: Screenshot for static analysis 

 
 

+z direction 
 
pressure p = 2.0 kN/m2 
 
 

 
Figure 4-11: Screenshot for equilibrium path 
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4.5 PARAMETRIC ANALYSIS 
 

What affects, in a significant way, the final place of nodal point O and the axial force N$ of   
cable $ is the initial pre-tension w$

pre. The geometry of cable net at the equilibrium state 
should fulfill architectural demands while axial force N$ neither can reach N$

cap, as cable $ 
might break, nor the value 0, as it might get loose. Here, parametric figures of a 1-DOF cable 
net are presented. 
 

 

EXAMPLE  
 
Below, a 1-DOF cable net model for parametric analysis is presented. Figure 4-12 shows a 
screenshot from the tab of input data. As w1_pre and w2_pre change their values in 
parametric figures, values on the screenshot are just a possible combination. 
 

 
Figure 4-12: Screenshot for input data 

 
 
For the purposes of the parametric analysis, distributed loads, such as snow and wind, are 
considered. These loads are applied perpendicularly on the membrane which covers the        
1-DOF cable net. The equivalent concentrated nodal load P, in kN, applied on the central 
node is defined in Eq. (4-12). 
 
The parametric figures contain the following symbols. 
 
Form finding 
 
zO

* : z-coordinate of the central node, before the application of external loads, in m 
 
w1

pre : pre-tension  of  cable 1,  at   the   equilibrium   state,   as  a   percentage  (%)  of  the                        
          cables’ axial force capacity N1

cap 
 

pre pre
pre 1 1
1 cap 2

A11
y1

N N
w = 100 = 100

πdN
f

4
                                                                                                            

(6-24) 

 
w2

pre : pre-tension  of  cable 2, at the  equilibrium state, as  a percentage (%) of  cables’ axial   
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          force capacity N2
cap 

 
pre pre

pre 2 2
2 cap 2

A22
y2

N N
w = 100 = 100

πdN
f

4
                                                                                                        

(6-25) 

 
S0$ : initial unstressed length of cable $, where $ = 1, 2 
 
 
Static analysis 
 
zO : z-coordinate of the central node, after the application of external loads, in m 
 
w1 : axial   force  of  cable 1, at  the equilibrium  state, as a  percentage  (%) of  cables’ axial  
      force capacity N1

cap 
 

1
1 cap

1

N
w = 100

N                                                                                                                                              
(6-26) 

 

w2 : axial  force  of  cable 2,  at  the  equilibrium  state as  a percentage  (%) of  cables’ axial  
      force capacity N2

cap 

 

2
2 cap

2

N
w = 100

N                                                                                                                                            
(6-27) 

 

 
STEP 1: FORM FINDING 

 

 

Figure 4-13: z-coordinate of nodal point O, 
for different values of pre-tensions (w1

pre, w2
pre) 

 
 

Figure 4-13 presents a parametric surface, which describes the z-coordinate of nodal point O 

for different values of pre-tensions (w1
pre, w2

pre). As w1
pre increases and w2

pre decreases, the 

equilibrium point O tends to poise lower. Increase of w1
pre means increase of the axial      

force N1
pre, in other words cable 1 tends to drag to its side the equilibrium point O. 
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Figure 4-14: zO
* – pre-tension w1

pre curves, at the equilibrium state,  
for different values of pre-tension w2

pre 
 

 

Figure 4-15: zO
* – pre-tension w2

pre curves, at the equilibrium state,  
for different values of pre-tension w1

pre 
 

The dependence of form finding on pre-tensions w1
pre and w2

pre is presented in            
Figures 4-14 and 4-15. The larger the pre-tension w2

pre is, the higher the equilibrium point 
stands. The reverse correlation incurs for pre-tension w1

pre. These figures prove that the 
increase of pre-tension makes cables reduce their stressed length by moving the equilibrium 
point nearer to the level of their supports, as larger values of cable tension occur.        
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Figure 4-16: S0$ – pre-tension w1
pre curves, at the equilibrium state, in case that                                

pre-tension w2
pre = 50% 

 

 

Figure 4-17: S0$ – pre-tension w2
pre curves, at the equilibrium state, in case that                               

pre-tension w1
pre = 50% 

 
 
Figures 4-16 and 4-17 indicate that the increase of pre-tension in cable $ leads to decrease of 
its initial unstressed length S0$, where $ = 1, 2. This is in accordance with the fact that, pre-
tension in cables is caused by an initial unstressed length shorter than the distance spanned. 
The shorter the cable is the larger pre-tension acquires. The initial unstressed length of the 
second cable increases.  

 

STEP 2: NONLINEAR ANALYSIS FOR CONCENTRATED LOADS P 
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Figure 4-18: zO – P curve for w1

pre = w2
pre

 = 30.0 % 

 
 

Figure 4-18 shows the response of the central node to concentrated nodal load P. The curve 
is, almost, linear indicating that the geometric nonlinearity is not intense, as cables with 
reverse curvatures tend to eliminate it. Figure 4-18 occurs from the combination of two 
separate analyses for concentrated nodal load P at ±z directions.  

 
 

 
Figure 4-19: zO - w1

pre, in case that  
pre-tension w2

pre
 = 14 % (-z direction) and 46 % (+z direction) 

 
 
 

Figure 4-19 describes the relationship between zO and w1
pre. The larger the pre-tension w1

pre 

is, the lower the equilibrium point stands, both cases of concentrated load P. Figures 4-14 
and 4-15 show that the larger the pre-tension w1

pre is, the lower the equilibrium point stands, 
in case of form finding. The same behavior occurs for a concentrated nodal load P. In case of 
load P at –z direction, the equilibrium point stands lower, in comparison to this in case of load 
P at +z direction, as the direction of the load indicates the direction of the nodal deflection. 
Pre-tension w2

pre remains constant but has different values in ±z direction, as there is not a 
common section, within cables do not break and do not loose, in the range of its values for 
different kinds of loads P. 
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Figure 4-20: zO - w2

pre, in case that pre-tension w1
pre

 = 50 % 
 
 

Figure 4-20 describes the relationship between zO and w2
pre. Here, the larger the               

pre-tension w2
pre is, the higher the equilibrium point stands, both cases of concentrated     

load P. According to Figures 4-14 and 4-15, the larger the pre-tension w2
pre is, the higher the 

equilibrium point stands, in case of form finding. The same behavior occurs for a 
concentrated nodal load P. In case of load P at –z direction, the equilibrium point stands 
lower, in comparison to this in case of load P at +z direction, as the direction of the load 
indicates the direction of the nodal deflection.  

 
 
The values of P at ± z directions are defined below.  

