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1 Introduction 

Traditionally, soil-structure interaction effects were ignored in seismic design of 

structures, since they were believed to have favorable effects. The lengthening of the 

period shifts the structure response to the spectral branch of lower accelerations 

which implies a reduction of inertia forces in the structure. However, along modern 

performance based design principles soil-structure interaction effects are recognized 

to not necessarily have beneficial but even may have very detrimental effects for the 

response of the superstructure. Considering this fact, proper consideration of soil-

structure interaction is a critical factor in design. The effects of soil-structure 

interaction have been subjective to research for about half a century, but are still 

under discussion. The general methods to quantify soil structure interaction effects 

are direct approach and substructure approach. 

In the direct approach, the soil and structure are simultaneously accounted for in the 

mathematical model and analyzed in a single step. Typically, the soil is discretized 

with solid finite elements and the structure with finite beam elements. Since 

assumptions of superposition are not required, true nonlinear analyses are possible 

in this case. Nonetheless, the analyses remain quite expensive from a computational 

standpoint. Hence, direct SSI analyses are more commonly performed for structures 

of very high importance and are not employed for the design of regular structures. 

Another additional problem considering direct approach is that nowadays code 

provisions relating to soil-structure interaction are still very limited and 

straightforward procedures to fully account for SSI effects in design and are not 

included in most practicing codes. Hence, even though the research activities at the 

universities all over the world are already ahead, providing a variety of knowledge in 

this field, the connection with engineering practice appears to be still limited. 

In the substructure approach, the SSI problem is decomposed into three distinct 

parts, namely the soil, the foundation and the superstructure, which are combined to 

formulate the complete solution. In this approach the terms kinematic interaction 

and inertial interaction are introduced. The former refers to the effects of the 

incident seismic waves to the massless system while the latter refers to the response 
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of the complete system to excitation by D’ Alembert forces associated with the 

acceleration of the superstructure due to kinematic interaction. Inertial interaction is 

conducted in two steps: computing the foundation dynamic impedance (i.e. springs 

and dashpots) associated with each mode of vibration, and determining the response 

of structure and foundation supported by these springs and dashpots and subjected 

to kinematic motion of the base. Thus, the complete solution is estimated by 

applying the superposition principle. The principal advantage of the substructure 

approach is the associated numerical flexibility. Because each step is independent of 

the others, it is easy to focus resources on the most significant aspects of the 

problem. This is the main reason of its wide implementation in research as well as in 

engineering practice. 

Following the substructure approach this thesis dealt with the problem of caissons. 

Caissons is a type of embedded foundations that compared to other types of 

foundations have attracted less attention by the researchers. Different computation 

methods of the dynamic impedance of caissons are compared for elastic conditions. 

The study is extended to the more realistic inelastic behavior of the caisson and 

qualitatively comparisons are made between nonlinear inelastic behavior and 

equivalent elastic behavior of the caisson under dynamic loading. An alternative 

Winkler-type approach is developed where the foundation is supported by a series of 

distributed independent vertical, rotational and horizontal springs and dashpots 

along the soil-footing interface, which correspond to the vibration modes, namely 

the oscillation pattern imposed by the external load (swaying, rocking etc.). The 

study is focused on the horizontal mode where a special connection of nonlinear and 

linear springs and dashpots is suggested for the real inelastic dynamic response. A 

methodology for the calibration of this system is proposed and proper validation is 

performed with nonlinear numerical analyses. 
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1.1 Project description 

This study exists of four main parts: 

The first part is a literature study of different aspects of geotechnical earthquake 

engineering with focus on embedded foundations and elastic as well as inelastic 

conditions. This study is based on research papers, seismic engineering texts and 

books. Beginning from general principles that concern the vibrations, definitions and 

descriptions of fundamental phenomena are reported. Some general approaches for 

soil-structure interaction problems are presented while focus is given on the 

response of foundations and especially on impedance and its components. The Finite 

Element Method is introduced with emphasis on the element-size and domain-

dimensions which are one of the main concerns of this project. A presentation of the 

Finite Element Code that has been used for the performed analyses for the needs of 

this study follows. Initially general information about the use and the development of 

the program are provided while special focus is given on the dynamic mode and its 

features. More details are given about the choices that the software provides about 

the criteria of the selection of the parameters that have been used in this study. 

Finally the last section of the first part addresses to the kind of foundation that has 

been studied herein which is caissons. Introduction about the caisson as a type of 

foundation has been conducted at the beginning while general description of their 

design methodologies follows. At this part an attempt to understand the difficulties 

of the embedded foundation has been performed by describing the mechanisms and 

the physics of the caisson. Special focus has been given on the coupling mode of the 

rotation and the lateral displacement as well as the reference point that has been 

chosen and its importance. 

The second part is related to the elastic response of the caisson and the 

corresponding elastic dynamic impedance. First sensitivity analyses considering the 

finite element size (mesh discretization) and the domain dimensions of the numerical 

simulation, have performed in order to set the numerical model. After this 

optimization, the design methodology and the elastic formulas that have been used 

are presented more extensively and comparison is made between them and the 
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numerical results after the proper process of the results in order to be comparable. 

The impedance of the concerning caisson is investigated with the addition of artificial 

damping (Rayleigh damping) and comparisons are made considering the dynamic 

response where conclusions and remarks are formulated. 

The third phase addresses to the inelastic response of the caisson. The methodology 

that has been followed is described, considering the bearing capacity of caisson in 

lateral loading, the meaning of the coupling impedance in inelastic conditions and 

the different aspects of the dashpot which now consists of two different parts, the 

radiation damping and the material damping. Two different cases have been selected 

considering the conditions at the interface of the soil-foundation, namely the bonded 

interfaces where full contact conditions have assumed and the nonlinear interfaces 

where sliding and gapping are allowed to occur. 

Finally, a different approach for the inelastic behavior of embedded foundations is 

being studied. Numerical analyses under plain strain conditions are performed in 

order to investigate and evaluate the local horizontal mode of the shaft of the 

caisson. A nonlinear Winkler model with springs, dashpots and masses is suggested. 

The suggested calibration of the distributed nonlinear springs and dashpots that 

arised from the physics of the dynamic behavior of the foundation is validated with 

the previous numerical analyses. 

The fourth part of this thesis consists of a case study of a suction caisson. Here a 

comparison is made between some field trials that performed at the Bothkennar test 

site for a large diameter suction caisson and numerical analyses using the PLAXIS 3D 

code. Some interesting conclusions and remarks are presented considering this 

comparison. 

Finally, some general concluding remarks are presented. Except for conclusions, 

suggestions for further research work are also recommended. 
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1.2 Research objectives 

The main research objective of this diploma thesis is to investigate the dynamic 

behavior of caissons in terms of the impedance that computed by the Finite Element 

Method using the PLAXIS 3D code. A comparison is made with available solutions 

from the literature for the elastic response of a caisson with a specific 

embeddedment ratio. Considering the inelastic response numerical analyses are 

performed using the PLAXIS 3D code in order to conduct useful conclusions. As the 

PLAXIS 3D dynamics program (3D12) released quite recently in 2012, it is very 

interesting to evaluate its possibilities and limitations considering that it is a 

worldwide-used finite element program for engineers that expands rapidly. In order 

to achieve this goal the following additional objectives are defined: 

CAISSON: 

 Evaluate the dependency of the mesh discretization density (Finite Element 

size). 

 Evaluate the influence to the response of the distance of the boundaries of 

the numerical model. 

 Evaluate the response in static loading. 

 Evaluate the frequency-dependent dynamic impedance in dynamic loading in 

elastic conditions. 

 Evaluate the behavior in dynamic loading in inelastic conditions first with full 

bonded conditions and afterwards by taking into consideration the interfaces 

between the structure and the soil. 

 Study the possibilities of a generalized Winkler model for the proper 

simulation of the soil-foundation interaction in the horizontal mode of the 

shaft. 

 Investigate and compare a real case study of a suction caisson with numerical 

simulation. 
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2 Theoretical background 

 

2.1 Vibrations 

Motion characterizes everything in the world. The study of kinematic systems begins 

from the first existence of humans with very simple observations and early 

conclusions. In Civil Engineering concepts like motion, movement, oscillation and 

displacement are fundamental. The research in vibrating systems arises from the 

need to understand and explain the behavior of structures under dynamic loading in 

real life in order to improve the safety of structures. 

 

 Earthquakes 

Because of their huge impact on humans’ lives earthquakes and seismic activity have 

always been a hot issue for Science that needs constant investigation. The fact that 

new earthquakes are about to come is a motivation for civil engineers to keep on the 

research for safer structures, in order to minimize their catastrophic results. Hence, 

understanding the way that earthquakes occur is a first fundamental step. The Earth’s 

surface consists of six continental-sized tectonic plates and many micro plates which 

move constantly but with an uncertain way. This movement is the result of natural 

processes in the internal of the Earth. Convection cause the semimolten rock to 

move slowly, forcing in this way the plates to move with respect to each other. 

According to the elastic rebound theory, this relative deformation between the faults 

planes that separate the plates, stores elastic strain energy in the rocks with the 

gradual building up of shear stresses. When the shear stresses reach the shear 

strength of the rock, energy releases. This release of energy occurs either quite 

slowly so the movement characterized aseismically or suddenly and abruptly causing 

the rupture of new or preexisting geological faults, so earthquakes are born. 

Earthquakes are generated mostly by this sudden release of strain energy but there 

are also other causes of earthquakes such as volcanic activity, landslides, mine blasts, 

and nuclear tests. 
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Figure 2-1: Global Tectonic Plates. The rows indicate the movement of plates. 

 

 Foundation Vibrations 

When seismic waves arrive through ground to foundations, they excite their support 

causing oscillations. However, foundations are excited also by dynamic forces 

imposed directly or indirectly on their top. Such excitations can be result of operating 

machines, ocean waves and vehicle movement on the top of the structure. In this 

project vibrating foundations have been studied. In addition to being directly 

applicable to machine loaded foundations, much of the results can be used in 

assessing the dynamic soil-foundation-structure interaction during seismic or any 

other ground shaking. In such cases the loading arises from inertial (D’ Alembert) 

forces developing in the oscillating superstructure. 

 

2.2 Soil waves 

The seismic energy that releases during the generation of a vibration has kinematic 

characteristics and radiates outward in all directions in the form of waves. This wave 

propagation can be described through solids theory (Kramer, 1996). 
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In general seismic waves can be considered elastic. However the soil is a very 

complex material, inhomogeneous and anisotropic with elastoplastic nonlinear 

behavior. So the assumption that the soil reacts to local disturbance as an elastic 

solid can be considered simplified. However the theory of the elastic waves is the 

base of the geotechnical earthquake engineering, not only for understanding the 

behavior of soil materials and structures during an earthquake (or any vibration) but 

also for configuring the seismic design methods for all kinds of structures. 

