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Mn ypapHIKn oTATikn avaAuon KaAwdinv kail SIKTUWV KAAwWJdinv

X. T. Manakitoog (EniBAEnwv: X. FavTeq)
NepiAnyn

O1 KAAWBIWTEG KATACKEUEG XAiPOUV TNG EKTIUNONG TWV HNXAVIKWV Kal TV apXITEKTOVWY, KaBwg NpocQEpouv
uwnA aioBnTikr Kal NAEOVEKTAKATA Ot MNPOBARMATA MeyAAwv avolypdtwv, Onm¢ opo@eg oTadiwv. Ol
OX€eDIA0TEC MPENEl va NPOCEYYIoOUV auToU ToU €id0UC TIC KATAOKEUEG PE €va Wn OUKPBATIKO TPOMO, AOYW TNG
YEWHETPIKAG KN YPAUMIKOTNTAG Twv kahwdiwv. O gkonog autng TnG dINAWUATIKAG epyaciag eival va eEeTdoel
auTou Tou €idoUG TN [N YPAUMIKOTNTA £XOVTAG WG APETNPIa To BACIKO GTOIXEI0 TwV KAAWSIWTMY KATAOKEUWY,
nou sival &va avnpTnuévo HEHOVMMEVO KaAmdIo, Kal €MeKTeivovTacg Tnv avaiuon os 1-DOF kar nio olveeTa
OikTua Kahwdiwv.

To npoTo BrAWa TNG MEAETNG €ival 0 MPOCdIOPICHOG TNG MNYNG TNG YEWHETPIKAG HN YPAPHIKOTNTAG
OUYKpIVOVTaG TNV anokpion evog kaAwdiou kai piac OokoU Ot €EWTEPIKA @opTia. 'Enerra, e&etaleTal éva
HepoOVwUEVO KaAwdio, avnpTnuévo anod Ta dUo Tou dakpa. MpoadiopilovTal of avaluTIKEG EEIOWAEIG yia diagpopa
QopTia (CUYKEVTPWHEVO (POPTIO, KATAVEUNHEVO (POPTIO KATA WAKOG TNG opIfovTIag NPoBOANG Kal KaTa HNKOG
TOEOU KaAwdiou, PETATOMION AKPOU), Yia JIAPOpPeC BECEIC EPAPHUOYNG TOU OUYKEVTPWHEVOU (QopTiou (OTO
MEoO, o€ Tuxaia B&an) kai yia diIdPopeG KAIOEIC Kahwdiou (0pIfOVTIO, KEKNIJEVO). TNV MEPINTWON HETATOMNIONG
akpou KaAwdiou, n andkpion NPOCOHOIACTNKE HE AUTH €VOG EAATNPIOU Kal NPOEKUWE Wia 1codUvaun oTabepd
ehatnpiou.

O1 avaAuTIKEC EEIOMOTEIC YIA TO AVNPTNHEVO PEPOVWHEVO KAAWDIO MeKTEIVOVTAl O £va OIKTUO KAAWdiwV VoG
Babuou eleuBepiag (1-DOF). MpoadiopilovTal ol EEI0MAEIC YIa TV EUPEDN OXNKATOC Kal Tn OTATIKA avaAuan,
eV avanTUooeTal AOYIOUIKO Wn YPAWMIKNAG oTaTikng avaiuong 1-DOF SiktUou kaAwdiou, We Tn Xpron Tou
Aoyiopikou MATLAB. Mia napatrpnon otn Hop®n evog 1-DOF dikTUou KaAwdiwv odnyei oTn KN YPapMIKn
avaAuon €vog TNAEMIKOIVOVIAKOU I0TOU HE MPOEVTETAPEVA UMOOTNPIKTIKA KAAWDIA, Hia eUpEwC OIadedOMEVN
kaTaokeun. Ta anoteAéopaTta Tng avaiuong auTtng napoucialovral aTnv napoloa SINAWUATIKN epyacia. Ev
avTiBéoel, Ta oUvBeTa dikTua kahwdiwv dev WMopoUv va MPooeyyioToUV WE TNV avaAuTikr HEBodo nou
avanTUxenke OTIC NPONYOUMEVEC EPAPHOYEG Kal, €101, avTikaBioTaTtal and Tn péBodo MUKvOTNTAG dUvaung.
Bdoel auTrg TnG PeBODOU, NPOCOHOIA0TNKE TO JiKTUO KAAWDIWV TNG 0poPng Tou XTadiou Eiprivng kai MiAiag,
To onoio BpiokeTal aTnv ABrva.

270 NAQiolo auTig TNG JINAWKATIKNG £pyaaciac, ol avaAuTIkéG AUoeIC eniBeBainBnkav and apiBunTIKa HovTEAQ.
Ma autdv Tov AOYo, xpnaoiponolnénkav Ta AOYIOUIKA nenepacuévwy oToixeiwv SAP kai ADINA. H olykpion
€deie TauTIoN PETAEU Twv avaAUTIKWV €§I0WOEWV Kal TwV apiBUNTIKOV HOVTEAWY, EKTOG and Tnv nepinTwon
KEKNIJEVOU HEPOVWHEVOU KAAWDIOU und KaTtavepnuévo @opTtio. H aitia evronietar otnv ayvonon Tng
opIZOvTIaC PETATOMIONG, OTNV avaAuTikn AUGn, AOyw TNG noAunAokOTNTAC TWV KN YPAHMIKOV EEIOMOEWV.
Anaiteital nepeTaipw €peuva, n onoia &nepva Ta Opla auTng TNG SINAWKATIKAG £pyaaciac.

MapdMnAa peE TIC avaAUTIKEG €EI0MOEIC kal TA apiOunTikG povTéAa, napoucialovtal kai oxoAidlovral
napapeTpikd diaypdupaTta. AuToUu Tou €idouc Ta dlaypdupaTa enegnyouv, WE €va O@AIPIKO TPOMo, TNV
anokpion TV KAAWSIWTWV KATAOKEUWV Of €EWTEPIKA QopTid. Ogwpndnkav dIAPOPEG TIUEC MPOEVTAONG,
apxIKNG KpEWaong kaAwdiou, anapapopPWTOU HAKOUG, KAIONG, B£0nC £(apuoyng TOU CUYKEVTPWHEVOU
(opTioU, PETPOU EAAOTIKOTNTAG Kal JIAUETPOU.

AEEeig kAe1d1a

avnpTNUEVO HEPOVWMPEVO KaAwdio, 1-DOF BikTuo KaAwdiwv, TNAEMIKOIVWVIAKOC 10TOC, OIKTUO KaAwdiwv,
YEWUETPIKN WN YPAMUIKOTNTA, OTATIKN avaAuon, avaAuTIKEG AUCEIC, apiBUNTIKEG AUCEIC, OGUYKEVTPWHEVA
(OpTiA, KATAVEUNUEVA QOPTIA, HETATOMIOEIC AKpou, 100dUvapn oTabepd eAaTnpiou, NPOEVTETAPEVO KAAWJIO,
NapapeTpIKa diaypappara
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Abstract

Cable structures have gained the regard of engineers and architects, as they offer high aesthetic and benefits
in large openings, such as stadium roofs. Designers have to approach this kind of constructions in an
unconventional way, due to the geometric nonlinearity of cables. The aim of this diploma thesis is to examine
this kind of nonlinearity starting from the basic element of cable structures, which is a simple suspended
cable, and expanding the analysis to 1-DOF and more complex cable nets.

The first step of the study is the detection of the source of the geometric nonlinearity by comparing cable and
beam response to external loads. Then, a simple suspended cable is considered. Analytical equations are
determined for different kind of loads (concentrated load, distributed load along horizontal projection and arc
length of the cable, imposed end displacement), for different application points of concentrated load (in the
middle, arbitrary) and for different inclinations (horizontal, inclined). In case of imposed end displacement,
cable response is simulated with this of a spring and an equivalent spring constant is found.

The analytical equations for a simple suspended cable are extended for a cable net with one degree of
freedom (1-DOF). Form finding and static analysis equations are determined, while software for nonlinear
static analysis of 1-DOF cable net is developed, based on MATLAB software. An observation in the form of a
1-DOF cable net leads to the nonlinear analysis of a radio mast with pre-tensioned cables, a widely spread
construction. The results of the analysis are presented in this diploma thesis. On the other hand, complex
cable nets cannot be approached by the analytical method developed in previous applications and, so, it is
replaced by the force density method. Based on this method, the cable net of the roof from the Stadium of
Peace and Friendship, in Athens, is simulated.

In the context of this diploma thesis, the analytical solutions are verified by numerical models. For this
purpose, the finite element software SAP and ADINA are used. The comparison showed identification between
analytical equations and numerical models, apart from the case of an inclined simple suspended cable under
distributed load. The reason is located at the omission of the horizontal deflection, in the analytical solution,
due to the complexity of nonlinear equations. Further investigation, which exceeds the limits of this diploma
thesis, is required.

Parallel to analytical equations and numerical models, parametric figures are presented and annotated. This
kind of figures illustrates, in a spherical way, the response of cable structures to external loads. Different
values of pre-tension, initial cable sag, unstressed length, inclination, application point of concentrated load,
modulus of elasticity and diameter are considered.

Key words

simple suspended cable, 1-DOF cable net, radio mast, cable net, geometric nonlinearity, static analysis,
analytical solutions, numerical solutions, concentrated loads, distributed loads, imposed end displacements,
equivalent spring constant, pre-tensioned cable, parametric figures
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1 INTRODUCTION

1.1 HISTORICAL SURVEY

Nature has always granted to the humanity examples to solve problems of covering spans.
The vaulted caves were used as shelters, the trunks of the fallen trees formed bridges to
cross streamlets or even rivers at the narrow passages and the interlaced vines constituted a
sort of suspended roof, while the trees, standing upright, represented the necessary masts to
support these roofs. These images, among many others, stimulated the human imagination
and triggered structural engineering. The need for progress and evolution, along with the
development of technology, which brought new, more efficient materials, generated the
opportunity to elaborate new concepts, find new solutions, overcome the existing limits and
always set new ones.

The examples are numerous, still standing over the centuries, testifying the course of the
human inventiveness. Since the ancient Roman years, curves dominated in the field of
engineering and architecture, substituting straight lines, made of stones or wood, which were
proved to be inadequate in some cases. Arcades, arches, and domes were the best solution
to cover large spans, such as aqueducts, bridges, churches, etc. Later, thin shells, made of
concrete, gained the interest of architects, giving a different aspect to their creations with
their lightness and captivating elegance. The function of these structures was to carry loads
in pure compression, thus avoiding bending of the members. The reverse solution was
realized by structures with members that operate in pure tension, which belong to the family
of tensile structures. The sails of ships were among the first membrane structures ever used,
providing resistance to wind, developing only tension and moving the ship over the seas. The
first suspended bridges, made of ropes, were used to cross canyons, while the first
suspended roof was the “velarium” of the Coliseum, built in 70 B.C. in Rome (Figure 1-1),
used to protect the spectators from rain and sun. During the last six centuries, many
suspended bridges were constructed, but only in the second half of the twentieth century,
tensile structures became a pioneer in the field of structural engineering, opening new
frontiers [1].

Nonlinear static analysis of cables and cable nets



2 Chapter 1

Figure 1-1: The ‘e arium” o h Coleum inRo, Italy

Cable problems have been the vehicle by which some well-known techniques, equations and
mathematical functions were introduced. For example, Stevin in 1586 established the triangle
of forces by experimenting with loaded strings, although Leonardo da Vinci’s fifteenth-century
sketches anticipated this result and several others, including the catenary and the concept of
the collapse mechanism in a voussoir arch. It seems likely, according to Truesdell, that
Beeckman had by 1615 solved the suspension bridge problem, namely, that in responding to
load uniformly distributed in plan, a cable hangs in a parabolic arc. But nearly two centuries
were to pass before this solution became well known. It was rediscovered in 1794 by the
Russian engineer Fuss, who was charged with the responsibility of attempting to span the
Neva River, at St. Petersburg. Galileo, in Discourses on Two New Sciences, published in 1638,
muses on the shape of a hanging chain and concluded that it is parabolic — primarily by an
analogy to the flight of a projectile. The years 1690 and 1691, Bernoullis, Leibnitz and
Huygens more or less jointly discovered the catenary. In the discovery of the catenary
different approaches were employed, with Huygens relying on geometrical principles, and
Leibnitz and the Bernoullis using the calculus, then a comparatively recent invention.

The vibration of taut strings was studied extensively in the early part of the eighteenth
century. In 1738 Daniel Bernoulli published a solution for the natural frequencies of a chain
that hangs from one end. Lagrange used, a discrete, string of beads model of the taut string
as an illustration of the application of his equations of motion. One could go on, but the list is
sufficient to illustrate the point.

In Europe cable theory had at least a firm grounding by the nineteenth century. Outside
Europe the practical aspects had received considerable attention at a much earlier date. The
early civilizations of the Far East and Central and South America mastered suspension bridge
construction. Needham records the existence of sophisticated suspension bridges in China
before the start of the Christian era. The Native Americans did, and still do, make intricate
rope pathways. Iron chain suspension bridges date from A.D. 65, when a bridge built in
Yunnan, China. Thang-stong rGyal-po, a Tibetan monk in the fifteenth century, was
renowned as a builder of iron chain suspension bridges. One of his iron chain suspension
bridges, Chakzam Bridge, about 65 km from Lhasa, at Tsangpo, still existed in 1948
(Figure 1-2). The evolution of the suspension bridge has been given an admirable treatment
by Hauri and Peters [2].

Figure 1-2: Old Chain-Bridge at Cﬁaksam

Diploma Thesis of Christos Papakitsos N.T.U.A. 2013



Introduction 3

1.2 CABLES AND CABLE STRUCTURES

1.2.1 Cables

1.2.1.1 Cable types

The basic element for cables is the steel wire with a tensile strength larger than that of
ordinary structural steel. The steel wire has a cylindrical shape with a diameter of between

3 and 7 mm. A single straight wire, surrounded by a single layer of six wires with the same
pitch and direction of helix, makes up the seven-wire strand, as shown in Figure 1-3.

e &

Figure 1-3: Seven-wire strand

A straight wire core surrounded by successive spinning of layers, generally with opposite
direction of helix, creates the multi wire helical strands, called spiral strands. Due to the
twisting of the layers, the helical strand becomes self-compacting and thus there is no need
to wrap or apply bands around the strand to hold the wires together. Typical values of the
elastic modulus E for a spiral strand are E = 145 — 170 GPa, depending on the size, almost
15 — 25 % lower than the one for the single wire. In addition, the strength of the helical
strand is approximately 10 % lower than the sum of the breaking strengths of the individual
wires. The way of winding defines the type of the strand. The main types of strands are
those with one layer of wires (single layer strand), with two layers consisting of the same
number of wires for each layer (seale strand), with two layers of wires having the same
diameter for each layer (filler wire strand), with two layers of wires having different diameters
in the outer layer (Warrington strand) and the multi-layer strands (combined patterns
strand), as illustrated in Figure 1-4. Alternatively, the wire rope is composed by a number of
steel wires spun together to form six strands, which in turn are spun together around a fiber
core to form a rope (Figure 1-5).

Single Layer Seale Filler Wire Warrington Combined Patterns
Figure 1-4: Basic strand construction

wire 4—',\\%&”':]
o, wire rope
A e
'd\. RSN
core =

Figure 1-5: Wire rope

Locked coil strands are composed of two types of twisted wire: in the core normal round
wires arranged as in a normal helical strand, and in the outer layers wires of a special
Z-shape. This Z-shape is chosen so that the wires interlock which, in combination with the
self-compacting effect from the spiral arrangement, ensures a tight surface (Figure 1-6). The
locked-coil strands are more compact than any other type of strand. The elastic modulus E is
approximately E = 160 — 180 MPa.

Nonlinear static analysis of cables and cable nets



4 Chapter 1

Figure 1-6: Typical cross-sections of locked coil strands

The term lay refers to the direction of the twist of the wires in a strand and to the direction
that the strands are laid in the rope. In some cases, both wires in the strand and strands in
the rope are laid in the same direction; otherwise, the wires are laid in one direction and the
strands are laid in the opposite direction, depending on the intended use of the rope. The six
types of lays used in wire ropes are as follows: 1) Right Regular Lay (RRL): The strands are
laid in clockwise direction around the core and the wires in the strand are laid in a counter
clockwise direction. 2) Left Regular Lay (LRL): The strands are laid in a counter clockwise
direction around the core and the wires in the strand are laid in a clockwise direction. In this
lay, each step of fabrication is exactly opposite from the right regular lay. In these two ways,
the wires are parallel to the longitudinal axis of the strand. 3) Right Lang Lay (RLL): The
strands are laid in a clockwise direction around the core and the wires in the strands are laid
in clockwise direction. 4) Left Lang Lay (LLL): The strands are laid in a counter clockwise
direction around the core and the wires in the strand are laid in a counter clockwise direction.
These two lays are more resistant to the bending fatigue and to the abrasion than the
previous two. 5) Right Alternate Lay (RAL): The strands are laid in clockwise direction. The
wire in the strands are laid in a clockwise and counter clockwise direction in alternating
strands and 6) Left Alternate Lay (LAL): The strands are laid in a counter clockwise direction,
while the wire in the strands are laid in a counter clockwise direction in alternating strands.
These six different lays of wire rope are shown in Figure 1-7.

e
i
il

AN
?‘I’!‘h!b#:

(&) (k)
Right Regular Lay  Left Regular Lay Right Lang Lay Left Lang Lay

()
Right Alternate Lay Left Aternate Lay
Figure 1-7: Lays of wire rope

The length of a rope lay is the distance measured parallel to the centre line of a wire rope in
which a strand makes one complete spiral or turn around the rope (Figure 1-8). The length of
a strand lay is the distance measured parallel to the centre line of the strand in which one
wire makes one complete spiral or turnaround the strand. The lay length of a rope is the
basic factor controlling the breaking load and extension characteristics of the finished cable.
The breaking load is relatively low for short lay lengths and greater for longer lay lengths.
Spiral strand constructions normally have lay lengths in the range 9 - 12 times the cable
diameter, depending on the size of the finished strand and the number of the layers of wires.
A small size strand may have long lay length, and thus large values of modulus and breaking
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loads. As the spiral becomes larger and more complex, the lay has to be shortened in order
to produce a good, tight strand, which leads to low values of modulus and breaking load. On
the other hand, the locked coil construction may have longer lays, not depending on the size
of the cable, due to the interlocking of the outer wires.

ONE ROPE LAY

STRAND NO.

Figure 1-8: Lay length measurement

Eurocode 3, Part 1.11 [3] gives design rules for structures with tension components made of
steel, which are adjustable and replaceable. These products are prefabricated, and installed
into the structure on-site. For cable nets, two types of cables are recommended: the spiral
strand ropes (having the characteristics of Table 1-1) and the full-locked coil ropes (with
characteristics listed in Table 1-2).

Construction 1x19 | 137 ' 161 1-91

Diameterd, [mm] | 3to14 6to36 | 20tod0 30to 52

Wires per strand 19 37 | 61 91
Quter wire per strand 12 18 | 24 30
Breaking force factor K 0.525 0.52 | 0.51 0.51

Table 1-1: Spiral strand ropes (reported from [3])

Construction 1 layer Z-wires 2 layer Z-wires | = 3 layer Z-wires
Diameter d. [mm] 20to 40 25 to 50 40 to 180
Tolerance d +5% +5% +5%

Breaking force factor K 0.585 0.607 0.643

Table 1-2: Full-locked coil ropes (reported from [3])
The value of the rope self weight is related to the metallic cross-section and the unit length,
taking account of the weight densities of steel and the corrosion protection system. For spiral

strands or locked coil strands the following approximate expression for the nominal self
weight may be used:

g =W A (1-1)

where wy is the unit weight in kN/(m*mm2), given in Table 1-3, and A is the metallic
cross-sectional area in m2, calculated as:

A=n-Af (1-2)

Nonlinear static analysis of cables and cable nets
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where d, is the external diameter of the rope or strand, including sheathing for corrosion
protection if used. The fill-factor f is defined as the ratio of the sum of the nominal metallic
cross-sectional areas of all the wires in a rope (A) and the circumscribed area (Au) of the rope
based on its nominal diameter (d,), also given in Table 1-3.

Fill factor f
Core wires | Core wires | Core wires
+ 1layer | +2layer | + >2 layer

number of wire layers | Unit weight

z-wires Z-wires z-wires v s Wi wx10*
Ropes 1 2 | 3-6 | >6 | kN/(m'mm?2)
1| Spiral strand 0.77 | 0.76 [ 0.75 | 0.73 830
2 | Full-locked coil 0.81 0.84 0.88 830

Table 1-3: Unit weight w, and fill-factors f (reported from [3])

Regarding the modulus of elasticity E, the exact values should be derived from tests. Notional
values of elastic modulus E, for first estimations, when test results are not available, are
given in Table 1-4 for locked coil strands and bundles of strands.

Eo [kN/mm?2]
High strength tension component Steel wires | Stainless steel wires
1 Spiral strand ropes 150 + 10 130 + 10
2 Full locked coil ropes 160 = 10 —

Table 1-4: Notional values for the modulus of elasticity E in the range of variable loads
(reported from [3])

The characteristic values of the yield stress f, and the ultimate tensile strength f, shall be
taken from the relevant technical specifications. The following values fuare recommended:

f, [N/mm2]
staalvies round wires 1770
Z-wires 1570
stainless steel wires | round wires 1450

Table 1-5: Recommended nominal tensile strength values fufor steel and stainless steel wires
(reported from [3])

The minimum breaking load of the cable, in kN, is obtained as follows:

2
Fmin — dARrKr (1_3)
1000

where,

da is the diameter of the rope in mm
K; is the breaking force factor
R; is the rope grade in N/mm?2, which is designated by a number (e.g. 1770 N/mm?2)

[1]
1.2.1.2  Materials of construction
Regarding the materials of construction, cables have been made of:

Steel

Kevlar (registered DuPont trademark; a synthetic aramid fiber)
Fiberglass

Polyester
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A high-tensile breaking strength is a primary property of the wire rope. There are other
important properties:

Small cross-section

Low weight

Long fatigue life

Resistance to corrosion and abrasion
High flexibility

Good stretch and rotational behavior

These properties depend on the rope manufacture and wire control. Cables act principally as
axial elements; however, because of the helical wires, a torque may be induced as the helical
wires try to "unwind" during axial loading. The effects of induced or externally applied torque
may be significant; induced torque decreases the ultimate strength. A torque-balanced cable
is one designed to yield zero or very small amounts of rotation under load. In addition to the
stresses in the wires due to the axial force, the wound wires are subjected to bending
stresses which are difficult to evaluate because of relative movements of the individual
strands. Cable materials typically have linear stress-strain relationships over only a portion of
their usable strength. Beyond the elastic limit, the proportional relationships do not hold.
Breaking-strength efficiency is the ratio of cable strength to the sum of the individual wire
strengths and is greater for ropes and strand lay. The breaking-strength efficiency is reduced
as the number of wires in the strand is increased. A rope made up of brittle wires will be less
able to bear pre-stressing due to unequal distribution of strains and consequently will develop
lower breaking- strength efficiency than could be obtained with more ductile wire [4].

1.2.1.3  Elastic cable model
In this diploma thesis, a number of cables, with different properties, is examined. Regarding
the cable response to external loads, it is considered that nonlinearity exists only in geometry

and not in material. So, it is assumed that cable response is elastic until the value of the yield
stress f, = 1.58 GPa. If tension exceeds this limit, the cable breaks (Figure 1-9).

GE ~-—— ——mrre —

o (GPa)

€ €

Figure 1-9: Elastic cable response

Hooke’s law gives:

f
f =Ee™ =™ =Y (1-4)
y E

Cable’s axial force capacity N“P comes out from the following formula:

3 NcaP cap _ _
f, = A =N = f, A (1-5)

Nonlinear static analysis of cables and cable nets



where A is the cross-section which is calculated as bellow:

d2
A=n-A
4

where d, is the diameter of the cable.

Table 1-6 presents values of the modulus of elasticity E, diameter d, and initial unstressed
length S, that, mainly, have been chosen in the context of this diploma thesis.

E (GPa) d, (mm) So (M)
150 10 10.0
165 20 20.0
180 30 30.0

Table 1-6: Characteristic values of cable parameters

In practice, cables made of elastic materials do not exist. Paragraph 1.2.1.4 describes the
post-elastic response of a cable, in order to acquire a complete knowledge of their behavior.

1.2.1.4  Post-elastic cable response

After the elastic limit of the cable is reached, the problem of the response becomes more
difficult since it is nonlinear both with respect to geometry and material properties. The
loading that causes a cable segment to reach the elastic limit may be found with the theory
presented in this diploma thesis, but, to determine the largest load consideration must be
given to the post-elastic response.

The load causing failure is always greater, sometimes substantially so, than the load
pertaining to the elastic limit. A suspended cable resists applied load by changes in tension
and geometry. Beyond the elastic limit changes in tension and geometry can still occur to
accommodate the increased load. Tension changes occur because of the pronounced
strain-hardening characteristic of the high strength steels frequently used in cables, for which
there is no clearly defined yield plateau. Failure occurs when the ultimate strain is reached in
some portion of the cable. For the steel typically used in cables, the ratio of strain at ultimate
to strain at elastic limit is small, being of the order of 10. This may be contrasted with mild
steels (which have a clearly defined yield plateau) where typically this ratio may be of the
order of 100 or more. A characteristic of relatively flat suspended cables is that small changes
in cable length give rise to substantial changes in cable geometry. Therefore, even though
the strain ratio at ultimate may be small (and the non-recoverable strain itself be small), this
behavior together with the strain-hardening effect makes it possible for the load that causes
failure to be often substantially in excess of that which just exceeds the elastic limit.

Because the elastic limit is not clearly defined (see Figure 1-10), the modulus of elasticity is
usually calculated from the slope of the straight line that connects the 10 % breaking load
with the 90 % pre-stretching load of the cable specimen. A pre-stretching load of about 55 %
of the breaking load is usually applied to remove constructional looseness in the cables—a
very important prerequisite. Typically the elastic limit o,, is reached at about 50 % of the
ultimate tensile strength o,. Ultimate tensile strengths of 1.500 MPa are regularly achieved,
with ultimate strains around 3 % for rope and 6 % for strand; tests show that strand is
stronger than the more flexible rope of the same size. Strength and stiffness, based as they
are on the nominal cross-sectional areas, are affected by the class of zinc coating [2].
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Figure 1-10: Typical stress-strain properties of structural rope and strand [2]

1.2.2 Cable structures

1.2.2.1  Types of cable structures

Tension structures are ones in which the main load-carrying members transmit applied loads
to the foundations or other supporting structures by direct tensile stress without flexure or
compression. Their cross-sectional dimensions and method of fabrication are such that their
shear and flexural rigidities, as well as their buckling resistance, are negligible. There are two
broad classes of tension structures: cable structures comprised of uniaxially stressed
members, and membrane structures comprised of biaxially stressed members. The general
class of cable structures can be further divided into four subclasses:

1) Single cables in which single cable segments, or several simply connected segments, are
subjected to loads predominantly in a single plane of action, e.g., suspension cables, tether
or mooring lines, guy lines for towers or tents.