 
 
direction –z 
 
pressure q = 12.00 kN/m2 ⇒  P = 960 kN 

 

 
Figure 4-21: w$ – pre-tension w1

pre curves, at the equilibrium state, in case that                                
pre-tension w2

pre
 = 14 % 
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According to Figure 4-21, the larger the pre-tension w1
pre is, the larger axial force w1 and the 

smaller axial force w2 occur, given constant values of pre-tension w2
pre and concentrated 

nodal load P. A larger value of axial force w1 arises for higher starting level of                  
pre-tension w1

pre and constant value of concentrated nodal load P. What is more, Figure 4-16 
indicates that the larger the pre-tension w1

pre is, the larger initial unstressed length S02 occurs, 
in other words smaller pre-tension w2

pre or smaller axial force w2, for constant value of 
concentrated nodal load P. 

 
 

 
Figure 4-22: w$ – pre-tension w2

pre curves, at the equilibrium state, in case that                              
pre-tension w1

pre
 = 45 % 

 
 
Figure 4-22 indicates that the larger the pre-tension w2

pre is, the smaller axial force w1 and 
the larger axial force w2 occur, given constant values of pre-tension w1

pre and concentrated 
nodal load P. This is true, as for higher starting level of pre-tension w2

pre and constant value 
of concentrated nodal load P, a larger value of axial force w2 arises. Moreover, Figure 4-17 
indicates that the larger the pre-tension w2

pre is, the larger initial unstressed length S01 occurs, 
in other words smaller pre-tension w1

pre or smaller axial force w1, for constant value of 
concentrated nodal load P. 
 
 
direction +z 
 
pressure p = 6.6 kN/m2 ⇒ P = 526 kN  
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Figure 4-23: w$ – pre-tension w1

pre curves, at the equilibrium state, in case that                                    
pre-tension w2

pre
 = 46 % 

 
 
According to Figure 4-23, the larger the pre-tension w1

pre is the larger axial force w1 and the 
smaller axial force w2 and occur, given constant values of pre-tension w2

pre and concentrated 
nodal load P. A larger value of axial force w1 arises for higher starting level of                            
pre-tension w1

pre and constant value of concentrated nodal load P. What is more, Figure 4-16 
indicates that the larger the pre-tension w1

pre is, the larger initial unstressed length S02 occurs, 
in other words smaller pre-tension w2

pre or smaller axial force w2, for constant value of 
concentrated nodal load P. 
 
 

 

 
Figure 4-24: w$ – pre-tension w2

pre curves, at the equilibrium state, in case that                                
pre-tension w1

pre
 = 30 % 

 

 

Figure 4-24 indicates that the larger the pre-tension w2
pre is the larger axial force w2 and 

occurs, given constant values of pre-tension w1
pre and concentrated nodal load P. This is true, 

as for higher starting level of pre-tension w2
pre and constant value of concentrated nodal   

load P, a larger value of axial force w2 arises. Moreover, axial force w1 remains almost 
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constant with a slight increase. This occurs from the load conditions and cable net geometry 
of the model and cannot provide a physical explanation of cable net response. 
 
Notice in Figures 4-21 to 4-24 that, the additional axial force (w$ – w$

pre), due to the 
concentrated nodal load P, is significantly larger than the initial pre-tension w$

pre, where               
$ = 1, 2. For instance, as presented in Figure 4-21, for w1

pre
 = 40.0 % and w2

pre
 = 14.0 %, w2 

is around 90 %. In other words, 90 – 14 = 76 % of axial force of cable 2 occurs from the 
concentrated nodal load P and is according to a good design policy. The range of w$

pre, where 
$ = 1, 2, in STEP 2 differs in ±z-directions of concentrated nodal load P, as it depends on 
cables’ diameter and cables’ axial force capacity.   
 

 

 

4.6 NUMERICAL SOLUTION 
 

The comparison between analytical and numerical curves verifies the rightness of the 
analytical solutions developed in Paragraphs 4.2 and 4.3. Reader can use either analytical 
formulas or the finite element software ADINA and SAP for the analysis of a 1-DOF cable net, 
as identical results occur. In the accompanied CD, there is a list of the numerical models, 
which contains the attributes of each model case. The model used in this chapter is 
commented with the word ‘comparison’. In the same CD, the .idb file for ADINA and the .sdb 
file for SAP can be found. 
 

Analytical solution: Paragraph 4.2 and 4.3 
Parametric figures: Paragraph 4.5 
 
 

4~2_crossed_cables_pre-tensioned 
xA 10.000 m 

yB 5.000 m 

zB 8.000 m 

E1 =E2 165 GPa 

fy1 = fy2 1.58 GPa 

dA1 = dA2 20 mm 

Table 4-1: Characteristic values of numerical cable model 

 
ADINA 
 
 
• Form finding 
 
The pre-tension is applied by defining the value of initial strains. At first, random values of 
initial strains are chosen. The results of solution, for different combinations of initial strains, 
are presented below. 
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Figure 4-25: zO

* – pre-tension w1
pre curves, at the equilibrium state 

 
 

 
Figure 4-26: zO

* – pre-tension w2
pre curves, at the equilibrium state 

 

The combination of pre-tensions (w1
pre, w2

pre) derives from the same value of zO
* of      

Figures 4-25 and 4-26. 

 

• Nonlinear analysis for concentrated load 
 
The random input values of initials strains are: 
 
Initial strain of cable 1 = 0.004 
Initial strain of cable 2 = 0.005 
 
The results of the solution without concentrated load P, for these input values, are considered 
as the pre-tensions for nonlinear analysis for concentrated load P. 
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- z direction 
 
Pmax = 530.0 kN 
 

 
Figure 4-27: zO – w1 curves, at the equilibrium state, for various values of P 

 
 

 
Figure 4-28: zO – w2 curves, at the equilibrium state, for various values of P 

 
Points of Figures 4-27 and 4-28 having the same value of zO correspond to the same value of 
applied P. 
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Figure 4-29: zO – w1 curves, at the equilibrium state, for various values of P 

 

 
Figure 4-30: zO – w2 curves, at the equilibrium state, for various values of P 

 

Points of Figures 4-29 and 4-30 having the same value of zO correspond to the same value of 
applied P. The local difference in Figure 4-30 is 0.001 m, which is a negligible value. 

 

SAP 
 
 
• Form finding 
 
The pre-tension is applied by defining the value of tensions at I-End of each cable. At first, 
random values of tensions at I-End of each cable are chosen. The results of solution, for 
different combinations of tensions at I-End of each cable, are presented below. 
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Figure 4-31: zO
* – pre-tension w1

pre curves, at the equilibrium state 

 

 

Figure 4-32: zO
* – pre-tension w2

pre curves, at the equilibrium state 

 

The combination of pre-tensions (w1
pre, w2

pre) derives from the same value of zO
* of      

Figures 4-31 and 4-32. 