The seismic waves can be divided into two main categories: body waves and surface 

waves. The former have such small energies that are mostly not threatening while 

the latter arrive last at a given distance from the epicenter with all of their damaging 

energies and are predominantly noticed by people. 

 

Figure 2-2: Deformations that are caused by body waves (a) P and (b) S and by surface waves (c) 
Rayleigh and (d) Love. 

 

The body waves consists of two types of waves, first the compressional, or 

longitudinal waves which are called P-waves by the word primary, because they 
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travel faster and they are the first to be recorded, and second the shear, or 

transverse waves which are called S-waves by the word secondary as they arrive after 

the P-waves because their velocity is lower. P-waves can travel not only through 

solids but also through fluids. The deformations that cause are always parallel to the 

direction that they travel. In contrast, S-waves can travel only through solids because 

liquids as it is known, do not have shear stiffness. S-waves cause shearing 

deformations and depending on the direction of the plane movement can be divided 

into vertical S-waves (SV-waves) and horizontal S-waves (SH-waves). It should be 

mentioned that the common engineering approach representing the seismic load is 

by vertically propagating shear waves only. As the speed of waves varies with the 

stiffness of the materials, P-waves travel faster because geological materials are 

stiffer in compression. The relations that provide the velocities of the various waves 

are presented in the Table 2-1. It must be noted that the velocities of the waves 

depend mostly on the properties of the mean that they are propagating. 

 

Table 2-1: Velocities of different kinds of soil waves 

TYPE OF WAVE VELOCITY 

Primary wave 
                    𝑉𝑃 = √

𝐷

𝜌
 

Secondary wave 
                     𝑉𝑆 = √

𝐺

𝜌
  

Rayleigh wave 𝑉𝑅 ≅ 0.94𝑉𝑠 𝑓𝑜𝑟 0.25 < 𝑣 < 0.50  

 

Surface waves are generated by the interaction of P-waves and S-waves at the 

interfaces of geological or soil layers and especially at the surface of the Earth. They 

play a significant role since they can be the most destructive category of seismic 

waves. The two most important types of surface waves are the Rayleigh-waves, 

which are generated by the interaction of P-waves and SV-waves, and the Love-waves 

which are generated by the interaction of P-waves and SH-waves. Rayleigh-waves 

exist near the surface of homogeneous elastic half-space and decrease exponentially 

in amplitude as distance from the surface increases. Most of the shaking felt from an 
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earthquake is due to the Rayleigh-waves, which can be much larger than the other 

waves. Love-waves are observed only when there is a low velocity layer overlying a 

high velocity layer so they do not exist in a homogeneous elastic half-space. They 

travel with a slower velocity than P- or S- waves, but faster than Rayleigh-waves. 

 

 Site amplification effects 

The features of the bedrock motion depends on the fault characteristics and the 

wave propagation phenomena. Instead, the features of the ground motion that civil 

engineers use in order to design the structures, depends among others on site 

amplification effects. In general site effects can be defined as the influence to the 

characteristics (intensity, duration, frequency content) of the incoming seismic wave, 

caused by the special geologic, soil properties, geometric parameters of the soil 

layers and the local surface conditions. These phenomena can strengthen the 

incident seismic motion and increase the consequences on structures and buildings. 

Since this local amplification of the seismic motion is often very large, seismic site 

effects is a major issue in the field of geotechnical earthquake engineering. 

The influence of site effects can be described as enhancement or reduction of the 

amplitude of ground motion at all frequencies. Of course, there are many parameters 

that define the phenomenon such as the relative density (Dr), the plasticity index (PI), 

the wave velocities VS, VP, the shear modulus G and its relation to the deformations, 

the non-linear constitutive behavior of soil and many others (Pitilakis, 2010). 

The site amplification effects are characterized by the natural frequencies of the soil 

deposit. Natural frequencies are the frequencies that a system responds to a periodic 

driving force with maximum amplitude. When the driving force has the same 

frequency as one of the natural frequencies, resonance occurs. Vibrating systems 

have a number of possible natural frequencies. The lowest is called the fundamental 

frequency. The other frequencies are at values which are multiples of the 

fundamental. Consequently, the soil deposit can be made to resonate at more than 

one frequency.  
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The resonant frequency is a function of soil stiffness, geometry and boundary 

conditions. For a homogeneous deposit, natural frequencies can be estimated 

(Gazetas, 1982) based on the constant soil shear wave velocity, Vs, and the soil 

deposit height, H: 

 
𝑓𝑛 =

𝑉𝑠

4𝐻
(2𝑛 − 1), 𝑛 = 1,2,3, … 

( 2.1 ) 

 

Figure 2-3: Dynamic amplification of soil deposit with different damping ratios ξ. 

 

Vertical one-dimensional propagation of shear waves in a visco-elastic homogeneous 

layer that lies on rigid bedrock can be described in the frequency domain by its 

amplification function. The amplification function is defined as the modulus of the 

transfer function which is the ratio of the Fourier spectrum of the free surface 

motion to the corresponding component of the bedrock motion. Therefore, for a 

given visco-elastic stratum and a given seismic motion acting at the rigid bedrock, the 

motion at the free surface can be easily obtained by this function. First, the Fourier 

spectrum of the input signal is computed. Then, this spectrum is multiplied by the 

amplification function and after that, the motion is given by the inverse Fourier 

transform of the previous product. If the properties of the medium (density ρ or total 

unit weight of soil γ, shear wave velocity Vs and material damping ξ) and its 
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geometry (layer thickness H) are known, the amplification function is uniquely 

defined by Roesset’s simplified function: 

 
𝐴(𝑓) =

1

√𝑐𝑜𝑠2 (2𝜋𝑓
𝐻
𝑉𝑠

) + (2𝜋𝑓
𝐻
𝑉𝑠

𝜉)

 
 

( 2.2 ) 

The maximum amplification ratio of the layer that corresponds to the natural 

frequencies can be computed by means of the following approximated relationship: 

 
𝐴𝑚𝑎𝑥,𝑛 =

2

(2𝑛 − 1)𝜋𝜉
=

𝑉𝑠

𝐻𝜉𝜔𝑛
, 𝑛 = 1,2,3, … 

 

( 2.3 ) 

If a soil is homogeneous or close to homogeneous and ground motion levels are not 

very high, then this approximation is considered to derive good estimation of actual 

site response. However these conditions are hard to be satisfied because are not 

often met in practice. 

 

2.3 Soil structure interaction 

Soil-structure interaction is the mechanism that accounts for the flexibility of the 

foundation support beneath the structure and potential variations between 

foundation and free-field motions. It determines the actual loading experienced by 

the structure-foundation-soil system resulting from the free-field seismic ground 

motions (Varun, 2006) 

 

Figure 2-4: Context of system interaction in engineering assessment of seismic loading for a structure 
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The structure, the foundation and the geologic media of soil and rock are three 

linked systems that interact and affect the deformations of a structure during 

dynamic loading. The mechanisms of this interaction can be described by two 

physical phenomena: 

 Inertial interaction: which refers to excitation by D’ Alembert forces due to 

acceleration of the super structure. 

 Kinematic interaction: which sets the mass of structure as zero (no inertial 

effects) and takes into account the deviation of the foundation motion with 

respect to the corresponding free-field soil motion. 

The effect of kinematic interaction is generally captured by complex-valued transfer 

functions, namely functions that relate the free-field motion to foundation response. 

In the case of linear elastic soil-foundations systems (or moderately nonlinear), 

inertial interaction analysis can conveniently be performed in two steps as shown in 

Figure 2-5: Schematic representation of two-step inertial interaction analysis. 

(a) Compute the foundation dynamic impedances (springs and dashpots) 

associated with each mode of vibration  

(b) Determine the seismic response of structure and foundation supported by 

these springs and dashpots and subjected to the kinematic accelerations of 

the base. 

 

Figure 2-5: Schematic representation of two-step inertial interaction analysis (after (Varun, et al., 
2009)) 
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2.4 Dynamic impedance 

When a rigid block foundation is subjected to a steady-state harmonic excitation F(t) 

the respondent displacement u(t) of the foundation is also harmonic with the same 

frequency ω. In order to determine this response the key step is to estimate the 

dynamic impedance. Considering the inertia (D’ Alembert) forces, the foundation 

actions on the soil generate equal and opposite reactions, distributed in some 

unknown resultant P(t). The dynamic impedance can be defined (Gazetas, 1991) as 

the force-displacement ratio: 

 
𝐾̃ =

𝑃(𝑡)

𝑢(𝑡)
=

𝑃̅

𝑢̅
= 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 

 

 

which may be written in the more elegant form: 

𝐾̃ = 𝐾 + 𝑖𝜔𝐶 

in which both K and C are functions of the frequency ω. The real component K, 

termed “dynamic stiffness”, reflects the stiffness and inertia of the supporting soil. Its 

dependence on frequency is attributed solely to the influence that frequency exerts 

on inertia, since soil properties can considered frequency-independent. The 

imaginary component ωC, is the product of circular frequency times the “dashpot 

coefficient” c, which reflects the two types of damping –radiation and material– 

generated in the system, the former due to energy carried by waves spreading away 

from the foundation, and the latter due to energy dissipated in the soil due to 

hysteretic action. 

There are six modes of dynamic impedances for rigid foundations as there are six 

degrees of freedom, three translational and three rotational. Moreover in embedded 

foundations and piles, which are the main concern of this study, horizontal forces 

along principal axes induce rotational in addition to translational oscillations. Hence, 

two more cross coupling horizontal-rotational impedances exist. For caissons with 

great depth of embedment their effects may become appreciable, owing to the 

moments about the base axes produced by horizontal soil reactions against the 
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sidewalls. In piles the cross coupling impedances are as important as the direct 

impedances. 