2) Cable trusses in which pre-stressed segments are multiply connected in a single plane
and loaded in that same plane, e.g., cable-stayed bridges, double-layer cable-supported
roofs.

3) Cable nets in which pre-stressed segments are multiply connected in a curved surface
(synclastic or anticlastic) and loaded predominantly normal to that surface, e.g., hanging
roofs, suspended nets.

4) Cable networks in which cable segments are multiply connected to form a
three-dimensional framework, e.g., suspension networks, trawl nets, multiple-leg.

There are four subclasses of membrane structures:

1) Air-supported structures in which an enclosing membrane is supported by a small
differential air (or fluid) pressure, eg., stadia roofs, inflated temporary shelters or
storehouses.

Nonlinear static analysis of cables and cable nets
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2) Inflated structures in which highly pressurized tubes or dual-walled mats are used as
structural members in a space structure, e.g., inflated beams, columns, or arches;
dual—walled shells; air cushion roofs.

3) Pre-stressed membranes in which fabric or rubberlike sheets are stretched over rigid
frameworks and columns to form enclosures or diaphragms, e.g., tents, masted roofs.

4) Hybrid systems in which membrane panels span between primary load-carrying members
such as pre-stressed cables and rigid members, e.g., reinforced fabric roofs, fluid storage
tanks.

[4]
1.2.2.2 Applications of cable structures
Tension structures are well suited to support broadly distributed dead loads and live loads
such as wind, ocean currents, and drift forces due to waves. It should not be surprising that
lightweight tension structures resemble biological forms, since such forms also support loads
by tension in pneumatically pre-stressed skins and fibers. Some of the advantages of tension
members for use as structural components are:

1) They are lightweight and collapsible and therefore easy to transport and erect.

2) They can be prefabricated in a factory, have low installation costs, and are potentially
relocatable.

3) For air-supported structures, the primary load—carrying mechanism is the habitable
environment itself, i.e., a pressurized mixture of gases.

4) The environmental loads are efficiently carried by direct stress without bending.

5) They are load-adaptive in that the members change geometry to better if accommodates
changes in load patterns and magnitudes.

[4]
1.2.2.3 Examples of cable structures

In this chapter, images of cables structures all over the world are presented.
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Figure 1-12: Cable structures around Greece

1.3 CABLE NETS
1.3.1 General aspects

Cable nets belong to the family of tensile structures. They are characterized by their capacity
to cover long spans without intermediate supports and to carry loads much heavier than their
own weight. They are structures that always stimulate the interest and the imagination of
both structural engineers and architects, demanding their collaboration, as their structural
behavior and geometry are closely related. The shape of the final surface depends on the
geometry of their boundaries, the curvatures, the levels of cable pre-tension and the eventual
internal supports. The most common shape of cable nets is the hyperbolic paraboloid with a
surface that is convex about one axis and concave about the other, with a rectangular,
rhomboid, circular or elliptical plan. The net consists of two families of pre-stressed cables,
the main or carrying cables, which are suspended from the highest points of the boundary
and the secondary or stabilizing ones, which are anchored at the lowest points of the
boundary. The difference of height between the highest or lowest points and the central node
is called sag of the roof in the direction of the main or stabilizing cables, respectively. The
boundary is usually a pre-stressed reinforced concrete ring with a box cross-section. These
structures are very efficient, because the loads are transmitted through tension of the cables,
usually made of high-strength steel, having thus the best exploitation of the material. In
addition, with their unusual forms they differ from all other, conventional structures,
something that makes them extremely elegant.

These characteristics render them one of the most attractive alternatives for covering
hangars, stadiums, swimming pools, ice rinks, exhibition halls, theatres, concert halls,
churches and other long-span structures. On the other hand, these structures experience
large deformations, mainly because, due to their lack of shear rigidity, the cables change
their shape in order to equilibrate the loads without shear. The large deflections can be
alleviated by appropriate level of pre-tension. The design of such structures aims at
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maintaining all cables in tension under any load combination; in case of cable slackening, the
net may exhibit large deformations. Opposite curvatures enable pre-tension in both
directions, providing bearing capacity for loads directed downwards, such as snow and wind
pressure and upwards, such as wind suction. Flat or nearly flat regions of the cable net
surface should be avoided, because their stiffness is insufficient and they may easily flutter.
In general, however, the suspended roofs cannot be calculated on the basis of linear theory,
due to the large difference between their un-deformed and their deformed shape. Thus, their
analysis should be geometrical nonlinear. The principle of superposition does not apply and
separate nonlinear analyses must be performed for each loading combination [1].

1.3.2 Components of a cable net

A saddle-form cable network consists of two families of pre-stressed cables, which projected
in plan create an orthogonal grid. The cables that are suspended from the highest points of
the boundary are called carrying or main cables, while the stabilizing or secondary cables are
anchored at the lowest points of the boundary (Figure 1-13).

(@ (b)
Figure 1-13: Components of a cable net: (a) main cables, (b) secondary cables

The cables are anchored to a boundary ring usually made of pre-stressed concrete with a
closed box cross-section. It is supported by columns arranged radially and it is either rigidly
connected with the columns or it seats on bearings placed on the top of the columns [1].

1.3.3 Methods of structural analysis of cable nets

Cable nets are multiply connected systems. In a multiply connected system more than two
segments may meet at a node and closed loops may be formed. Such systems are highly
redundant, and the deformations of the individual segments play an important role in
determining the stresses in the segments. If the segments all lie in a single curved surface
and are loaded principally transverse to that surface, then analytical and numerical methods
based on a membrane analogy can be used. That is, the net is replaced by an equivalent
pre-stressed membrane and solution methods available for that type of problem can be
adopted.

More generally, multiply connected segments will form a three-dimensional network. Methods
of redundant structural analysis are needed to predict both the pre-stressed configuration
and the in-service response. The pre-stressed configuration and stress state can be
determined either by an inverse method or by nonlinear analysis. Sometimes a combination
of both is needed. Often, if in the in-service phase the added loads are small, the response
can be modeled by linearized equations. But the essential nonlinearity of the system remains,
and care must be exercised in superposing responses and extreme in-service loads must also
be handled with nonlinear techniques.

Of the two principal methods redundant structural analysis, flexibility and stiffness methods,
stiffness methods have proved to be more useful in the analysis of highly redundant cable
systems. In stiffness methods the fundamental unknowns of the equations formulated are the
displacements of the nodal points connecting segments. In that class of methods, the lumped
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parameter method (analogous to the finite difference method) was the first to be applied to
cable systems. In the lumped parameter method all loads (concentrated and distributed) are
"lumped" at the nodal points, and attention is focused on the static equilibrium of the nodes.
The effects of the segments are replaced by forces in equivalent straight and weightless
springs, which may be nonlinear, and a system of simultaneous algebraic equations is
generated from the nodal equilibrium conditions.

The finite element method of stiffness analysis has gradually supplanted the lumped
parameter method in the analysis of cable systems. The advantages of the finite element
method are (1) the numerical modeling has a clearer physical interpretation; (2) the
approximations for a particular problem are more flexible (refined approximating functions
can be used for higher-order effects such as segment curvature); (3) the refinement of the
elements in regions of particular interest is more readily implemented; (4) comparable
accuracy can be obtained with less computational effort and mesh refinement; (5) efficient
matrix manipulation and solution routines can be used; and (6) variable grid sizes and layouts
can be easily generated and changed. Also, the finite element method is less problem-
dependent, i.e., with a set of standard cable elements as subroutines in a computer program
it is possible to handle with a single program various configurations and loadings of networks
and to include other structural elements, such as beams, in the model [4].

1.4 SOURCE OF GEOMETRIC NONLINEARITY IN CABLES

Because of their reduced stiffness, tension structures are susceptible to large motions due to
concentrated loads and dynamic effects. Figure 1-14 illustrates the difference in the response
to an external vertical uniformly distributed load between a beam and a cable. Beam
develops shear and moment tensions in order to lift loads to its supports. In contrast, cable,
due to its cross-section, cannot develop shear and moment. The only way to lift external
loads is to change its geometry so the multiplication of the sag and the horizontal component
of the axial tension at any arbitrary position equals to the moment of external loads [5].

MU

#v‘)

(@) beam (b) cable
Figure 1-14: Response of beam and cable to external vertical load [5]

Cables respond in a nonlinear fashion to both pre-stressing forces and in-service forces,
regardless of linearity of material or loads. Pre-stressing forces are those forces (edge loads,
self weight, or pressure) which act on a predominant configuration of static equilibrium for
the structure. They stabilize the structure and provide stiffness against further deflection. The
response of a tension structure to pre-stressing forces is always nonlinear in that the
equilibrium configurations, as well as the state of stress, are depended on those forces.

In-service forces are those variable live loads, static or dynamics, which the structure may be
expected to encounter during its service life. They are superposed upon the pre-stressing
forces. The response to in-service forces may be nonlinear or quasi-linear, depending on the
directions and magnitudes of the in-service forces relative to the state of stress in, and
configuration of, the pre-stressed structure.
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It is usually sufficient to consider only linear (possibly piecewise linear) material behavior for
tension structures. There are instances, however, where nonlinear material characteristics
should be considered: hyperelastic and viscoelastic behavior of polymer cables and
membranes; nonisotropic woven fabrics; and thermal-elastic and elastoplastic behavior under
extreme loads. Another potential source of nonlinearities of response is the interaction of
tension structures with hydrostatic and hydrodynamic loads. Not only are the magnitudes of
drag force nonlinear, but they are also nonconservative in that directions of pressure loads
are dependent on orientations of the cable axes and membrane surfaces, which may undergo
considerable rotation during loading [4].

1.5 IMPICATIONS OF GEOMETRIC NONLINEARITY FOR THE STATIC
BEHAVIOR

The unstressed and stressed geometry of cable structures differ, significantly, due to large
displacements, when external loads are applied. Cable’s equilibrium under external load is
implemented at stressed geometry and, as a consequence, equations of cable structures
must refer to the stressed and not to the unstressed geometry. However, the stressed
geometry cannot be defined in advance. So, static analysis of such structures involves loops
in order to find the final state. The equilibrium path is a curve, in contrast to the linear figure
of structures having small displacements, such as beams, as illustrated in Figure 1-15.

(@) beam (b) cable
Figure 1-15: Equilibrium path of a beam and a cable

The response is not linear and, therefore, superposition of results for different in-service
loading conditions is not strictly valid and, if it is done, must be done carefully. Conventional
methods of static analysis have no implementation in cable structures. This particularity is
known as geometric nonlinearity and is the main feature of the static response of tension
structures.

Figure 1-16 indicates the error that appears in case that the geometric nonlinearity is
neglected and the calculation of cable’s response is based on the unstressed geometry and
the initial stiffness matrix. Given an external load P, the response z,, based on the linear
theory, can be significantly larger than the real one, which is z;. It is considered that cable’s
length is larger than the distance spanned and, so, the equilibrium path starts from a positive
value of displacement [5].

Nonlinear static analysis of cables and cable nets
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Z1 Z2
Figure 1-16: Implication of geometric nonlinearity into cable response
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2 ANALYTICAL SOLUTIONS FOR THE
STATIC BEHAVIOR OF SIMPLE CABLES

2.1 INTRODUCTION

In this chapter, simple suspended cables are studied. Their geometry and loading retain that
the unstressed geometry, the loads and the stressed geometry belong to one single plane.
Analytical solutions of the problem provide qualitative features of the response of cable
structures, through diagrams, comparisons etc. Such solutions are used leading to figures
that show the relationship between important parameters, dimensional or not.

The self weight of the cable is neglected, comparing it to the external pre-tension and live
loads. The reader can include cable self weight into his analysis using the analytical solutions
of Paragraphs 2.3.3 and 2.3.4, as it is a uniformly distributed load along its arc length.
Figures of Chapter 2 present the position of the examined point using the horizontal u and
the vertical v deflection, which are defined as:

u=x-x (2-1)
v=z-7 (2-2)
where,

X, z are the coordinates of the examined point after the application of the load P, p or q,
inm

X', Z" are the coordinates of the point from which cable tension, due to the load P, p or g,
occurs, in m.

regardless if it is defined with x- and z- coordinates in analytical equations. This happens as
the comparison between cables, varying in properties, becomes more comprehensive because
curves have as common starting point the start of the axes. For instance, cables differing in
inclination, but with the same loading condition, conclude to z-coordinates of the examined
point within a wide range of values.
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2.2 SIMPLE CABLES UNDER CONCENTRATED LOADS
2.2.1 Horizontal cable under concentrated load in the middle

A concentrated load P is applied at middle span of a horizontal cable, which stretches, until
an equilibrium position is obtained with z-coordinate at the midpoint, as shown in Figure 2-1.
At point i, the reaction N; the horizontal reaction H; and the vertical reaction V; are
developed, where i = A, B. The static response of the cable is described by using three
different equations: (a) the equation of static equilibrium, (b) the geometric compatibility
equation, (c) the material constitutive equation. The cable spans the distance Spz = L, where
Sag is the distance between points A and B.

L

Figure 2-1: Equilibrium position of a cable under concentrated load at middle span

Due to the symmetric geometry and loading, there is no horizontal deflection u. The vertical
deflection v of the cable, due to the concentrated load P, is significant and cannot be
neglected. This is the reason why the equations of static equilibrium must refer to the
stressed geometry and not to the unstressed geometry. This characteristic of cable structures
is called geometric nonlinearity and leads to different static analysis methods comparing to
the conventional structures.

The vertical component V of axial force N is:

P
V= 5 (2-3)
where V, = Vg = V. (2-4)
The sum of moments about the equilibrium point gives:
Hz=VL:H—P(Lj (2-5)
2 4\z
where H, = Hg = H, from the equilibrium of horizontal forces. (2-6)

The axial force N of the cable is:
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p 12
N=VV2+H = 1+ (2-7)
2 47

where N, = N; = N. (2-8)

Eq. (2-7) contains an unknown parameter, the z-coordinate at the midpoint. Additional
equations are needed in order to define the solution, in contrast with conventional structures
which are solved using only the equations of equilibrium. So, assuming the material as
linearly elastic and using the material constitutive equation, Hooke's law gives:

N__AS S-S
o=Ee= =E _ =N=FA"_°

0 S0

(2-9)

where,

A is the cross-section of the cable, in m?
E is the modulus of elasticity of the cable, in GPa
S is the stressed length of the cable, in m.

The geometric compatibility equation gives:

2 2
S_[t] 2 ms=2f1s 5, (2-10)
2 2 4z

Combining Egs. (2-7), (2-9) and (2-10) and eliminating N and S, the following equation
occurs:

P 12 2 12 2 1
e N s Sl N 12 e M | (2-11)
2 4z S, 4z S, 22+|;

Eqg. (2-11) relates the external concentrated load P with the z-coordinate the midpoint. This is
a nonlinear relationship. Contrary to cable structures, conventional structures provide a linear
relationship between P and z, the response is proportional to the load, and the superposition
principle is valid. Obviously, in cable structures this principle cannot be used. Defining:

vz S P
Z=7,S =70,P=7 2-12
L" 7 L EA (2-12)
Eg. (2-11) turns into non-dimensional:
(2-11)= P =27 51#21 (2-13)
s
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Figure 2-2: Applied load P’ as function of vertical deflection v,
in case that Sy = Sps

Figure 2-2 shows the equilibrium path of the cable. Here, Z'=0asSy,=Spand, so,v=zor
. , bV
v =z, where v = L is the vertical deflection in non-dimensional form. Easy to notice that

diagram are not line but a curve. The slope, which indicates cable’s stiffness, increases as
load P increases. So, the cable becomes stiffer as the load and the corresponding deflection
increase. Giving a qualitative explanation, larger deflection means the increment of the slope
of cable’s segments left and right from the applied load, leading to the increment of the
vertical component of cable’s axial force, the component that balances the external load.

Replacing Eq. (2-11) into Eq. (2-7), the axial force N of the cable is calculated:

2 12
N = EA(SZ,fl t oo 1] (2-14)
Z
0

So, not only the concentrated load P but also the axial force N of the cable, which means the
total response, is described by nonlinear equations. Defining:

N =_— (2-15)
the previous equation turns into non-dimensional, as below:
27 1

(214) =N =57 1+ -1 (2-16)
Sof  4(z)
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Figure 2-3: Cable’s axial force N as function of vertical deflection v,
in case that Sp = Sps

Figure 2-3 describes the cable’s axial force N’ as function of vertical deflection v'. Here, z* = 0
as Sy = Sas and, so, v = z or v = z. The slope of the curve increases as the vertical
deflection Vv, in other words the concentrated load P, increases due to the geometric
nonlinearity.
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Figure 2-4: Cable’s axial force N" as function of applied load P/,
in case that So = Sas

The slope of Figure 2-4 decreases as applied load P increases, indicating that the rate of axial
force’s increment decreases as the load increases. This observation verifies that cable
structures respond to the increment of external loads by mainly adapting their geometry and
less by changing their developed tensions.

The stiffness K of the cable is tangential to the diagram P-z. So:

Nonlinear static analysis of cables and cable nets
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(2-17)

Defining:

K

Eq. (2-17) turns into non-dimensional, as:

3
=)
(217) =K =4 L. 2z (2-19)
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Figure 2-5: Cable’s stiffness K as function of vertical deflection v/
in case that So = Sas

Figure 2-5 describes the cable’s stiffness K as function of vertical deflection v'. Here, z° = 0 as
So = Sag and, so, v = z or v = z. The stiffness K increases as the vertical deflection v/, in
other words the concentrated load P, increases due to the geometric nonlinearity. The
increase of stiffness K is presented, in Figures 2-2 and 2-3, with the increase of the slope of
the curves. The abrupt decrease of the slope in Figure 2-4, or correspondingly the abrupt
increase of the slope in Figures 2-2 and 2-3, near the start of the axes is consistent with the
abrupt increase of the slope in Figure 2-5. This observation indicates that geometric
nonlinearity is evident, mainly, for small values of concentrated load P and for larger values
of P the response tends to be linear. Pre-tensioned cables make advantage of this incident
responding, almost, linear with large values of stiffness K.
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(2-5)=H = L (2-20)
4z

+ H
where H = —. (2-21)
EA
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Figure 2-6: Horizontal component H’ of the axial force as function of vertical deflection v/,
in case that Sy = Sps

Figure 2-6 describes the horizontal component H' of the axial force as function of vertical
deflection v. Here, z* = 0 as Sy = Sps and, so, v = z or vV = z. The slope of the curve
increases as the vertical deflection Vv, in other words the concentrated load P, increases due
to the geometric nonlinearity.

Next paragraph generalizes the cable geometry and loading conditions. The implementation
of the cable model, as presented in Paragraph 2.2.1, into the general equations leads to the
same results.

2.2.2 Inclined cable under concentrated load at arbitrary position

A simple inclined cable is subjected to a concentrated load P at arbitrary position, as
illustrated in Figure 2-7. The cable spans the distance Spg, which is the distance between
points A and B. There is not only vertical deflection v but also horizontal u from the
application point, determined by the physical path of response. After load application, the
redefined application point can lie over or below the horizontal level of support B. Here, both
cases are examined. If the application point stands at the level of support B, the mentioned
alternative procedures give same results. Notice that diagrams are designed through ADINA
models, for case A, and SAP model, for case B, (contained in the accompanied CD,
commented in the list of numerical models with ‘analytical’), due to the complexity of the
2-degree polynomial solution. ADINA cable models contain all the appropriate information,
regarding loading conditions and cable properties. Paragraph 3.2.3 verifies the identification
between analytical solution and numerical models.

A) Application point lies over the horizontal level of support B
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X L% h VB NB
Figure 2-7: Simple inclined cable under concentrated load at arbitrary position, for case A
The equilibrium of horizontal forces leads to:
B (2-22)

Vertical reactions are defined from the equations of static equilibrium:

Px
M, =0 =\, =Htano - T (2-23)
P(L-
SM, = 0= V, = Htang + T =X) (2-24)
The proportionality of the sides of the two pairs of similar triangles, as shown below:
N
A - v,
H - —_—
A |
} z
|
I ‘
! |
| i B H,
X L-x VB NB
Figure 2-8: Similar triangles in stressed situation, for case A
gives for left pair:
H
T X on=y (2-25)
V, 2z z
and for right pair:
H L- L-
o X L H= A X (2-26)
V; tan6L-z tanéL - z
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The axial force and its vertical component of the cable segment, supported at point i, are
equal to the corresponding reactions at point i, where i = A, B. So:

N, = V2 +H = vA,/1+[’Z‘j2 = {Htane+P(|L_X)} 1+(’Z‘)2 (2-27)

v L-x 2_( _Px)/ (L-x jz )
Ng =4V +H =V, 1+(7taneL-z) = | Htan® L 1+ tanbl—z (2-28)

Assuming the material as linearly elastic and using the material constitutive equation, Hooke’s
law gives:

N, AS,
0=k =>—-—=E—=
Soi
(2-29)
Si - Sy N ;
=N =FA—— =S5 =S;|1+— |, where i=AB
Oi EA
Using the geometric compatibility equation:
N x> +7°
S, =V’ +2 =S, |1+ A |=S5,=—— (2-30)
EA N,
1+ 2
EA
2 2
2 2 N \/(L -x)" +(tanbL - 2)
Sg = \/(L -x) +(tanBL - z)” = S, (1 + EEJ = S = N, (2-31)
1+—=
EA

Adding Egs. (2-30) and (2-31):
Sp = Soa * Sog (2-32)

Replacing Na and Ng from Egs. (2-27) and (2-28), correspondingly, the following equation
occurs:

tan6L -
(2-32) = S, = . z 5 + an 12 (2-33)
1 +{Htane+ (L- )} 1 +7(HtanB-P—Xj
xV, FEA : L-x Y, EA :
(Ej [taneL-zj

This nonlinear equation describes the equilibrium path of the cable. For simplification reasons,
the following non-dimensional parameters are considered:
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' X \ '
X=—,2=—,B= =1-x, =tanB-z,
L L P L Y
. P . H .
P=" H=" g =%, (2-34)
EA EA L
1 1
c, = — , Cy = >
(L.) +1 (E) +1
z Y
So, Eq. (2-33) turns into the following simplified equation:
(2-33)> S, = z + L (2-35)

c, +Htan8+PB ¢, +HtanB-Px

Replacing V, from Eqg. (2-24) into (2-25), H can be defined as function of P, as shown below:

P(L-x)x 1 \P(L-x)x
H=xH + H= -
zH = xHtanB 1 = [z-xtanej 3 (2-36)
Replacing Eq. (2-34) into (2-36):
) A ' ' ' _ X‘BP' )
(2-36) = zH = xHtanB + xBP = H ~tand (2-37)
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Figure 2-9: Horizontal component H’ of the axial force as function of vertical deflection v’
for different values of q, in case that 8 = 45 deg and Sg = Sps

Figure 2-9 describes the horizontal component H' of the axial force as function of vertical
deflection v for different values of a. The parameter a is defined as:

a=x (2-38)
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The coordinates x*, z* are identical to the coordinates xp, z», which are the coordinates of the
starting application point of the congentrated load P, as defined in ADINA cable models. In a
general cable model with Sy > Spg, Z' # zp.

The combination of Egs. (2-35) and (2-37) gives:

z y

S'O = P + P =
1 Ltane+P[3 c2+LtanB-Px
z-xtan@ z-xtan@ (2-39)
:S'O SN
¢, +PI ¢, +PA
where I‘=M+B and A = M— (2-40)
z-xtan@ z-xtanb

P’ can be expressed, transforming Eq. (2-39), into a form of a 2-degree polynomial equation.
Elaboration of Eq. (2-39) leads to:

2 !
O(F) +AP +2=0 (2-41)
where,
0 =51 (2-42)
A =S,c,A+Suc,M-zA -yl (2-43)
==5,c,C,-2C, - YC, - (2-44)

Now, the 2-degree polynomial equation indicates a relationship between P, x and z, bearing
in mind the geometry of the cable that defines the rest parameters.
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Figure 2-10: Applied load P’ as function of horizontal deflection u’
for different values of g, in case that 8 = 45 deg and Sy = Spg
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Figure 2-11: Applied load P’ as function of vertical deflection v
for different values of q, in case that 8 = 45 deg and Sg = Sps

Figures 2-10 and 2-11 present the applied load P as function of horizontal u” and vertical v
Cu
deflection for different values of a, where u = I is the horizontal deflection in

non-dimensional form.

Cable’s axial force can be easily determined, as function of P, by replacing Egs. (2-34) and
(2-40) into Egs. (2-27) and (2-28):

PT

(2-27) = N, = (2-45)

here N, = A (2-46)
where N, =— -
EA
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Figure 2-12: Cable’s axial force N'Aas function of vertical deflection v
for different values of q, in case that 8 = 45 deg and Sg = Sag

Figures 2-12 presents the cable’s axial force N'A as function of vertical deflection v’ for
different values of a.
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©_PA
(2-28) = Ny = ——

5 (2-47)

where N, = " (2-48)
L= -
EA
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Figure 2-13: Cable’s axial force N'B as function of vertical deflection v
for different values of q, in case that 8 = 45 deg and Sy = Sps

Figures 2-13 presents the cable’s axial force N;3 as function of vertical deflection v' for
different values of a.

A common observation in Figures 2-9 to 2-13 is that, the nearer to the points of support the
application point of the concentrated load P is the larger cable stiffness K is developed. In
general, the shorter a cable is the smaller deflections can develop, increasing its stiffness K.
As the concentrated load P reaches point A, the length of the left cable segment shortens
provoking smaller positive vertical deflections v, increasing the stiffness in this kind of
deflection. In case that the concentrated load P reaches point B, the length of the right cable
segment shortens provoking smaller negative horizontal deflections u, increasing the stiffness
in this kind of deflection. Comparing Figures 2-10 and 2-11, the stiffness in horizontal
deflection u, as shown in Figure 2-10, is larger in case of a = 0.9, as the concentrated load P
reaches point B, and the stiffness in vertical deflection v, as shown in Figure 2-11, is larger in
case of a = 0.1, as the concentrated load P reaches point A. The response of the cable to a
deflection is the development of the corresponding tension. So, a vertical (horizontal)
deflection v (u) provokes increase of the vertical (horizontal) component V; (H;) of the axial
force N;, where i = A, B, increasing the stiffness in vertical (horizontal) deflections v (u). For a
vertical concentrated load, large values of angle 6 give large values of the vertical
component V; and small values of the horizontal H; one, concluding to large stiffness in
vertical deflections v. The total deflection is the vector sum of horizontal u and the vertical v
one and, so, the increase of stiffness in one deflection leads to the increase of stiffness in the
other due to stretch limitations. This is the reason why, in Figure 2-10, cable with a = 0.1
seems to be stiffer in horizontal deflections u that the cable with a = 0.5.
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Figure 2-14: Cable’s axial forces N;as function of vertical deflection v/,
in case that 8 = 45 deg, S = Spgand a = 0.1

Figure 2-14 describes cable’s axial forces Ni'as function of vertical deflection v/, in case that
0 = 45 deg, S; = Spg and a = 0.1, where i = A, B. The left cable segment, with axial
force N'A , is stiffer in vertical deflections v, as the concentrated load P is near point A.