 

• Nonlinear analysis for concentrated load 

 
The random input values of tensions at I-End of each cable are: 
 
Axial force at I-End of cable 1 = 259.050 kN 
Axial force at I-End of cable 2 = 207.240 kN 
 
The results of the solution without concentrated load P, for these input values, are considered 
as the pre-tensions for nonlinear analysis for concentrated load P. 
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- z direction 
 
Pmax = 506.0 kN 
 

 
Figure 4-33: zO – w1 curves, at the equilibrium state, for various values of P 

 
 
 

 
Figure 4-34: zO – w2 curves, at the equilibrium state, for various values of P 

 
 

Points of Figures 4-33 and 4-34 having the same value of zO correspond to the same value of 
applied P. 
 

 
+ z direction 
 
Pmax = 250.0 kN 
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Figure 4-35: zO – w1 curves, at the equilibrium state, for various values of P 

 
 

 
Figure 4-36: zO – w2 curves, at the equilibrium state, for various values of P 

 
Points of Figures 4-35 and 4-36 having the same value of zO correspond to the same value of 
applied P. The local differences in Figure 4-36 are less than 0.001 m, which is a negligible 
value. 
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5 RADIO MAST WITH PRE-TENSIONED 

CABLES 

 
5.1 ANALYTICAL SOLUTION 
 
A radio mast is, typically, a tall structure designed to support antennas for 
telecommunications and broadcasting, including television. It is sensitive to horizontal loads, 
such as seismic loads, and, due to its height, significant values of moment can occur at its 
base. Pre-tensioned cables are placed, in a symmetric way, along its height in order to 
improve structure’s stability. Figure 5-1 illustrates a radio mast having two symmetric       
pre-tensioned cables. Both cables have initial unstressed length S0 ≤ SAC = SBC, where SAC 

(SBC) is the distance between points A (B) and C. The following analysis does not take into 
account cables’ self weight. In such tall structures, self weight provokes cables’ curvature, 
which cannot be omitted during the design procedure. Moreover, the vertical deflection of 
point C is omitted for simplification reasons. Curves’ limits are defined by the axial force 
capacity Ncap of each cable.   
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Figure 5-1: Radio mast model with pre-tensioned cables  

 
 
A horizontal concentrated load P provokes horizontal displacement u of mast’s peak and, as a 
result, horizontal imposed end displacement u of cables. Axial force of cable A NA comes out 
from Eq. (2-77) and, in non-dimensional terms, from Eq. (2-78), for S0 < SAC.                   

Pre-tension 
pre

A
N is defined as follows: 

 

( ) ( ) ( )
 
 
  

⇒
*

2pre *
A A

0

x
1+ tanθ -1

S
2-77 N = N x=x = EA

                

(5-1) 

 
or 
 

( ) ( ) ( )=⇒
*'

2pre' ' ' *'
A A '

0

x
2-78 N = N x =x 1 + tanθ - 1

S                      
(5-2) 

 

Axial force of cable B NB is defined by Hooke’s law as: 
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( )
⇒ ⇒ BC 0B

B

0 0

S -ucosθ - SN ∆S
σ = Eε = Ε N = EA

Α S S
                                                              

(5-3)

 
 
where A is the cross-section and E is the modulus of elasticity of both cables.  
 
 
Correspondingly: 
 

( ) ( )− ⇒ pre

B B
5 3 N u=0 = N

                   
(5-4) 

 
Pre-tension Ni

pre is expressed as the percentage wi
pre

 (%) of cable’s axial force capacity Ni
cap, 

as defined in Paragraph 2.5.1, where i = A, B. In case of a radio mast: 
 

wA
pre

 = wB
pre

 = wpre                                                                                        (5-5) 

 
 
Parameter r (%) describes the axial force of cable B NB as function of the horizontal end 
displacement u, according to the following equation: 
 

( )BC 0B
pre
B BC 0

S -ucosθ - SN
r =100 = 100

N S - S
                                                                          

(5-6) 

 
 

 
Figure 5-2: r – u curves for different values of pre-tension wpre, in case that θ = 60 deg, SBC = 30 m,             

E = 165 GPa and d = 30 mm 

 
 
Figure 5-2 shows the dependence of parameter r on the pre-tension wpre. Radio masts with 
larger values of pre-tension wpre keep cable B tensioned for larger values of horizontal end 
displacement u, as the starting level of axial force Ni

pre is higher, where i = A, B.  
 
The maximum value of the horizontal end displacement umax is determined from the following 
restraints: 
 

• Axial force of cable A NA must not exceed 
cap

A y
N = Af  

• Cable B must not loosen. Cable’s looseness provokes, in due course, attritions in cable’s 
joints decreasing its efficiency. 
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So, 

( ) ( )   
      

⇒ ⇒
2

max max *ymax 2
0A A y

f +E
2-77 N = N x = Af u = S -L - x

E
                                      

(5-7) 

 
and 
 

( ) ⇒ max BC 0
r=0% S - S

5 - 6 u =
cosθ                                                                                         

(5-8) 

 
 
Finally: 

 
   
          

2
max y 2 * BC 0

0

f +E S -S
u = min S -L -x , 

E cosθ

                                                                            

(5-9)

 
 
 

 

5.2 EQUIVALENT SIMPLE 1-DOF CABLE NET MODEL 
 
The development of an analytical relationship between the horizontal concentrated load P and 
the horizontal deflection u is a complicated and time-consuming procedure. The comparison 
between the radio mast model, as shown in Figure 5-1, and the simple 1-DOF cable net, 
which is presented in Chapter 4, reveals equivalence. Indeed, if one cable of the simple net of 
Figure 4-1 is twisted 90 degrees, in order both cables lay on the same plane, an alternated 
cable net model is created, as shown in Figure 5-3. This new cable net model is equivalent to 
two mirrored radio masts. Notice that, the vertical deflection of point C cannot be 
implemented in the case of the twisted cable net, as exists in a real radio mast. 
 
 

 

Figure 5-3: Equivalence of a twisted simple 1-DOF cable net with two mirrored radio masts 
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The application of a concentrated load 2P at the nodal point O of the twisted simple 1-DOF 
cable net gives the same results as if there was a single radio mast imposed under horizontal 
concentrated load P. This assumption is proven by the figures of Paragraph 5.4. Using 
MATLAB program, the analysis of a simple 1-DOF cable net imposed under concentrated 

nodal load 2P gives results for the deflection 
*

O O
z - z  and cables’ axial force N$, where          

$ = 1, 2, for different values of load 2P. Retaining the same values of deflection 
*

O O
u = z - z  

and cables’ axial force Ni, where i = B, A, and assuming horizontal concentrated load 
2P

= P
2

curves for the radio mast are designed in Paragraph 5.4. 

 
 

The equivalence of these models gives the opportunity to extract an analytical expression of 

the stiffness Kmast of a radio mast. Otherwise, the mathematical procedure would be quite 
complex. It is considered that both cables remain tensioned or, in other words, that cable B 

does not get loose sometime, as this provokes attritions in cable’s joints.  
 