The equation of dynamic equilibrium in matrix notation assigned to the structure 

degrees of freedoms is: 

 [𝑀]𝑢̈(𝑡) + [𝐶]𝑢̇(𝑡) + [𝐾]𝑢(𝑡) = 𝐹(𝑡) ( 2.4 ) 

Where 

[𝑀]: mass matrix 

[𝐶]: damping matrix 

[𝐾]: stiffness matrix 

𝑢̈(𝑡), 𝑢̇(𝑡), 𝑢(𝑡): acceleration, velocity, displacement vectors 

𝐹(𝑡): external force vector 

In case of an earthquake the foundation is excited at its base with forced 

displacement ug(t) so the total displacement of the structure consists of the ground 

displacement ug(t) plus the response u(t) of the structure itself. In this case the 

dynamic equilibrium becomes: 

[𝑀]{𝑢̈(𝑡) + 𝑢̈𝑔(𝑡)} + [𝐶]𝑢̇(𝑡) + [𝐾]𝑢(𝑡) = 0   

 

 [𝑀]𝑢̈(𝑡) + [𝐶]𝑢̇(𝑡) + [𝐾]𝑢(𝑡) = −𝑀𝑢̈𝑔(𝑡) ( 2.5 ) 

so the external force becomes 𝐹(𝑡) = −𝑀𝑢̈𝑔(𝑡) 

Of course this excitation varies way far from a harmonic oscillation. But as it is 

already known all nonharmonic forces can be decomposed into a large number of 

sinusoids through Fourier analysis. For a particular excitation frequency ω, once all 

the dynamic impedances have been determined, the steady-state response of a rigid 

foundation to arbitrary harmonic external forces can be computed analytically by 

application of Newton’s laws (Gazetas, 1991). 



16 
 

Also analytically, one can derive the steady-state response of a flexible structure 

possessing natural modes and subjected to harmonic external forces and to 

harmonic base motion. The procedure is iterative: first the dynamic impedance 

function is calculated by geotechnical analysis, then the fundamental frequencies of 

the structure based on these springs and dashpots are computed by structural 

analysis. For these fundamental frequencies the dynamic impedance is recalculated 

and for the obtained values of springs and dashpots a new structural analysis will 

provide new fundamental frequencies etc. When the final fundamental frequencies 

are estimated the seismic forces can be calculated. 

 

 Computation of dynamic impedance 

The computation of the dynamic impedances, or equivalents the spring and dashpot 

coefficients, can be proceeded with various methods and computational codes. The 

accuracy that the specific project requires will define the choice among these 

methods, taking also into account the special features that characterize the soil-

foundation system of the project. These features are mainly the shape and the type 

of the foundation as well the soil profile. 

The methods of computing the dynamic impedance can be divided into four main 

groups: 

 Analytical and semi-analytical methods 

 Dynamic finite-element methods 

 Combined analytical-numerical methods  (boundary element methods) 

 Approximate techniques 

Each one of these groups has its own limitations and simplifications of physics 

(Gazetas, 1991), hence they cannot be applied to every engineering problem. 

In the recent years, the rising development of the computers have made the 

computer codes much more efficient and easier to use. In this way the dynamic 

finite-element methods have gained ground and today they are the most dominant 

computing method that offer rigorous solutions for modern engineering problems. 
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Of course because still finite element analyses can be very time consuming for 

making parametrically investigations, the user should be very careful when deciding 

the model features. The results of a finite element analysis should be evaluated and 

compared with other alternative available methods. In this study the results of the 

upcoming PLAXIS code are going to be compared with available from the literature 

solutions. 

 

2.5 Damping 

The dashpot coefficient, which was mentioned before, refers to damping of the 

system. Damping is a general term that can divided into many subcategories 

depending on its kind and source of causing. An attempt to understand the physical 

meaning of all different dampings has been made below. 

In a homogeneous linear elastic material, stress waves travel indefinitely without 

change in amplitude, if the effects of scattering are neglected. The conservation of 

elastic wave energy requires that the flow of energy (energy flux,𝜌𝑉𝑠𝑢̇2) to be 

constant. This type of behavior, however, cannot occur in real materials. The 

amplitudes of stress waves in real materials, such as those that comprise the earth, 

attenuate with distance. The attenuation can be attributed to two sources, one of 

which involves the materials through which the waves travel and the other the 

geometry of the wave propagation problem (Kramer, 1996). The latter form of 

damping concerns the first part of this study where linear elastic model has been 

considered for the soil constitutive behavior. A brief description of different kinds of 

damping will be presented for a complete understanding of damping mechanisms 

which are used in the inelastic part of this research. 
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 Material damping 

 Soil damping: 

The material damping in the soil is divided into two components, hysteretic damping 

and viscous damping. 

i)  Hysteretic damping in the soil skeleton (frequency independent): 

This kind of damping refers to dry soils and is due to the heat that develops by the 

friction forces which are caused by the vibration of grains. Some authors (Iwasaki, et 

al., 1978) have remarked on the absence of frequency dependency for this kind of 

damping leading them to purpose that soils can be treated not as viscous, but as 

hysteretic-absorbing energy solely as a function of cycling strain. According to (Bolton 

& Wilson, 1990) a body of hysteretic material is found to be very sensitive only to the 

frequencies of excitation just below resonance. 

ii) Viscous damping in the pore fluid (frequency dependent): 

For saturated permeable soils the heat energy is generated by pore fluid motion 

through the soil skeleton. This approach treats soils as a truly viscous frequency 

dependent and draw a parallel between dynamic damping and long term creep 

(Abbiss, 1986) 

Dynamic analyses of soil usually assume that it can be treated as a visco-elastic 

material. To represent Viscoelastic damping three models are used, Kelvin-Voigt 

model, Maxwel model and Standard linear solid model. The former is the most 

widespread model as it is the most accurate for practical purposes. It defines an 

equivalent viscosity  𝜂 = 2𝐺𝜉/𝜔 using a constant complex shear modulus. By this 

trick the soil damping is considered frequency independent. 

 

 Structure damping: 

Structural damping can be separated into material damping which comes from the 

micro-scale material straining, and friction damping which is due to rubbing friction 

or contact among different elements in a structure. The former is related to heat 
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production in the materials due to vibrations and depends on the kind of materials. 

The latter is caused by Coulomb friction at structural joints and it depends on many 

factors such as joint forces or surface properties.  

The total viscous structural damping parameter is usually estimated by the area of 

the global hysteresis loop which represents the energy dissipated in a cycle. It is very 

common to express this damping as percentage of the maximum potential energy in 

the system during a cycle. 

 

 Interface damping 

Increased soil material damping in the region surrounding the soil-structure interface 

is observed. Due to the relatively high deformation levels extreme hysteresis 

behavior is locally present, resulting from high local soil strain levels and plastic 

shearing at the soil-structure interface. In the soil-structure system three general 

types of interface nonlinearities are recognized: 

 Sliding at the interface of soil and foundation when the applied force at the 

interface exceeds the friction limit. Because of the cyclic character of the load this 

nonlinear behavior does not lead certainly to failure. 

 Gapping and uplifting of the foundation, when the seismic moment exceeds the 

ultimate moment of the system. These vibrations might have positive effect to 

the response of the system. 

 Plastic failure of the soil in the region of the interface because of the worse 

quality soil at this area due to the construction of the foundation. 
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Figure 2-6: Different mechanisms of nonlinear response of the soil-foundation system (after (Gazetas 
& Apostolou, 2004)) 

 

 Geometric damping 

The consequent gradual reduction of the amplitude of the oscillation comes except 

for material damping, from another form of damping as well which is due the 

geometry. It is called geometric or radiation damping/attenuation. This kind of 

damping is not an internal property of the soil material. The physical meaning of this 

radiation or geometric damping can easily be explained by the law of conservation of 

energy. If material damping is neglected then the wave energy should remain 

constant. However, as the distance from the source increases the spherical area in 

which energy is included increases too, so the same amount of energy spreads to a 

larger area. This results the attenuation of energy and consequently the reduction of 

the amplitude of the oscillation. 

 

Figure 2-7: Geometrical attenuation 
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Geometric attenuation for body waves causes the amplitude to decrease at a rate of 

1

𝑟
 while for surface waves at a rate of essentially  

1

√𝑟
 meaning the latter attenuate 

geometrically much more slowly than the former. This fact can explain the greater 

proportion of surface wave motion at large epicentral distances (Kramer, 1996) 

The first necessary condition for radiation damping to occur is for the fundamental 

frequency of soil to be less than or equal to the effective fundamental frequency of 

the structure: 

 
𝑓𝑠𝑜𝑖𝑙 =

𝑉𝑠

4𝐻
≤ 𝑓𝑠𝑡𝑟𝑢𝑐𝑡 

( 2.6 ) 

   

where H is the depth of the soil layer and Vs is the shear wave velocity of the 

underlying soil (Celebi, 2000). 

One of the limitations that geotechnical finite element analyses have is the limited 

mesh size. Because the boundaries of the model cannot be expanded towards 

infinity in order to represent the reality of the indefinite travelling of radiation waves, 

they should be set up in a way to absorb the incoming energy of the waves without 

reflecting them. In order to achieve this in numerical analyses, artificial Rayleigh 

material damping in combination with viscous boundaries are used to provide the 

actual attenuation of stress waves by radiation damping. 

 

 Rayleigh damping 

One good analysis method that can address nonlinearities, whether geometric or 

material, in dynamic analysis is direct time integration with Rayleigh damping. This 

format of damping is one of the most computationally convenient measures of 

dumping that lumps the damping effect within the mass and stiffness matrices of the 

system as it meets orthogonally properties of the damping matrix. However its 

physical background lacks. The material damping matrix for the system is described 

by the following equation: 

 [𝐶] = 𝛼[𝑀] + 𝛽[𝐾] ( 2.7 ) 
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[𝐶]: damping matrix 

[𝑀]: mass matrix 

[𝐾]: stiffness matrix 

𝛼, 𝛽: damping constants 

Rayleigh alpha is the parameter that determines the influence of the mass in the 

damping of the system. As alpha increases the lower frequencies are damped more. 

Rayleigh beta determines the influence of the stiffness in the damping of the system 

and the higher it is the higher frequencies are damped more. In order to calculate 

from the following equation, α and β, a pair of damping ratio ξ that correspond to 

two frequencies of vibration ω is required. The damping ratios for each frequency, 

(ξ1, ω1) and (ξ2, ω2), can be obtained experimentally by means of the resonant column 

test (Das, 1995). 

 𝛼 + 𝛽𝜔2 = 2𝜔𝜉 ( 2.8 ) 

 

 

Figure 2-8: Influence of the mass and stiffness matrix on the damping ratio for the proportional 
Rayleigh damping model: mass-proportional damping (- - -), stiffness-proportional damping (∙∙∙∙), both 
mass proportional damping (―) 

In this study because of the assumption of linear elastic constitutive model, there is 

no material damping for the soil, so the Rayleigh parameters for the main dynamic 

analyses have been set equal to zero, 𝛼 = 0 𝑎𝑛𝑑 𝛽 = 0. 
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 Numerical damping 

Numerical damping has no relation with any physical process in structural/soil 

dynamics and may result from a certain numerical time integration scheme applied 

in time domain analysis. The time integration scheme applied, affects the stability 

and accuracy of results causing energy dissipation for certain frequency ranges. 

Explicit and implicit integration are two commonly used time integration schemes. 