Parametric diagrams of cables with different angle 6 can be found in Paragraph 2.5.3- case 2.

B) Application point lies below the horizontal level of support B

Figure 2-15: Simple inclined cable under concentrated load at arbitrary position, for case B

The procedure for case B differs from this of case A in the following equation of static
equilibrium:

M, =0=V, = PTX - Htan® (2-49)

and in pairs of similar triangles, as:
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Figure 2-16: Similar triangles in stressed situation, for case B
So,
H L- L-
"_ X L H= Bix (2-50)
V; z-tan6bL z - tan6bL
Final equations, in case B, are presented below:
02 .
(2-41) =0 (P) +A"P +=F =0 (2-51)
where,
(2-42) = 0" =5 A" (2-52)
(2-43) = A" = s.cfa* + s cirt -Za* -y (2-53)
(2-44) = =* = s clcl -z -y (2-54)
and
(2-34) =B =1-x,vy* =z - tane,
o = t ! 1 (2-55)
2 £0\2
B LA
z Y
B*tan® _ ,# ,# _ _ xPB*tand

2-40) = r* = XB@NG  or px o XB7tand 2-56
( )= z-xtan@ P z-xtan@ ( )
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Figure 2-17: Applied load P’ as function of horizontal deflection u/,
in case that 8 = 5deg, Sp = Spg and a = 0.6
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Figure 2-18: Applied load P’ as function of vertical deflection v/
in case that 8 = 5deg, Sp = Spg and a = 0.6

Figures 2-17 and 2-18 show the equilibrium path of the cable, in case that 6 = 5 deg,
So = Sas and a = 0.6. The slope, which indicates cable’s stiffness K, increases as load P
increases, due to the geometric nonlinearity.

Axial forces N;, where i = A, B, are calculated from the following equations:

. #
(2-45) = NA = —Cf (2-57)
- PN
2
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Figure 2-19: Cable’s axial forces N;as function of vertical deflection v/,
in case that 8 = 5deg, Sp = Spg and a = 0.6

Figure 2-19 describes cable’s axial forces N;as function of vertical deflection v/, in case that

8 = 5deg, Sp = Spg and a = 0.6, where i = A, B. The slope of the curves increases as the
vertical deflection v/, in other words the concentrated load P, increases due to the geometric
nonlinearity. The difference between two cable segments is slight, as the cable is almost
horizontal (6 = 5 deg) and the concentrated load P is applied near the midpoint (a = 0.6),
eliminating the differences in stiffness in horizontal u and vertical v deflections.

The horizontal component H' of the axial force is defined as:

xB*P’

2-37)=>H = _~P "
( )2 z-x tan®

(2-59)
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Figure 2-20: Horizontal component H’ of the axial force as function of vertical deflection v/,
in case that 8 = 5deg, Sp = Spg and a = 0.6

Figure 2-20 describes the horizontal component H of the axial force as function of vertical
deflection v/, in case that 8 = 5 deg, So = Spag and a = 0.6. The slope of the curve increases
as the vertical deflection v, in other words the concentrated load P, increases due to the
geometric nonlinearity. The smooth angle in the curve is due to load steps in SAP model.

Unspecified parameters remain the same as in case A.
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2.2.3 Horizontal cable under concentrated load at arbitrary position

A simple horizontal cable is subjected to a concentrated load at arbitrary position, as shown
in Figure 2-21. The cable spans the distance Spg, which is the distance between points A
and B. The analytical equations derive from Paragraph 2.2.2 - case B, taking into account the
new geometry. Notice that diagrams are designed through ADINA models (contained in the
accompanied CD, commented in the list of numerical models with ‘analytical’), due to the
complexity of the 2-degree polynomial solution. ADINA cable models contain all the
appropriate information, regarding loading conditions and cable properties. Paragraph 3.2.4
verifies the identification between analytical solution and numerical models.

Na

Figure 2-21: Simple horizontal cable under concentrated load at arbitrary position

Replacing 8 = 0 deg into the equations of Paragraph 2.2.2 — case B, the analytical solution
for a horizontal cable under concentrated load at arbitrary position occurs.

1\ 2 '
(251) = 0" (P) +AP +=" =0 (2-60)
where,

' ~hah
(2-52) =@ =5,"A (2-61)
(2-53) = A" = S, cfA" + 5 chr" - Z A -y (2-62)
(2-54) = =" =S clch - zch - y"c] (2-63)
and

e L ;2 (2-64)
(X ) +1 E +1
4 Yh
(2-56) = M =g", A" = x (2-65)
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Figure 2-22: Applied load P’ as function of horizontal deflection u’
for different values of @, in case that Sy = Spg
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Figure 2-23: Applied load P as function of vertical deflection v
for different values of @, in case that Sy = Spg

Figures 2-22 and 2-23 present the applied load P" as function of horizontal u” and vertical v
defllectioln, correspondingly, for different values of a. Here, z* = 0 as Sy = Sag and, so, v = z
orv =z.

Axial forces Ni', where i = A, B, are calculated from the following equations:

.+ _Prh
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Figure 2-24: Cable’s axial force N'A as function of vertical deflection v’
for different values of q, in case that Sy = Sag

Figures 2-24 presents the cable’s axial force N'A as function of vertical deflection v’ for

different values of a. Here, z* = 0 as Sy = Sps and, so, v = z or v = z. The smooth angle, in
case that a = 0.1, is due to load steps in ADINA models.

(2-58) = Ny = —— (2-67)
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Figure 2-25: Cable’s axial force N;aas function of vertical deflection v
for different values of q, in case that Sy = Sag

Figures 2-25 presents the cable’s axial force N;3 as function of vertical deflection v' for

different values of a. Here, z° = 0 as Sy = Sps and, so, v = z or v = z. The smooth angle, in
case that a = 0.1, is due to load steps in ADINA models.
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A common observation in Figures 2-23 to 2-25 is that, the nearer to the point of support the
application point of the concentrated load P is the larger cable stiffness K in vertical
deflection v is developed. In the other hand, according to Figure 2-22, the farther from the
point of support the application point of the concentrated load P is the larger cable stiffness K
in horizontal deflection u is developed. In general, the shorter a cable is the smaller
deflections can develop, increasing its stiffness K. As the concentrated load P reaches point A,
the length of the left cable segment shortens provoking smaller positive vertical deflections v,
increasing the stiffness in this kind of deflection. In case that the concentrated load P reaches
the midpoint, the length of the right cable segment shortens provoking smaller negative
horizontal deflections u, increasing the stiffness in this kind of deflection. Comparing
Figures 2-22 and 2-23, the stiffness in horizontal deflection u, as shown in Figure 2-22, is
larger in case of a = 0.3, as the concentrated load P reaches the midpoint, and the stiffness
in vertical deflection v, as shown in Figure 2-23, is larger in case of a = 0.1, as the
concentrated load P reaches point A. For a = 0.5 there is no horizontal deflection u due to
the geometry cable symmetry. Here, 8 = 0 deg and the development of stiffness in one kind
of deflection is independent from the stiffness in the other deflection.
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Figure 2-26: Cable’s axial forces N;as function of vertical deflection v/,
in case that Sy = Spgand a = 0.1

Figure 2-26 describes cable’s axial forces Ni' as function of vertical deflection v, in case that

So=Samsanda =0.1, wherei =A, B.Here, z =0as Sy = Spg and, so, v=zor v = z. The
slope of the curves increases as the vertical deflection v, in other words the concentrated
load P, increases due to the geometric nonlinearity. There is difference between two cable
segments, as the concentrated load P is applied near to the point A (a = 0.1), increasing the
stiffness in vertical v deflections of the left cable segment. The smooth angle is due to load
steps in ADINA models.

The horizontal component H' of the axial force is defined as:

X B"P

2- H =
(2-59) = .

(2-68)
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Figure 2-27: Horizontal component H’ of the axial force as function of vertical deflection v
for different values of @, in case that Sy = Spg

Figure 2-27 describes the horizontal component H' of the axial force as function of vertical
deflection v for different values of a, following the reasoning of Figures 2-23 to 2-25. Here,
Z =0asSy=Smxand, so,v=zorv =z.

The smooth angle in the figures of Paragraph 2.2.3 is caused by the load steps in ADINA
models.

2.2.4 Inclined cable under imposed end displacement

2.2.4.1 Response of an inclined cable under imposed end displacement

In this paragraph, two kinds of imposed end displacement are presented, the vertical v and
horizontal u. Vertical imposed end displacements v can be detected at the deck of a
cable-braced bridge while a horizontal imposed end displacement u can occur at a radio mast,
for instance due to a seismic load. The analytical solution can be derived considering the half
of a horizontal cable under concentrated load in the middle - Paragraph 2.2.1.

A) Vertical imposed end displacement v

A simple inclined cable, with initial unstressed length S, is subjected to a vertical imposed
end displacement v by the application of a concentrated load P, as shown in Figure 2-28.
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Figure 2-28: Simple inclined cable under vertical imposed end displacement v

Replacing the following parameters for the half cable:

P L S
——)P,——)L,—0—>SO
2 2 2

equations for a vertical imposed end displacement v are acquired.

The concentrated load P as function of the z-coordinate of the equilibrium point is defined as:

1 1

(2-11) = P = EA (So - m]z (2-69)

Using the replacements of Eq. (2-12), the non-dimensional form of Eq. (2-69) occurs:

.t (2-70)
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Figure 2-29: Applied load P’ as function of vertical deflection v/
in case that Sy = Sps and 6 = 30 deg
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Figures 2-29 presents the applied load P" as function of vertical v' deflection, in case that
So = Sag and 6 = 30 deg. The response is almost linear, as the geometric nonlinearity is mild.

The axial force N is expressed as function of the z-coordinate of the equilibrium point as:
z L 2
(2-14) > N=EA < 1+(’] -1 (2-71)

0 4

Using the replacements of Egs. (2-12) and (2-15), the non-dimensional form of Eq. (2-71)
occurs:

! 2

(2-71) =N = 2 1+(1.) 1 (2-72)
s, z
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Figure 2-30: Cable’s axial force N as function of vertical deflection v/,
in case that Sy = Spg and 6 = 30 deg

Figures 2-30 presents the axial force N' as function of vertical v  deflection, in case that
So = Sas and 8 = 30 deg. The response is almost linear, as the geometric nonlinearity is mild.

The horizontal component H of the axial force as function of the z-coordinate of the
equilibrium point is shown below:

(2-5)=>H= = (2-73)
Z

Using the replacements of Egs. (2-12) and (2-21), the non-dimensional form of Eq. (2-73)
occurs:

(2-73)=H = P (2-74)
Z
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Figure 2-31: Horizontal component H’ of the axial force as function of vertical deflection v/,
in case that Sy = Spg and 6 = 30 deg

Figures 2-31 presents the horizontal component H' of the axial force as function of vertical v
deflection, in case that Sy = Sps and 6 = 30 deg. The response is almost linear, as the
geometric nonlinearity is mild.

Figures 2-29 to 2-31 indicate an almost linear cable response. The vertical imposed end
displacement v is the vector sum of a displacement perpendicular to the cable, which rotates
it, and a displacement parallel to the cable, which elongates it in a linear way. This is the
reason why the geometric nonlinearity is not intense.

Egs. (2-69) to (2-74) are valid forz > z =1/SS -®.In case that Sy # Spg, Z # COSBSss.

B) Horizontal imposed end displacement u

In this case, a simple inclined cable, with initial unstressed length S, is subjected to a
horizontal imposed end displacement u. The cause of this displacement is the concentrated
load P, as shown in Figure 2-32.

Figure 2-32: Simple inclined cable under horizontal imposed end displacement u
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The corresponding cable equations, based on case A, are presented below.

For the concentrated load P:

1 1

(2-69) = P = EA (So - m} (2-75)

(2-70)= P = (2-76)

X' -
S‘ 2
o 1+ (i)

For the axial force N:

(2-71) > N=EA| X 1+[E "4 (2-77)
- So [Xj

! 2
2-72) =N =X 1+(l.) 1 (2-78)
s, X

For the horizontal component H of the axial force:

PL

(2-73)=>H=— (2-79)
X

(2-74)=H = . (2-80)
X

Egs. (2-75) to (2-80) are valid for x > X = S(ZJ -1%. In case that So # Sag, X # COSBSs.

Diagrams, and their qualitative explanation, are the same with case A.
2.2.4.2 Examination of a simple inclined cable as spring

An inclined cable under imposed end displacement can be simulated with an equivalent
spring, simplifying the analysis procedure in case of a construction with many cables, for
instance a cable-braced bridge. Generally, spring’s reaction is subjected to Hooke's law, which
states that:

F =Ksu (2-81)
where,

u is the displacement of the spring's end from its equilibrium position, in m

F is the restoring force exerted by the spring on that end, in kN, and

Ks is a constant called the rate or spring constant, in kN/m.

The spring simulation concerns the calculation of the equivalent spring constant Ks of the

cable. It is assumed that cable’s material is linearly elastic. In case of an end displacement
parallel to the cable (6 = 0 deg), the material constitutive equation gives:
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N=EA— =KAAS (2-82)
SO
where,
EA
Kg = o and AS=uorv. (2-83)
0

Ks is the equivalent spring constant of the cable, in kN/m. The response is linear.

In case of an inclined cable imposed to a vertical/horizontal end displacement the analysis is
more complicated. Egs. (2-69) and (2-75) are equivalent to Eg. (2-81), as the restoring
force F corresponds to the external load P and the displacement of spring’s end u to the
horizontal u or vertical v end displacement. Considering a vertical imposed end
displacement v, the expansion of Eq. (2-69) in Taylor series around the point z = z* gives:

coiegall, (@) 1 :
(2:69) = P=Plz) =EA | +—— 55 = (z-2") +
()] )
(2-84)
*)3
EA 37* 3(z 2
T2, e a2 ) +
{(z*) +L21 [(z*) N
The first term of Eq. (2-84) represents the approximate equivalent linear spring, as:
(2-84) = P = Kyv (2-85)
with equivalent spring constant Ks, in kN/m:
z 2_(gj
K¢ = EA 1, ( ) 1 = EA [SO(S'QESAB)} (2-86)
0

] e

where L =sin6S g , from Figure 2-28.

For 8 = 0 deg, Eq. (2-86) turns into Eq. (2-83).
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Figure 2-33: P — v curves considering the accurate solution and the equivalent linear spring equation,
in case that 8 = 30 deg, Sg = Sag = 20 m, E = 165 GPa and d = 20 mm

Figure 2-33 compares the accurate solution, from Eqg. (2-69), with the equivalent linear
spring, from Eq. (2-85), in case that ® = 30 deg, So = Spg = 20 m, E = 165 GPa and
d = 20 mm. Curves are almost identical, proving the lack of geometric nonlinearity in
diagrams of Paragraph 2.2.4.1 — case A.

0 deg 30deg —=—45deg —<—60deg
500.0 -

400.0 -

300.0 -

P (kN)

200.0 -

100.0 -

0.0 - . . :
0.00 0.05 0.10 0.15 0.20

v (m)

Figure 2-34: P — v curves of the equivalent spring for different values of angle 6,
in case that Sy = Spg = 20 m, E = 165 GPa and d = 20 mm

Figure 2-34 presents the response of the equivalent spring for different values of angle 6,
in case that Sy = Spg = 20 m, E = 165 GPa and d = 20 mm. The slope of curves is invariable
and equals to the equivalent spring constant Ks. The smaller the angle 6 is the stiffer the
equivalent spring becomes. The response of the cable to a vertical imposed end
displacement v is the development of the corresponding tension, which is the vertical
component V of the axial force N, increasing the stiffness in this kind of deflections. A small
value of angle 6 means large value of the vertical component V and small value of the
horizontal H one, concluding to large stiffness in vertical deflections v. This is the reason why
cables with small inclination are stiffer in vertical imposed end displacements v.

In non-dimensional form:

(2-85) =P =K (2-87)
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where,

(2-88)

Egs. (2-84) to (2-88) are valid for z >7 =,/S§ -2 . Starting from Eq. (2-75), the equivalent
spring constant Kg for horizontal displacement u occurs.

2.2.4.3 Implementations in cable structures

The analytical solutions of Paragraphs 2.2.4.1 and 2.2.4.2 can be implemented in cable
structures. The static analysis of a cable-braced bridge, subjected to vertical end
displacements v, is an example. In such structures, which contain long cables, self weight
provokes curvature and cannot be omitted during the design procedure.

Figure 2-35 illustrates a model of a cable-braced bridge. The weight of a moving vehicle can
be regarded as a concentrated load P; applied on bridge’s deck. This load provokes vertical
displacement of the deck and, as a consequence, vertical end displacement v; of cable i.
Replacing cable i with a spring having equivalent spring constant Kg;, as shown in Figure 2-36,
the vertical imposed end displacement v; can be calculated. Rest cables are replaced with the
corresponding springs.

T~

Figure 2-35: Cable-braced bridge subjected to moving concentrated load P;

FFOTTOToeF

Figure 2-36: Equivalent model of a cable-braced bridge with linear springs

In a real model case, cables are pre-tensioned due to the weight of the deck. Initially
unstressed cables are placed in order to deliver dead loads of the deck. These loads provoke
permanent vertical imposed end displacements v, and corresponding pre-tensions, at cables.
During the service phase, live loads add vertical imposed end displacements v and tensions to
the pre-tensioned cables.

Regarding the horizontal imposed end displacements u, a radio mast is a cable structure
subjected in such displacements. A detailed analysis, taking into account the pre-tension, is
presented in Chapter 5.
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2.3 SIMPLE CABLES UNDER UNIFORMLY DISTRIBUTED LOADS

2.3.1 Inclined cable under uniformly distributed load along its horizontal
projection

A simple inclined cable, with initial unstressed length Sy, spans the distance Sys, where Sy is
the distance between points A and B. A uniformly distributed load p along cable’s horizontal
projection is applied, as shown in Figure 2-37. The horizontal deflection u of the cable is not
taken into account in this analysis, for simplification reasons.

R EEEEEEERE

iy ds
“L,i,,,\ H + (dH/dx)dx
\ e /
\ DETAIL "a" /
™
B ///

S s

Figure 2 -37: Inclined cable under uniformly distributed load p along its horizontal projection

The x-coordinate is assumed as independent variable. The horizontal component H and
vertical component V of the axial force, the z-coordinate and the stressed cable length S are
considered as dependent variables.

The equilibrium of forces on the differential length ds is expressed as:

H
d——O:H=HA=HB (2-89)
dx
dv
d—dx =-pdx = V =V, -px (2-90)
X
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where H, and V, are the horizontal and vertical reactions at point A. So:

N, = H2 + V2 (2-91)
The axial force N at distance x from endpoint A, is given as:

N = vH? + V2 = JH + (Vy-px)° (2-92)

Using the equations of geometry and taking into account that the force N is axial, in other
words tangent to the stressed cable, the following equations occur:

V_
Gz _V VX X[y, ™ (2-93)
x H H H 2
ds N H| VN, - V.N N-V
S T AN g (2-94)
dx H 2p H N, -V,

where s is the stressed length of the cable from the start of the axes to the point (x,z).

The analytical form of Egs. (2-93) and (2-94) derives from their integration from x = 0 to x,
where for x = 0:

z=s=0 (2-95)
N = Na (2-96)
H = Hyx (2-97)
V=V, (2-98)

Applying the boundary conditions of right support B:
z=Ltan®@ and x=L (2-99)

Eqg. (2-93) turns into:

pL
(2-93) = V, = Htané + ? (2-100)

Combing Egs. (2-92) and (2-100), cable’s axial force N at distance x from endpoint A is
defined as:

2
N=H1+|tang+ P [1-2X (2-101)
HU L

Replacing Eq. (2-100) into (2-93), the z-coordinate of the point (x,z) is:

z = xtanb +d (2-102)

where,

d=XPx) (2-103)
2H
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Notice from Figure 2-37 that, d is the vertical distance of the stressed cable from the
chord AB. In case that, Sy < Spg, d = V.

Egs. (2-101) and (2-102) describe the axial force N and the z-coordinate as function of the
horizontal component H of the axial force, which is generally not known. In some occasions,

H can be defined from the reader directly or indirectly, for instance if d is known at some
point.

If the vertical distance d of the cable at midpoint is defined as:

d =dL (2-104)

m m

the horizontal component H of the axial force comes out from the following equation:

(2103) > d_=P[L-b|on= P (2-105)
aH 2 8d

m

and previous equations turn into:

2
(2-101) = N = F;'.‘ \/1 + {tane +4d, (1 ; ZXH (2-106)

(2-102) = 2= x {tane +4d_ (1 . iﬂ (2-107)

In case that, the horizontal component H of the axial force and/or the vertical distance d for
each point are unknown, the material constitutive equation is used in calculations. Assuming
the material as linearly elastic, Hooke's law gives for the differential length ds of DETAIL “a” -
Figure 2-37:

ds-d d N
o=Ee=N=EA| = o :»ds=50(1+j (2-108)
ds, dx  dx EA

The combination of Egs. (2-94) and (2-108) leads to:

N

N_d( N9 _ H (2-109)
H dx EA dx N

1+ ——
EA

Replacing Eqg. (2-101) into (2-109) and integrating from x = 0 to L, in the left part derives the
known cable’s unstressed length Sy and in the right part a function of the horizontal
component H of the axial force. Eq. (2-109) is too complex to determine an analytical solution
from its integral. The right part should be simplified. Expanding to series according to:

1
1+x

=1-X+X-X +... (2-110)

6]
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N N
and assuming that A <<1, the terms A of higher order are neglected. Then, Eq. (2-109)

becomes:
(2-109) = — 0 = (1 - j (2-111)

Replacing the horizontal component H of the axial force from Eqg. (2-105) and the axial
force N from Eqg. (2-106) into (2-111):

2
d . . 2
(2-111) = % - \/1 + {tane +ad_ (1 i ZLXH {1-&1‘? EA\/1+{tan6+4dm(1-2LXH } (2-112)
X m

For simplification reasons, the following non-dimensional parameters are used:

pL

2EA

5 (2-113)
p=tanb + 4d'm (1 - ij

Then, the horizontal component H’ of the axial force in non-dimensional form is defined as:

' p'
2-105) > H = " (2-114)
( ) 4d

m

——0deg ——30deg —=—45deg —<—60deg
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Figure 2-38: Horizontal component H’ of the axial force as function of vertical deflection v (= d'm)
for different values of angle 6, in case that Sy = Sps

Figure 2-38 describes the horizontal component H' of the axial force as function of vertical
deflection v'(= d'm) for different values of angle 6, in case that Sy = Sps.

Eg. (2-112) turns into:
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; .
(2-112) = % = 1+p? (1-£.J1+p2] (2-115)
X

m

The integration of Eq. (2-115) from x = 0 to L gives:

L1 +\1+p;
(2-115) = Sy = —— (pA\/1+p§ -pB\/1+pé)+In PN TN,

16d 1+ p2

m P +1+0p

(2-116)
o

where,

pa =p(x =0)=tand + 4d,, (2-117)

Pg = p(x = L)=tan6-4d'm

0 deg 30deg —8—45deg —«—60 deg
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0.00 0.02 . 0.04 0.06
\

Figure 2-39: Applied load p’ as function of vertical deflection v' (= d'm )

for different values of angle 6, in case that Sy = Sps

Figure 2-39 describes the equilibrium path of the cable for different values of angle 6, in case
that So = SAB-

Cable’s axial force gets the maximum value at endpoint A, according to Eq. (2-106):

L .
(2-106) = N™ = 8pd,\/1 + (tane)+4c|m)2 (2-118)

m

or in non-dimensional form:

(2-118) = N™' = %./1 +p? (2-119)

m
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Figure 2-40: Maximum axial force N™" as function of vertical deflection v (= d'm)
for different values of angle 6, in case that Sy = Sps

Figure 2-40 describes the maximum axial force N™* as function of vertical
deflection v (= d;n) for different values of angle 6, in case that Sy = Spg.

Figures 2-38 to 2-40 have the same qualitative behavior. The slope of the curves increase as
the vertical deflection v, in other words the applied load p, increases due to the geometric
nonlinearity. For larger values of the vertical deflection v, the curves tend to become linear,
as the geometric nonlinearity is eliminated. Moreover, the smaller the angle 8 is the stiffer the

cable becomes. According to Figure 2-41, applied load p is analyzed into a component p,

perpendicular to the differential length ds and a parallel one p, , where:

p, =cosbp (2-120)
p, =sinBp (2-121)

Figure 2-41: Analysis of the applied load p into p, and Py components

The component p, displaces the differential length ds along its direction, while the
component p, elongates it according to Hooke’s law, Eq. (2-108). Larger values of angle 6

lead to larger values of the component p, and, given a constant value of the modulus of

elasticity E, larger elongations €. As elongations € increase, cable’s stiffness K decreases. This
is the reason why the smaller the angle 6 is the stiffer the cable becomes. Notice that, in case
of a concentrated load P the opposite qualitative behavior occurs, according to
Paragraph 2.5.3 — case 2, as the response mechanism of the cable differs.
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2.3.2 Horizontal cable under uniformly distributed load along its horizontal
projection

In this section, a horizontal cable under uniformly distributed load p along its horizontal
projection is examined. The model of the cable is illustrated on Figure 2-37, for 8 = 0 deg.
Due to the geometric symmetry, there are no horizontal deflection u. Eq. (2-116) is simplified
as follows:

' \2 '
8d'm,/1+(4d'm)2+|n 1+(4dm)2+4d -4p 1+(4d3) (2-122)

. 1
2-116) = S, =
( )= 5o 16d

m \/1+(4d'm) -4d,,
0.003 -
0.002 -
a
0.001 -
0.000 7 . .
0.00 0.02 0.04 0.06
v

Figure 2-42: Applied load p’ as function of vertical deflection v' (= d'm )
in case that Sp = Sps

Figure 2-42 shows the equilibrium path of the cable, in case that So = Sag. The slope, which
indicates cable’s stlffness K, increases as the applied Ioad p increases, due to the geometric
nonlinearity. Here, z'=0as So =S and, so,v=2zor vV =7,

Using Eqg. (2-106), the expression of the cable’s axial force N is:

2

L] 1 2

(2-106) = N = P= |2+(1-Xj (2-123)
2 \((4d,) L

and is maximum at endpoint A:

L
(123N =P L 2 4y (2-124)
2 \(4d,)
or in non-dimensional form:
max' ! 1
(2-124) = N =p [——5+ 1 (2-125)
(4d, )
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Figure 2-43: Maximum axial force N™ as function of vertical deflection v' (= d'm )
in case that Sy = Sps

Figure 2-43 describes cable’s maximum axial forces N™* as function of vertical
deflection v (= d, ), in case that Sy = Spg. The slope of the curve increases as the vertical

deflection v, in other words the applied load p:, increases due to the geometric nonlinearity.
Here, 2 =0as Sy = Sasand, so, v=zorv = z.