The simple 1-DOF cable net of Figure 4-4 is assumed. Eq. (4-20) describes the static 

equilibrium in z-axis, in case of a nodal concentrated load P. The replacement of Eqs. (4-17) 
and (4-18) into (4-20) gives: 

 

( ) ( )
( )

                  

O B O O
2 2 220 0

O AB O B

1 1 1 1
P z = 4 z -z EA - -z EA -

S S 2 z +x2 z -z +y                              
(5-10) 

 

where, 
 

1 2
E = E = E   

1 2
A = A = A

                                                                                                                                                
(5-11) 

01 02 0
=S = S S  

A B
x = y  

 

The expansion of Eq. (5-10) in Taylor series around the value 
*

O O
z = z  gives: 

 

( ) ( )

( )

( ) ( ) ( )
( )

 
  
       

             

*
O O

2
*

* 2B O *O
O O3 3 2 * 2 20 0* 22 * 2 2 O A2 2* 2 B O BO A

B O B

P z = P z +

2EA z -z 2EAz 2 4 2 4
+ - - +EA - +EA - z -z + ...

S Sz +xz -z +yz +xz -z +y

 
(5-12) 

 

The equilibrium point, in the form finding step, has z-coordinate
* B
O

z
z =

2
, as cables have the 

same characteristics and the cable net is symmetric. So: 
 

( )*
oP z = 0

                             
(5-13) 
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Comparing Figures 4-1 and 5-1 and taking into account the equivalence indicated on               
Figure 5-3, the symbols of Eq. (5-12), which refer to a cable net, can be replaced by the 
following symbols, which refer to a radio mast: 
 

→
A B AC

x = y L = sinθS  

→
0 0

S 2S  

→
B AC

z 2cosθS
                                                                                                                                         

 

→*

O AC
z cosθS  

→ *

O AC O
z cosθS - u = z - u  

 

  

Eq. (5-12) turns into: 

( )
  
  
  

  

⇒
2

net

AC AC 0

cosθ 1 1
5-12 P = 4EA - - u = K u

S S S
                                                                        

(5-14) 

 
The simple 1-DOF cable net has stiffness Knet. So, the radio mast, which is considered as the 
half of a cable net, has stiffness Kmast: 
 

 

  
  
  

  

2
net

mast

AC AC 0

K cosθ 1 1
K = = 2EA - -

2 S S S
                                                                                         

(5-15) 

 
 
According to Paragraph 2.2.4.2, Eq. (5-15) is the equivalent spring constant KS, in kN/m, of a 
linear spring. Using Eq. (2-183), the following parametric figure is created:  
 

 

 

Figure 5-4: Kmast – wpre curves for different values of angle θ, in case that  
SAC = 30 m, E = 165 GPa, fy = 1.58 GPa  and   d = 30 mm 
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Figure 5-4 describes the stiffness Kmast of a radio mast as function of angle θ and             
pre-tension wpre. As the angle θ increases, stiffness Kmast decreases because the horizontal 
component of axial force of cable A, which opposes to the horizontal deflection, decreases. 
Moreover, increase of wpre leads to a slight increase of Kmast, as pre-tension wpre adds         
stiffness Kmast in the model.  
 
 
 

5.3 EFFECTS OF PRE-TENSIONING 
 
Radio masts are stabilized by pre-tensioned cables. This pre-tension wpre is applied by initial 
unstressed length S0 shorter than the distance spanned SAC or SBC. Here, parametric diagrams 
of a radio mast are presented, for different values of pre-tension wpre. Sample values of       
pre-tension wpre are increased, corresponding to real situations. Figures are designed using 
the SAP model with title ‘5~SAC=30m~θ=45deg~10-30%.SDB’.  
 
 
 

 

 

Table 5-1: Parameters of the radio mast model 

 

 

Figure 5-5: P – u curves for different values of pre-tension wpre 

 
The response of radio mast, as shown in Figure 5-5, is almost independent from               
pre-tension wpre, when both cables are tensioned. When cable B gets loose, the stiffness Kmast 
decreases abruptly, as only cable A contributes to the response to the horizontal concentrated 
load P, and is larger (slightly steeper curve) for larger values of pre-tension wpre, as           
pre-tension wpre adds stiffness Kmast in the model.  
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Figure 5-6: Axial force of cable A NA as function of horizontal deflection u 
for different values of pre-tension wpre 

 
 

 

Figure 5-7: Axial force of cable B NB as function of horizontal deflection u 
for different values of pre-tension wpre 

 
 
Radio masts with larger pre-tension wpre have larger values of axial force Ni, where i = A, B, 
for the same value of horizontal deflection u as the starting level of axial force Ni

pre is higher, 
and sustain cable B tensioned for larger values of horizontal deflection u. As a consequence, 
the maximum value of the horizontal concentrated load Pmax is depended on cables’               
pre-tension wpre. 
 
 
 
 
 
 

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0.00 0.10 0.20 0.30 0.40

N
A
 (
k
N

)

u (m)

10% 20% 30%

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0.00 0.10 0.20 0.30 0.40

N
B

(k
N

)

u (m)

10% 20% 30%



Radio Mast with Pre-Tensioned Cables                                                                         169 

 

Nonlinear static analysis of cables and cable nets 

5.4 NUMERICAL SOLUTION 
 
 
 
 
 
 

 

 

 

 

Table 5-2: Characteristic values of numerical cable models 

 

The maximum value of the horizontal concentrated load Pmax is chosen according to the 
restraints of Eq. (5-9). Figures 5-8 to 5-10 show the identification between numerical models 
and analytical solution. Moreover, they prove the assertion of equivalence between a radio 
mast and a twisted simple 1-DOF cable net, as described in Paragraph 5.2. Figure 5-8 
indicates that the assumption of an equivalent linear spring gives identical results with the 
numerical solution with truss elements. In the accompanied CD, there is a list of the 
numerical models, which contains the attributes of each model case. The model used in this 
chapter is commented with the word ‘comparison’. In the same CD, the .idb file for ADINA 
and the .sdb file for SAP can be found. 
 

 

 

Figure 5-8: P – u 
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Figure 5-9: Axial force of cable A NA as function of horizontal deflection u 

 

 

  Figure 5-10: Axial force of cable B NB as function of horizontal deflection u 
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6 STATIC BEHAVIOR OF CABLE NETS 

 
6.1 THE FORCE DENSITY METHOD 
 
Such as the simple 1-DOF cable net of Chapter 4, the analysis of an extended cable net is 
divided into two steps, the form finding and the nonlinear analysis under concentrated loads. 

The complexity of cable nets stems the development of an analytical solution. To overcome 

this difficulty, various methods, which describe the response of a cable net, are produced. 
The force density method, presented in this paragraph, is one of them. The force density 

method was developed for the case of cable nets (Figure 6-1), from Schek and expanded for 
the form finding of membranes.  