Newmark family methods and the central difference method are employed in almost 

totality of structural dynamic analysis problems. The simplicity is a great advantage 

of these, implicit and explicit respectively, schemes. With Newmark algorithm, which 

is the method that concerns this study as it is implemented in PLAXIS, the 

displacement and the velocity at the point in time t+Δt are expressed respectively as: 

 
𝑢𝑡+𝛥𝑡 = 𝑢𝑡 + 𝑢̇𝑡𝛥𝑡 + [(

1

2
− 𝛽𝑁) 𝑢̈𝑡 + 𝛽𝑁𝑢̈𝑡+𝛥𝑡] 𝛥𝑡2 

( 2.9 ) 

 𝑢̇𝑡+𝛥𝑡 = 𝑢̇𝑡 + [(1 − 𝛾𝑁)𝑢̈𝑡 + 𝛾𝑁𝑢̈𝑡+𝛥𝑡]𝛥𝑡 ( 2.10 ) 

𝛽𝑁, 𝛾𝑁 are the coefficients that affect the stability and the accuracy of this method.  

Hilbert, Hughes and Taylor (HHT)-α method is a generalized modification of the initial 

Newmark β-method. In this method a new parameter, α, is presented in order to 

introduce numerical energy dissipation. This energy dissipation, however, cannot be 

predicted as damping ratio. The new Newmark parameters are expressed as function 

of the parameter α: 

𝛽𝛮 =
(1+𝑎)2

4
, 𝛾𝛮 =

1

2
+ 𝛼, where  0 ≤ 𝛼 ≤

1

3
 

In case that α=0, the modified method coincides with the original method but with 

constant average acceleration during the stepping interval, a condition that has been 

added to the HHT α-method. Another condition which leads to stable condition that 

only the modified method satisfy, is: 

𝛽𝛮 ≥
1

4
(

1

2
+ 𝛾𝛮) 
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Thus, HHT-α method leads to unconditionally stable integration scheme, a feature 

that should generally be preferred in the selection of the time integration method 

because otherwise much smaller time step would be required. Smaller time steps 

would make the method inconvenient and much more computationally time 

consuming. 

Some typical values for the mentioning parameters that have been suggested are 

presented in the Table 2-2: Time integration schemes. 

 

Table 2-2: Time integration schemes 

Integration scheme Parameters Stability Numerical damping 

Linear acceleration 

method 
𝛽𝛮 =

1

6
, 𝛾𝛮 =

1

2
 

Conditionally stable No numerical 

damping 

Constant average 

acceleration method 

(by default in 

PLAXIS) 

 

𝛽𝛮 =
1

4
, 𝛾𝛮 =

1

2
 

 

Unconditionally 

stable 

 

No numerical 

damping 

 

Newmark, HHT-α 

modification 

𝛼 = 0,1 → 

𝛽𝛮 = 0.3025 

𝛾𝛮 = 0.60 

 

Unconditionally 

stable 

Numerical damping 

by numerical 

dissipation 

parameter α 

 

 

In case of an undamped dynamic analysis, meaning no material and no numerical 

damping, all the coefficients –Rayleigh and Newmark– should set equal to zero 

(βΝ=γΝ=αR=βR=0). Then the model is expected to reach the resonant conditions at 

the natural frequencies of the system with corresponding theoretically infinite 

amplification ratio. Generally when α increases, the peaks of amplification at the 

natural frequencies of the layer decrease. However, the shape of amplification 

function is not essentially modified. 
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Conclusion 

As implied by the aforementioned descriptions of damping one can easily conclude 

that the total damping in a soil-structure system is very complicated term that is 

difficult to be modeled mathematically. The reasons are not only because still the 

mechanism of each damping contribution and its physical meaning is not fully 

clarified but also because such a model would demand scientific elaborate 

knowledge and effort, and great computational cost. So such an approach wouldn’t 

be possible for practical reasons. 

 

2.6 Finite Element Method (FEM) 

Finite Element Method is, as mentioned before, a very useful and effective approach 

to engineering applications. First it should be noted that in order to use the Finite 

Element Method for geotechnical problems special knowledge is required not only 

for understanding the soil mechanics and finite element theory but also for 

understanding the limitations and restrictions of the software that is being used to 

perform the finite element analysis. 

A full numerical analysis can provide information on all design requirements which 

can be divided into the following four fundamental conditions: 

 Equilibrium 

 Compatibility 

 Material constitutive behavior 

 Boundary conditions 

The Finite Element Method in order to satisfy the above conditions involves the 

following steps (Potts & Zdravkovic, 1999): 

Element discretization: this is the process of modelling the geometry of the problem 

by small regions, named finite elements. 
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Primary variable approximation: a primary variable should be selected (most 

commonly for geotechnical problems the displacement) and rules as to how it should 

vary over a finite element established. 

Element equations: use of an appropriate variational principle to derive element 

equations 

Global equations: combine element equations to form global equations 

Boundary conditions: formulate boundary conditions and modify global equations. 

Solution of global equations: obtain the displacements at all nodes and then evaluate 

secondary quantities such as stresses and strains. 

 

 Mesh– finite element-size 

It is widely accepted that the element size in element-based computations should be 

related to the wavelength. Often, the element size is measured in a certain (fixed) 

number of elements per wavelength. This number of elements per wavelength varies 

between four and ten. Obviously, this number is closely related to a certain desired 

accuracy. The error is of an acceptable magnitude which depends on the user and 

which meets certain technical requirements. 

(Kuhlemeyer & Lysmer, 1973) showed that for accurate representation of wave 

transmission through a model, the spatial element size, Δl, of a linear element must 

be smaller than approximately one-eighth of the wavelength associated with the 

highest frequency component of the input wave: 

 
𝛥𝑙 ≤

𝜆

8
 

( 2.11 ) 

Where λ is the wavelength associated with the highest frequency component that 

contains appreciable energy. 

It is worth mentioning here that this ratio depends also on the type of element 

(linear, quadratic etc.). Hence, the guideline for Δl developed by (Kuhlemeyer & 

Lysmer, 1973) is not a universal one owing to its development and use. In this study 
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the influence of the mesh density (element-size) has been investigated, through 

sensitivity analysis that has performed for the maximum frequency of interest. Once 

the maximum element-size has been found for one frequency the density of the 

mesh can be also applied to lower frequencies -as it would improve the accuracy- but 

not the other way around. 

 

Figure 2-9: Wavelength associated with the finite element-size 

 

 Boundary conditions 

In the case of a static deformation analysis, prescribed boundary displacements are 

introduced at the boundaries of a finite element model. The boundaries can be 

completely free or fixities can be applied in one or two directions. Particularly the 

vertical boundaries of a mesh are often non-physical (synthetic) boundaries that have 

been chosen so that they do not actually influence the deformation behavior of the 

construction to be modelled. This means that the boundaries are “far away”. For 

dynamic calculations, the boundaries should be in principle much further away than 

those for static calculations, because otherwise stress waves will be reflected leading 

to distortions in the computed results. However, locating the boundaries far away 

requires many extra elements and therefore a lot of extra memory and calculating 

time. 
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To counteract reflections, special measures are needed at the boundaries, namely 

silent or absorbent boundaries. Various methods are used to create these 

boundaries, which include: 

 Use of half-infinite elements (boundary elements). 

 Adaption of the material properties of elements at the boundary (low 

stiffness, high viscosity). 

 Use of viscous boundaries (dampers) 

All of these methods have their advantages and disadvantages and are problem 

dependent. For all the implementation of dynamic effects in PLAXIS the absorbent 

boundaries are created with the last method (viscous boundaries) and more details 

on the way this method works are described in chapter 3. 

 

 Finite dimensions of the numerical domain 

As one can conclude from the aforementioned, the boundaries of the numerical 

model affect the obtained results when shear waves are involved. The waves 

transmit and reflect at the boundaries of the model so it is imperative to keep the 

region that will be under observation to study and interpret the results, as far as 

possible from any reflecting boundary. This should help minimizing the influence of 

the boundaries but will increase exceedingly the computational cost. Hence, finding 

the optimum dimensions of the finite model is a key factor to every dynamic analysis. 

In this current project in order to determine the optimum domain width for the 

model, sensitivity analysis has been performed. Considering the depth of the 

numerical model no clear indications exist in literature. In order to set the depth of 

the domain so that to have negligible influence on the response, sensitivity analysis 

has been also performed in the same way as for the width of the domain. 
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2.7 PLAXIS 3D 

PLAXIS 3D is a three-dimensional finite element program, developed for the analysis 

of deformation, stability and groundwater flow in geotechnical engineering. PLAXIS 

began its development in 1987 at Delft University of Technology as an easy-to-use 2D 

finite element program focusing on geotechnical applications. The 3D code first 

introduced in 2001 when the 3DTunnel program released for the first time. In 2004 

the second three dimensional program released, 3DFoundations. However, in neither 

of these two programs was it possible to define arbitrary 3D geometries because of 

their geometrical limitations, hence the need of a new full three dimensional 

program lead to the development of the PLAXIS 3D code which combines an easy-to-

use interface with full 3D modelling facilities. The PLAXIS 3D program firstly released 

in 2010. 

The main problem of the most finite element codes is that they are very complicated 

for an engineer who is not familiar with computer programming. This problem gets 

more complicated when 3D geometry has to be considered. The main advantage of 

PLAXIS 3D program is that it can be used by geotechnical engineers who are not 

necessarily numerical specialists. It is a practical tool for geotechnical applications 

that provide finite element computations in an easy and not complicated way. As a 

result, many practical engineers world-wide have adopted this product and use it for 

engineering purposes. Furthermore PLAXIS 3D is used more and more lately by 

researchers in universities all over the world in the field of geo-mechanics and 

numerical methods. Important conclusions have been made by researchers using the 

PLAXIS code. 

This user-friendly interface hides however some risks especially when the program is 

used by engineers who have not much experience to filter and judge the out coming 

results. These risks refer not only to PLAXIS but also to all finite element codes that 

are available. Above all, the simulation of reality by a computer program remains an 

approximation which implicitly involves some inevitable numerical and modelling 

errors. Moreover the accuracy at which reality is approximated depends highly on 

the expertise of the user regarding the modelling of the problem, the understanding 

of the soil models and their limitations, the selection of model parameters, and the 
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ability to judge the reliability of the computational results. In conclusion, proper 

attention should always be paid and the results should be compared, even crudely, 

with other solutions, simplified or not. 

In this thesis, PLAXIS 3D has been used for the performance of the numerical elastic 

and inelastic analyses and the results have been compared with either solutions from 

the literature or real facts from field trials (case study). In the following some details 

of the program that were used in this thesis are given,  in order the reader to be able 

to understand the numerical analyses that performed. Most of the information that 

follow are given in the PLAXIS manuals. 