The horizontal component H of the axial force comes out from:

(2-105) = H = 8"; (2-126)

m

or in non-dimensional form:

' pI
2-126) > H = (2-127)
(2426) 4d

m
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Figure 2-44: Horizontal component H’ of the axial force as function of vertical deflection v' (= d'm ),
in case that Sy = Sps
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Figure 2-44 describes the horizontal component H' of the axial forces as function of vertical
deflection v’ (= d'rn ), in case that Sy = Sps. The slope of the curve increases as the vertical

deflection v', in other words the applied Ioagl p','increases due to the geometric nonlinearity.
Here, 2" =0as Sy = Spgand, so,v=zorv = z.

In case that the vertical deflection d'm at midpoint is small, in other words d'm<<1,

Eq. (2-122) can be developed in Taylor series, after multiplication with 16 d'rn . The result is:

(2-122) = 16d. S, = -4p +16d - 634p' (d) + 1238(d'm)3 . ‘r’;z(d‘m)5 + 407%(d'm)7 +
(2-128)

Neglecting the terms of fifth and higher order, Eq. (2-128) is a 3™ degree equation and can
be written as follows:

(2-128) = (4c|'m)3 -2p (4c|'m)2 -6(Sy -1)(4d,,)-6p =0 (2-129)

The solution of Eq. (2-129) defines the vertical deflection d'm in case that the initial
unstressed length S, and the load p’ are known.

For horizontal inextensible cables, which are cables with quite large stiffness with EA > o
and, so, p = 0, Eq. (2-122) turns into:

' \2 '
, 1 , , 1+(4d,) +4d
(2-122) = S, = = Sdm,/1+(4dm)2 +In (4dm) +4 (2-130)

m \/1+(4d'm)2-4d'm

The corresponding approximate Eq. (2-129) turns into:

' 3/
(2-129) = d_ = ‘lg(so -1) (2-131)

or, alternatively:

. 8, .
(2131) =S, =1+ 5(dm)2 (2-132)
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Figure 2-45: Comparison between accurate and approximate solution,
in case of a horizontal inextensible cable

Figure 2-45 indicates the difference between the accurate solution, Eq. (2-130), and the
approximation using Taylor series, Eq. (2-132), in case of a horizontal inextensible cable.
Notice that, 3™ degree approximation is sufficient for f < 0.2.

In case of an inclined inextensible cable:

T

d, = \/8 |So-1-5tane)’| (2-133)
or

2-133) = S, =1+ > (dy, )’ + - (tang (2-134)
(2-133) = 5, =1+ (d) + (tan0)’

which are equivalent to Egs. (2-131) and (2-132), [4].

It is useful to present the comparison of the response of a horizontal inextensible cable
subjected to a uniformly distributed load p along its horizontal projection and to an equivalent

concentrated load P = pL at midpoint, in case that Sy = Sxs. Here, z° = 0 and, so, v =z = d,

orv =27 =d_.Eq (2-13) for P'= 0, as EA - oo, gives the vertical deflection d_, for the
equivalent concentrated load P at midpoint as:

, 1 \2
(213) = dpp = (So) -1 (2-135)

The corresponding axial force Np comes out from the combination of Egs. (2-7) and (2-104)
as:
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L 1 L
szpi 1+ =p7
2 2

(2-136)
4 (chyp )’

The combination of Egs. (2-124) and (2-131) gives the maximum axial force N™, in case of a
uniformly distributed load p along cable’s horizontal projection as:

e = PL LY (2-137)
2\6(s, -1)

The ratios of the vertical deflection and the axial force are:

d 2
d%: =t = 5(S%+1) (2-138)

(2-139)

Egs. (2-138) and (2-139) are presented graphically below.
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Figure 2-46: Ratio of the vertical deflection of a horizontal inextensible cable subjected to
distributed p and to equivalent concentrated P load
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Figure 2-47: Ratio of the axial force of a horizontal inextensible cable subjected to
distributed p and to equivalent concentrated P load

Figures 2-46 and 2-47 indicate that the vertical deflection and the axial force due to a
uniformly distributed load p along cable’s horizontal projection are smaller than these due to
an equivalent concentrated load P at midpoint. So, distributed loads are delivered from a
simple cable in a smoother way, in comparison to concentrated loads.

2.3.3 Inclined cable under uniformly distributed load along its arc length

A simple inclined cable, with initial unstressed length S,, spans the distance Spg, where Syg is
the distance between points A and B. A uniformly distributed load q along cable’s arc length is
applied, as shown in Figure 2-48. The horizontal deflection u of the cable is not taken into
account in this analysis, for simplification reasons.
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Plppgg e

DETAIL "b"

Figure 2-48: Inclined cable under uniformly distributed load q along its arc length

The stressed length s of the cable from the start of the axes to the point (x,z) is assumed as
independent variable.

The equilibrium of forces on the differential length ds is expressed as:

dH

—=0=H=H, =Hg (2-140)
dx

dv ds

—=-q— (2-141)
dx a dx

Using the equations of geometry and taking into account that the force N is axial, in other
words tangent to the stressed cable, the following equations occur:

dz V dz
dx H

=—=V=H— (2-142)
dx
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ds N

o H (2-143)

The derivative of x of Eq. (2-142) is:

(2-142) = v Hiﬁ (2-144)
dx dx

The combination of Egs. (2-141) and (2-144) leads to:

Hszi - j)s( (2-145)

According to Figure 2-48 — DETAIL “b”, the differential length ds equals to:

ds = Vdx* +dz’ (2-146)

So, Eq. (2-145) turns into:

? dx

2 2
(2-145) = T2 4 9 o[ 9] _g (2-147)
dx H

Eq. (2-147) is the equilibrium differential equation of a cable subjected to its self weight or to
a uniformly distributed load q along its arc length. The solution of this equation is called
catenary, as describes the curve of a hanging chain subjected to its own weight.

Assuming that the horizontal component H of the axial force is given, the integration of
Eqg. (2-147) twice and the application of the boundary conditions:

z=0atx=0 (2-148)
z=ltanBatx =1L (2-149)

define the solution of the equilibrium differential equation as:

L 2
(2-147) = z = d + xtanb = > {cosh (C + 6) - cosh {( +0 (1 - LXH} (2-150)
where,
_a
2H 5 (2-151)
¢ =sinh™| tan®
sinhd
[4]

Appendix A presents the main properties of hyperbolic functions. Notice from Figure 2-48
that, d is the vertical distance of the stressed cable from the chord AB. In case that, Sy < Spg,
d=v.

The axial force N is defined as:
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2 2
N= W2+ = W ) s oN=h 1+ P (2-152)
dx dx

The derivative of x of Eq. (2-150) is:

(2-150) = j)z( = sinh[( + 6(1-2%‘)} (2-153)
So:

(2-152) = N = % cosh [c + 6(1 i ZLXH (2-154)
(2142) = V = ggsinh[c + 5(1 i ZLXH (2-155)
where,

(2-151) = H= g; (2-156)

In case that, the horizontal component H of the axial force is unknown, the material
constitutive equation is used in calculations. Assuming the material as linearly elastic, Hooke’s
law gives for the differential length ds of DETAIL “b” - Figure 2-48:

ds - d d N
o=Ee=N=EA| = 0 :»ds=50(1+j (2-157)
ds, dx  dx EA

Replacing Egs. (2-143), (2-154) and (2-156) into (2-157) and integrating from x = 0 to L, the
analytical solution for the response of the cable is determined. The integration is too complex
and, so, the right part should be simplified. Expanding to series according to Eq. (2-110) and

N
assuming that EA <<1, Eq. (2-157) becomes:

d
(2-157) = % - :(1 i E'\/l\j (2-158)
X

Substituting the axial force N from Eq. (2-154) and using Eq. (2-156), the solution of the
differential equation Eq. (2-158) is:

1

2-158) = S, (x) =
(2-158) = S (x) = oo 5

[ -48Hx + 4EALsinh (¢ + 8) - HLsinh (2 + 20) -

20 45 (2-159)
_4EALsinh (c +5- LXJ + HLsinh (zc +25- LXH

The condition Sy (L) = Sq gives:
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1 _ .
(2-159) = S, = SEA [-46HL + 4EALsinh (g + 8) - HLsinh (22 + 25) -

-4EALsinh (Z - 3) + HLsinh (27 - 28) | = (2-160)
- So__H . sinh({+3)-sinh(Z-3) L l:sinh(2€-26)-sinh(2C+26)}
L 2EA 20 2EA 45

! L
Defining 9 =2q—EA , Eq. (2-160) is changed as follows:

(2-161)

(2-160) = 23S, - sinh (¢ +3) +sinh (- 3) = g {S‘”h(zc'za)'smh(%’le)_1}

40

In case that S, is defined, q is calculated from Eq. (2-161) using numerical methods. The

oo d L
vertical distance d, = Tm at midpoint is defined from Eq. (2-150) for x = 5 :

o1 1
(2-150) = d, = 5[cosh(c +3) - cosh(¢) |-  tané (2-162)

——0deg —e—30deg —8—45deg ——60 deg

0.003 -
0.002 -
O
0.001 -
0.000 . “""’"/x/x .
0.00 0.05 0.10 0.15
y

Figure 2-49: Applied load q as function of vertical deflection v (= d'm )
for different values of angle 6, in case that Sy = Sps

Figure 2-49 describes the equilibrium path of the cable for different values of angle 6, in case
that So = Sag.

Cable’s axial force gets the maximum value at endpoint A, according to Eq. (2-154):

(2-154) = N™* = %cosh(aa) (2-163)

or in non-dimensional form:

Nonlinear static analysis of cables and cable nets



62 Chapter2

(2-163) = N™ = qacosh (7+) (2-164)

——0deg —e—30deg —e—45deg —<—60deg
0.012 -

0.010 -
0.008 -

0.006 -

Nmax'

0.004 -

0.002 -

0.000

0.00 0.05 0.10 0.15
v
Figure 2-50: Maximum axial force N™ as function of vertical deflection v (= d'm)
for different values of angle 6, in case that Sy = Sps

Figure 2-50 describes the maximum axial force N™ as function of vertical
deflection v'(= d'm) for different values of angle 6, in case that Sy = Sps.

The horizontal component H of the axial force, in non-dimensional form, comes out from
Eq. (2-156) as:

(2-156) = H = % (2-165)
——0deg —e—30deg —8—45deg —<—60deg
0.010 -
0.008 -
T 0.005 -
0.003 -
0.000 m-eSE== . : .
0.00 0.05 0.10 0.15
v

Figure 2-51: Horizontal component H’ of the axial force as function of vertical deflection v (= d'm)
for different values of angle 6, in case that Sy = Sps
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Figure 2-51 describes the horizontal component H of the axial force as function of vertical
deflection v'(= d'm) for different values of angle 6, in case that Sy = Sps.

Figures 2-49 to 2-51 have the same qualitative behavior. The slope of the curves increase as
the vertical deflection v, in other words the applied load g, increases due to the geometric
nonlinearity. For larger values of the vertical deflection v, the curves tend to become linear,
as the geometric nonlinearity is eliminated. Moreover, the smaller the angle 8 is the stiffer the

cable becomes. According to Figure 2-52, applied load q is analyzed into a component q,
perpendicular to the differential length ds and a parallel one a where:

q, = cos6q (2-166)
q, = sin6q (2-167)

llilq

»‘Ae'/ »Z '/ql

X* g,

Figure 2-52: Analysis of the applied load q into q, and q, components

The component ¢, displaces the differential length ds along its direction, while the
component ¢, elongates it according to Hooke’s law, Eq. (2-157). Larger values of angle 6
lead to larger values of the component g, and, given a constant value of the modulus of

elasticity E, larger elongations €. As elongations € increase, cable’s stiffness K decreases. This
is the reason why the smaller the angle 6 is the stiffer the cable becomes. Notice that, in case
of a concentrated load P the opposite qualitative behavior occurs, according to
Paragraph 2.5.3 — case 2, as the response mechanism of the cable differs.

2.3.4 Horizontal cable under uniformly distributed load along its arc length

A horizontal cable under uniformly distributed load q along its arc length is examined. The
model of the cable is illustrated on Figure 2-48, for 8 = 0 deg. Due to the geometric
symmetry, there are no horizontal deflection u. Equations of Paragraph 2.3.3 are simplified,
replacing 6 = 0 deg, as follows:

(2-151) = 7 =0 (2-168)
(2-150) > z=d = zl'a{coshé - cosh {6 (1 - ZLXH} (2-169)
(2-154) = N = I cosh {6 (1 i ZLXH (2-170)
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(2-155) = V = 25 L sinh {6( 2|_Xﬂ (2-171)

(2-161) = 2(sinh3-543) = g {S"‘ggza)ﬂ} (2-172)

. hs - 1
(2-162) > d_ = % (2-173)

0.003
0.002 -

0.001 -

0.000 T . . .
0.00 0.02 0.04 0.06 0.08

y
Figure 2-53: Applied load q as function of vertical deflection v' (= d'rn ),
in case that So = Sas

Figure 2-53 shows the equilibrium path of the cable, in case that Sy = Sas. The slope, which
indicates cable’s stlffness K, increases as the applied Ioad q increases, due to the geometric
nonlinearity. Here, Z =0asSy=Smpand, so,v=zorv =z.

Cable’s axial force is maximum at endpoint A, where:

(2-170) = N™ = g'g coshd (2-174)

or in non-dimensional form:

(2-174) = N™' = %coshé (2-175)
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0.013 -

0.010 -

0.008 -

Nmax'

0.005 -

0.003 -

0.000

0.00 0.02 0.04 0.06 0.08

v
Figure 2-54: Maximum axial force N™ as function of vertical deflection v' (= d'm )
in case that Sy = Sps

Figure 2-54 describes cable’s maximum axial forces N™* as function of vertical
deflection v/ (=d.,), in case that Sy, = Sps. The slope of the curve increases as the vertical

deflectlon Vv, in other words the applied load q, increases due to the geometric nonlinearity.
Here,z = 0as Sy = Spgand, so,v=zorv =z.

The horizontal component H of the axial force is defined from Eq. (2-156) or from Eq. (2-165)
in non-dimensional form.
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0.008 -
T 0.005 -
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0.00 0.02 0.04 0.06 0.08
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Figure 2-55: Horizontal component H’' of the axial force as function of vertical deflection v (= d'm )
in case that Sp = Sps

Figure 2-55 describes the horizontal component H' of the axial forces as function of vertical
deflection v/ (=d.,), in case that S, = Sps. The slope of the curve increases as the vertical

deflectlon Vv, in other words the applied load q, increases due to the geometric nonlinearity.
Here, z' = 0 as Sy = Sps and, so, v = zor v = z. Appendix A presents the main properties of
hyperbolic functions.
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2.4 EQUIVALENT BEAM METHOD

Cable response in concentrated or distributed loads shows similarities with this of a simply
supported beam. Regarding a concentrated load P at arbitrary position, as presented in
Paragraph 2.2.3:

e the stressed geometry of the cable is similar to the bending moment diagram of an
equivalent simple supported beam with the same span and loads

e the horizontal component H of the axial force remains unchanged along cable’s length,
as external horizontal loads do not exist

The previous observations are expressed as:

Hz=M (2-176)

where M is the bending moment of the equivalent beam, in kNm.

According to Eq. (2-177), in case that z—coordinate, for each cable point, is unknown, the
stressed geometry is defined from the known value of H.

PXp (L-xp) X 0<Xx<X,
Hz=M =1 I|__ Xp (2-177)
X -Xp) L -
P( P) X Xp < X <L
L L- Xp
p ¥ L-x,
= 1 B
— | |
ox |
| | |
M Px.(L - x.)/L

/

Figure 2-56: Bending moment diagram of a simple supported beam

In case of an inclined cable subjected to uniformly distributed load p along its horizontal
projection, as defined in Paragraph 2.3.1, the vertical distance d of the stressed cable from
the chord AB is given as:

(2-178)

T =Z

where M is the moment of an equivalent simply supported beam, in kNm.

In other words, the bending moment M, due to external distributed load p applied at an
equivalent simply supported beam, is equal to the bending moment M of the horizontal
component H of the axial force applied at vertical distance d from the chord AB [5].
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2.5 PARAMETRIC FIGURES OF A SIMPLE SUSPENDED CABLE
2.5.1 General matters

Paragraph 2.5 examines the impact of important cable parameters, such as the initial
unstressed length Sy, the modulus of elasticity E, the diameter d, and the angle 6, into its
response to external loads. The results are presented in parametric figures, in which one
single parameter changes each time. Paragraphs 2.2 and 2.3 present general equations of
cable response to different types of loads and the corresponding figures for Sy = Spg. In these
equations, the initial unstressed cable length S, is assumed as accidental. The general case of
a cable with initial unstressed length Sy, spanning the distance Sas, which is the distance
between points A and B, is shown in Figure 2-57. The geometry gives:

L =S,5cos8 (2-179)

In case of a horizontal cable, in other words 8 = 0 deg, Sps = L.

AB

S A P S
-

L

Figure 2-57: Initial unstressed state of a cable

The correlation between lengths Sy and Sy determines the response of the cable to external
loads. Three cases can be detected:

1) Sp < Sps

In this case, the cable acquires pre-tension. Pre-tensioned cables respond more efficient to
external loads, as their stiffness is increased and, so, develop smaller deflections. Pre-tension
can be implemented either by the elongation of an initially unstressed cable or by the
application of an initial external load. This paragraph examines the first one. According to
Eqg. (2-17), the stiffness K of a cable equals to the slope of its equilibrium path. So:

Az = % (2-180)

Figures 2-11 and 2-18 of Paragraph 2.2.2, which refer to the general case of an inclined cable
under concentrated load P at arbitrary position, show that as the applied load P increases,
cable’s stiffness K increases and, for constant additional load AP, additional deflection Az
decreases, according to Eg. (2-180). Pre-tension gives initial stiffness to the cable, which
develops smaller deflections. For large values of pre-tension and/or external loads, cable
response tends to be linear. The same behavior occurs for distributed loads p and q.
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Assuming the cable material as linearly elastic, Hooke's law gives:

0" =FEe=> —  =E—— = N =EA

NP'e AS
A [

SSAB-1J (2-181)

0 0

where A is the cross-section and E the modulus of elasticity of the cable.

It is useful to express the axial force NP of the cable due to pre-tension as a percentage wP™®
of the axial force capacity N, which is defined below:

NCP = Afy (2-182)

where f, is the yield stress of the cable.

So:
EA| 9281 E| 881
e Npre SO e SO
wP® =100 - =100 =w" =100 ~—~ (2-183)
NP Af f
Y Y
2) So=Sm

Cable’s initial unstressed length Sy equals to the distance Sps spanned. In this case, the cable
remains unstressed until the application of the external loads. There is no pre-tension, as:

E[S‘MJ
(2-183) = wP™ = 1oof70 =0% (2-184)

Y
3) So =S

Cable’s initial unstressed length Sy is larger than the distance Sy spanned. Cable remains
unstressed until its total deployment, caused by the application of external loads. Then, it

responds with the development of tension. Cable’s equations are valid for z > z and x > x",

where z',x" define the coordinates of the point from which cable tension, due to the load P,
p or g, occurs. In other case, cable’s tension and joint reactions are zero.

The coordinates z',x" are calculated from the geometric compatibility equations, in case of a
concentrated load P, as below:

e  Horizontal cable under concentrated load P in the middle — Figure 2-1

z =——— (2-185)

e Inclined cable under concentrated load P at arbitrary position - Figures 2-7 and 2-15

5o = (X' +(Z) +[Lx') +(teneLz | (2-186)
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e  Horizontal cable under concentrated load P at arbitrary position — Figure 2-21

5o =[x +(Z) +[Lx T+ (2-187)
e Inclined cable under imposed end displacement v or u - Figures 2-28 and 2-32

Z ={S;- or x =8-1 (2-188)

where x" = x,, except for Eq. (2-188). The coordinates zp, X, refer to the starting application
point of the concentrated load P. In case that Sy > Spg, Z % zp.

The impact of cable’s initial unstressed length Sy and of other parameters into its response to
external loads is illustrated in the following diagrams, for a number of cable types and loads.
Dimensional and non-dimensional diagrams are presented. Curves’ limits are defined by the
axial force capacity NP of each cable. Default values of cable parameters, mentioned in
Table 2-1, are valid for the following diagrams in case that they are not specified in the text.

E 165 GPa
fy 1.58 GPa
da 20 mm

Sas 20.0 m
wP 10.0 %

a 0.10 -
0 45 deg

So/Sas 1.10 -

Table 2-1: Default values of cable parameters

The annotation of the parametric figures is placed at Paragraph 2.5.10, in order to highlight
the common qualitative behavior of a cable in different kinds of load.

2.5.2 Diagrams of a horizontal cable under concentrated load in the middle

In this section, parametric diagrams for the case of Paragraph 2.2.1 are presented. The cable
is horizontal, in other words Sps = L.

1) So < S

Here, 2" = 0as Sy < Sag and, so, v = z.
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0 0.02 0.04 0.06 0.08

Figure 2-58: Applied load P’ as function of vertical deflection v
for different values of pre-tension wP™
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Figure 2-59: Cable’s axial force N' as function of vertical deflection v’
for different values of pre-tension wP™

2) So = Sas

Here, z° = 0 as Sy = Sps and, so, v = z.
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Figure 2-60: Applied load P as function of vertical deflection v
for different values of the modulus of elasticity E
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Figure 2-61: Applied load P as function of vertical deflection v
for different values of diameter da
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Figure 2-62: Applied load P as function of vertical deflection v
for different values of initial unstressed length S
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3) So2 S
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Figure 2-63: Applied load P as function of vertical deflection v
for different values of ratio So/Sas
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Figure 2-64: Cable's axial force N as function of vertical deflection v’
for different values of ratio So/Sas

2.5.3 Diagrams of an inclined cable under concentrated load at arbitrary position

The following diagrams refer to the analysis of Paragraph 2.2.2 — case A. Notice that
diagrams are designed through ADINA models (contained in the accompanied CD,
commented in the list of numerical models with ‘analytical’) due to the complexity of the
2-degree polynomial solution. Paragraph 3.2.3 verifies the identification between analytical
solution and numerical models.

1) So < S
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Figure 2-65: Applied load P’ as function of horizontal deflection u’
for different values of pre-tension wP™®
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Figure 2-66: Applied load P as function of vertical deflection v’
for different values of pre-tension wP™
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Figure 2-67: Cable’s axial force N'A as function of vertical deflection v’
for different values of pre-tension wP™
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0.00 0.01 0.02 0.03

Figure 2-68: Cable’s axial force N'B as function of vertical deflection v’
for different values of pre-tension wP™

The initial curve angle, in case of wP™® = 5%, derives from the number of load steps in ADINA
model.
2) So =S
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Figure 2-69: Applied load P’ as function of horizontal deflection u’
for different values of angle 6

Diploma Thesis of Christos Papakitsos N.T.U.A. 2013



Analytical Solutions for the Static Behavior of Simple Cables

——0deg ——30deg —8—45deg ——60 deg
0.007 -
0.006 -
0.005 -
~0.004 -
o
0.003 -
0.002 -
0.001 -

0.000 = DEp .
0.00 0.01 0.02 v

0.03 0.04 0.05

Figure 2-70: Applied load P as function of vertical deflection v’
for different values of angle 6
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Figure 2-71: Cable’s axial force N'A as function of vertical deflection v’
for different values of angle 6

The initial common curve section derives from the number of load steps in ADINA model.
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Figure 2-72: Cable’s axial force N;3 as function of vertical deflection v’
for different values of angle 6

The initial common curve section derives from the number of load steps in ADINA model.
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Figure 2-73: Applied load P as function of horizontal deflection u
for different values of the modulus of elasticity E
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Figure 2-74 Applied load P as function of vertical deflection v
for different values of the modulus of elasticity E
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Figure 2-75: Applied load P as function of horizontal deflection u
for different values of diameter da
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Figure 2-76: Applied load P as function of vertical deflection v
for different values of diameter da
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Figure 2-77: Applied load P as function of horizontal deflection u
for different values of initial unstressed length S

—10m ——20m ——30m
300.0 -

250.0 A
200.0 -

150.0

P (kN)

100.0

50.0 -

0.00 0.20 0.40 0.60 0.80
v (m)

Figure 2-78: Applied load P as function of vertical deflection v

for different values of initial unstressed length S

3) Sop = Sas
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Figure 2-79: Applied load P’ as function of horizontal deflection u’
for different values of ratio So/Sas
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Figure 2-80: Applied load P’ as function of vertical deflection v
for different values of ratio Sqo/Sps
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Figure 2-81: Cable’s axial force N'A as function of vertical deflection v’
for different values of ratio S¢/Sas
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The initial curve angle, in case of Sy/Sas = 1.0, derives from the number of load steps in
ADINA model.

—1.0 ——11 —8—1.2

0.007 ~
0.006 -
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0.002

0.001

0.000 . . .
0.00 0.01 0.02 0.03

v
Figure 2-82: Cable’s axial force N'B as function of vertical deflection v/
for different values of ratio Sq/Sps

The initial curve angle, in case of So/Sxs = 1.0, derives from the number of load steps in
ADINA model.

2.5.4 Diagrams of a horizontal cable under concentrated load at arbitrary
position

Diagrams for the case of Paragraph 2.2.3 are presented. Notice that diagrams are designed
through ADINA models (contained in the accompanied CD, commented in the list of
numerical models with ‘analytical’) due to the complexity of the 2-degree polynomial solution.
Paragraph 3.2.4 verifies the identification between analytical solution and numerical models.
1) Sy < Spm

Here, 2" = 0as Sy < Saxg and, so, v = z.