 

 
Figure 6-1: Cable net 

 
Consider the node i of the cable net, which is connected with nodes j, k etc. An external 

concentrated load pi is applied on the node i. Fij is the axial force of the cable segment having 
length Lij. The equilibrium equations for the node i, at the global coordinate system, are 

written as below: 
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j i k i
ij ik ix

ij ik

j i k i
ij ik iy

ij ik

j i k i
ij ik iz

ij ik

X - X X - X
F +F +...= p

L L

Y - Y Y - Y
F +F +...= p

L L

Z - Z Z - Z
F +F +...= p

L L

                                                                                               (6-1) 

 

The force density, for each cable element, is defined as: 

 

ij

ij

ij

F
f =

L
                                                                                                                                    (6-2) 

 
Replacing Eq. (6-2) into (6-1), the equilibrium equations are transformed into: 

 

( ) ( )

( ) ( )

( ) ( )

j i k iij ik ix

j i k iij ik iy

j i k iij ik iz

f X -X + f X -X +... = p

f Y -Y + f Y -Y + ... = p

f Z -Z + f Z -Z +... = p

                                                                                               (6-3) 

 

Corresponding equations can be written for all internal nodes of the cable net, while for 
border nodes equations are reduced, proportionally to node’s degrees of freedom. The 

solution of the system defines the coordinates of nodes, given the values of force density and 

the external nodal loads. Then, the length of each element and, so, its tensile force are 
calculated from the following equation: 

 

( ) ( ) ( )2 2 2

j i j i j iij ijF = f X -X + Y -Y + Z -Z                                                                                       (6-4) 

 

 
Benefits of force density method 

 
The strategy and the numerical part of form finding are alternated, in contrast to other 

methods, as the equations of force density are linear and, so, the solution of the system of 

linear equations Eq. (6-3) gives an equilibrium shape. This system has a unique solution, if 
the following parameters are considered as constant: 

 
• the coordinates of immovable nodes of the cable net 

• the values of force density for all cables of the net 

 

The second parameter seems to be an obstacle for the implementation of the method as the 
values of force density, for a given equilibrium shape, are not known a priori. Extended 

researches and experiments have shown that inaccurate approximations of these values are 

adequate to produce equilibrium shapes which can operate as the starting point for the 
iterative method of form finding. Thus, it is sufficient to consider, in most cases, as input 

values in the first step the non-tensioned cable lengths in the formulas of force density, 
referring to the internal net cables, and values inversely proportional to cable lengths, 

referring to the boundary zone of the cable net. This consideration does not seem to be   

self-evident. Nevertheless, it simplifies the calculation method which is rendered as a useful 
computer aided tool for form finding.   

 
The force density equations do not contain parameters referring to the material of the cables 

and, so, their solution describes an equilibrium shape independent from the material. In 
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advanced steps of form finding procedure, the definition of an arbitrary material is 

demanded.   
 

 
 

6.2 PARAMETRIC ANALYSIS – THE PEACE AND FRIENDSHIP STADIUM 
 
6.2.1 The CANED program 

 

The parametric analysis is a useful tool for obtaining a more spherical perception of 
construction’s behavior. Changing gradually critical parameters of the cable net, effects of 

geometric nonlinearity, pre-tensioning etc can be illustrated in a legible way. The force 
density method, which is presented in Paragraph 6.1, is used for extracting the following 

parametric figures. The complexity and the number of the equilibrium equations, even though 

they are linear, for a real cable net inducts to the use of computer aided procedures. The 
CANED program is developed in this direction and is chosen for the parametric analysis.  

 
The CANED program, which is developed as student work in the context of a Master course, 

is based on the force density method for the analysis of cable nets. It is written in MATLAB 

language producing the final program file in an executive format. At first, user determines the 
attributes of the cable net and the analysis/design procedure, as he can: 

 
• choose the geometry of the net (rectangle, rhombus, circle or ellipse) 

• define the number of cables in two axes 

• import characteristics of the material 

• set initial values of cross-section and pre-tension 

• define the Newton-Raphson nonlinear analysis method 

• determine the design procedure 

 

The program is divided into two separate steps, the form finding and the nonlinear analysis 
for concentrated nodal loads in z axis. Moreover, the program has the ability to design cable 

nets. At each iteration of the second step, the values of stress are checked if they exceed the 

permitted range and, in such case, the algorithm returns to the first step re-calculating the 
values of cross-section and pre-tension. The successful completion of the analysis gives as 

output: 
 

• figure for the form finding of the cable net 

• stress and pre-tension distributions for form finding 

• figure for the deformed model 

• stress distribution for concentrated loads 

• load-deflection diagram for the central node 

 
Detailed results are available in text format, including the final values of cross-section and 

pre-tension. 

[11] 
 

 
6.2.2 Simulation of the Stadium of Peace and Friendship with CANED program 

 

For the purposes of the parametric analysis, a real cable net is considered as model. It 
concerns the Stadium of Peace and Friendship in Greece, an example of a saddle-shaped 

cable net. It was constructed in 1983 and it was used, among other stadiums, for the 
Olympic Games of 2004. Its circular plan view has a diameter of 114 m, and the sag of the 

roof is 6.15 m, equal in both directions. The net consists of 27 cables in each direction and 

the cable spacing is constant and equal to 4 m in both directions. The main cables have a 
diameter of 60 mm and a breaking load of 3000 kN, while the diameter of the secondary 
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cables is 46 mm and their breaking load is 1850

concrete, with a box cross-
horizontal walls is 20 cm and of the vertical ones 50

placed on 32 pylons. These pylons consist of radially oriented concrete walls.
allow small radial translations of the ring, but in case of violent horizontal forces, for example 

during a seismic event, the ring is restrained in the radial direction of the roof

parametric figures of this cable net
program. 

Figure 6-2 shows a general view of the stadium and the simulation of its roof, using CANED 
program.  

 

(a)

Figure 6-2: The Stadium of

 
The plan of the cable net is a circle having two ax

x-axis, shaping a concave s
convex surface, are called secondary or 

cable net. User sets the geometry of the cable net, as described above, 
numbers each node and cable element

forces in kN. The self weight of the cables is neglected. 

 

Figure 6-3: 

                        

of Christos Papakitsos                                                

mm and their breaking load is 1850 kN. The edge ring is made of pre

-section of dimensions 6.40 m × 8.15 m. The
cm and of the vertical ones 50 cm. The ring seats on bearings

placed on 32 pylons. These pylons consist of radially oriented concrete walls.
ow small radial translations of the ring, but in case of violent horizontal forces, for example 

seismic event, the ring is restrained in the radial direction of the roof

this cable net model are designed by the implement

2 shows a general view of the stadium and the simulation of its roof, using CANED 

    
(a)                                                            (b) 

The Stadium of Peace and Friendship: (a) general view, (b) simulation of its roof

The plan of the cable net is a circle having two axes as shown in Figure 6-3. Cables parallel to 

concave surface, are called main while these parallel to y
secondary or stabilizing. z-axis is perpendicular to the plan

User sets the geometry of the cable net, as described above, and the program 
and cable element with a unique label. Lengths are measured in m and 

weight of the cables is neglected.  