 

 Constitutive models 

Hardening Soil model (HS) 

In the Mohr-Coulomb model, material yielding only is a function of the stress tensor. 

However, for many materials this actually will not be the case. As a result of plastic 

straining history, the yield function may develop, instead of being fixed in the 

principal stress space. This phenomena is called hardening, for which generally two 

types are distinguished, being strain hardening and kinematic hardening. Strain 

hardening is included in the HS model and can be subdivided in compression 

hardening and shear hardening. Material models including hardening/softening 

conceptually better represent actual soil behavior when implemented in soil finite 

element calculations. It is however noted that real soil hardening behavior is very 

complex and most models account for this in a very simplified way. 

Initially the Hardening Soil Model was first introduced in the Plaxis program as an 

extension of the Mohr Coulomb model. Then in Plaxis Version 7, an additional cap 

was added to the model to allow for the pre-consolidation pressure to be taken into 

account, at this point the soil model name was changed to Hardening Soil Model. The 

change indicates that the model has the capacity to be used for softer soils, including 

soft clay, with the aid of Mobilized Friction Function. 
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Indeed, Hardening Soil model has developed under the framework of the theory of 

plasticity. In the model, the total strains are calculated using a stress-dependent 

stiffness, which is different for both loading and unloading/reloading. Hardening is 

assumed to be isotropic, depending on the plastic shear and volumetric strains. A 

non-associated flow rule is adopted when related to frictional hardening and an 

associated flow rule is assumed for the cap hardening. This soil constitutive model 

including hardening has been developed by Schanz and Vermeer (1998) and it has 

been implemented in the Plaxis finite element code. Provided a proper parameter 

selection, the HS model is known to represent soil constitutive behavior reasonably 

accurate for both soft and stiffer soil types, which is related to its features of stress 

dependent stiffness, different for both virgin loading and unloading/reloading as it is 

also observed for real soils. 

In fact the HS model allows for hardening related to material effective stresses, but 

on top of it a Mohr-Coulomb model is applied based on ultimate strength parameters 

(c’ and φ’) governing the ultimate failure state of the material. This is schematically 

represented in Figure 2-10. Plaxis offers the possibility to input effective 

strength/stiffness parameters for both drained and undrained analysis, where 

undrained material behavior then is governed by effective parameters and excess 

pore pressure generation based on the water bulk modulus (Undrained calculation 

method A). Alternatively one may input effective stiffness parameters with undrained 

shear strength (Undrained calculation method B), which however removes the stress 

dependent stiffness feature from the constitutive model (φ’ is set to zero). More 

details about these methods are presented in 2.7.2. 

 

Figure 2-10: Expansion of the Mohr-Coulomb yield surface in the HS model for increasing effective 
stresses. 
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In the hardening soil model, stiffness develops as a function of the stress/strain state. 

Three types of soil stiffness (E50, Eoed, Eur) can be inputted independently for three 

typical loading conditions being triaxial loading, oedometer loading and 

unloading/reloading respectively. The figure below represents the physical meaning 

of these three stiffness parameters. 

 

Figure 2-11: Definition of the three types of stiffness parameters in the HS model. Left triaxial testing, 
right oedometer testing. 

Expansion of the yield surface cone is related to shear strains and stiffness parameter 

E50 where on the other hand the expansion of the yield cap (see Figure 2-10 and 

Figure 2-12) is governed by Eoed and the isotropic stress/strain state. The shape of the 

cap closing the elastic region is determined indirectly by K0
NC and Eoed. Eur governs 

elastic behavior within the yield contour resulting from previous ultimate 

stress/strain state. 

 

Figure 2-12: The closed HS model yield surface including the yield cap. 



33 
 

 

Stiffness parameters as mentioned before depend on stress conditions, which would 

imply that a specific stiffness needs to be inputted based on local assumed stress 

state. Within the Plaxis Hardening Soil Model this cumbersome selection of input 

parameters is not required. Instead, the user has to input a reference soil stiffness for 

a fixed stress level of pref=100 kPa, and the program automatically adapts stiffness as 

a function of local stress conditions, the soil ultimate strength properties and a factor 

representing the level of stiffness stress dependency. 

 

Hardening Soil model with small-strain stiffness (HSsmall) 

As explained in the previous section, unloading/reloading within the yield surface is 

assumed to be linear elastic in the original Hardening Soil model. However truly 

elastic unloading/reloading behavior for soils is only observed in the very small strain 

range, where stiffness is high. When strains grow, the unloading/reloading stiffness 

has a nonlinear dependency on strain amplitude, as indicated in Figure 2-13. 

 

Figure 2-13: HSsmall stress dependent stiffness for triaxial loading conditions. 

 

A small strain overlay model including this phenomena, has been developed for the 

HS model by Benz (2006). Since the HSsmall model in Plaxis is only an extension of 

the conventional HS model, it needs only two additional parameters to be defined, 

i.e. the very small-strain shear modulus G0 and the shear strain level γ0.7 at which the 

secant shear modulus Gs is reduced to 72.2% of G0. From various test data, it is found 
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that the stress-strain curve for small strains can be approximately be described by a 

simple hyperbolic law. The basic characteristic of this hyperbolic relation (Hardin & 

Drnevich, 1972) is a decrease of stiffness, with increasing strains due to loss of 

intermolecular and surface forces within the soil skeleton. As a result, actual soil 

stiffness also for unloading/reloading depends on the small strain loading history, 

which in the HSsmall model is in accordance to Figure 2-14 taken into account by: 

𝐺𝑠

𝐺0
=

1

1 + 𝑎 |
𝛾

𝛾0,7
|
 

Where α=0.385, γ0,7 is the reference strain input parameter as discussed before and γ 

is a function of the strain history, determined to be a scalar quantity by Benz (2006). 

Subsequently the HSsmall model constitutive soil relation in the small strain range is 

easily found from the secant shear modulus Gs as determined by the aforementioned 

equation, differentiation with respect to strain then results a tangent expression 

which can be used on time integration procedures. 

 

Figure 2-14: Small strain stiffness reduction according to the HSsmall model 

As indicated only two additional parameters G0
ref, γ0.7 need to be defined for the 

HSsmall model compared to the HS model. The former parameter may (just as for 

the HS model) be inputted related to a reference stress level and many correlations 

are presented in literature. A good correlation to void ratio for many soils was 

presented by (Hardin & Black, 1969)   or to unload/reload stiffness as empirically 

defined by (Alpan, 1970). The latter reference strain level may be related to the soil 
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plasticity index, or can be defined by using the original Hardin-Drnevich relationship 

and the Mohr-Coulomb failure criterion. 

Under dynamic loading, unloading/reloading loops as included in the HSsmall model, 

introduce a hysteretic damping component. According to the Hardin-Drnevich 

relationship for G/G0 as a function of shear strain, this damping will be negligibly 

small for small motion amplitudes, which appears to be unrealistic compared to 

actual soil behavior. Therefore it is recommended (Bringreve, et al., 2007) to 

introduce additionally a small amount of Rayleigh damping in the model. Fir this 

Rayleigh damping 1-2% of critical damping may be assumed to be reasonable. On the 

contrary, the same study shows the hysteretic damping at higher shear strain levels 

resulting from the HSsmall model to be overestimating actual clay material damping, 

which can be solved by setting G0 closer to Gur. 

 

Except for the aforementioned constitutive models that mainly have adapted for this 

study PLAXIS offers a variety of other constitutive models each one of which is 

appropriate for different applications. Below are presented in a very brief way the 

available models. 

 

 Drained and undrained modelling 

Numerical analyses of undrained materials are complex and therefore, require an 

understanding in calculation methods and constitutive models. Advantages and 

limitations of available undrained analysis methods in Plaxis software are 

summarized and discussed herein. 

In conduction a finite element analysis, care must be taken to the drained and 

undrained behavior of the modelled soils. In case of high permeability material such 

as sand, appropriate type of analysis is drained analyses. There is no complication in 

carrying out drained analysis for drained material due to the fact that only effective 

strength and stiffness parameters should be adopted in conjunction with drained 

material setting. This drained analysis is applicable for both basic Mohr Coulomb 
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model (MC) and advanced models, such as the Hardening Soil model (HS) and others. 

Modelling of undrained material, i.e. clayey types of soil, is on the other hand more 

complex. Brief summary of drained and undrained analyses is given below. 

 

Drained analysis: 

 Applicable for modelling the behavior of high permeability (sandy) materials 

or low permeability (clayey) materials in case of low rate of loading. 

 Short term behavior is not of interest for the problem considered. 

 No excess pore pressure is generated. 

 

Undrained analysis: 

 Applicable only for modelling the behavior of low permeability (clayey) 

materials with a high rate of loading. 

 Short term behavior is to be accessed. 

 Excess pore pressure is fully generated. 

Various FE analysis methods are available for undrained behavior modelling. 

Selection of effective and total stress parameters should be made together with the 

type of soil model used prior to the modelling process. Basically, there are three 

methods available in Plaxis, namely Method A, B and C. Method A is used in 

combination with basic models, Linear Elastic (LE), Mohr Coulomb (MC) as well as 

advanced models, Hardening Soil (HS), Hardening Soil with small-strain stiffness (HS 

small), Soft Soil (SS), Soft Soil Creep (SSC) and Modified Cam Clay (MCC) soil models. 

Method B is used in combination with MC, HS and HS small models while method C 

is only used for the basic models, LE and MC. Details of each method are given in the 

following. 

When material type is set to “undrained” (Methods A, B and C), Plaxis automatically 

adds bulk modulus of water, Kw/n (n=e0/(1+e0): soil porosity), to the bulk modulus of 

soil skeleton, K’, and distinguishes between total stresses, effective stresses and 

excess pore pressures: 
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Total stress: 𝛥𝜎 = 𝛫𝑢𝛥𝜀𝑣 

Effective stress: 𝛥𝜎′ = (1 − 𝐵)𝛥𝜎 = 𝛫′𝛥𝜀𝑣 

Excess pore pressure: 𝛥𝑢 = 𝐵𝛥𝜎 =
𝛫𝑤

𝑛
𝛥𝜀𝑣 

Excess pore pressure (triaxial): 𝛥𝑢 = 𝐵(𝛥𝜎3 + 𝛢(𝛥𝜎1 − 𝛥𝜎3) 

Where Δσ, Δσ’ and Δu are changes in total stress effective stress and pore pressure 

respectively. A and B are the Skempton’s parameters. Skempton A-parameter is not a 

soil parameter, in fact its value depends on calculated stress path resulting from 

constitutive model used. Ku is the total undrained bulk modulus: 

𝛫𝑢 = 𝐾′ +
𝛫𝑤

𝑛
 

𝛫𝑢 =
𝐸𝑢

3(1 − 2𝑣𝑢)
=

2𝐺(1 + 𝑣𝑢)

3(1 − 2𝑣𝑢)
=

𝐸′(1 + 𝑣𝑢)

3(1 − 2𝑣𝑢)(1 + 𝑣′)
 

Where Eu and E’ are undrained and drained elastic moduli, G is shear modulus, vu and 

v’ are undrained and drained Poisson’s ratios. Calculation of effective stress and 

excess pore pressure involves Skempton B-parameter which can be approximated by: 

𝐵 =
1

1 +
𝑛

𝛫𝑤
𝐾′

 

According to this equation, Skempton B-parameter approaches unity when bulk 

modulus of water, Kw/n is very high compare to the bulk modulus of soil skeleton, K’. 