Diploma Thesis of Christos Papakitsos N.T.U.A. 2013



Analytical Solutions for the Static Behavior of Simple Cables 81
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Figure 2-83: Applied load P’ as function of horizontal deflection u’
for different values of pre-tension wP'™, in case that a = 0.65
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Figure 2-84: Applied load P’ as function of vertical deflection v
for different values of pre-tension wP'™, in case that a = 0.65
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Figure 2-85: Cable’s axial force N'A as function of vertical deflection v’
for different values of pre-tension wP™, in case that a = 0.65
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The initial curve angle, in case of wP™® = 5%, derives from the number of load steps in ADINA
model.

5% —e—10% —&=—15%
0.010 +

0.00 0.02 0.04 0.06 0.08
N

Figure 2-86: Cable’s axial force N;3 as function of vertical deflection v’
for different values of pre-tension wP™, in case that a = 0.65

The initial curve angle, in case of wP™® = 5%, derives from the number of load steps in ADINA
model.

2) So=Sm
Here, z° = 0 as Sy = Sps and, so, v = z.
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Figure 2-87: Applied load P as function of horizontal deflection u
for different values of the modulus of elasticity E, in case that a = 0.30
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Figure 2-88 Applied load P as function of vertical deflection v
for different values of the modulus of elasticity E, in case that a = 0.30

—10mm ——20mm ——30mm
- 350.0

- 300.0
- 250.0
- 200.0
- 150.0
- 100.0
- 50.0

r T T =88 0.0
-0.10 -0.08 -0.05 -0.03 0.00
u (m)

Figure 2-89: Applied load P as function of horizontal deflection u
for different values of diameter d,, in case that a = 0.30

—10mm ——20mm —&—30 mm
350.0 -

300.0

250.0

= 200.0
X

a 150.0

100.0

50.0

1.50

Figure 2-90: Applied load P as function of vertical deflection v
for different values of diameter d,, in case that a = 0.30
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Figure 2-91: Applied load P as function of horizontal deflection u
for different values of initial unstressed length S, in case that a = 0.30
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Figure 2-92: Applied load P as function of vertical deflection v
for different values of initial unstressed length S, in case that a = 0.30

3) So = Sus
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Figure 2-93: Applied load P’ as function of horizontal deflection u’
for different values of ratio S¢/Spg, in case that a = 0.30
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Figure 2-94: Applied load P’ as function of vertical deflection v
for different values of ratio S¢/Spg, in case that a = 0.30
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Figure 2-95: Cable’s axial force N'A as function of vertical deflection v’
for different values of ratio S¢/Spg, in case that a = 0.30
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The initial curve angle, in case of Sy/Saxs = 1.0, derives from the number of load steps in
ADINA model.

—1.0 ——1.1 ——1.2
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Figure 2-96: Cable’s axial force N'B as function of vertical deflection v’
for different values of ratio S¢/Spg, in case that a = 0.30

The initial curve angle, in case of So/Sxs = 1.0, derives from the number of load steps in
ADINA model.

2.5.5 Diagrams of an inclined cable under imposed end displacement

Using the analysis of Paragraph 2.2.4.1 — case A, the corresponding diagrams are designed.
For case B, in other words for an inclined cable under horizontal imposed end displacement u,
parametric diagrams are identical with these of case A. Moreover, based on Figure 2-33,
which shows identification between the solution for case A and the equivalent linear spring,
the following parametric diagrams are valid for this kind of spring.

1) Sp < Sps
Cables, in this case, are not pre-tensioned as support B is free to move vertical and balance

to an unstressed position. Inclined pre-tensioned cables under imposed end displacement are
presented analytically in Chapter 5.
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Figure 2-97: Applied load P as function of vertical deflection v
for different values of ratio So/Sas
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Figure 2-98: Cable's axial force N as function of vertical deflection v’
for different values of ratio So/Sas

2) So = Sas

CV
Figure for the case of 8 = 0 deg cannot be designed as L = 0 and, so, v = L cannot be

defined.
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Figure 2-99: Applied load P’ as function of vertical deflection v
for different values of angle 6
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Figure 2-100: Cable’s axial force N" as function of vertical deflection v

for different values of angle 6
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Figure 2-101: Applied load P as function of vertical deflection v
for different values of the modulus of elasticity E
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Figure 2-102: Applied load P as function of vertical deflection v
for different values of diameter da
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Figure 2-103: Applied load P as function of vertical deflection v
for different values of initial unstressed length S

3) So = Sus
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Figure 2-104: Applied load P’ as function of vertical deflection v
for different values of ratio Sy/Sas
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Figure 2-105: Cable’s axial force N" as function of vertical deflection v
for different values of ratio Sq/Spg,

2.5.6 Diagrams of an inclined cable under uniformly distributed load along its
horizontal projection

Diagrams for the cable of Paragraph 2.3.1 are presented.
1) Sp < Sps

Here, v =d_as Sy < Spa.
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Figure 2-106: Applied load p’ as function of vertical deflection v
for different values of pre-tension wP™
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Figure 2-107: Maximum axial force N™ as function of vertical deflection v

for different values of pre-tension wP™
2) So=Sm

Here, v =d_as Sp = Sps.
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Figure 2-108: Applied load p as function of vertical deflection v
for different values of the modulus of elasticity E
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Figure 2-109: Applied load p as function of vertical deflection v
for different values of diameter d,
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Figure 2-110: Applied load p as function of vertical deflection v
for different values of initial unstressed length Sy
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3) So = Sus
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Figure 2-111: Applied load p’ as function of vertical deflection v
for different values of ratio Sq/Sps
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Figure 2-112: Maximum axial force N™" as function of vertical deflection v
for different values of ratio S¢/Sas

2.5.7 Diagrams of a horizontal cable under uniformly distributed load along its
horizontal projection

Diagrams for the case of Paragraph 2.3.2 are designed using the corresponding formulas.
1) Sy < Sps

Here,z" = 0as Sy < Spgand, so, v =z =d_.
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Figure 2-113: Applied load p’as function of vertical deflection v’
for different values of pre-tension wP™
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Figure 2-114: Maximum axial force N™ as function of vertical deflection v
for different values of pre-tension wP™

2) So = Sas

Here, z" = 0 as Sp = Spg and, so, v = z=d_.
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Figure 2-115: Applied load p as function of vertical deflection v
for different values of the modulus of elasticity E
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Figure 2-116: Applied load p as function of vertical deflection v
for different values of diameter d,
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Figure 2-117: Applied load p as function of vertical deflection v
for different values of initial unstressed length S,
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3) So = Sus
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Figure 2-118: Applied load p’ as function of vertical deflection v

for different values of ratio Sq/Sps
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Figure 2-119: Maximum axial force N™ as function of vertical deflection v’

for different values of ratio So/Sas

2.5.8 Diagrams of an inclined cable under uniformly distributed load along its arc

length

Using analysis of Paragraph 2.3.3, the following comparison diagrams are designed.

1) So < S

Here, v =d_as Sy < Sp.
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Figure 2-120: Applied load q as function of vertical deflection v
for different values of pre-tension wP™
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Figure 2-121: Maximum axial force N™ as function of vertical deflection v’
for different values of pre-tension wP™

2) So = Sas

Here, v=d_as Sp = Sps.
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Figure 2-122: Applied load q as function of vertical deflection v
for different values of the modulus of elasticity E
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Figure 2-123: Applied load q as function of vertical deflection v
for different values of diameter d,
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Figure 2-124: Applied load q as function of vertical deflection v
for different values of initial unstressed length S,
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3) So = Sus
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Figure 2-125: Applied load q as function of vertical deflection v’
for different values of ratio S¢/Sas
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Figure 2-126: Maximum axial force N™ as function of vertical deflection v’
for different values of ratio Sqo/Sps

2.5.9 Diagrams of a horizontal cable under uniformly distributed load along its
arc length

The response of a horizontal cable under uniformly distributed load along its length is
illustrated by the following diagrams, based on Paragraph 2.3.4.

1) So < S

Here, z" =0as Sy < Spgand, so, v =z =d_ .
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Figure 2-127: Applied load q as function of vertical deflection v
for different values of pre-tension wP™

5% ——10% —&—15%
0.010 -

0.008 -

0.006 -

Nmax'

0.004 -

0.002

0.000 . . .
0.00 0.02 0.04 0.06
v
Figure 2-128: Maximum axial force N™ as function of vertical deflection v’
for different values of pre-tension wP™

2) So = Sas

Here, z° = 0as Sy = Sas and, so, v = z=d_ .
m
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Figure 2-129: Applied load q as function of vertical deflection v
for different values of the modulus of elasticity E
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Figure 2-130: Applied load q as function of vertical deflection v
for different values of diameter d,
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Figure 2-131: Applied load q as function of vertical deflection v
for different values of initial unstressed length Sy
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3) So = Sus
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Figure 2-132: Applied load q as function of vertical deflection v
for different values of ratio Sqo/Sps
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Figure 2-133: Maximum axial force N™" as function of vertical deflection v
for different values of ratio So/Sas

2.5.10 Annotation of parametric figures

Parametric figures of Paragraphs 2.5.2 to 2.5.9 have the same qualitative behavior
independently the kind of load, concentrated or distributed, the load position and the
inclination of the cable, except from the case of imposed end displacement. Paragraph 2.5.10
describes cable response, in different circumstances, and gives a physical explanation for
each one. The aim of this paragraph is to define a catholic behavior of the simple suspended
cable.

A simple suspended cable responses to an external load with a combination of geometric
adaption and elongation € of the linearly elastic material. The development of deflection
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causes axial force N of the cable, which can be analyzed into its horizontal component H and
its vertical one V. The more horizontal a cable is the larger the horizontal component H is and
the smaller the vertical one V is. The adaption of the cable, which occurs by the development
of deflection, introduces the geometric nonlinearity and, according to Egs. (2-176) to (2-178)
of the equivalent beam method, in combination with the horizontal component H of the axial
force balance the bending moment of an equivalent beam. In the other hand, the vertical
component V of the axial force is opponent to the deflection and is responsible for the
development of stiffness in this kind of deflection. The axial force N causes the elongation €
of the cable.

1) So < Sas
e Applied load as function of deflection for different values of pre-tension wP™

Paragraph 2.5.2 \ Figure 2-58
Paragraph 2.5.3 \ Figures 2-65 and 2-66
Paragraph 2.5.4 \ Figures 2-83 and 2-84
Paragraph 2.5.6 \ Figure 2-106
Paragraph 2.5.7 \ Figure 2-113
Paragraph 2.5.8 \ Figure 2-120
Paragraph 2.5.9 \ Figure 2-127

Given a constant value of applied load, the larger the pre-tension wP™ is the smaller deflection
(in absolute values) occurs. Pre-tension wP™ gives initial stiffness to the cable. It is applied by
the elongation of an initial unstressed cable, with length Sy < Sps. The stressed state of a
pre-tensioned cable is equivalent to this of a non pre-tensioned cable imposed to a load, in
other words the corresponding point at equilibrium path is placed at an intermediate position
with increased stiffness. This stiffness is regarding as the initial one due to
pre-tension wP™, Curves seems to be parallel, as pre-tension wP™ does not affect the way the
stiffness increases, and shifted in a constant value, as pre-tension step is constant.
Pre-tension cables fulfill more efficient service demands.

Paragraph 2.5.5 \ Figure 2-97

Given a constant value of applied load, the smaller the ratio So/Sps is the larger deflection
occurs. As the ratio So/Sas decreases, the cable is more horizontal. So, the vertical
component V of the axial force decreases, in other words the stiffness in vertical deflection
decreases, and the horizontal component H of the axial force increases. So, geometric
nonlinearity is more intense, as for Sy/Sas = 0.8 the curve is less linear. Bear in mind that, as
the ratio Sy/Sps decreases the initial unstressed length S, decreases and for a constant
elongation €, where:

==, (2-189)

the amount AS, in other words the deflection, decreases. In the same time two contradictory
tendencies, regarding the relationship So/Sas and deflection, take place. In Figure 2-97, the
first one prevails.

e Axial force of the cable as function of deflection for different values of pre-tension wF™

Paragraph 2.5.2 \ Figure 2-59
Paragraph 2.5.3 \ Figures 2-67 and 2-68
Paragraph 2.5.4 \ Figures 2-85 and 2-86
Paragraph 2.5.6 \ Figure 2-107
Paragraph 2.5.7 \ Figure 2-114
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Paragraph 2.5.8 \ Figure 2-121
Paragraph 2.5.9 \ Figure 2-128

Given a constant value of deflection, the larger the pre-tension wP™ is the larger axial force of
the cable occurs. Larger values of pre-tension wP™ means larger value of elongation AS and,
based on Hooke’s law, in case of pre-tension wP'™:

pre
o”® =Ee = N Egs (2-190)
0

larger value of NP™®. This increase provokes corresponding increase in the axial force of the
cable imposed to a load.

Paragraph 2.5.5 \ Figure 2-98

Given a constant value of axial force of the cable, the smaller the ratio So/Sas is the larger
deflection occurs and the more intense the geometric nonlinearity is. Figure 2-98 follows the
qualitative behavior and the reasoning of Figure 2-97.

2) So =S

e Applied load as function of deflection for different values of angle 6

Paragraph 2.5.3 \ Figures 2-69

Given a constant value of applied load, the smaller the angle 6 is, in other words the more

horizontal the cable is, the smaller horizontal deflection occurs. The horizontal component H
of the axial force increases, in other words the stiffness in horizontal deflection increases.

Paragraph 2.5.3 \ Figures 2-70

Given a constant value of applied load, the smaller the angle 6 is, in other words the more
horizontal the cable is, the larger vertical deflection occurs. The vertical component V of the
axial force decreases, in other words the stiffness in vertical deflection decreases. Notice that,
in case of distributed loads the opposite qualitative behavior occurs, according to
Figures 2-39 and 2-49, as the response mechanism of the cable differs.

Paragraph 2.5.5 \ Figure 2-99

Given a constant value of applied load, the smaller the angle 6 is, in other words the less
horizontal the cable is, the smaller deflection occurs. Figure 2-99 follows the qualitative
behavior and the reasoning of Figure 2-97.

e Axial force of the cable as function of deflection for different values of angle 6

Paragraph 2.5.3 \ Figures 2-71 and 2-72

Given a constant value of axial force of the cable, the smaller the angle 6 is, in other words
the more horizontal the cable is, the larger deflection occurs. The vertical component V of the
axial force decreases, in other words the stiffness in vertical deflection decreases. Notice that,
in case of distributed loads the opposite qualitative behavior occurs, according to
Figures 2-40 and 2-50, as the response mechanism of the cable differs.

Paragraph 2.5.5 \ Figure 2-100
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Figure 2-100 follows the qualitative behavior and the reasoning of Figure 2-97. There is not
clear prevalence of one single tendency, regarding the relationship So/Sas and deflection.

e Applied load as function of deflection for different values of the modulus of elasticity E

Paragraph 2.5.2 \ Figure 2-60
Paragraph 2.5.3 \ Figures 2-73 and 2-74
Paragraph 2.5.4 \ Figures 2-87 and 2-88
Paragraph 2.5.5 \ Figure 2-101
Paragraph 2.5.6 \ Figure 2-108
Paragraph 2.5.7 \ Figure 2-115
Paragraph 2.5.8 \ Figure 2-122
Paragraph 2.5.9 \ Figure 2-129

Given a constant value of applied load, the larger the modulus of elasticity E the smaller
deflection (in absolute values) occurs. Assuming that constant value of applied load gives
constant value of axial force of the cable, the increase of the modulus of elasticity E in
Hooke's law:

AS
S

O=EE=o0=,=E (2-191)

> =2

leads to decrease of the elongation €, in other words to the deflection. In case of an imposed
end displacement, curves are almost linear as the applied load P is delivered mainly by the
elongation € of the cable, whose material is linearly elastic, and less by adapting cable
geometry, which causes nonlinearity.

e Applied load as function of deflection for different values of diameter d,

Paragraph 2.5.2 \ Figure 2-61
Paragraph 2.5.3 \ Figures 2-75 and 2-76
Paragraph 2.5.4 \ Figures 2-89 and 2-90
Paragraph 2.5.5 \ Figure 2-102
Paragraph 2.5.6 \ Figure 2-109
Paragraph 2.5.7 \ Figure 2-116
Paragraph 2.5.8 \ Figure 2-123
Paragraph 2.5.9 \ Figure 2-130

Given a constant value of applied load, the larger the diameter d, the smaller deflection (in
absolute values) occurs. Assuming that constant value of applied load gives constant value of
axial force of the cable, the increase of diameter d,, in other words of the cross-section A, in
Hooke’s law of Eq. (2-191) leads to decrease of the elongation €, in other words to the
deflection. In case of an imposed end displacement, curves are almost linear as the applied
load P is delivered mainly by the elongation € of the cable, whose material is linearly elastic,
and less by adapting cable geometry, which causes nonlinearity.

e Applied load as function of deflection for different values of initial unstressed length Sy

Paragraph 2.5.2 \ Figure 2-62
Paragraph 2.5.3 \ Figures 2-77 and 2-78
Paragraph 2.5.4 \ Figures 2-91 and 2-92
Paragraph 2.5.5 \ Figure 2-103
Paragraph 2.5.6 \ Figure 2-110
Paragraph 2.5.7 \ Figure 2-117
Paragraph 2.5.8 \ Figure 2-124
Paragraph 2.5.9 \ Figure 2-131
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Given a constant value of applied load, the larger the initial unstressed length S, the larger
deflection (in absolute values) occurs. Assuming that constant value of applied load gives
constant value of axial force of the cable, the elongation € is constant in Hooke's law of
Eq. (2-191). The increase of initial unstressed length Sy leads to the increase of the
amount AS, which indicates the deflection. In case of an imposed end displacement, curves
are almost linear as the applied load P is delivered mainly by the elongation € of the cable,
whose material is linearly elastic, and less by adapting cable geometry, which causes
nonlinearity.

3) Sg =S
e Applied load as function of deflection for different values of ratio So/Sps

Paragraph 2.5.2 \ Figure 2-63
Paragraph 2.5.3 \ Figures 2-79 and 2-80
Paragraph 2.5.4 \ Figures 2-93 and 2-94
Paragraph 2.5.6 \ Figure 2-111
Paragraph 2.5.7 \ Figure 2-118
Paragraph 2.5.8 \ Figure 2-125
Paragraph 2.5.9 \ Figure 2-132

Given a constant value of applied load, the larger the ratio S¢/Sas is the smaller deflection
occurs and the less intense the geometric nonlinearity is. As the ratio Syo/Sas increases, cable
segments, after its deployment and before the development of axial force N, is less
horizontal. So, the vertical component V of the axial force increases, in other words the
stiffness in vertical deflection increases, and the horizontal component H of the axial force
significantly decreases. So, geometric nonlinearity is eliminated, as in case that
So/Sas = 1.1 and 1.2. In the same time, the second tendency, regarding the relationship
So/Sag and deflection, which is analyzed in Eq. (2-189), takes place reasoning the curve for
So/Sag = 1.1 in relevance with this for So/Sps = 1.2.

Paragraph 2.5.5 \ Figure 2-104
Figure 2-104 follows the qualitative behavior and the reasoning of Figure 2-97.
e Axial force of the cable as function of deflection for different values of ratio So/Sas

Paragraph 2.5.2 \ Figure 2-64
Paragraph 2.5.3 \ Figures 2-81 and 2-82
Paragraph 2.5.4 \ Figures 2-95 and 2-96
Paragraph 2.5.6 \ Figure 2-112
Paragraph 2.5.7 \ Figure 2-119
Paragraph 2.5.8 \ Figure 2-126
Paragraph 2.5.9 \ Figure 2-133

Figures follow the qualitative behavior and the reasoning of figures for applied load as
function of deflection for different values of ratio So/Sag.

Paragraph 2.5.5 \ Figure 2-105
Given a constant value of axial force of the cable, the smaller the ratio So/Sag is the smaller

deflection occurs. Here, taking into account Hooke’s law of Eq. (2-191), the second tendency,
regarding the relationship Sqo/Sxs and deflection, which is analyzed in Eq. (2-189), prevails.
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3. NUMERICAL SOLUTIONS FOR THE STATIC
BEHAVIOUR OF SIMPLE CABLES

3.1 NUMERICAL MODELING OF CABLES

This chapter presents the numerical solutions for the static behavior of simple suspended
cables. In Chapter 2, analytical expressions for simple cables have been derived, describing
their response taking into account their geometric nonlinearity. However, material
nonlinearity was neglected and simplifications were made in order to overcome the difficulty
of complex mathematics.

The scope of this chapter is to compare the results from finite element software with these
derived from analytical solutions, thus to confirm the rightness of cable analytical equations.
The comparison is carried out for a simple suspended cable for different properties and load
conditions. Cables are modeled to sustain only tension.

The finite element analysis software that used are ADINA and SAP, which can perform linear
and nonlinear analyses of structures, including effects of material nonlinearities and large
deformations. They offer versatile and, generally, applicable finite elements for solids,
trusses, beams, pipes, plates, shells, etc. Material models for steel, concrete etc. are
available. They can include initial strains or stresses in order to consider a deformed state
from a previous analysis. The results can be plotted in figures or listed in tables. Snapshots of
the cable model can also be taken. More information can be found at references [7] and [8].

Regarding the numerical analyses performed in this chapter, the following assumptions are
adopted:

e the cables are modeled as 10 truss elements
e the cross-sectional area of the element remains unchanged
e large displacements — small strains are assumed

Each model case is analyzed by both programs, ADINA and SAP. The name given to models
indentifies the paragraph of the corresponding analytical solution and their major properties.
Here are the parameters which are taken into account during the cable modeling.

Nonlinear static analysis of cables and cable nets
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loading: a cable is imposed under concentrated loads varying in their application position a,
end displacements and uniformly distributed loads along its horizontal projection and along its
arc length

cable’s properties: there is a variation in the inclination (angle 6), the initial unstressed
length Sy, the modulus of elasticity E and the diameter d, of the cross-section

effects of cable length: cable’s initial unstressed length S, is considered shorter (pre-tension),
equal and larger than the distance spanned Spg

X-axis in numerical models is identical with this defined in Chapter 2 but z-axis is opposite
and, so, change in % signs of the numerical results should be made before the design of
figures. The coordinates x*, z', which define the coordinates of the point from which cable
tension, due to the load P, p or g, occurs, are identical to the coordinates xp, zp, which are
the coordinates of the starting application point of the concentrated load P, and they are
defined in numerical cable models. The number of load steps is chosen depended on the
wished detailed results. Then, 10 load values and the corresponding cable analysis results are
used to design the figures. Exception is the SAP models of a simple cable under uniformly
distributed load along its arc length, where 10 separate one step analyses are made. In this
kind of load, SAP program does not divide equidistantly the maximum load value. Curves’
limits are defined by the axial force capacity N“ of each cable. ADINA and SAP programs
extract results as deflections u and v.

In the accompanied CD, there is a list of the numerical models, which contains the attributes
of each model case. The models used in this chapter are commented with the word
‘comparison’. In the same CD, the .idb file for ADINA and the .sdb file for SAP can be found,
for each model case. Tutorials for ADINA and SAP programs, oriented to simple cables, can
be found at the link of reference [9] or requested from the author via e-mail.

Note: In some operating systems, user must save SAP models with a simple name, without symbols, at
the following path:

c:\Program Files\ Computers and Structures\

in order to run the analysis.

3.2 SIMPLE CABLES UNDER CONCENTRATED LOADS
3.2.1 Results of comparison between analytical and numerical solutions

The comparison between analytical and numerical curves, in case of concentrated loads or
imposed end displacements, verifies the rightness of the analytical solutions developed in
Paragraph 2.2. Reader can use either analytical formulas or the finite element software
ADINA and SAP for the analysis of a simple cable under concentrated loads or imposed end
displacements, as identical results occur.

3.2.2 Comparison diagrams of a horizontal cable under concentrated load in the
middle

Analytical solution: Paragraph 2.2.1
Parametric figures: Paragraph 2.5.2

1) So < S
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Here, z* = 0 as Sy < Sps and, so, v = z.

2.2.1~SAB=30m~0=0deg~a=0.5~15%

(] 0 deg
So 29.957 m

Sas 30.000 m

wPre 15.0 %

NPre 74.418 kN
E 165 GPa
da 20 mm
a 0.50 -

pmax 125 kN

Table 3-1: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP —8&—ADINA
140.0 -
120.0
100.0
80.0

P (kN)

60.0

40.0

000 050 1.00 150  2.00  2.50
v (m)

Figure 3-1: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8&—ADINA

600.0 -
500.0
400.0

300.0

N (kN)

200.0

100.0

000 050 1.00 150 200 250
v (m)

Figure 3-2: Cable’s axial force N as function of vertical deflection v
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2) So = Sps

Here, z* = 0 as Sy < Sps and, so, v = z.

2.2.1~SAB=10m~0=0deg~a=0.5~0%
(] 0 deg
So 10.000 m
E 150 GPa
da 10 mm
a 0.50 -
pmax 35.5 kN

Table 3-2: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP

40.0 -
35.0 -
30.0 -
25.0 A
20.0 A
15.0 A
10.0 -
5.0 A

P (kN)

—8—ADINA

0.40 0.60 0.80
v (m)

Figure 3-3: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

150.0 ~

125.0 -

100.0 -

75.0 -

N (kN)

50.0 -

25.0 -

0.40 0.60 0.80

v (m)

Figure 3-4: Cable’s axial force N as function of vertical deflection v
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3) So = Sus

P (kN)

N (kN)

2.2.1~SAB=20m~0=0deg~a=0.5~1.2
(¢] deg
So 24.000 m
Sas 20.000 m
So/Sas 1.20 -
E 165 GPa
da 20 mm
a 0.50 -
pmax 560 kN

Table 3-3: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

600.0

500.0

400.0

300.0

200.0

100.0

0.15 0.20 0.25
v(m)

Figure 3-5: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION

600.0

500.0

400.0

300.0

200.0

100.0

—e—SAP —8—ADINA

0.00 0.05 0.10

0.15 0.20 0.25
v (m)

Figure 3-6: Cable’s axial force N as function of vertical deflection v
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3.2.3 Comparison diagrams of an inclined cable under concentrated load at
arbitrary position

Analytical solution: Paragraph 2.2.2
Parametric figures: Paragraph 2.5.3

The complexity of the analytical solution prohibits the immediate design of the curves from it.
Thus, the following design procedure is applied: pairs (u,v) are taken from the numerical
solution, ADINA or SAP, and taking into account the point (x',z"), from the numerical model,
pairs (x,z) are extracted. These pairs are input in the 2-degree polynomial equation,
Eg. (2-41) in case A and Eq. (2-51) in case B, with output the value of the concentrated
load P, in non-dimensional form. The values of the concentrated load P, in dimensional form,
and of the cable’s axial forces Ny and Ng derive from the corresponding equations of
Paragraph 2.2.2.