: Views of the cable net, before the design procedure 

       Chapter 6 

     N.T.U.A. 2013 

edge ring is made of pre-stressed 

m. The thickness of its 
cm. The ring seats on bearings which are 

placed on 32 pylons. These pylons consist of radially oriented concrete walls. The bearings 
ow small radial translations of the ring, but in case of violent horizontal forces, for example 

seismic event, the ring is restrained in the radial direction of the roof. The 

plementation of CANED 

[12] 
 

2 shows a general view of the stadium and the simulation of its roof, using CANED 

 

(b) simulation of its roof 

Cables parallel to 

parallel to y-axis, shaping a 
axis is perpendicular to the plan of the 

and the program 
measured in m and 
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Here, some characteristic nodes of the cable net, before the design procedure, are referred: 

 
318  (-57,0,6.15) 

332  (0,0,0) – central reference node 
346  (57,0,6.15) 

690  (0,-57,-6.15) 

691  (0,57,-6.15) 
 

The value of the modulus of elasticity E is 165 GPa. Regarding the limits of cables’ tension, 
the maximum value is calculated as: 

 

( ) ( )max 6max max 6 6
main sec.σ = min σ ,σ = min 1.57*10 kPa, 1.62*10 kPa =1.57 *10 kPa

                          

(6-5) 

[12] 

 

The tension limits in kPa in both axes, which are chosen for the parametric analysis, are 
presented in Table 6-1. The range of values for the form finding is smaller than this for the 

static analysis for safety reasons. The lower limit σmin = 0 kPa ensures that cables do not get 
loose.  

 

step Form finding Static analysis 

σmax 1.0*106 1.57*106 

σmin 0 0 
Table 6-1: Tension limits of cables in both axes, in kPa 

 

For the purposes of the parametric analysis, distributed loads qn, such as snow and wind, are 

considered. These loads are applied perpendicularly on the membrane which covers the cable 
net. The equivalent concentrated nodal load P, in kN, applied on an internal nodal point has 

value: 
 

n
P = q A

                                                                                                                                             
(6-6) 

 
where, 

 

qn is the distributed load in kN/m2 
A is the hatched green area of Figure 6-3 with value 16.57 m2 (for the figures presented on 

Paragraph 6.2.3, the value of 16.0 m2 is considered) 
 

 

The parametric figures contain the following symbols. 
 

Form finding 
 

zO
* : z-coordinate of the central node, with label 332, from the starting point (0,0,0), in m  

 

wx
pre : horizontal component of pre-tension of central main cables, with label 318 and 319, at  

x-axis,  at  the  equilibrium  state  as  a  percentage  (%)  of  the  maximum axial          
force Nx

max 

 
pre pre pre

pre x x x
x max 2

maxx main
ff

N N N
w = 100 = 100 = 100

2827kNπdN
σ

4
                                                                        

(6-7) 

 

wy
pre : horizontal  component  of pre-tension of  central  secondary cables, with label 954 and  

         955, at y-axis, at the equilibrium state as a  percentage (%) of cables’  maximum  axial                                  
         force Ny

max 
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pre pre pre
pre y y y

y max 2
maxy sec .
ff

N N N
w = 100 = 100 = 100

1662kNπdN
σ

4
                                                                     

(6-8) 

 
 

Static analysis 

 
zO : z-coordinate of the central node, with label 332, from the equilibrium point (0,0,zO

*), in m  

 
wx : axial  force  of  central  main cables, with  label 318 and 319, at x-axis, at the equilibrium  

      state as a percentage (%) of cables’ maximum axial force Nx
max 

 

x x x
x max 2

maxx main
sa

N N N
w = 100 = 100 100

4439kNπdN
σ

4
                                                                                

(6-9) 

 
wy : axial  force  of  central  secondary  cables, with  label  954  and  955,  at  y-axis,  at  the  

      equilibrium state as a percentage (%) of cables’ maximum axial force Ny
max 

 

y y y

y max 2
maxy sec.
sa

N N N
w = 100 = 100 = 100

2609kNπdN
σ

4
                                                                       

(6-10) 

 
 

Figure 6-4 shows the referred cable elements, within the frames, and the corresponding edge 
nodes. 

 

 
Figure 6-4: Definition of cable nodes and elements 

 
Below, characteristic screenshots from the design procedure are presented. 
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Figure 6-5: Screenshot from form finding 

 

 

 
Figure 6-6: Screenshot from static analysis for load at –z direction 
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6.2.3 Parametric figures 

 
Curves’ limits are defined by the maximum axial force Nmax of each cable.   

 
 

STEP 1: FORM FINDING 

 
 

 

 
Figure 6-7: zO

* –wx
pre curves, at the equilibrium state,  

for different values of pre-tension wy
pre 

 

 

 

Figure 6-8: zO
* –wy

pre curves, at the equilibrium state,  

for different values of pre-tension wx
pre 

 

The dependence of form finding on pre-tensions wx
pre and wy

pre is presented in            
Figures 6-7 and 6-8. The larger the pre-tension wx

pre is, the higher the equilibrium point 

stands. The reverse correlation incurs for pre-tension wy
pre. These figures prove that the 

increase of pre-tension makes central cables reduce their curvature by moving the equilibrium 

point nearer to the level of their supports, as larger values of cable axial force occur.        
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STEP 2: NONLINEAR ANALYSIS FOR CONCENTRATED NODAL LOAD P 

 
 

 

 
Figure 6-9: zO – P curve for wx

pre = 13.1 % and wy
pre

 = 22.9 % 

 

 
Figure 6-9 shows the response of the central node with label 332 to concentrated nodal    

load P, with range of values [-30.0, 10.0], in kN. The curve is, almost, linear indicating that 

the geometric nonlinearity is not intense, as the central cables with reverse curvatures, in    
x- and y-axes, tend to eliminate it. Pre-tensions wx

pre and wy
pre are equal to these of the 

construction as built. Figure 6-9 occurs from the combination of two separate analyses for 
concentrated nodal load P at ±z directions.  

 

 

 
Figure 6-10: zO – wx

pre curve, in case that pre-tension wy
pre

 = 35.0 % 

 

 
Figure 6-10 describes the relationship between zO and wx

pre. The larger the pre-tension wx
pre 

is, the larger the z-coordinate zO, in absolute value, becomes, in case of P at –z direction, and 
the reverse correlation incurs for P at +z direction. Figures 6-7 and 6-8 show that the larger 

the pre-tension wx
pre is, the higher the equilibrium point stands. So, the unstressed length of 

central main cables is smaller but this of central secondary cables, given constant value of 
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wy
pre, is larger. According to Figure 2-63, the larger the ratio 0

AB

S

S
 of a cable is the larger 

stiffness has for the same concentrated nodal load P. This observation is valid for a horizontal 

cable with concentrated load in the middle but it can be generalized for the case of net 
cables. As a consequence, larger stiffness of central secondary cables means reduce of        

z-coordinate zO, for constant value of concentrated nodal load P. Correspondingly, the 

reduction of length of central main cables leads to reduction of their stiffness, in other words 
increase of z-coordinate zO, in absolute value.   