In reality, a high realistic bulk modulus of water may cause numerical problems in the 

calculation, therefore Plaxis utilizes slightly lower number of bulk modulus of water 

as calculated by the following process. First bulk modulus of soil skeleton, K’ is 

estimated from the input drained elastic modulus, E’: 

𝐾′ =
𝐸′

3(1 − 2𝑣′)
 

Then, estimates total (undrained) bulk modulus, Ku. Note that Plaxis uses value of 

0.495 for undrained Poisson’s ratio as default setting. Finally, Skempton B-parameter 

is obtained. Following this process, Skempton B-parameter will depend only on the 
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value of drained Poisson’s ratio. For undrained behavior, drained Poisson’s ratio 

should be smaller than 0.35, as using higher values would lead to an unrealistically 

low Skempton B-parameter. 

Figure 2-15 illustrates typical total stress path (TSP) and effective stress paths (ESP) 

resulting from isotropically consolidated undrained triaxial test of normally 

consolidated clay. Stress paths OA, OB, OC and OD in figure (a to d) are the calculated 

results of Method A, B, C and B respectively. Details of each method are summarized 

in the following. 

 

Method A: 

Method A utilizes both effective stress and stiffness parameters to model undrained 

behavior of soils. The constitutive model used is Mohr-Coulomb model. As shown in 

figure (a), effective stress path (ESP) predicted by MC model rose up vertically until 

failure envelope is reached (stress path OA). This stress path is unlikely to be identical 

to the real stress path especially in case of normally consolidated clay. As a result, 

calculated pore water pressure is also unlikely to be correct. Furthermore, undrained 

shear strength predicted by method A (Point A) may exceed the undrained shear 

strength as followed by triaxial effective stress path. Due to the unreliability of both 

soil strength and pore water pressure calculation, this method should generally be 

avoided. 

 

 

Method B: 

Similar to Method A effective stiffness parameters are used in Method B. However, 

the failure criterion is governed by an input total strength parameter, i.e. φu=0 and 

c=Su. Calculated stress path from Method B is identical to that of from Method A 

(stress path OB) for the Mohr Coulomb model, therefore calculated pore water 

pressure should be ignored. For this reason, Method B should not be followed by 

consolidation analyses. 
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It should be note that if Hardening Soil or Hardening Soil small models are selected in 

Method B, the stiffness moduli will be no longer stress-dependent and the model 

exhibits no compression hardening. Conversely, the model retains its separation of 

loading and unloading-reloading moduli and shear hardening. Stress path OD in 

Figure (d) utilizes a more sophisticated advanced model (such as HS model). 

Undrained shear strength computed from this method depends on the accuracy of 

effective stress path as obtained from the advanced model used. 

 

Method C: 

Method C is a total stress approach. It adopts both undrained strength and 

undrained stiffness parameters. Material type of Method C is set to “Undrained C” or 

“Non-porous” which means neither initial nor excess pore pressure will be taken into 

account. The disadvantage of this approach is that no distinction is made between 

effective stress and pore water pressure. Hence, all calculated stresses are total 

stress and pore water pressures are equal to zero. In Plaxis it is possible to perform a 

total stress analysis with undrained parameters if the Mohr Coulomb model or the 

NGI-ADP model is used. 

It should be noted that a direct input of undrained shear strength does not 

automatically give the increase of shear strength with consolidation. In fact, it does 

not make sense to perform a consolidation analysis since there are no pore pressures 

to consolidate. 
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Figure 2-15: Calculated stress paths resulting from methods A, B, C. (a), (b), and (c): 

Mohr Coulomb model (d): Hardening Soil model   
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 Element type 

The soil formation is simulated using 3D continuum soil elements. These 10-node 

tetrahedral elements provide a second-order interpolation of displacements. There 

are three local coordinates (ξ, η and ζ) as it can been seen in Figure 2-16. The soil 

elements have three degrees of freedom per node. 

 

Figure 2-16: Nodes (•) and integration points (x) of a 10-node tetrahedral element (after (PLAXIS3D, 
2012) p41) 

The numerical integration over volumes can be formulated as: 

∭ 𝐹(𝜉, 𝜂, 𝜁) 𝑑𝜉 𝑑𝜂 𝑑𝜁 ≈  ∑ 𝐹(𝜉𝑖, 𝜂𝑖 , 𝜁𝑖)

𝑘

𝑖=1

𝑤𝑖 

Where wi  are the weight factors. The sum of the weight factors is equal to 1/6. 

The PLAXIS program uses Gaussian integration within tetrahedral elements and is 

based on 4 sample points. For more details the reader is referred to (PLAXIS3D, 2012, 

pp. 40-48) 

In addition to the soil elements, special types of elements are used to model 

structural behavior. For beams. 3-node line elements are used, which are compatible 

with the 3-node edges of a soil element. In addition, 6-node plate and geogrid 

elements are used to simulate the behavior of plates and geogrids respectively. 

Moreover, 12-node interface elements are used to simulate soil-structure interaction 

behavior. 
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 Interfaces 

Interfaces are used when modeling soil structure interaction. Interfaces will be 

required to simulate the finite frictional resistance between the structure such as the 

caisson and adjacent soil. It allows relative displacement and separation between the 

structure and soil mass. When using 6-node elements for soil, the corresponding 

interface elements are defined by three pairs of nodes, whereas for 15-node soil 

elements the corresponding interface elements are defined by five pairs of nodes.  

The stiffness matrix for interface elements is obtained using Newton-Cotes 

integration points. The position of these integration points coincides with the 

position of the node pairs. The 6-node interface elements use a 3-point Newton-

Cotes integration, whereas the 10-node interface elements use 5-point Newton-

Cotes integration.  

The basic property of an interface element is the associated material data set for soil 

and interfaces. Interface element models the interaction between the foundation 

and the soil, which is intermediate between smooth and fully rough. The roughness 

of the interaction is modeled by choosing a suitable value for the strength reduction 

factor in the interface (Rinter). This factor relates the interface strength (structure 

surface friction and adhesion) to the soil strength (friction angle and cohesion).  

Furthermore a new material with different strength and stiffness parameters than 

the surrounding soil can be set for the interface elements. An elastic-plastic model is 

used to describe the behavior of interfaces for the modeling of soil-structure 

interaction. The Coulomb criterion is used to distinguish between elastic behavior, 

where small displacements can occur within the interface, and plastic interface 

behavior when permanent slip may occur. 

 

 Absorbent boundaries 

As mentioned in the previous chapters the boundaries of the numerical model play a 

very important role especially for the dynamic analyses. In this thesis absorbent 

boundaries are applied for the dynamic numerical analyses of caisson. 
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In opting for absorbent boundaries, a damper is used instead of applying fixities in a 

certain direction. The damper ensures that an increase in stress on the boundary is 

absorbed without rebounding. The boundary then starts to move. 

The use of absorbent boundaries in PLAXIS is based on the method described by 

(Lysmer & Kuhlmeyer, 1969). 

The normal and shear stress components absorbed by a damper in x-direction are: 

𝜎𝑛 = −𝐶1𝜌𝑉𝑝𝑢̇𝑥 

𝜏 = −𝐶2𝜌𝑉𝑠𝑢̇𝑦 

Here, ρ is the density of the materials, Vp and Vs are the pressure wave velocity and 

the shear wave velocity, respectively. C1 and C2 are relaxation coefficients that have 

been introduced in order to improve the effect of the absorption. When pressure 

waves only strike the boundary perpendicular, relaxation is redundant (C1=C2=1). 

In the presence of shear waves, the damping effect of the absorbent boundaries is 

not sufficient without relaxation. The effect can be improved by adapting the second 

coefficient in particular. The experience gained until now shows that the use of C1=1 

and C2=0.25 results in a reasonable absorption of waves at the boundary. However, it 

is not possible state that shear waves are fully absorbed so that in the presence of 

shear waves a limited boundary effect is noticeable. Additional research is therefore 

necessary on this point, but the method described will be sufficient for practical 

applications. 

For an inclined boundary, an adjusted formulation based on the equations 

mentioned above is used that takes place the angle of the boundary into account. 

(PLAXIS3D, 2012, p. 57) 

 

 Mesh properties 

To perform finite element calculations, the geometry has to be divided into 

elements. A composition of finite elements is called a finite element mesh. 3D finite 

element calculations are very time-consuming. The time consumption highly 
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depends on the number of elements used in the analysis. Moreover, when using a 

large number of 3D elements, the model may be too large to fit in the computer’s 

RAM. Hence care should be taken when generating 3D finite element meshes. 

On the other hand, a certain number of elements is required to obtain sufficiently 

accurate deformations. An even finer mesh is needed when accurate failure loads, 

bearing capacities or structural forces are to be calculated. When judging the 

accuracy of 3D finite elements meshes it must be taken into account that the 3D 

elements have quadratic interpolation functions. Hence, they are more accurate than 

linear elements, but not as accurate as the 15-node elements in 2D PLAXIS versions. 

PLAXIS allows for a fully automatic generation of finite element mesh. The mesh 

generation process takes into account the soil stratigraphy as well as all structural 

objects, loads and boundary conditions. The generation of the mesh is based on a 

robust triangulation procedure, which results in “unstructured” meshes. These 

meshes may look disorderly, but the numerical performance of such meshes may 

yield better results than for regular structured meshes. 