1) So < Sps
2.2.2~SAB=30m~0=5deg~a=0.6~10%
-case A and B -
(] 5 deg
So 29.971 m
Sas 30.000 m
wPre 10.0 %
NPre 49.612 kN
E 165 GPa
da 20 mm
a 0.60 -
pmax 130 kN

Table 3-4: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP —&—ADINA
140.0 -

120.0 -
100.0 -

80.0 -

P (kN)

60.0 -

40.0 -

0.00 0.05 0.10 0.15
u(m)
Figure 3-7: Applied load P as function of horizontal deflection u
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——ANALYTICAL SOLUTION —e—SAP —8—ADINA

140.0
120.0
100.0

80.0

P (kN)

60.0
40.0

0.00 0.50 1.00

1.50 2.00 2.50

v(m)

Figure 3-8: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

600.0

500.0

400.0

300.0

N, (kN)

200.0

100.0

0.00 0.50 1.00 1.50 2.00 2.50

v (m)

Figure 3-9: Cable’s axial force N, as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

600.0

500.0

400.0

300.0

N (kN)

200.0

100.0

0.0

0.00 0.50 1.00 1.50 2.00 2.50

v(m)

Figure 3-10: Cable’s axial force Ng as function of vertical deflection v
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2) Sp =S
2.2.2~SAB=20m~0=10deg~a=0.3~0%
- caseA -
(] 10 deg
So 20.000 m
E 165 GPa
da 20 mm
a 0.30 -
pmax 144 kN

Table 3-5: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

160.0 -
140.0
120.0
100.0
80.0
60.0
40.0

P (kN)

0.00 0.10 0.20 0.30
u(m)
Figure 3-11: Applied load P as function of horizontal deflection u

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

160.0 -
140.0
120.0
100.0
80.0
60.0
40.0
20.0
0.0 &

P (kN)

1.50

v (m)
Figure 3-12: Applied load P as function of vertical deflection v
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3) So=Sus

N, (kN)

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

600.0 -

500.0

400.0

300.0

200.0

100.0

0.50 1.00 1.50

v(m)

Figure 3-13: Cable’s axial force N, as function of vertical deflection v

Ng (kN)

——ANALYTICAL SOLUTION —e—SAP

500.0

400.0

300.0

200.0

100.0

—B—ADINA

0.50 1.00 1.50

v (m)

Figure 3-14: Cable’s axial force Ng as function of vertical deflection v

2.2.2~SAB=20m~0=20deg~a=0.4~1.1
- caseB -
20 deg
22.000 m
20.000 m
1.10 -
165 GPa
20 mm
0.40 -
388 kN

Table 3-6: Properties of the numerical cable model
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——ANALYTICAL SOLUTION —e—SAP —8—ADINA
500.0 +

400.0
= 300.0
<
[a
200.0

100.0

0.0 @ T . T )
0.00 0.02 0.04 0.06 0.08
u (m)
Figure 3-15: Applied load P as function of horizontal deflection u

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

500.0 -

400.0 -

0.00 0.05 0.10 0.15 0.20 0.25
v (m)
Figure 3-16: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
600.0 -
500.0 -
400.0 -

300.0 -

Nx (kN)

200.0 -

100.0 -

0.0 @ T T 1
0.00 0.05 0.10 0.15 0.20 0.25

v(m)

Figure 3-17: Cable’s axial force N, as function of vertical deflection v
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——ANALYTICAL SOLUTION —e—SAP —8—ADINA
400.0 -

300.0

200.0

Ng (kN)

100.0

0.0 & T T T . )
0.00 0.05 0.10 0.15 0.20 0.25

v(m)

Figure 3-18: Cable’s axial force Ng as function of vertical deflection v

3.2.4 Comparison diagrams of a horizontal cable under concentrated load at
arbitrary position

Analytical solution: Paragraph 2.2.3
Parametric figures: Paragraph 2.5.4

The complexity of the analytical solution prohibits the immediate design of the curves from it.
Thus, the following design procedure is applied: pairs (u,v) are taken from the numerical
solution, ADINA or SAP, and taking into account the point (x',z"), from the numerical model,
pairs (x,z) are extracted. These pairs are input in the 2-degree polynomial equation,
Eq. (2-60), with output the value of the concentrated load P, in non-dimensional form. The
values of the concentrated load P in dimensional form and of the cable’s axial forces Na
and Ng derive from the corresponding equations of Paragraph 2.2.3.

1) Sp =< Sps

Here, z° = 0 as Sy < Sps and, so, v = z.

2.2.3~SAB=10m~0=0deg~a=0.65~15%

(] 0 deg
So 9.987 m

SAB 10.000 m

wPre 15.0 %

NPre 74.418 kN
E 180 GPa

da 20 mm
a 0.65 -

pmax 125 kN

Table 3-7: Properties of the numerical cable model
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P (kN)

P (kN)

Nx (kN)

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
140.0 -
120.0 -
100.0 -
80.0 -
60.0 -
40.0 -
20.0 +

0.0 & : : .
0.00 0.01 0.02 0.03
u(m)
Figure 3-19: Applied load P as function of horizontal deflection u

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
140.0 -
120.0 -
100.0 -
80.0 -
60.0 -
40.0 -
20.0

0.00 0.20 0.40 0.60 0.80

v(m)

Figure 3-20: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8&—ADINA

600.0 -
500.0
400.0
300.0

200.0

0.00 0.20 0.40 0.60 0.80
v (m)

Figure 3-21: Cable’s axial force N, as function of vertical deflection v
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——ANALYTICAL SOLUTION —e—SAP —8—ADINA

600.0 -

500.0

400.0

300.0

Ng (kN)

200.0

0.00 0.20 0.40 0.60 0.80
v(m)

Figure 3-22: Cable’s axial force Ng as function of vertical deflection v

2) So = Sms

Here, z° = 0 as Sy < Sps and, so, v = z.

2.2.3~SAB=20m~0=0deg~a=0.3~0%
0 0 deg
So 20.000 m
E 165 GPa
da 20 mm
a 0.30 -
pmax 145 kN

Table 3-8: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP —8—ADINA

)

-0.08 -0.06 -0.04 -0.02 0.00

u(m)

200.0

150.0

100.0

50.0

0.0

Figure 3-23: Applied load P as function of horizontal deflection u

P (kN)
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——ANALYTICAL SOLUTION —e—SAP —&—ADINA

175.0 -
150.0
125.0
100.0
75.0
50.0
25.0

P (kN)

1.50
v(m)

Figure 3-24: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
600.0 -
500.0 -
400.0 -

300.0 -

Ns (kN)

200.0 -

100.0 -

0.0 & === T T 1
0.00 0.50 1.00 1.50
v (m)

Figure 3-25: Cable’s axial force N, as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
600.0 -

500.0
400.0

300.0

N (kN)

200.0

100.0

1.50

v(m)

Figure 3-26: Cable’s axial force Ng as function of vertical deflection v
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3) So =S
2.2.3~SAB=30m~0=0deg~a=0.4~1.1

(¢] 0 deg

So 33.000 m

Sas 30.000 m

So/Sas 1.10 -
E 165 GPa
da 20 mm

a 0.40 -

pmax 421 kN

Table 3-9: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
- 500.0

- 400.0

300.0

P (kN)

- 200.0

-0.08 -0.05 -0.03 0.00
u(m)

Figure 3-27: Applied load P as function of horizontal deflection u

——ANALYTICAL SOLUTION —e—SAP —=—ADINA
500.0 ~

400.0

300.0

P (kN)

200.0

0.0 @ T T . )
0.00 0.10 0.20 0.30 0.40

v (m)
Figure 3-28: Applied load P as function of vertical deflection v
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——ANALYTICAL SOLUTION —e—SAP —8—ADINA

600.0 -

500.0

400.0

300.0

Nx (kN)

200.0

100.0

OO & T T T 1
0.00 0.10 0.20 0.30 0.40
v (m)

Figure 3-29: Cable’s axial force N, as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
500.0 -

400.0 -

300.0 -

N (kN)

0.00 0.10 0.20 0.30 0.40
v(m)

Figure 3-30: Cable’s axial force Ng as function of vertical deflection v

3.2.5 Comparison diagrams of an inclined cable under imposed end displacement

Analytical solution: Paragraph 2.2.4.1
Parametric figures: Paragraph 2.5.5

1) Sp<Sp
Cables, in this case, are not pre-tensioned as support B is free to move vertical and balance

to an unstressed position. Inclined pre-tensioned cables under imposed end displacement are
presented analytically in Chapter 5.
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2)

So = Shs

P (kN)

N (kN)

2.2.4~SAB=20m~0=45deg~0.9
- caseA -

0 45 deg
So 18.000 m
Sas 20.000 m

So/Sas 0.90 -

E 165 GPa
da 20 mm
pmax 310 kN

Table 3-10: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
400.0 ~

300.0

200.0

100.0

0.0 & T T 1
0.00 0.10 0.20 0.30

v (m)
Figure 3-31: Applied load P as function of vertical deflection v
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Figure 3-32: Cable’s axial force N as function of vertical deflection v
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2.2.4~SAB=20m~0=45deg~0%
- caseA -
0 45 deg
So 20.000 m
E 165 GPa
da 20 mm
pmax 354 kN

Table 3-11: Properties of the numerical cable model

——ANALYTICAL SOLUTION —e—SAP —8—ADINA
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Figure 3-33: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP —=—ADINA
600.0 -

500.0 -
400.0 -

300.0 -

N (kN)

200.0 -

100.0 -

0.00 0.10 0.20 0.30
v (m)

Figure 3-34: Cable’s axial force N as function of vertical deflection v

3) So=Sas
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2.2.4~SAB=20m~0=45deg~1.1
- caseA -

0 45 deg
So 22.000 m
Sas 20.000 m

So/Sas 1.10 -

E 165 GPa
da 20 mm
pmax 380 kN

Table 3-12: Properties of the numerical cable model
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Figure 3-35: Applied load P as function of vertical deflection v

——ANALYTICAL SOLUTION —e—SAP
600.0 -

500.0 -

400.0 -

300.0 -

N (kN)

200.0

100.0

0.30

—E—ADINA

0.00 0.10 0.20
v (m)

Figure 3-36: Cable’s axial force N as function of vertical deflection v
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3.3 SIMPLE CABLES UNDER UNIFORMLY DISTRIBUTED LOADS
3.3.1 Results of comparison between analytical and numerical solutions

The comparison between analytical and numerical curves, for the case of uniformly
distributed loads along cable’s horizontal projection and cable’s arc length, arises an
inaccuracy of the analytical solution due to an assumption that made.

The analytical procedure, that presented in Paragraph 2.3, takes into account only the
vertical deflection v of the cable and omits its horizontal u one. Under virtual circumstances, a
simple cable responses to a uniformly distributed load by deploying not only vertical v but
also horizontal u deflections. The accurate analytical solution, containing both deflections, is
too complex and is out of the context of this diploma thesis. So, the simplification in
mathematics leads to a deviation in cable’s curves, as shown below.

The comparison between curves of an inclined cable under uniformly distributed load
indicates that, the bigger the angle 6 is the larger the deviation between analytical and
numerical curves becomes. In other words, the effect of the horizontal deflection u in the
analytical solution increases as cable inclination increases. Figures referring to applied
load p/q as function of horizontal deflection u confirm the agreement between ADINA and
SAP programs. In case of a horizontal cable, there is identification between analytical and
numerical curves, which is an expected result, as a horizontal cable lacks of horizontal
deflection u, due to its symmetric geometry and loading.

The examination of a cable with initial unstressed length Sy equal to the distance spanned Sps
is sufficient to illustrate the disagreement between analytical and numerical solutions and
provide the reader a qualitative guide to his design procedure. The comparison for a
pre-tensioned cable or a cable with initial unstressed length S, larger than the distance
spanned Spg is not considered as requisite as leads to similar results.

3.3.2 Comparison diagrams of an inclined cable under uniformly distributed load
along its horizontal projection

Analytical solution: Paragraph 2.3.1
Parametric figures: Paragraph 2.5.6

Here, v=d_as Sy < Sps.

2.3.1~SAB=20m~0=20deg~0%
0 20 deg
So 20.000 m
E 165 GPa
da 20 mm

pmax 11.280 kN/m

Table 3-13: Properties of the numerical cable model
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Figure 3-37: Applied load p as function of horizontal deflection u
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Figure 3-38: Applied load p as function of vertical deflection v
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Figure 3-39: Maximum axial force N™ as function of vertical deflection v
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2.3.1~SAB=20m~60=40deg~0%
(¢] 40 deg
So 20.000 m
E 165 GPa
da 20 mm

pm 15.850 kN/m

Table 3-14: Properties of the numerical cable model
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Figure 3-40: Applied load p as function of horizontal deflection u
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Figure 3-41: Applied load p as function of vertical deflection v
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——ANALYTICAL SOLUTION —e—SAP —=—ADINA
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Figure 3-42: Maximum axial force N™ as function of vertical deflection v

3.3.3 Comparison diagrams of a horizontal cable under uniformly distributed
load along its horizontal projection

Analytical solution: Paragraph 2.3.2
Parametric figures: Paragraph 2.5.7

Here,z" = 0as Sy < Spgand, so, v =z=d_ .

2.3.2~SAB=20m~0=0deg~0%
(3] 0 deg
So 20.000 m
E 165 GPa
da 20 mm
pm 11.750 kN/m

Table 3-15: Properties of the numerical cable model
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——ANALYTICAL SOLUTION —e—SAP —=—ADINA

15.0

p (kN/m)

1.50

Figure 3-43: Applied load p as function of vertical deflection v
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Figure 3-44: Maximum axial force N™ as function of vertical deflection v

3.3.4 Comparison diagrams of an inclined cable under uniformly distributed load
along its arc length

Analytical solution: Paragraph 2.3.3
Parametric figures: Paragraph 2.5.8

Here, v=d_as Sy = Sps.
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2.3.3~SAB=20m~0=20deg~0%
(¢] 20 deg
So 20.000 m
E 165 GPa
da 20 mm

qm 10.582 kN/m

Table 3-16: Properties of the numerical cable model
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q (kN/m)
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Figure 3-45: Applied load q as function of horizontal deflection u
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Figure 3-46:
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Applied load q as function of vertical deflection v
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——ANALYTICAL SOLUTION —e—SAP —&—ADINA
600.0 -
500.0
= 400.0
<
s 300.0
£
=
200.0
100.0
0.0 .
1.50
v(m)
Figure 3-47: Maximum axial force N™ as function of vertical deflection v
2.3.3~SAB=20m~0=40deg~0%
40 deg
20.000 m
165 GPa
20 mm
11.947 kN/m
Table 3-17: Properties of the numerical cable model
——SAP —e—ADINA
15.0 -
10.0 +
€
~~
=
<
S 50 -
0.0 < . . .
0.00 0.20 0.40 0.60 0.80
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Figure 3-48: Applied load q as function of horizontal deflection u
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——ANALYTICAL SOLUTION —e—SAP —8—ADINA
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q (kN/m)

1.50

v(m)

Figure 3-49: Applied load q as function of vertical deflection v
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Figure 3-50: Maximum axial force N™ as function of vertical deflection v

3.3.5 Comparison diagrams of a horizontal cable under uniformly distributed
load along its arc length

Analytical solution: Paragraph 2.3.4
Parametric figures: Paragraph 2.5.9

Here, z° = 0as Sy = Sas and, so, v = z=d_ .
m
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2.3.4~SAB=20m~0=0deg~0%
(¢] 0 deg
So 20.000 m
E 165 GPa
da 20 mm
qm 9.891 kN/m
Table 3-18: Properties of the numerical cable model
——ANALYTICAL SOLUTION —e—SAP —=—ADINA
15.0 ~
~ 10.0 -
£
~
=
<
O
5.0 1
0.0 @——-—me™ . . .
0.00 0.50 1.00 1.50
v (m)
Figure 3-51: Applied load q as function of vertical deflection v
——ANALYTICAL SOLUTION —e—SAP —HE—ADINA
500.0 -
=
<
£
=
1.50
Figure 3-52: Maximum axial force N™ as function of vertical deflection v
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4 STATIC BEHAVIOR OF SIMPLE 1-DOF
CABLE NET UNDER CONCENTRATED
LOAD

4.1 SIMPLE 1-DOF CABLE NET MODEL

Figure 4-1 illustrates a simple 1-DOF cable net model in 2-D. The 3 Cartesian axes are
defined in the figure. The plane which is perpendicular to z-axis and includes points A and A’
is the reference plane for z-coordinates. Supports B and B’ could lay over or under this
reference plane. Here, the first case is shown. Equations of Chapter 4 are valid for both
cases. Cables’ supports have coordinates:

A (XAIOIO)
A’ (-XAIOIO)
B (OlyBIZB)
B’ (OI'YBIZB)

Cable 1 has as supports points A and A’ while cable 2 has points B and B’. The geometry of
the cable net gives:

L, = 2|xa| (4-1)
L, = 2lyg| (4-2)

Nonlinear static analysis of cables and cable nets
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m o
‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, &
o
[ o
<.N 0
i
v >
E1 A1 SD1 O
VAC X =1 = oON @
A A ™
e s e ?
m m

Figure 4-1: Geometry of a simple 1-DOF cable net

In addition, the following cables’ characteristics are noted on Figure 4-1:
Es: modulus of elasticity of cable $

As: cross-section of cable $

Sps: initial unstressed length of cable $

Ss: length of cable $ at the equilibrium state

where $ =1, 2.

4.2 FORM FINDING

Form finding is the initial step for nonlinear analysis of a simple 1-DOF cable net under
concentrated load. Cables, with initial unstressed length Sgs > Lg, have pre-tension wg". The

pre-tension ws""® is defined as:
gre
pre _
Wi =100 i (4-3)
$
where,
Ny is cable’s axial force capacity: N = A,f (4-4)
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fys is the material’s yield strength

and $ =1, 2.

Figure 4-2 shows each single cable, in the equilibrium state, with the corresponding forces in

case of cable 2 over the reference plane. The nodal point has coordinates:

0 (0,0,25").

Figure 4-2: Equilibrium state of a simple 1-DOF cable net without concentrated load

(cables are not in the same plane)

Assuming cables’ material as linearly elastic, Hooke's law gives:

NS S
O =BT = S = E

A

$

.-
* s

0% pre __ S$ _
= NJ® = E$A$[E;1]
0% 0%

where Sy is defined as:

S

2
=2 (zo*) +X,2

2

S, =2 (zB—zo ) +yg?

The combination of Egs. (4-3) and (4-5) leads to:
_ S

S . =__*%
” Wgrefy$
+1

100E,

The equation of static equilibrium in z-axis gives:

pre __ pre pre _ pre
VP = 2V = VP =

(4-5)

(4-6)

(4-7)

(4-8)

(4-9)

Nonlinear static analysis of cables and cable nets
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where,
e o] e 720
N?re = g and Ngre = i (4-10)
2 2
The combination of Egs. (4-6), (4-7), (4-9) and (4-10) gives:
2o Nz -z N
= (4-11)

\/(Zo* )2 +Xp° \/(ZB -2o' )2 +yg?

Cables’ axial force Ns"® comes from Eq. (4-3), given the pre-tension w¢"™, or from Eq. (4-5),
given initial unstressed length Sgs. The solution of nonlinear Eq. (4-11) is the unknown
z-coordinate of nodal point O z,".

4.3 NONLINEAR ANALYSIS

Usual loads of a simple 1-DOF cable net are the snow and the wind. Tension structures are
not sensitive in seismic loads. The snow and the wind are distributed loads applied
perpendicularly on the membrane which covers the cable net. The shape of the membrane is
assumed rhombus, as shown in Figure 4-3, and the 50% of the distributed load is delivered
by the central node. The other 50% goes, through the cables, to the supports. The
equivalent concentrated load P on the nodal point O has value:

1
P= 7 gLk, (4-12)

where q, is the distributed snow/wind load (pressure).

Ly

m m
distributed load equivalent concentrated load »
><
o [¢]
S ) A - A A
/
b o

Figure 4-3: Distributed load and its equivalent concentrated

The analysis of Paragraph 2.2.1 is implemented, given the initial unstressed length Sg4 from
Eqg. (4-8). The nodal point has coordinates:

0 (0,0,zo).

Assuming cables’ material as linearly elastic, Hooke’s law gives:
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N S, -S S
— $ _ s Jos _ $ _ ,
0$_E$8$:>A$_E$S%:>N$_E$A$(SO$ 1] (4-13)
where S; is the length of cable $ at the equilibrium state:
S, = 2J2o> +Xp° (4-14)
S, =2 (ZB'ZO)2+YB2 (4-15)
The geometry of cable net, for both load directions, gives:
V. z V. Z5-Z
L= |S—°| and —2 = | 5 ol (4-16)
N1 et § N2 22
2 2
The vertical component V of axial force Ny derives from Egs. (4-13) to (4-16). So:
1 1
V, =2 ‘ZO‘ E.A; ( - 22} (4-17)
So1 2\Zp +Xa
v, = Z‘ZB } Zo‘EzAz SL' 1 T (4-18)
02 2\/(z5725 ] +Yg

Cable’s axial force Ny can be expressed as the percentage wg of cable’s axial force
capacity N as:

N
w, =100 chp (4-19)
$
where $ =1, 2.

A simple 1-DOF cable net under concentrated load in the direction —z, for instance snow or
external wind, is illustrated in Figure 4-4.

Nonlinear static analysis of cables and cable nets
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Figure 4-4: Equilibrium state of a simple 1-DOF cable net under concentrated load in the direction -z
(cables are not in the same plane)

The equation of static equilibrium in z-axis gives:
2V, +P =2V, (4-20)

Using Eq. (2-11), the concentrated load P applied at the middle of simple cable 2 derives
from:

) & (z20) (4-21)
So2 2, L?
(2Z520) +5

(2-11) = P = 2E,A

Replacing Egs. (4-17), (4-18) and (4-21) into (4-20) and solving nonlinear Eq. (4-20), the
new value of z-coordinate of nodal point O zis calculated.

In case of a concentrated load in the direction +z, for example internal wind, the equation of
static equilibrium in z-axis is:

2V, +P =2V, (4-22)
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Figure 4-5: Equilibrium state of a simple 1-DOF cable net under concentrated load in the direction +z
(cables are not in the same plane)

V; and V, come from Egs. (4-17) and (4-18) correspondingly. The concentrated load P
applied at the middle of simple cable 1 comes from Eq. (2-11):

2 1
(2-11) =P =2EA | —-— |z

. (4-23)
So1 2, L,

The solution of nonlinear Eq. (4-22) gives the new value of z-coordinate of nodal point O z,.

4.4 MODELING WITH MATLAB

Egs. (4-11), (4-20) and (4-22) are nonlinear and, so, the finding of the solution is a complex
and time-consuming procedure. In such cases, MATLAB can provide accurate and quick
solutions. MATLAB is a high-performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use environment where problems
and solutions are expressed in familiar mathematical notation. MATLAB is an interactive
system whose basic data element is an array that does not require dimensioning. This allows
user to solve many technical computing problems, especially those with matrix and vector
formulations, in a fraction of the time it would take to write a program in a scalar
noninteractive language such as C or FORTRAN [10].

In the context of this diploma thesis, the form finding of Paragraph 4.2 and the nonlinear
analysis of Paragraph 4.3 are modeled in MATLAB. For this purpose, software for the
nonlinear static analysis of 1-DOF cable net is developed. User can easily define input values,
take instant nonlinear solutions, check if they are acceptable, change specific cables’
parameters or applied loads and produce graphical results. The software and its manual are
contained in the accompanied CD or can be found at the link of reference [9].

EXAMPLE

A simple 1-DOF cable net is analyzed. At first, the form of the 1-DOF cable net is found
without external loads and, afterwards, distributed loads at +z direction are imposed. The
input data and the results of the analyses are presented in the following screenshots.

Nonlinear static analysis of cables and cable nets
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B Cable Net o] (0 B
— CABLE NET
—Cable 1 (AA) —Cahle 2 (BB) = ¥
diameterd1:| 30 | mm diameterd2: | 30 | mm @ @
modulus of elasticity E1: | 165 | GPa modulus of elasticity E2: | 485 |GPa | | YT T T
yield strength 1: [ 1 55 | GPa yield strength 1y2: [ { 55 | GPa
pre-tensionwl_pre:| 3p | o pretensionw2_pre: | 30 | % ¥ >
CABLE1 [e]
o <—1
¢ » A
& z[ x °N o
coordinate x| 10 | m i &
coordinatey8:| & |m ; ]
coordinate zB: 6 |m i E
| ok
i o i
‘automatically due to the symmetry of the 1-DOF cable net. 1
I
ok
Figure 4-6: Screenshot for 1-DOF cable net geometry
T Loads [E=SHERT X"
® & El
—LOAD:

-2 directi

+z directi

’7 snow wind pressureq: | 3| kNM/me2

’7 wind pressure p: | 2| kNJmA2

Ls

m

distributed load q or p equivalent concentrated load P
Q

—_—
A A A
P =05 E o "td0rp) =
=0.25"L "L (g orp)

o

STEP 1: FORM FINDING

Figure 4-7: Screenshot for loads
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B Form Finding

et

Clear Exportto Text

—FORM FINDING
Cable1{dp)——— Cabhle 2 (BB)
pre-tension N1_pre: |335.01 ki pre-tenzion N_pre: 335 04 kn
vertical component 105,94 kN vertical component 10537 kn
unstressed length 801 (24 027 m unstressed length 502: 16.81; m
stressed lenath 81: 21.08° m stressed length 52: 'iﬁ'éaf m
horizontal length L1220 | 4y horizontal length L2: | 16 |

y(m 10 -0 *(m)
The equilibrium point ofthe 1-DOF cable netis (0, 0,3.333 )y

Parametric Figurs

B0 Form_Fincing 1 o ol

) ?igure 4-8: Screenshot for form finding

Clear Exportto Text

—FORM FINDING
—Cable1(pA)— Cable 2 (BB)
pre-tension NT_pre: | - | kN pre-tension N2_pre: | _ |
wertical comparent | - | ki vertical component | - |y
unstressed length 501: | - m unstressed length 8020 - m
stressed length 81: - m stressed length 82: | - m
hotizontal length L1: | 20 | ¢y horizontal length L2 | 18 | 1y
Bem
A
E
£
® 24
0L
100
wipre (%) 00 w2pre (%)
The equilibrium point of the 1-DOF cable netis (0,0, - b

Form Finding

»

Figure 4-9: Screenshot for parametric figure

STEP 2: NONLINEAR ANALYSIS FOR CONCENTRATED LOADS P

—z direction

pressure q = 3.0 kN/m?
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n Snow_wind_pressure_q = ‘ =
Clear Exportto Text ]
— -z direction
—Cable1{dh)——  —Cable 2 (BB}

axialfaree [172.4) kM avial force (541 2 kny

vertical component 53,83 ki vertical componentV2: [173.8 ki

capacity N1_gap: [1116) kM capacity NZ_cap: 1116 ki

percentage wi; 11543 o petcentage w2: 48.46 o%

unstressed length 2'1 'mg unstressed length 1681

=

m
stressed length S1: [21.05 m stressed lenath 521 16.29
m

harizontal length L1: | 20 horizontal length L2: | 16

-10 10

y (m) *(m)

The equilibrium pointof the 1-0OF cable netis 3.28€
Pointdeflection 0.046/m
Pressure ;| 3 | kN/m"2

Equilibrium Path |

Figure 4-10: Screenshot for static analysis

+z direction

pressure p = 2.0 kN/m?