 
 

 
Figure 6-11: zO – wy

pre curve, in case that pre-tension wx
pre

 = 10.0 % 
 

 
Regarding the Figure 6-11, the larger the pre-tension wy

pre is, the smaller the z-coordinate zO, 

in absolute value, becomes, in case of P at –z direction, and the reverse correlation incurs for 
P at +z direction. Figures 6-7 and 6-8 show that the larger the pre-tension wy

pre is, the lower 

the equilibrium point stands. So, the unstressed length of central main cables, given constant 
value of wx

pre, is larger but this of central secondary cables is smaller. According to        

Figure 2-63, the larger the ratio 0

AB

S

S
 of a cable is the larger stiffness has for the same 

concentrated load P. This observation is valid for a horizontal cable with concentrated load in 

the middle but it can be generalized for the case of net cables. As a consequence, larger 
stiffness of central main cables means reduce of z-coordinate zO, in absolute value, for 

constant value of concentrated nodal load P. Correspondingly, the reduction of length of 

central secondary cables leads to reduction of their stiffness, in other words increase of       
z-coordinate zO.  

 
The values of P at ± z directions are defined below.  

 

 
–z direction 

 
pressure q = 3.0 kN/m2 ⇒ P = 48.0 kN
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Figure 6-12: w& –wx

pre curves, at the equilibrium state,  
in case that pre-tension wy

pre
 = 35.0 % 

 
 

Figure 6-12 indicates that the larger the pre-tension wx
pre is, the larger axial force wx and the 

smaller axial force wy occur, given constant values of pre-tension wy
pre and concentrated 

nodal load P. This is true, as for higher starting level of pre-tension wx
pre and constant value 

of concentrated nodal load P, a larger value of axial force wx arises. Moreover, Figure 6-10 
shows that the larger the pre-tension wx

pre is, the larger the z-coordinate zO, in absolute 

value, is and, so, the increase of stressed length of central secondary cables is smaller 
provoking smaller values of axial force wy. 

 
 

 
Figure 6-13: w& –wy

pre curves, at the equilibrium state,  
in case that pre-tension wx

pre
 = 10.0 % 

 
 

According to Figure 6-13, the larger the pre-tension wy
pre is, the smaller axial force wx and the 

larger axial force wy occur, given constant values of pre-tension wx
pre and concentrated nodal     

load P. A larger value of axial force wy arises for higher starting level of pre-tension wy
pre and 

constant value of concentrated nodal load P. What is more, Figure 6-11 indicates that the 
larger the pre-tension wy

pre is, the smaller the z-coordinate zO, in absolute value, is and, so, 

the increase of stressed length of central main cables is smaller provoking smaller values of        

axial force wx. 
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+z direction 

 
pressure p = 1.65 kN/m2 ⇒ P = 26.4 ≈ 26.0 kN 

 

 

 
Figure 6-14: w& –wx

pre curves, at the equilibrium state,  

in case that pre-tension wy
pre

 = 17.5 % 
 

 

Figure 6-14 indicates that the larger the pre-tension wx
pre is, the larger axial force wx and the 

smaller axial force wy occur, given constant values of pre-tension wy
pre and concentrated 

nodal load P. This is true, as for higher starting level of pre-tension wx
pre and constant value 

of concentrated nodal load P, a larger value of axial force wx arises. Moreover, Figure 6-10 
shows that the larger the pre-tension wx

pre is, the smaller the z-coordinate zO is and, so, the 

increase of stressed length of central secondary cables is smaller provoking smaller values of       
axial force wy. 

 

 

 
Figure 6-15: w& –wy

pre curves, at the equilibrium state,  

in case that pre-tension wx
pre

 = 37.5 % 
 

 

According to Figure 6-15, the larger the pre-tension wy
pre is, the smaller axial force wx and the 

larger axial force wy occur, given constant values of pre-tension wx
pre and concentrated nodal     
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load P. A larger value of axial force wy arises for higher starting level of pre-tension wy
pre and 

constant value of concentrated nodal load P. What is more, Figure 6-11 indicates that the 
larger the pre-tension wy

pre is, the larger the z-coordinate zO is and, so, the increase of 

stressed length of central main cables is smaller provoking smaller values of axial force wx. 
 

Notice in Figures 6-12 to 6-15 that, the additional axial force (w& – w&
pre), due to the 

concentrated nodal load P, is significantly larger than the initial pre-tension w&
pre,            

where & = x, y. For instance, as presented in Figure 6-12, for wx
pre

 = 5.0 % and                        

wy
pre

 = 35.0 %, wx is around 60 %. In other words, 60 – 5 = 55 % of axial force of central 
main cables occurs from the concentrated nodal load P and is according to a good design 

policy. The range of w&
pre, where & = x, y, in STEP 2 differs in ±z-directions of concentrated 

nodal load P, as it depends on cables’ diameter and cables’ maximum tension.   
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APPENDIX A: Hyperbolic functions 

 
Appendix A contains a short presentation of hyperbolic functions, which are used in 

Paragraphs 2.3.3 and 2.3.4, in case of a simple suspended cable under uniformly distributed 
load along its arc length. 

 

 
Standard algebraic expressions: 

 
x -x 2x -2x

x -x

e - e e -1 1 - e
sinhx = = =

2 2e 2e
   

                             
(A-1) 

 
x -x 2x -2x

x -x

e +e e +1 1+e
coshx = = =

2 2e 2e
                   (A-2) 

 
x -x 2x -2x

x -x 2x -2x

sinhx e - e e -1 1 - e
tanhx = = = =

coshx e +e e +1 1+e
                  (A-3) 

 

 

 
Useful relations: 

 

( ) ( )sinh -x = -sinh x                      (A-4) 

( ) ( )cosh -x = cosh x                       (A-5) 

( ) ( )tanh -x = -tanh x                      (A-6) 

( ) ( )2 2
cosh x - sinh x =1                      (A-7) 
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Sums of arguments: 

 

( ) ( ) ( ) ( ) ( )cosh x+y = sinh x sinh y +cosh x cosh y                  (A-8) 

( ) ( ) ( ) ( ) ( )sinh x+ y = cosh x sinh y +sinh x cosh y                  (A-9) 

( ) ( ) ( )
( ) ( )

tanh x +tanh y
tanh x + y =

1+tanh x tanh y
                                                                                                 (A-10) 

 

 

Sum and difference of cosh and sinh: 
 

( ) ( ) x
cosh x + sinh x = e                   (A-11) 

( ) ( ) x-
cosh x - sinh x = e                   (A-12) 

 

 

Inverse functions as logarithms: 
 

( ) ( )2arsinh x = ln x+ x +1                  (A-13) 

( ) ( ) ≥2arcosh x = ln x+ x -1 , x 1                  (A-14) 