The mesh generator requires a general meshing parameter which represents the 

average element size, Δl, computed based on the outer geometry dimensions (xmin, 

xmax, ymin, ymax, zmin, zmax) using the following relationship: 

𝛥𝑙 =
𝑟𝑒

20
√(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)2(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)2(𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)2 

Where  re = 2.0 (very coarse mesh) 
  = 1.5 (coarse mesh) 
  = 1.0 (medium mesh) 
  = 0.7 (fine mesh) 
  = 0.5 (very fine mesh) 
 
The relative element size factor (re) can be modified by the user defining the 

desirable element distribution. Moreover the user has the option to make the mesh 

finer or coarser at certain regions, for example in areas where large stress 

concentrations or large deformation gradients are to be expected or when the 

geometry model includes edges or corners of structural objects finer finite element 

mesh needs to be applied. 
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2.8 Caissons 

 Introduction 

The term caisson is derived from the French word, “caisson” meaning a chest or box. 

In civil engineering pier or drilled shafts are other terms that are commonly used 

instead of caisson. All these terms refer to permanent substructures or foundation 

elements which are either prefabricated or sunk into position providing massive 

foundation for heavy loads and high horizontal thrusts. The drilled shafts –bored 

piles, large-diameter piles, foundation piers, sub-piers or drilled caissons are also 

commonly references– are structural members of relatively large-diameter massive 

struts constructed and placed in a pre-excavated hole. Caissons or well foundations 

are structural boxes or chambers that are sunk in place through the ground or water 

by systematically excavation. The majority of the caissons are made of concrete and 

always require steel reinforcement. Occasionally they comprise a steel casing or 

jacket. Other materials that are being used are timber and masonry. 

The total volume of caissons is quite large compared to other kinds of foundation. In 

Figure 2-17 a crude typical classification of foundation elements is presented 

according to the geometric characteristics of slenderness or depth of embedment. 

Caissons’ embedment depth is larger than the corresponding depth of shallow 

embedded foundations, and lower than typical values of pile foundations. Moreover 

caissons can be classified further depending on their depth (deep or shallow), their 

diameter (small or large) and the shape of their plan (Figure 2-18). Typical 

dimensions for caissons are diameters on the order of 0.60‒4.00 meters and depth 

to diameter ratios in the range of 0.60‒4.50 meters.  

 

Figure 2-17: Crude classification of foundations (after (Gerolymos & Gazetas, 2006)) 
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Figure 2-18: Various shapes of plan views of caissons 

 

In general, a caisson foundation is recommended and found to be advantageous 

when large-size boulders are encountered and a massive sub-structure is required to 

withstand large lateral stresses. Caissons are more suitable for deep foundations 

under water where the foundation should be extended up to or below the river bed 

in order to obtain the proper stability. In this case caissons are more cost effective 

than piles. Caisson are also suitable as foundation for bridge piers, and abutments in 

rivers, seas, lakes, break waters and other shore construction works. They are also 

used for large pump houses which are subjected to heavy vertical as well as 

horizontal forces. Occasionally caissons are used for large and multistory building and 

other structures but generally, caissons are used for major foundation works because 

of the high construction cost. 

 

 Historic examples 

The purpose of the caissons is protecting walls against water pressure and soil 

collapse or supporting major superstructures. Traditionally caissons are selected as 

the most practical method of founding long span bridges which impose heavy loads, 

in deep water environments. Many examples of these massive constructions can be 

found in real life. The Tagus Bridge in Portugal is supported on one of the tallest 

caisson in the world reaching the height of 88 meters. The San Francisco-Oakland bay 

bridge is founded on a 75 m high caisson. The Williamsburg and Verrazano Narrows 
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bridges in New York as well as the Port Island and Nishinomiya-ko bridges in Japan 

are also supported on massive caissons. The well-known longest suspension bridge, 

Akashi-Kaikyo, shown in Figure 2-19, is founded on huge caissons. In South Africa 

also, caissons have been successfully used in situations where the designs were best 

served by rigid support systems founded on dense sands or rock at depths ranging 

from about 20 m to 30 m in both land and water environments. 

 

 

 

 

Figure 2-19: Akashi Kaikyo bridge in Japan, the longest suspension bridge in the world. The foundation 
consists of major caissons. 
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 Construction methods 

According to the construction process and their use, caissons can be classified into 

three major types: 

a) Open caissons 

b) Box caissons 

c) Pneumatic caissons 

The first category refer to box type structures which remain open both at the top and 

at the bottom during construction. Open caisson is the main foundation type of 

constructing deep foundation and underground structures and is extensively used. 

They are normally used on sandy soils or soft bearing stratum and where no firm bed 

is available at a higher depth. According to the shape of caissons, open caissons can 

be divided into three types: single wall, cylindrical open caisson and open caissons 

with dredging wells. Monoliths is a special type of open caissons which are much 

larger than others and are often found in quay walls, where resistance to impact 

from ships is required. Their heavy weight is favorable for resisting these lateral and 

impact forces.  In order to construct open caissons firstly an open reinforced concrete 

tube body is made on the ground. Then, when it achieves a certain strength, soil is 

excavated and transported. With soil level gradually reduced, caisson constantly sink 

and finally take its place with its own gravity overcoming the friction resistance.  

Box caissons are similar to open caissons but with the only difference that they are 

closed at the bottom. Box caissons are cast and cured properly on ground and then 

they are launched in water by filling sand, gravel or concrete in the empty spaces. 

Mostly reinforced concrete is used for making box caissons. A box caisson during 

floating should be sufficiently safe against the danger of tipping or capsizing. The 

stability of a floating caisson can be analyzed using the principles of hydrostatics. Box 

caissons can also be floated in horizontal or inverted positions and placed at the 

required location in normal position. They can be founded on dredged gravel or rock 

formation, on crushed rock blanket over rock surface, or on piled raft. Box caissons 

are not suitable in sites where erosion can undermine the foundations. 
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Pneumatic caissons are open at the bottom and close at the top. This type of caisson 

is specially used at situations where it is not possible to construct the well because 

the soil flow into the excavated area is faster than it can be removed. It is suitable for 

depth of water more than 12 m as for shallower depths their cost make them 

inappropriate. In the construction of pneumatic caisson, compressed air is used to 

remove water from the working chamber and the foundation work is carried out in 

dry condition. This type of caisson has several advantages compared over open or 

box-type caissons. Excavations can be carried out by hand in a dry working chamber, 

soil condition at the foundation level can be inspected as insitu soil tests are possible 

to determine the bearing capacity, foundation concrete can be placed under ideal 

conditions as it is known the concrete gain more strength due to dry conditions. Also 

for major projects, greater depths in bed rocks can be possible and there is no 

danger of settlement of adjoining structures because of no lowering of ground water 

table. However, despite the aforementioned advantages, pneumatic caissons have 

some disadvantages. Their construction is much more expensive compared to open 

caissons. There are more chances of caisson diseases to workmen working under 

high pressure. This is why during the whole operation the air pressure should be 

properly controlled, otherwise fatal accidents are possible. Compared to open 

caissons, the process of sinking is slower and needs elaborate equipment. Last but 

not least, the maximum depth below water table is limited to 30 to 40 meters as 

beyond 40 meters the construction is not possible. 

 

Figure 2-20: Caisson during construction 
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 Advantages - Disadvantages 

In general, caissons as an alternative foundation method, are more cost-effective 

comparing to other regular design methodologies and this is the main reason that 

are chosen to found constructions. Basically caisson-foundation is more or less 

similar in form to pile foundation but installed using different way as described 

before. However, compared to pile or shallow foundations the main advantage is the 

high axial and lateral load carrying capacity. The construction process generates less 

noise and vibration, both of which are especially important when working near 

existing buildings. Moreover, engineers can observe and classify the soils excavated 

during drilling and compare them with the anticipated soil conditions. Designers can 

easily change the diameter or length of the shaft during construction to compensate 

for unanticipated soil conditions. Considering the drilled shafts, the foundation can 

penetrate through soils with cobbles or boulders, especially when the shaft diameter 

is large. It is also possible to penetrate many types of bedrocks including residual 

soils, karstic formations, soft soils and marine sites. When caisson foundations are 

selected instead of using pile groups, the structural columns may be directly 

connected to the foundation, thus eliminating the need for a pile cap. Of course in 

order to select this kind of foundation, structure and site conditions should be 

properly investigated. 

However there are also some disadvantages considering caisson-foundations. 

Successful construction is very much dependent on contractor’s skills. Poor 

workmanship can produce a weak foundation that may not be able to support the 

design load. Furthermore, shaft construction removes soil from the ground causing in 

this way reduction of lateral soil pressure and consequently reducing skin friction. 

The shaft construction loosens the soil beneath the tip thus giving a lower end 

bearing. Finally it should be mentioned that full-scale load tests are usually very 

expensive so the design is based more on theoretical and empirical aspects than 

experimental. 
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 The influence of the embedment 

In general, the embedment ratio has an influence not only to the kinematic 

interaction but also to the inertial interaction of the caisson. 

Considering the kinematic interaction, the embedment causes reduction of the 

lateral displacement in comparison to the free field while it also introduces a rotation 

angle. In general as the embedment ratio arises, the lateral displacement decreases 

while the rotation increases. The rotation is a very important part of the movement 

of the foundation. If it is been neglected and simultaneously the lateral displacement 

is considered reduced this might lead to non-conservative results.  In many cases it is 

easy and practical to consider as excitation of the system soil-foundation the free 

field movement. For the surface foundation under vertical transmitted shear waves it 

has been proved that this consideration is correct. Even at small embedment ratios 

ignoring the kinematic interaction leads many times to conservative results (Gazetas, 

1983) (Aviles & Perez-Rocha, 1998). However, tall structures that are founded in 

great depths are subjected to important rotation at their base with direct effects on 

their response. Ignoring the kinematic interaction at these occasions is not correct 

since it might lead to unsafety. 

Considering the inertial interaction, embedment in general increases the complex 

impedance of the soil-structure system. The contact between the sidewalls of the 

foundation and the surrounding soil increase not only the stiffness but also the 

damping of the system. However the real area of the “good” contact of the sidewalls 

with surrounding soil is many times less than the total geometric area. Ignoring this 

might lead to wrong calculation of the impedance which way far of the reality. 

Furthermore the lateral excitation of the caisson cause not only lateral vibration but 

also rotational vibration. In this way the coupling impedance is introduced. For 

shallow embedded foundation this coupling might be ignored but for greater depths 

its influence is very important. 

A general conclusion that can be made is that the embedment increases the strength 

of the foundation as well as the stiffness for any type of loading. An explanation of 

this statement holds on the below reasons which are schematically presented in 

Figure 2-21: 
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a) The base of the foundation lies not at the free surface of the soil but at a 

certain depth (trench effect) 

b) The influence of the lateral walls that a surface foundation does not have 

(sidewall effect) 

 

Figure 2-21: The influence of the embedment on the bearing capacity and the stiffness of a caisson 
(after ( Dritsos ‘12). 