‘Wind_pressure_p - ; =
Clear Exportto Text El
—+z direction

—Cable 1 (pA)——————————  —Cable 2 (BEB)

axialforce (4454 kW avial force 408 3 kN
vertical companent [142.0) kN vertieal component (62,02
capacity N1_tap: 1116, kM capacity N2_cap: 1116 kN
percentage wl: |35 a8 % parcentage wa: [17.7¢ %
unstressed lenght |21 02 m unstressed lenght |16.81 m
stressed length §1: 2110 m stressed length S2: [16.84 m
harizontal length L1: | 20 m horizontal length L2: | 16 | m

T

= Load |
=
a
0 1
0 0.02 0.03 0.04
v (m)
The equilibrium point ofthe 1-DOF cable netis 3.362 3
Foint deflection (0.031m
Pressure p: | 2 | kNim*2
Static Analysis ‘

Figure 4-11: Screenshot for equilibrium path
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4.5 PARAMETRIC ANALYSIS

What affects, in a significant way, the final place of nodal point O and the axial force Ny of
cable $ is the initial pre-tension w¢"™®. The geometry of cable net at the equilibrium state
should fulfill architectural demands while axial force Ny neither can reach N4, as cable $
might break, nor the value 0, as it might get loose. Here, parametric figures of a 1-DOF cable
net are presented.

EXAMPLE
Below, a 1-DOF cable net model for parametric analysis is presented. Figure 4-12 shows a

screenshot from the tab of input data. As wl_pre and w2_pre change their values in
parametric figures, values on the screenshot are just a possible combination.

— CABLE NET
—Cable 1T{AR)—————————————— Cable 2 (BEB)
diameterdi:| 30 | mm diameterd2: | 30 | mm
modulus of elasticity E1: | 165 | GPa modulus of elasticity E2: | 165 | GPa
yield strength f¢1: | 4 55 | GPa vield strength f2: | 4 55 | GPa
pre-tensionwi_pre: | 3p | o pre-tension w2_pre: | 30 | o
— Coordinat

coordinate ¥A | 10 | m
coordinateyB: . 8 | m

coordinatezB: | & | m

MOTE: Remaining coordinates are defined
automatically due to the symmetry of the 1-DOF cable net.

Figure 4-12: Screenshot for input data

For the purposes of the parametric analysis, distributed loads, such as snow and wind, are
considered. These loads are applied perpendicularly on the membrane which covers the
1-DOF cable net. The equivalent concentrated nodal load P, in kN, applied on the central
node is defined in Eq. (4-12).

The parametric figures contain the following symbols.
Form finding
Zo : z-coordinate of the central node, before the application of external loads, in m

w;P® : pre-tension of cable 1, at the equilibrium state, as a percentage (%) of the
cables’ axial force capacity N;“P

pre _ N?re 3 N][-)re
! fa oA

w,P"® : pre-tension of cable 2, at the equilibrium state, as a percentage (%) of cables’ axial

Nonlinear static analysis of cables and cable nets
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force capacity N,

pre _ Ngl'e : Np2>re
22

Sps : initial unstressed length of cable $, where $ =1, 2

Static analysis

Zo : z-coordinate of the central node, after the application of external loads, in m

w; : axial force of cable 1, at the equilibrium state, as a percentage (%) of cables’ axial
force capacity N,

w, =100 N'}';p (6-26)

w, : axial force of cable 2, at the equilibrium state as a percentage (%) of cables’ axial

cap

force capacity N,

N,

(6-27)
NG

w, =100

STEP 1: FORM FINDING

0 w2pre (%)

wipre (%) Y

Figure 4-13: z-coordinate of nodal point O,
for different values of pre-tensions (w;°™, w,P™®)

Figure 4-13 presents a parametric surface, which describes the z-coordinate of nodal point O
for different values of pre-tensions (W, w,""®). As w;"* increases and w,""® decreases, the
equilibrium point O tends to poise lower. Increase of w;"* means increase of the axial
force N;P"¢, in other words cable 1 tends to drag to its side the equilibrium point O.
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30% ——40% ——50%

25" (M)

0.0 20.0 40.0 60.0
w;Pre (%)

pre

Figure 4-14: z," — pre-tension w;
for different values of pre-tension w,

curves, at the equilibrium state,
pre

30% ——40% ——50%

25" (m)

0.0 20.0 40.0 60.0
szre(O/o)

pre

Figure 4-15: z," — pre-tension w,
for different values of pre-tension w;

curves, at the equilibrium state,
pre

The dependence of form finding on pre-tensions w;"® and w,”™ is presented in
Figures 4-14 and 4-15. The larger the pre-tension w,* is, the higher the equilibrium point
stands. The reverse correlation incurs for pre-tension w;"*. These figures prove that the
increase of pre-tension makes cables reduce their stressed length by moving the equilibrium
point nearer to the level of their supports, as larger values of cable tension occur.
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——501 —e—S02
25.0 -
-

20.0 -
~15.0 - o
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W5 10.0 -

5.0 -

0-0 T T 1

0.0 20.0 40.0 60.0

w;Pre (%)

Figure 4-16: Sps — pre-tension w;P" curves, at the equilibrium state, in case that
pre-tension w,""® = 50%

——501 —e—S02
25.0 -
20.0 - G\e\e\eﬂ
~15.0 -
E
U5 10.0 -
5.0 -
O-O T T 1
0.0 20.0 40.0 60.0

w,Pre (%)

Figure 4-17: Sy — pre-tension w,™™ curves, at the equilibrium state, in case that
pre-tension w;""® = 50%

Figures 4-16 and 4-17 indicate that the increase of pre-tension in cable $ leads to decrease of
its initial unstressed length Sq4, where $ = 1, 2. This is in accordance with the fact that, pre-
tension in cables is caused by an initial unstressed length shorter than the distance spanned.
The shorter the cable is the larger pre-tension acquires. The initial unstressed length of the
second cable increases.

STEP 2: NONLINEAR ANALYSIS FOR CONCENTRATED LOADS P
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3.45 ~

3.40 -

P(kN) 335 -

-600.0 -400.0 -200.0 0,0 200.0 400.0 600.0
.30 A

Z5 (m)

3.25 -

3.20 -

Figure 4-18: z5 — P curve for w;""® = w, = 30.0 %

Figure 4-18 shows the response of the central node to concentrated nodal load P. The curve
is, almost, linear indicating that the geometric nonlinearity is not intense, as cables with
reverse curvatures tend to eliminate it. Figure 4-18 occurs from the combination of two
separate analyses for concentrated nodal load P at £z directions.

——P at -z direction = —e—P at +z direction
6.00 -

U

o

S
1

»

o

S
1

\

0.0 20.0 40.0 60.0
Wlpre (0/0)
Figure 4-19: z, - w;"", in case that
pre-tension w,P® = 14 % (-z direction) and 46 % (+z direction)

Figure 4-19 describes the relationship between z; and w;"™®. The larger the pre-tension w,""*
is, the lower the equilibrium point stands, both cases of concentrated load P. Figures 4-14
and 4-15 show that the larger the pre-tension w;"is, the lower the equilibrium point stands,
in case of form finding. The same behavior occurs for a concentrated nodal load P. In case of
load P at —z direction, the equilibrium point stands lower, in comparison to this in case of load
P at +z direction, as the direction of the load indicates the direction of the nodal deflection.
Pre-tension w,"™ remains constant but has different values in +z direction, as there is not a
common section, within cables do not break and do not loose, in the range of its values for
different kinds of loads P.
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——P at -z direction —e—P at +z direction
4.00

o

3.00

Zo (M)
N
=
o

S

0.0 20.0 40.0 60.0
szre (0/0)
Figure 4-20: zo - w5, in case that pre-tension w;""® = 50 %

1.00

0.00

Figure 4-20 describes the relationship between z, and w,”™ . Here, the larger the
pre-tension w,"® is, the higher the equilibrium point stands, both cases of concentrated
load P. According to Figures 4-14 and 4-15, the larger the pre-tension w,” is, the higher the
equilibrium point stands, in case of form finding. The same behavior occurs for a
concentrated nodal load P. In case of load P at —z direction, the equilibrium point stands
lower, in comparison to this in case of load P at +z direction, as the direction of the load
indicates the direction of the nodal deflection.

The values of P at + z directions are defined below.

direction —z

pressure g = 12.00 kN/m? = P = 960 kN

—_—wl —e—w2

100.0 -
e-e-e-0-0

80.0 -
~ 60.0 -
3
= 40,0 -

200 - /

0.0 : : .

0.0 20.0 40.0 60.0

W1 pre (0/0)

Figure 4-21: wy — pre-tension w;"™® curves, at the equilibrium state, in case that
pre-tension w,P® = 14 %
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According to Figure 4-21, the larger the pre-tension w;""® is, the larger axial force w; and the
smaller axial force w, occur, given constant values of pre-tension w,”® and concentrated
nodal load P. A larger value of axial force w; arises for higher starting level of
pre-tension w;" and constant value of concentrated nodal load P. What is more, Figure 4-16
indicates that the larger the pre-tension w;"is, the larger initial unstressed length Sy, occurs,
in other words smaller pre-tension w,”® or smaller axial force w,, for constant value of
concentrated nodal load P.

—wl —e—w2

e

40.0 -
20.0 A \
00 T T T 1
0.0 5.0 10.0 15.0 20.0
szre (0/0)

Figure 4-22: wg — pre-tension w,""® curves, at the equilibrium state, in case that
pre-tension w;"® = 45 %

Figure 4-22 indicates that the larger the pre-tension w,”™ is, the smaller axial force w; and
the larger axial force w, occur, given constant values of pre-tension w;" and concentrated
nodal load P. This is true, as for higher starting level of pre-tension w,"" and constant value
of concentrated nodal load P, a larger value of axial force w, arises. Moreover, Figure 4-17
indicates that the larger the pre-tension w,"is, the larger initial unstressed length Sy, occurs,
in other words smaller pre-tension w;""® or smaller axial force w;, for constant value of
concentrated nodal load P.

direction +z

pressure p = 6.6 kN/m? = P = 526 kN
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—_—wl —e—w2
100.0 -

20.0 -

0.0 T . .
0.0 20.0 40.0 60.0
W1 pre (0/0)

Figure 4-23: wy — pre-tension w;"™® curves, at the equilibrium state, in case that
pre-tension w,"" = 46 %

According to Figure 4-23, the larger the pre-tension w;" is the larger axial force w; and the
smaller axial force w, and occur, given constant values of pre-tension w,® and concentrated
nodal load P. A larger value of axial force w; arises for higher starting level of
pre-tension w;"™ and constant value of concentrated nodal load P. What is more, Figure 4-16
indicates that the larger the pre-tension w;"*®is, the larger initial unstressed length Sy, occurs,
in other words smaller pre-tension w,"® or smaller axial force w,, for constant value of
concentrated nodal load P.

—wl ——w2
80.0 -

60.0 -

W$ (0/0)
D
o
o

20.0 -

0.0 /

40.0 45.0 50.0 55.0
w, Pre (%)

Figure 4-24: wy — pre-tension w,”™® curves, at the equilibrium state, in case that
pre-tension w;""® = 30 %

Figure 4-24 indicates that the larger the pre-tension w,"*® is the larger axial force w, and
occurs, given constant values of pre-tension w;" and concentrated nodal load P. This is true,
as for higher starting level of pre-tension w,”™ and constant value of concentrated nodal
load P, a larger value of axial force w, arises. Moreover, axial force w; remains almost
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constant with a slight increase. This occurs from the load conditions and cable net geometry
of the model and cannot provide a physical explanation of cable net response.

Notice in Figures 4-21 to 4-24 that, the additional axial force (ws — ws"®), due to the
concentrated nodal load P, is significantly larger than the initial pre-tension ws", where
$ = 1, 2. For instance, as presented in Figure 4-21, for w;"® = 40.0 % and w,"® = 14.0 %, w,
is around 90 %. In other words, 90 — 14 = 76 % of axial force of cable 2 occurs from the
concentrated nodal load P and is according to a good design policy. The range of ws"®, where
$ =1, 2, in STEP 2 differs in +z-directions of concentrated nodal load P, as it depends on
cables’ diameter and cables’ axial force capacity.

4.6 NUMERICAL SOLUTION

The comparison between analytical and numerical curves verifies the rightness of the
analytical solutions developed in Paragraphs 4.2 and 4.3. Reader can use either analytical
formulas or the finite element software ADINA and SAP for the analysis of a 1-DOF cable net,
as identical results occur. In the accompanied CD, there is a list of the numerical models,
which contains the attributes of each model case. The model used in this chapter is
commented with the word ‘comparison’. In the same CD, the .idb file for ADINA and the .sdb
file for SAP can be found.

Analytical solution: Paragraph 4.2 and 4.3
Parametric figures: Paragraph 4.5

4~2_ crossed_cables_pre-tensioned
Xa 10.000 m
YB 5.000 m
Zg 8.000 m
E; =E, 165 GPa
fvl = fVZ 1.58 GPa
dA1 = dAz 20 mm

Table 4-1: Characteristic values of numerical cable model

ADINA

e  Form finding

The pre-tension is applied by defining the value of initial strains. At first, random values of
initial strains are chosen. The results of solution, for different combinations of initial strains,
are presented below.
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——ANALYTICAL SOLUTION —e—ADINA
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Figure 4-25: z," — pre-tension w;P™ curves, at the equilibrium state
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Figure 4-26: z," — pre-tension w,"™ curves, at the equilibrium state

pre

The combination of pre-tensions (w:"®, w,") derives from the same value of z," of

Figures 4-25 and 4-26.

e Nonlinear analysis for concentrated load
The random input values of initials strains are:

Initial strain of cable 1 = 0.004
Initial strain of cable 2 = 0.005

The results of the solution without concentrated load P, for these input values, are considered
as the pre-tensions for nonlinear analysis for concentrated load P.
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- z direction

P™® = 530.0 kN

——ANALYTICAL SOLUTION  —e—ADINA
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Figure 4-27: zo — w; curves, at the equilibrium state, for various values of P
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Figure 4-28: zo — w;, curves, at the equilibrium state, for various values of P

Points of Figures 4-27 and 4-28 having the same value of z5 correspond to the same value of
applied P.

+ z direction

P™ = 220.0 kN
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——ANALYTICAL SOLUTION  —e—ADINA
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Figure 4-29: zo — w; curves, at the equilibrium state, for various values of P
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Figure 4-30: zo — w; curves, at the equilibrium state, for various values of P

Points of Figures 4-29 and 4-30 having the same value of z, correspond to the same value of
applied P. The local difference in Figure 4-30 is 0.001 m, which is a negligible value.

SAP

e  Form finding

The pre-tension is applied by defining the value of tensions at I-End of each cable. At first,
random values of tensions at I-End of each cable are chosen. The results of solution, for
different combinations of tensions at I-End of each cable, are presented below.
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——ANALYTICAL SOLUTION —e—SAP
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Figure 4-31: z," — pre-tension w;""® curves, at the equilibrium state
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Figure 4-32: z," — pre-tension w,"™® curves, at the equilibrium state

The combination of pre-tensions (w:"®, w,") derives from the same value of zy" of
Figures 4-31 and 4-32.

* Nonlinear analysis for concentrated load
The random input values of tensions at I-End of each cable are:

Axial force at I-End of cable 1 = 259.050 kN
Axial force at I-End of cable 2 = 207.240 kN

The results of the solution without concentrated load P, for these input values, are considered
as the pre-tensions for nonlinear analysis for concentrated load P.
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- z direction

P™ = 506.0 kN
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Figure 4-33: zo — w; curves, at the equilibrium state, for various values of P
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Figure 4-34: zo — w;, curves, at the equilibrium state, for various values of P

Points of Figures 4-33 and 4-34 having the same value of z, correspond to the same value of
applied P.

+ z direction

P™ = 250.0 kN
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——ANALYTICAL SOLUTION —e—SAP
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Figure 4-35: zo — w; curves, at the equilibrium state, for various values of P
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Figure 4-36: zo — w; curves, at the equilibrium state, for various values of P

Points of Figures 4-35 and 4-36 having the same value of z, correspond to the same value of
applied P. The local differences in Figure 4-36 are less than 0.001 m, which is a negligible
value.
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5 RADIO MAST WITH PRE-TENSIONED
CABLES

5.1 ANALYTICAL SOLUTION

A radio mast is, typically, a tall structure designed to support antennas for
telecommunications and broadcasting, including television. It is sensitive to horizontal loads,
such as seismic loads, and, due to its height, significant values of moment can occur at its
base. Pre-tensioned cables are placed, in a symmetric way, along its height in order to
improve structure’s stability. Figure 5-1 illustrates a radio mast having two symmetric
pre-tensioned cables. Both cables have initial unstressed length Sy < Sxc = Spe, where Sac
(Sge) is the distance between points A (B) and C. The following analysis does not take into
account cables’ self weight. In such tall structures, self weight provokes cables’ curvature,
which cannot be omitted during the design procedure. Moreover, the vertical deflection of
point C is omitted for simplification reasons. Curves’ limits are defined by the axial force
capacity N° of each cable.

Nonlinear static analysis of cables and cable nets



162

Chapter 5

DETAIL "c¢"

Figure 5-1: Radio mast model with pre-tensioned cables

A horizontal concentrated load P provokes horizontal displacement u of mast’s peak and, as a
result, horizontal imposed end displacement u of cables. Axial force of cable A N, comes out

from Eq. (2-77) and, in non-dimensional terms, from Eq.

Pre-tension NY* is defined as follows:

(2-77) = N =N, (x=x") = EA {;1/1+(tane)2-1}

or

(2-78) = N3 =N, (x'=x") = ’;7.,/1 +(tang)’ -1

Axial force of cable B Ng is defined by Hooke's law as:

for So < Spc

(5-1)

(5-2)
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N AS Sgc-ucosf) - S
0=E£:>—B=E—:NB=EA(BC )-So (5-3)
S S
where A is the cross-section and E is the modulus of elasticity of both cables.
Correspondingly:
(5-3) = Ny (u=0) = Ng© (5-4)

Pre-tension N is expressed as the percentage wP"* (%) of cable’s axial force capacity N,
as defined in Paragraph 2.5.1, where i = A, B. In case of a radio mast:

pre

WP® = wgP® = wP™ (5-5)

Parameter r (%) describes the axial force of cable B Ng as function of the horizontal end
displacement u, according to the following equation:

N (Sgc-ucosB) - S
e =100 : (5-6)

SBC - So

r =100

10% ——20% —8—30%

100.0

80.0

60.0

r (%)

40.0

20.0

0.0 . T .
0.00 0.05 0.10 0.15 0.20

T (=

u(m)

Figure 5-2: r — u curves for different values of pre-tension wP™, in case that 8 = 60 deg, Sgc = 30 m,
E = 165 GPa and d = 30 mm

Figure 5-2 shows the dependence of parameter r on the pre-tension wP™®. Radio masts with
larger values of pre-tension wP™ keep cable B tensioned for larger values of horizontal end
displacement u, as the starting level of axial force N is higher, where i = A, B.

The maximum value of the horizontal end displacement u™*
restraints:

is determined from the following

e  Axial force of cable A Ny must not exceed N3 = Af,

e Cable B must not loosen. Cable’s looseness provokes, in due course, attritions in cable’s
joints decreasing its efficiency.
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So,
(2-77) = NI® =N, (x™) = max _ || (fy+E o }
-77) = Np™ = N, (x™) = Af, = u™ = Y|S0 | L - x (5-7)
and
r=0% S-S
(5-6) = u™ = Bccoseo (5-8)
Finally:
2
. f,+E " -
o =i [ e, S 9

5.2 EQUIVALENT SIMPLE 1-DOF CABLE NET MODEL

The development of an analytical relationship between the horizontal concentrated load P and
the horizontal deflection u is a complicated and time-consuming procedure. The comparison
between the radio mast model, as shown in Figure 5-1, and the simple 1-DOF cable net,
which is presented in Chapter 4, reveals equivalence. Indeed, if one cable of the simple net of
Figure 4-1 is twisted 90 degrees, in order both cables lay on the same plane, an alternated
cable net model is created, as shown in Figure 5-3. This new cable net model is equivalent to
two mirrored radio masts. Notice that, the vertical deflection of point C cannot be
implemented in the case of the twisted cable net, as exists in a real radio mast.

Figure 5-3: Equivalence of a twisted simple 1-DOF cable net with two mirrored radio masts
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The application of a concentrated load 2P at the nodal point O of the twisted simple 1-DOF
cable net gives the same results as if there was a single radio mast imposed under horizontal
concentrated load P. This assumption is proven by the figures of Paragraph 5.4. Using
MATLAB program, the analysis of a simple 1-DOF cable net imposed under concentrated

nodal load 2P gives results for the deflection zz -z, and cables’ axial force Ng, where

$ = 1, 2, for different values of load 2P. Retaining the same values of deflection u = z; - Zg

and cables’ axial force N;, where i = B, A, and assuming horizontal concentrated load % =P

curves for the radio mast are designed in Paragraph 5.4.

The equivalence of these models gives the opportunity to extract an analytical expression of
the stiffness K.t Of a radio mast. Otherwise, the mathematical procedure would be quite
complex. It is considered that both cables remain tensioned or, in other words, that cable B
does not get loose sometime, as this provokes attritions in cable’s joints.

The simple 1-DOF cable net of Figure 4-4 is assumed. Eq. (4-20) describes the static
equilibrium in z-axis, in case of a nodal concentrated load P. The replacement of Egs. (4-17)
and (4-18) into (4-20) gives:

1 1

- -ZoEA (5-10)
%0 2\/(ZB'ZO)Z+YB [SO 2\/ZOZ"'XA J

P(zo) = 44(z3-20)EA

(=A, =A (5-11)

The expansion of Eq. (5-10) in Taylor series around the value z, = Z*o gives:

P(zo) = P(z5) +

12
2EA(zg-2 * 2
(%) - EAZOT pp 24 +EA[

D R

*

e )

4+ <=

(5-12)

* Z
The equilibrium point, in the form finding step, has z-coordinatez, = 7‘3 , as cables have the

same characteristics and the cable net is symmetric. So:

P(z)=0 (5-13)
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Comparing Figures 4-1 and 5-1 and taking into account the equivalence indicated on
Figure 5-3, the symbols of Eq. (5-12), which refer to a cable net, can be replaced by the
following symbols, which refer to a radio mast:

X, =Yg = L =sinBS,.

S, = 25,

z, — 2c0s6S,.

zg — €0sBS,.

*
Z, - C0sBS,. -u=2z,-u

Eqg. (5-12) turns into:

2
(5-12) = P =4gA| 0571 1 1 1ok u (5-14)
Sac \Sac So

The simple 1-DOF cable net has stiffness K.e. S0, the radio mast, which is considered as the
half of a cable net, has stiffness Kpast:

K 2
Kiast = 5+ = 2EA cose /1.1 (5-15)
Sac (Sac So

According to Paragraph 2.2.4.2, Eq. (5-15) is the equivalent spring constant Ks, in kN/m, of a
linear spring. Using Eqg. (2-183), the following parametric figure is created:

——30deg —e—45deg —=—60deg
3,000.0 -

2,500.0 -

2,000.0 -

1,500.0 -

mast (KN/m)

K
=
o
S
S
o
1

500.0 -

0.0 T T T T 1
0.0 20.0 40.0 60.0 80.0 100.0

were (0/0)

Figure 5-4: Kast — WP curves for different values of angle 6, in case that
Sac=30m, E=165GPa, f, = 1.58 GPa and d =30 mm
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Figure 5-4 describes the stiffness K. Of @ radio mast as function of angle 6 and
pre-tension wP™. As the angle 8 increases, stiffness K. decreases because the horizontal
component of axial force of cable A, which opposes to the horizontal deflection, decreases.
Moreover, increase of wP™® leads to a slight increase of Ky, as pre-tension wP™® adds
stiffness Knast in the model.

5.3 EFFECTS OF PRE-TENSIONING

Radio masts are stabilized by pre-tensioned cables. This pre-tension wP™ is applied by initial
unstressed length Sy shorter than the distance spanned Syc or Sgc. Here, parametric diagrams
of a radio mast are presented, for different values of pre-tension wP®. Sample values of
pre-tension wP® are increased, corresponding to real situations. Figures are designed using
the SAP model with title ‘5~SAC=30m~06=45deg~10-30%.SDB".

0 45 deg
Sac 30.000 m

E 165 GPa
da 20 mm

Table 5-1: Parameters of the radio mast model

10% 20% —&—30%
400.0 ~

300.0

200.0

P (kN)

100.0

0.0 =;'; T T T 1
0.00 0.10 0.20 0.30 0.40
u (m)

Figure 5-5: P — u curves for different values of pre-tension wP™®

The response of radio mast, as shown in Figure 5-5, is almost independent from
pre-tension wP, when both cables are tensioned. When cable B gets loose, the stiffness Knast
decreases abruptly, as only cable A contributes to the response to the horizontal concentrated
load P, and is larger (slightly steeper curve) for larger values of pre-tension wP®, as
pre-tension wP™ adds stiffness Kmast in the model.
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10% —e—20% —&—30%
600.0 -

500.0 -

400.0 -

300.0 -

N (kN)

200.0 -

)

100.0 <

0.0 T T T 1
0.00 0.10 0.20 0.30 0.40

u(m)

Figure 5-6: Axial force of cable A N, as function of horizontal deflection u
for different values of pre-tension wP™

10% 20% —=—30%
160.0 -

140.0
120.0
100.0

80.0

Ng (kN)

60.0
40.0
20.0

0.0 S—o—3] o
0.00 0.10 0.20 0.30 0.40

u(m)

Figure 5-7: Axial force of cable B Ng as function of horizontal deflection u
for different values of pre-tension wP™

Radio masts with larger pre-tension wP™ have larger values of axial force N;, where i = A, B,
for the same value of horizontal deflection u as the starting level of axial force NP is higher,
and sustain cable B tensioned for larger values of horizontal deflection u. As a consequence,
the maximum value of the horizontal concentrated load P™ is depended on cables’

pre-tension wP™,
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5.4 NUMERICAL SOLUTION

5~SAC=30m~0=60deg~20%
- radio mast -

0 60 deg
So 29.943 m
Sac 30.000 m
wPre 20.0 %
NPre 223.254 kN

E 165 GPa
da 30 mm
pmax 225.000 kN

Table 5-2: Characteristic values of numerical cable models

The maximum value of the horizontal concentrated load P™ is chosen according to the
restraints of Eq. (5-9). Figures 5-8 to 5-10 show the identification between numerical models
and analytical solution. Moreover, they prove the assertion of equivalence between a radio
mast and a twisted simple 1-DOF cable net, as described in Paragraph 5.2. Figure 5-8
indicates that the assumption of an equivalent linear spring gives identical results with the
numerical solution with truss elements. In the accompanied CD, there is a list of the
numerical models, which contains the attributes of each model case. The model used in this
chapter is commented with the word ‘comparison’. In the same CD, the .idb file for ADINA
and the .sdb file for SAP can be found.