( )  
 
 

1 1+x
artanh x = ln , x <1

2 1-x
                  (A-15) 

 

 

Derivatives: 

 

d
sinhx = coshx

dx
                  (A-16) 

d
coshx = sinhx

dx
                  (A-17) 

2d
tanhx =1- tanh x

dx
                  (A-18) 

 

 

Standard Integrals: 

 

( ) ( )∫
-1

sinh ax dx = a cosh ax +C                  (A-19) 

( ) ( )∫
-1

cosh ax dx = a sinh ax +C                  (A-20) 
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( ) ( ) 
  ∫

-1
tanh ax dx = a ln cosh ax +C                 (A-21) 

[13] 
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TABLE OF SYMBOLS  

 

 

 

Symbol Definition Unit  
labels 

$ label $ (= 1, 2,…) of a cable - 

i label i (= A, B, …) of a point/node - 

& label & (= x, y, z) of direction - 

ij chord with endpoints i and j - 

coordinates 

X, Y, Z Cartesian axes - 

x, y, z 
coordinates of the examined point after the         

application of the load P, p or q 
m 

xmax maximum x-coordinate of the examined point m 

xi, yi, zi coordinates of point i m 

xP, yP, zP 
coordinates of the starting application point of                          

the concentrated load P 
m 

x*, y*, z* 
coordinates of the point from which cable tension,         

due to the load P, p or q, occurs 
m 

zO
* z-coordinate of the central node, at form finding m 

zO z-coordinate of the central node, at static analysis m 

lengths 

u, v 
deflections/displacements of the examined point                                   

u = x – x* 
v = z – z* 

m 

umax 
maximum horizontal deflection/displacement 

umax = xmax – x* 
m 

d 
vertical distance of the stressed cable                           

from the chord AB 
m 
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dm 
vertical distance of the stressed cable                           

from the chord AB at midpoint 
m 

dmP 
vertical distance of the stressed cable from the            

chord AB at midpoint, in case of equivalent concentrated                           
load P = pL at midpoint 

m 

ε elongation of the cable - 

εi 
elongation of the cable segment                             

supported on point i 
- 

εmax maximum elongation of the cable - 

s 
stressed length of the cable                                         

from the start of the axes to the point (x,z) 
m 

s0 
initial unstressed length of the cable                                       

from the start of the axes to the point (x,z) 
m 

S stressed length of the cable m 

S0 initial unstressed length of the cable m 

S0i 
initial unstressed length of the cable segment                             

supported on point i 
m 

Si 
stressed length of the cable segment                             

supported on point i 
m 

Sij distance between points i and j m 

L horizontal/vertical length, as defined on figures m 

loads 

P applied concentrated load kN 

Pmax maximum applied concentrated load kN 

p 
uniformly distributed load along                                        

the horizontal projection 
kN/m 

⊥
p  

component of the applied load p                           
perpendicular to the cable segment ds 

kN/m 

�
p  component of the applied load p                              

parallel to the cable segment ds 
kN/m 

pmax 
maximum uniformly distributed load                                   

along the horizontal projection 
kN/m 

q 
uniformly distributed load along the arc length                  

of the cable 
kN/m 

⊥
q  

component of the applied load q                           
perpendicular to the cable segment ds 

kN/m 

�
q  component of the applied load q                              

parallel to the cable segment ds 
kN/m 

qmax 
maximum uniformly distributed load along                     

the arc length of the cable 
kN/m 

stresses 

σ axial tension of the cable kPa 

σi 
axial tension of the cable segment                             

supported on point i 
kPa 

σpre pre-tension of the cable kPa 

σmax maximum axial tension of the cable kPa 

σmin minumum axial tension of the cable kPa 

fy yield stress of the cable GPa 

E modulus of elasticity of the cable GPa 

forces 

N axial force of the cable kN 

Ni reaction at point i kN 

NP 
axial force of the cable, in case of equivalent             

concentrated load P = pL at midpoint 
kN 

Npre axial force of the cable due to pre-tension kN 

Nmax maximum axial force of the cable kN 
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Ncap axial force capacity of the cable kN 

w axial force of the cable as percentage of its capacity % 

wpre 
axial force of the cable due to pre-tension                         

as percentage of its capacity 
% 

r axial force of the cable as percentage of its pre-tension % 

H 
horizontal component of the axial force                                  

of the cable 
kN 

Hi horizontal reaction at point i kN 

V 
vertical component of the axial force                                       

of the cable 
kN 

Vi vertical reaction at point i kN 

F restoring force of a spring kN 

other important symbols 

M bending moment kNm 

K stiffness of the cable kN/m 

KS (equivalent) spring constant kN/m 

Kmast stiffness of a radio mast kN/m 

Knet stiffness of 1-DOF cable net kN/m 

θ angle of inclination deg (o) 

dA the diameter of the cable mm 

A the cross-section of the cable m2 

defined in paragraph 

gk, wk, f, Au, 
fu, F

min, Rr, Kr, 
σe, σu 

symbols defined in Paragraph 1.2.1 - 

c1,
#

1
c ,c2,

#

2
c , 

α, β, β#, γ, 
γ#, Γ, Γ#, ∆, 

∆#, Θ, Θ#, Λ, 
Λ#, Ξ, Ξ# 

symbols defined in Paragraph 2.2.2 - 

h

1
c ,

h

2
c , βh, γh, 

Γh, ∆h, Θh, Λh, 
Ξh 

symbols defined in Paragraph 2.2.3 - 

KSi, Pi, vi, θi 
symbols defined in Paragraph 2.2.4.3, 

for the cable i of the cable-braced bridge 
- 

ρ, ρΑ, ρΒ symbols defined in Paragraph 2.3.1 - 

δ, ζ symbols defined in Paragraph 2.3.3 - 

ε$
pre, ε$, S0$, 

S$, L$, qn, 
σ$

pre, σ$, fy$, 

E$, w$
pre, w$, 

N$
pre, N$, 

H$
pre, H$, 

V$
pre, V$, 

N$
cap, A$, dA$ 

symbols defined in Chapter 4 for cable $ - 

Ni
pre, wi

pre, 
Ni

cap, Ni
max 

symbols defined in Paragraph 5.1 - 

Xi, Yi, Zi, Lij, 

pi, pix, piy, piz, 
Fij, fij 

symbols defined in Paragraph 6.1 - 

σmain
max, 

σsec.
max, σff

max, 
σsa

max, w&, 

w&
pre, N&,

  
N&

pre,  N&
max, 

symbols defined in Paragraph 6.2 - 
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Figure T-1: General cable model 

 

 

Dimensional parameters are transformed to non-dimensional using the following 
multiplications: 
 

• coordinates and lengths:  x 
1

L
 

• concentrated loads: x 
1

EA
 

• distributed loads:  x 
L

2EA
 

• forces:   x 
1

EA
 

• stiffness:   x 
EA

L

1
 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 