—e—SAP —8—ADINA —<—1-DOF CABLE NET —e—EQ. SPRING

250.0 ~
200.0

150.0

P (kN)

100.0

0.00 0.05 0.10 0.15
u(m)

Figure 5-8: P —u
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——ANALYTICAL SOLUTION —e—SAP —&—ADINA ——1-DOF CABLE NET

500.0 -

400.0

300.0

Na (kN)

200.0

100.0 -

0.0

0.00 0.05 0.10 0.15
u (m)

Figure 5-9: Axial force of cable A N, as function of horizontal deflection u

——ANALYTICAL SOLUTION —e—SAP —=—ADINA —<—1-DOF CABLE NET

250.0
200.0

150.0

N (kN)

100.0

50.0

0.0 T 2
0.00 0.05 0.10 0.15
u(m)

Figure 5-10: Axial force of cable B Ng as function of horizontal deflection u
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6 STATIC BEHAVIOR OF CABLE NETS

6.1 THE FORCE DENSITY METHOD

Such as the simple 1-DOF cable net of Chapter 4, the analysis of an extended cable net is
divided into two steps, the form finding and the nonlinear analysis under concentrated loads.
The complexity of cable nets stems the development of an analytical solution. To overcome
this difficulty, various methods, which describe the response of a cable net, are produced.
The force density method, presented in this paragraph, is one of them. The force density
method was developed for the case of cable nets (Figure 6-1), from Schek and expanded for
the form finding of membranes.

Figure 6-1: Cable net

Consider the node i of the cable net, which is connected with nodes j, k etc. An external
concentrated load p; is applied on the node i. F; is the axial force of the cable segment having
length Lj. The equilibrium equations for the node i, at the global coordinate system, are
written as below:
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X - X -X.
LR 2 Ty =p,
ij ik ix
I'ij I'ik
Y-, Y-y,
FL 4R Ty =p, (6-1)
Lij I-ik
Z.-Z, Z. -7
L T4F < Ty =p
ij ik iz
I'ij I'ik

The force density, for each cable element, is defined as:

¢ o 6-2
= (6-2)
ij

Replacing Eq. (6-2) into (6-1), the equilibrium equations are transformed into:

f; (Xj'xi)+ fie (Xi=Xi) + ... = Py

f; (Yj'Yi)"'fik (YY) +...= Piy (6-3)

f; (Zj'zi)+fik (Ze-Z)+...=p,
Corresponding equations can be written for all internal nodes of the cable net, while for
border nodes equations are reduced, proportionally to node's degrees of freedom. The
solution of the system defines the coordinates of nodes, given the values of force density and
the external nodal loads. Then, the length of each element and, so, its tensile force are
calculated from the following equation:

F = 06X + (%4 +(22) (6-4)

Benefits of force density method

The strategy and the numerical part of form finding are alternated, in contrast to other
methods, as the equations of force density are linear and, so, the solution of the system of
linear equations Eq. (6-3) gives an equilibrium shape. This system has a unique solution, if
the following parameters are considered as constant:

e the coordinates of immovable nodes of the cable net
e the values of force density for all cables of the net

The second parameter seems to be an obstacle for the implementation of the method as the
values of force density, for a given equilibrium shape, are not known a priori. Extended
researches and experiments have shown that inaccurate approximations of these values are
adequate to produce equilibrium shapes which can operate as the starting point for the
iterative method of form finding. Thus, it is sufficient to consider, in most cases, as input
values in the first step the non-tensioned cable lengths in the formulas of force density,
referring to the internal net cables, and values inversely proportional to cable lengths,
referring to the boundary zone of the cable net. This consideration does not seem to be
self-evident. Nevertheless, it simplifies the calculation method which is rendered as a useful
computer aided tool for form finding.

The force density equations do not contain parameters referring to the material of the cables
and, so, their solution describes an equilibrium shape independent from the material. In

Diploma Thesis of Christos Papakitsos N.T.U.A. 2013



Static Behavior of Cable Nets 173

advanced steps of form finding procedure, the definition of an arbitrary material is
demanded.

6.2 PARAMETRIC ANALYSIS — THE PEACE AND FRIENDSHIP STADIUM
6.2.1 The CANED program

The parametric analysis is a useful tool for obtaining a more spherical perception of
construction’s behavior. Changing gradually critical parameters of the cable net, effects of
geometric nonlinearity, pre-tensioning etc can be illustrated in a legible way. The force
density method, which is presented in Paragraph 6.1, is used for extracting the following
parametric figures. The complexity and the number of the equilibrium equations, even though
they are linear, for a real cable net inducts to the use of computer aided procedures. The
CANED program is developed in this direction and is chosen for the parametric analysis.

The CANED program, which is developed as student work in the context of a Master course,
is based on the force density method for the analysis of cable nets. It is written in MATLAB
language producing the final program file in an executive format. At first, user determines the
attributes of the cable net and the analysis/design procedure, as he can:

choose the geometry of the net (rectangle, rhombus, circle or ellipse)
define the number of cables in two axes

import characteristics of the material

set initial values of cross-section and pre-tension

define the Newton-Raphson nonlinear analysis method

determine the design procedure

The program is divided into two separate steps, the form finding and the nonlinear analysis
for concentrated nodal loads in z axis. Moreover, the program has the ability to design cable
nets. At each iteration of the second step, the values of stress are checked if they exceed the
permitted range and, in such case, the algorithm returns to the first step re-calculating the
values of cross-section and pre-tension. The successful completion of the analysis gives as
output:

figure for the form finding of the cable net

stress and pre-tension distributions for form finding
figure for the deformed model

stress distribution for concentrated loads
load-deflection diagram for the central node

Detailed results are available in text format, including the final values of cross-section and
pre-tension.
[11]

6.2.2 Simulation of the Stadium of Peace and Friendship with CANED program

For the purposes of the parametric analysis, a real cable net is considered as model. It
concerns the Stadium of Peace and Friendship in Greece, an example of a saddle-shaped
cable net. It was constructed in 1983 and it was used, among other stadiums, for the
Olympic Games of 2004. Its circular plan view has a diameter of 114 m, and the sag of the
roof is 6.15 m, equal in both directions. The net consists of 27 cables in each direction and
the cable spacing is constant and equal to 4 m in both directions. The main cables have a
diameter of 60 mm and a breaking load of 3000 kN, while the diameter of the secondary
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cables is 46 mm and their breaking load is 1850 kN. The edge ring is made of pre-stressed
concrete, with a box cross-section of dimensions 6.40 m x 8.15 m. The thickness of its
horizontal walls is 20 cm and of the vertical ones 50 cm. The ring seats on bearings which are
placed on 32 pylons. These pylons consist of radially oriented concrete walls. The bearings
allow small radial translations of the ring, but in case of violent horizontal forces, for example
during a seismic event, the ring is restrained in the radial direction of the roof. The
parametric figures of this cable net model are designed by the implementation of CANED

program.
[12]

Figure 6-2 shows a general view of the stadium and the simulation of its roof, using CANED
program.

(a) ' (b)

Figure 6-2: The Stadium of Peace and Friendship: (a) general view, (b) simulation of its roof

The plan of the cable net is a circle having two axes as shown in Figure 6-3. Cables parallel to
x-axis, shaping a concave surface, are called main while these parallel to y-axis, shaping a
convex surface, are called secondary or stabilizing. z-axis is perpendicular to the plan of the
cable net. User sets the geometry of the cable net, as described above, and the program
numbers each node and cable element with a unique label. Lengths are measured in m and
forces in kN. The self weight of the cables is neglected.

Wict

691
[ ]

s ]

346

318

318 z 346
332 X

Figure 6-3: Views of the cable net, before the design procedure
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Here, some characteristic nodes of the cable net, before the design procedure, are referred:

318 (-57,0,6.15)

332 (0,0,0) — central reference node
346 (57,0,6.15)

690 (0,-57,-6.15)

691 (0,57,-6.15)

The value of the modulus of elasticity E is 165 GPa. Regarding the limits of cables’ tension,
the maximum value is calculated as:

m

o™ = min(ofZx ,0m2¢) = min (1.57%10°kPa, 1.62*10°kPa) = 1.57 *10°kPa (6-5)
[12]

The tension limits in kPa in both axes, which are chosen for the parametric analysis, are
presented in Table 6-1. The range of values for the form finding is smaller than this for the
static analysis for safety reasons. The lower limit c™ = 0 kPa ensures that cables do not get
loose.

step | Form finding | Static analysis
g™ 1.0%10° 1.57*10°
g™" 0 0

Table 6-1: Tension limits of cables in both axes, in kPa

For the purposes of the parametric analysis, distributed loads q,, such as snow and wind, are
considered. These loads are applied perpendicularly on the membrane which covers the cable
net. The equivalent concentrated nodal load P, in kN, applied on an internal nodal point has
value:

P= an (6-6)

where,
an is the distributed load in kN/m?

A is the hatched green area of Figure 6-3 with value 16.57 m? (for the figures presented on
Paragraph 6.2.3, the value of 16.0 m? is considered)

The parametric figures contain the following symbols.

Form finding

Zo : z-coordinate of the central node, with label 332, from the starting point (0,0,0), in m
w,P"® : horizontal component of pre-tension of central main cables, with label 318 and 319, at

x-axis, at the equilibrium state as a percentage (%) of the maximum axial
force N,

Npre Npre Npre
pre _ - X - X _
Wi =100 s = 100 B 100 50 (6-7)

4

w,”"® : horizontal component of pre-tension of central secondary cables, with label 954 and
955, at y-axis, at the equilibrium state as a percentage (%) of cables’” maximum axial
force N,
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pre Npl’e pre Nere

Static analysis

Zo : z-coordinate of the central node, with label 332, from the equilibrium point (0,0,z5"), in m

w, : axial force of central main cables, with label 318 and 319, at x-axis, at the equilibrium
state as a percentage (%) of cables’ maximum axial force N,

N, N, N

—_ —_ X
W =100 Gt =100 5100 g (6-9)
osa 4

w, : axial force of central secondary cables, with label 954 and 955, at y-axis, at the
equilibrium state as a percentage (%) of cables” maximum axial force N,

N, N, N,
=100 e e =100 =100 X (6-10)

max sec
sa

Figure 6-4 shows the referred cable elements, within the frames, and the corresponding edge
nodes.

Figure 6-4: Definition of cable nodes and elements

Below, characteristic screenshots from the design procedure are presented.
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6.2.3 Parametric figures

Curves' limits are defined by the maximum axial force N™ of each cable.

STEP 1: FORM FINDING

30% —e—40% —8—50%
4.0

3.0 -
2.0 -
1.0 -
0.0

1.0%
-2.0 -
3.0 -
-4.0 -

zo" (M)

prl’e (0/0 )

Figure 6-7: z5" —w,P™ curves, at the equilibrium state,

for different values of pre-tension w,®

30% ——40% —E—50%

5.0 A

4.0 |
3.0 A
2.0 |
1.0 A

0.0

25" (m)

1.0 0i0 20.0 40.0 60.0
Wypre(O/o)

Figure 6-8: zo" -w,P"® curves, at the equilibrium state,
for different values of pre-tension w,”®

The dependence of form finding on pre-tensions w," and w,”© is presented in
Figures 6-7 and 6-8. The larger the pre-tension w,”® is, the higher the equilibrium point
stands. The reverse correlation incurs for pre-tension w,”©. These figures prove that the
increase of pre-tension makes central cables reduce their curvature by moving the equilibrium
point nearer to the level of their supports, as larger values of cable axial force occur.
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STEP 2: NONLINEAR ANALYSIS FOR CONCENTRATED NODAL LOAD P

P (kN)

-40.0 -30.0 -20.0 -10.0 /00 10.0 20.0
-@20 -

-0.40 -

Zo (m)

-0.60 -

-0.80 -

-1.00 -

Figure 6-9: zo — P curve for w,”® = 13.1 % and w,”® = 22.9 %

Figure 6-9 shows the response of the central node with label 332 to concentrated nodal
load P, with range of values [-30.0, 10.0], in kN. The curve is, almost, linear indicating that
the geometric nonlinearity is not intense, as the central cables with reverse curvatures, in
x- and y-axes, tend to eliminate it. Pre-tensions w,"® and w,” are equal to these of the
construction as built. Figure 6-9 occurs from the combination of two separate analyses for
concentrated nodal load P at £z directions.

——P at -z direction = —e—P at +z direction
1.00 -
e*e._e_e

0.50 -

0.00

Z5 (M)

0/0 20.0 40.0 60.0 80.0 100.0
-0.50 -

-1.00 - \

-1.50 -

w,Pre (0/0)
Figure 6-10: zo — w,"™ curve, in case that pre-tension w,” = 35.0 %

Figure 6-10 describes the relationship between zy and w,”. The larger the pre-tension w,”"
is, the larger the z-coordinate zp, in absolute value, becomes, in case of P at —z direction, and
the reverse correlation incurs for P at +z direction. Figures 6-7 and 6-8 show that the larger
the pre-tension w,”* is, the higher the equilibrium point stands. So, the unstressed length of
central main cables is smaller but this of central secondary cables, given constant value of
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w,"", is larger. According to Figure 2-63, the larger the ratio S0 of a cable is the larger

SAB
stiffness has for the same concentrated nodal load P. This observation is valid for a horizontal
cable with concentrated load in the middle but it can be generalized for the case of net
cables. As a consequence, larger stiffness of central secondary cables means reduce of
z-coordinate zo, for constant value of concentrated nodal load P. Correspondingly, the
reduction of length of central main cables leads to reduction of their stiffness, in other words
increase of z-coordinate z, in absolute value.

——P at -z direction = —e—P at +z direction

1.00 -
oo

0i0 20.0 40.0 60.0 80.0 100.0
-0.50 -

-1. .
00 -

-1.50 -
Wypre (%)

Figure 6-11: zo — w,""® curve, in case that pre-tension w,”® = 10.0 %

Regarding the Figure 6-11, the larger the pre-tension w,”“is, the smaller the z-coordinate zo,
in absolute value, becomes, in case of P at —z direction, and the reverse correlation incurs for
P at +z direction. Figures 6-7 and 6-8 show that the larger the pre-tension w,”®is, the lower
the equilibrium point stands. So, the unstressed length of central main cables, given constant

value of w,"”®, is larger but this of central secondary cables is smaller. According to
Figure 2-63, the larger the ratio % of a cable is the larger stiffness has for the same

concentrated load P. This observation is valid for a horizontal cable with concentrated load in
the middle but it can be generalized for the case of net cables. As a consequence, larger
stiffness of central main cables means reduce of z-coordinate z,, in absolute value, for
constant value of concentrated nodal load P. Correspondingly, the reduction of length of
central secondary cables leads to reduction of their stiffness, in other words increase of
z-coordinate z,.

The values of P at + z directions are defined below.

—z direction

pressure q = 3.0 kN/m? = P = 48.0 kN
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— WX —e—wy
80.0 -

60.0 i /

W& (0/0)
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O-O T T 1
0.0 5.0 10.0 15.0

w, Pre (%)

Figure 6-12: wg —W,”™ curves, at the equilibrium state,
in case that pre-tension w,"® = 35.0 %

Figure 6-12 indicates that the larger the pre-tension w,”™ is, the larger axial force w, and the
smaller axial force w, occur, given constant values of pre-tension w,”® and concentrated
nodal load P. This is true, as for higher starting level of pre-tension w,”™ and constant value
of concentrated nodal load P, a larger value of axial force wy arises. Moreover, Figure 6-10
shows that the larger the pre-tension w,”® is, the larger the z-coordinate z,, in absolute
value, is and, so, the increase of stressed length of central secondary cables is smaller
provoking smaller values of axial force w.

— WX —e—wy
80.0 -

60.0 -

W& (0/0)
S
o

20.0 - /

0.0

0.0 10.0 20.0 30.0 40.0 50.0
Wypre (0/0)

Figure 6-13: wg —w,® curves, at the equilibrium state,
in case that pre-tension w,”™ = 10.0 %

According to Figure 6-13, the larger the pre-tension w,” is, the smaller axial force wy and the
larger axial force wy occur, given constant values of pre-tension w,” and concentrated nodal
load P. A larger value of axial force wy arises for higher starting level of pre-tension w,”" and
constant value of concentrated nodal load P. What is more, Figure 6-11 indicates that the
larger the pre-tension w,”* is, the smaller the z-coordinate zo,, in absolute value, is and, so,
the increase of stressed length of central main cables is smaller provoking smaller values of
axial force w.
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+z direction

pressure p = 1.65 kN/m?> =P = 26.4 =~ 26.0 kN

— WX —e—wy
80.0 ~

60.0 -

Wg (%)
3
o

20.0 -

O-O T T 1
0.0 20.0 40.0 60.0

W)( pre (0/0)

Figure 6-14: wg —w,”™ curves, at the equilibrium state,
in case that pre-tension w,"® = 17.5 %

pre

pre

Figure 6-14 indicates that the larger the pre-tension w,”™ is, the larger axial force w, and the
smaller axial force w, occur, given constant values of pre-tension w,” and concentrated
nodal load P. This is true, as for higher starting level of pre-tension w,” and constant value
of concentrated nodal load P, a larger value of axial force w, arises. Moreover, Figure 6-10
shows that the larger the pre-tension w,” is, the smaller the z-coordinate z, is and, so, the
increase of stressed length of central secondary cables is smaller provoking smaller values of
axial force wy.

— WX —e—wy
80.0 -

60.0 - /

0.0

W& (0/0)
S
o

0.0 10.0 20.0 30.0
Wy pre (0/0)

Figure 6-15: wg —w,”™ curves, at the equilibrium state,

in case that pre-tension w,”™ = 37.5 %

pre

pre

According to Figure 6-15, the larger the pre-tension w,”“ is, the smaller axial force wy and the
larger axial force w, occur, given constant values of pre-tension w,” and concentrated nodal
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load P. A larger value of axial force wy arises for higher starting level of pre-tension w,”" and
constant value of concentrated nodal load P. What is more, Figure 6-11 indicates that the
larger the pre-tension w,”* is, the larger the z-coordinate z, is and, so, the increase of
stressed length of central main cables is smaller provoking smaller values of axial force wy.

Notice in Figures 6-12 to 6-15 that, the additional axial force (wg — wgP®), due to the
concentrated nodal load P, is significantly larger than the initial pre-tension wg"™,
where & = X, y. For instance, as presented in Figure 6-12, for w,”® = 5.0 % and
w,"® = 35.0 %, wy is around 60 %. In other words, 60 — 5 = 55 % of axial force of central
main cables occurs from the concentrated nodal load P and is according to a good design
policy. The range of wg”™, where & = X, y, in STEP 2 differs in +z-directions of concentrated

nodal load P, as it depends on cables’ diameter and cables’ maximum tension.
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APPENDIX A: Hyperbolic functions

Appendix A contains a short presentation of hyperbolic functions, which are used in
Paragraphs 2.3.3 and 2.3.4, in case of a simple suspended cable under uniformly distributed
load along its arc length.

Standard algebraic expressions:

ex_e-x e2x_1 ~ 1_e-2x

sinhx = = A-1
2 2e* 2e” (A1)
eX+e* e*+1 1+e*
coshx = = = A-2
2e* 2e™ (A-2)
sinhx e*-e* e*-1 1-e%
tanhx = = = = A-3
coshx e“+e* e*+1 1+e™ (A-3)
Useful relations:
sinh(-x) = -sinh(x) (A-4)
cosh(-x) = cosh(x) (A-5)
tanh(-x) = -tanh(x) (A-6)
cosh’ (x)-sinh® (x) =1 (A-7)
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Sums of arguments:

cosh(x +y) =sinh(x)sinh(y)+ cosh(x)cosh(y) (A-8)
sinh(x +y) = cosh(x)sinh(y) +sinh(x)cosh(y) (A-9)

_ tanh(x)+tanh(y) )

tanh(X+Y) = 1 tanh(x)tanh(y) (A-10)
Sum and difference of cosh and sinh:

cosh(x)+sinh(x) = &* (A-11)
cosh(x)-sinh(x) =e™ (A-12)
Inverse functions as logarithms:

arsinh(x)=|n(x+ x2+1) (A-13)
arcosh(x) = In(x+\/x2-1),x >1 (A-14)
artanh(x)=lln(1+—xj x| <1 (A-15)

2 (1-x)'

Derivatives:

d .

— sinhx = coshx (A-16)
dx

d .

— coshx = sinhx (A-17)
dx

d 2

—tanhx =1-tanh“x (A-18)
dx
Standard Integrals:

[sinh(ax)dx = a™cosh(ax)+C (A-19)
[cosh(ax)dx = a™'sinh(ax)+C (A-20)
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[tanh(ax )dx = a™'In[cosh(ax)] + C (A-21)

[13]
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TABLE OF SYMBOLS

Symbol Definition | Unit
labels
$ label $ (=1, 2,...) of a cable -
i label i (= A, B, ...) of a point/node -
& label & (= x, y, z) of direction -
ij chord with endpoints i and j -
coordinates
XY, Z Cartesian axes -
X, Y, 2 coordinates of the examined point after the m
P application of the load P, p or g
X" maximum x-coordinate of the examined point m
Xi, Vi, Zi coordinates of point i m
coordinates of the starting application point of
Xer Vi 2 the concentrated load P m
<y 7 coordinates of the point from which cable tension, m
e due to the load P, p or g, occurs
Zo z-coordinate of the central node, at form finding m
Zo z-coordinate of the central node, at static analysis m
lengths
deflections/displacements of the examined point
u, v Uu=x-x m
v=z-7"
max maximum horizontal deflection/displacement
u LImax — Xmax _ X* m
d vertical distance of the stressed cable m
from the chord AB

Nonlinear static analysis of cables and cable nets




192 Table of Symbols
d vertical distance of the stressed cable m
m from the chord AB at midpoint
vertical distance of the stressed cable from the
dmp chord AB at midpoint, in case of equivalent concentrated m
load P = pL at midpoint
€ elongation of the cable -
e elongation of the cable segment )
' supported on point i
gm maximum elongation of the cable -
S stressed length of the cable m
from the start of the axes to the point (x,z)
s initial unstressed length of the cable m
0 from the start of the axes to the point (x,z)
S stressed length of the cable m
So initial unstressed length of the cable m
S initial unstressed length of the cable segment m
o supported on point i
stressed length of the cable segment
‘ supported on point i m
Sii distance between points i and j m
L horizontal/vertical length, as defined on figures m
loads
P applied concentrated load kN
pm maximum applied concentrated load kN
b uniformly distributed load along KN/m
the horizontal projection
D component of the applied load p KN/m
L perpendicular to the cable segment ds
D component of the applied load p KN/m
I parallel to the cable segment ds
prex maximum uniformly distributed load KN/m
along the horizontal projection
uniformly distributed load along the arc length
q of the cable kN/m
q component of the applied load q KN/m
L perpendicular to the cable segment ds
q component of the applied load q KN/m
I parallel to the cable segment ds
g maximum uniformly distributed load along kN/m
the arc length of the cable
stresses
o axial tension of the cable kPa
axial tension of the cable segment
(o] L kPa
supported on point i
g™ pre-tension of the cable kPa
g™ maximum axial tension of the cable kPa
g™" minumum axial tension of the cable kPa
f, yield stress of the cable GPa
E modulus of elasticity of the cable GPa
forces
N axial force of the cable kN
N; reaction at point i kN
N axial force of the cable, in case of equivalent KN
P concentrated load P = pL at midpoint
NP axial force of the cable due to pre-tension kN
N™eX maximum axial force of the cable kN
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NP axial force capacity of the cable kN
w axial force of the cable as percentage of its capacity %
WP axial force of the cable due to pre-tension %
as percentage of its capacity
r axial force of the cable as percentage of its pre-tension %
horizontal component of the axial force
H kN
of the cable
H; horizontal reaction at point i kN
vertical component of the axial force
\" kN
of the cable
Vi vertical reaction at point i kN
F restoring force of a spring kN
other important symbols
M bending moment kNm
K stiffness of the cable kN/m
Ks (equivalent) spring constant kN/m
Kimast stiffness of a radio mast kN/m
Knet stiffness of 1-DOF cable net kN/m
C) angle of inclination deg (°)
da the diameter of the cable mm
A the cross-section of the cable m?

defined in paragraph

Oks wkl fl AUI
fur mel er Krl

symbols defined in Paragraph 1.2.1

Og Oy
# #
Cy/ C1 /2 C2 ’

a, B, B*, v,
Y#I rI r#l AI

AN*, 0, 0%, A,
/\# = =#

I =7 =

symbols defined in Paragraph 2.2.2

h _h h ,h
C .G B Y
h h h h
F,A,I(?,/\,

symbols defined in Paragraph 2.2.3

Ksi, Pi, Vi, 6

symbols defined in Paragraph 2.2.4.3,
for the cable i of the cable-braced bridge

P, Pa; P8

symbols defined in Paragraph 2.3.1

5¢

symbols defined in Paragraph 2.3.3

€$prel E$l SO$I

S?—é L$I Ons
0$p r+ Og/ f\/$r

V$pre, V$,
N$Cap’ A$l dA$

symbols defined in Chapter 4 for cable $

Nipre Wipre
’ ’
cap max

Ni ! Ni

symbols defined in Paragraph 5.1

Xiy Yi, Ziy Ly,
Pis Pix, piy1 Piz,
Fiy, fi

symbols defined in Paragraph 6.1

symbols defined in Paragraph 6.2
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| dmain, dsec. | | |
Table T-1: Table of symbols

Figure T-1: General cable model

Dimensional parameters are transformed to non-dimensional using the following
multiplications:

e coordinates and lengths:  x i
e concentrated loads: X —
e  distributed loads: X
o forces: X —

e stiffness: X —
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