 

 Design methodologies 

For many years deep foundations have been an interesting subject that has 

concerned many famous studiers. Especially for the lateral and seismic response of 

such foundations many different methods have been developed and used. However, 

almost all the methods that were applied for caissons follow the same semi-empirical 

approach as used for flexible pile foundations and so they are not directly deal with 

caisson physics. Another design approach for caissons came up from the observation 

that pier foundations are more likely to behave as rigid embedded elements rather 

than as flexible piles. Thus, analytical solutions for shallow embedded surface 

foundations have been used for providing the response of caissons to lateral loading. 

These solutions however, are restricted to low embedment depths and do not deal 

with the soil-structure interaction effects of caisson foundation. In a brief review 

(Gerolymos & Gazetas, 2006) and (Varun, et al., 2009) present in chronological order 

a partial list of such designing methods for caissons. In these methods algebraic 

expressions have been developed that account for arbitrary foundation shape and 

degree of embedment, and for a variety of soil conditions for the estimation of the 

dynamic impedance of footings. 
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Based on the aforementioned methods, more recently, dynamic Winkler models 

have been developed and modified for the direct application to caissons. Being 

perhaps the most popular approaches used in practice, these models account 

properly the soil resistance mechanisms mobilized at the base and the circumference 

of laterally loaded piers as shown in Figure 2-22. The foundation in these methods is 

supported by a series of independent vertical, rotational and horizontal springs and 

dashpots along the soil-footing interface which correspond to the vibration modes. 

 

Figure 2-22: Stresses at caisson-soil interface with circular, or square plan shape (after (Gerolymos & 
Gazetas, 2006)) 

Continuum model solutions like the widely available commercial 3D finite-element 

methods can provide more sophisticated solutions that can treat soil nonlinearities 

and interface issues. However, the use of such programs for the design of non-critical 

facilities is still limited because of requirements such as computational cost, 

associated site investigation cost and also user expertise knowledge and experience. 

Nevertheless, the rising development of the 3D finite element codes have made the 

use of such methods more practical by limiting these requirements with more and 

more efficient algorithms and much more user-friendly interface. Thus, taking into 

account this rising usage of the 3D Finite Element Codes, the need of evaluating the 

results of such codes and comparing them with other already known solutions has 

derived. 

One of the main objective of this study arises by this need. A direct comparison of 

elastic solutions has been performed, between a very famous and upcoming Finite 

Element Program, PLAXIS 3D Dynamics (2012) and a well-established and widely 

used method (Gazetas, 1991). 

  



54 
 

3 Elastic response 

In this part of the thesis the elastic response of a caisson has been studied. The 

results of numerical analyses have been used in order to calculate the dynamic 

impedance of the caisson and a direct comparison has been made with solutions 

from the literature. The formulations of the literature that have been used as well as 

the computation method from the numerical analyses are described in the following 

chapters. 

3.1 Gazetas elastodynamic formulations 

(Gazetas & Tassoulas, 1987) and (Fotopoulou, et al., 1989) have published a 

comprehensive series of studies on the static and dynamic response of embedded 

rigid foundations having various plan shapes. Among others they developed closed-

form semi-analytical expressions and charts for stiffness and damping of horizontally 

and rotationally loaded arbitrarily-shaped rigid foundations embedded in 

homogeneous soil. These expressions are based on some simple physical models 

calibrated with the results of rigorous and efficient boundary-element and finite-

element elastodynamic formulations as well as with numerous results from the 

published literature. To derive these expressions, incomplete contact between the 

foundation vertical walls and the surrounding soil were taken into account in a crude 

way. (Gadre & Dobry, 1998) provided through centrifuge modeling sufficient 

confirmation of the basic validity of some of the main concepts and results of these 

expressions. 

 

Figure 3-1: Geometry of a rigid foundation embedded in a homogeneous elastic halfspace 
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The problem that will be studied in this project is that of a square plan rigid caisson 

embedded in homogeneous elastic halfspace, subjected to lateral dynamic 

excitation. In general, for arbitrarily shaped foundation in plan view, circumscribed by 

a rectangle of width B and length L (Figure 3-1), Gazetas and co-workers expressed 

the dynamic impedances, with respect to the center of the base mat in the form: 

𝐾 = 𝑘 + 𝑖𝜔𝑐 

 k  is the dynamic spring coefficient and is equal to: 

𝑘 = 𝑘𝑒𝑚𝑏,𝑠𝑡𝑎𝑡𝑖𝑐𝜒𝑒𝑚𝑏 

where 𝑘𝑒𝑚𝑏,𝑠𝑡𝑎𝑡𝑖𝑐  is the static stiffness and 𝜒𝑒𝑚𝑏 is the dynamic coefficient which is 

frequency-dependent, χemb(ω). Consequently the dynamic spring coefficient is also 

frequency-dependent, k(ω). 

 c  is the frequency-dependent total damping coefficient, c(ω). 

This coefficient includes radiation and material damping. It should be noted that the 

damping coefficients that are extracted from Gazetas relations do not include the soil 

hysteretic damping ξ. To incorporate such damping, simply the corresponding 

material dashpot coefficient 2kξ/ω should be added to the radiation damping 

cradiation which can be obtained from the relations presented in the following: 

 

 
𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 +  

2𝑘

𝜔
𝜉 

( 3.1 ) 

 

Considering that for the lateral oscillation of rigid embedded foundations there are 

four modes of dynamic impedances, the complex dynamic impedance matrix of the 

caisson is 2x2 in size. 

𝐾̃ = [
𝐾ℎℎ̃ 𝐾ℎ𝑟̃

𝐾𝑟ℎ̃ 𝐾𝑟𝑟̃

] 
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where                                                𝐾ℎℎ̃ = 𝑘ℎℎ + 𝑖𝜔𝑐ℎℎ 

𝐾ℎ𝑟̃ = 𝑘ℎ𝑟 + 𝑖𝜔𝑐ℎ𝑟 

𝐾𝑟𝑟̃ = 𝑘𝑟𝑟 + 𝑖𝜔𝑐𝑟𝑟 

𝐾𝑟ℎ̃ = 𝑘𝑟ℎ + 𝑖𝜔𝑐𝑟ℎ 

𝐾ℎℎ̃: is the dynamic horizontal impedance 

𝐾ℎ𝑟̃: is the dynamic cross coupling horizontal-rotational impedance 

𝐾𝑟𝑟̃: is the dynamic rotational impedance 

𝐾𝑟ℎ̃: is the dynamic cross coupling rotational-horizontal impedance 

kij and cij are the stiffness and damping coefficients for each mode respectively. 

In order to compute the aforementioned four complex impedances, meaning 

equivalently the eight stiffness and damping coefficients, the values of the 

parameters that should be known are: 

 

 Gs: shear modulus 

Es: modulus of elasticity 

v: Poison’s ratio 

Vs: shear wave velocity 

VLa: “Lysmer’s analog” wave velocity 

 

It should be noted that only two of these parameters should be known in 

order to determine all other, (G or E and v) or (Vs and VLa). 

 

 ω: the circular frequency of the applied force (in radians/sec) 

or equally the dimensionless frequency α0  

α0: the dimensionless frequency 𝛼0 =
𝜔𝛣

2𝑉𝑠
 

 

 B: width of plan view 

L: length of plan view 

D: depth of embedment 
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d: depth of sidewall that is in contact with the surrounding soil 

 

 Ab: area of plan view 

Ib: moment of inertia about the longitudinal or transverse axes 

h: distance of the centroid of the effective sidewall from the ground surface 

 

 Aw: total area of the actual sidewall-soil contact surface  

 Aw,s: the sum of the projection of all the sidewall areas in direction parallel to 

loading, subjected to shear type of soil reaction 

 

Aw,ce: the sum of the projection of all the sidewall areas in direction 

perpendicular to loading, subjected to compression-extension type of soil 

reaction 

 

 Jws: the sum of the polar moments of inertia about the off-plane axis rotation 

of all surfaces actually shearing the soil 

 

Iwce: the sum of moments of inertia of all surfaces actually compressing the 

soil about their base axes parallel to the axis of rotation 

 

 Δi: the distance of surface Awce,I from the longitudinal axis 

 

 

The developed formulae that provide the stiffness and damping coefficients of a 

caisson are the following: 

 

 For the longitudinal axis the dynamic horizontal impedance is: 

 𝐾ℎℎ̃ = 𝑘ℎℎ + 𝑖𝜔𝑐ℎℎ  

where the dynamic stiffness is: 

𝑘ℎℎ = 𝑘ℎ,𝑠𝑡𝑎𝑡𝑖𝑐
𝑒𝑚𝑏 𝜒𝑒𝑚𝑏  

𝑘ℎ,𝑠𝑡𝑎𝑡𝑖𝑐
𝑒𝑚𝑏 ≈ 𝑘ℎ,𝑠𝑡𝑎𝑡𝑖𝑐

𝑠𝑢𝑟𝑓
(1 + 0.15√

2𝐷

𝐵
) [1 + 0.52 (

8ℎ𝐴𝑤

𝐵𝐿2
)

0.4

] 
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where 𝑘ℎ,𝑠𝑡𝑎𝑡𝑖𝑐
𝑠𝑢𝑟𝑓

 is the static stiffness of the caisson base, taken as that 

of a surface foundation on halfspace which is equal to: 

𝑘ℎ,𝑠𝑡𝑎𝑡𝑖𝑐
𝑠𝑢𝑟𝑓

≈
2𝐺𝐿

2 − 𝑣
[2 + 2.5 (

𝐴𝑏

4𝐿2
)

0.86

] −
0.2

0.75 − 𝑣
𝐺𝐿 (1 −

𝐵

𝐿
) 

𝜒𝑒𝑚𝑏: obtained from Graph a (Figure 3-2). 

and the horizontal dashpot coefficient is: 

𝑐ℎℎ = 𝑐ℎ
𝑠𝑢𝑟𝑓

+ 𝜌𝑉𝑠𝐴𝑤𝑠 + 𝜌𝑉𝐿𝑎𝐴𝑤𝑐𝑒 

where 𝑐ℎ
𝑠𝑢𝑟𝑓

 is the damping coefficient of the caisson base, taken as that of a 

surface foundation on halfspace: 

𝑐ℎ
𝑠𝑢𝑟𝑓

= 𝜌𝑉𝑠𝐴𝑏𝑐𝑠𝑢𝑟𝑓 

𝑐𝑠𝑢𝑟𝑓: obtained from Graph d (Figure 3-2). 

 For the dynamic coupled swaying-rocking complex impedance: 

𝐾ℎ𝑟̃ = 𝑘ℎ𝑟 + 𝑖𝜔𝑐ℎ𝑟 

𝐾𝑟ℎ̃ = 𝑘𝑟ℎ + 𝑖𝜔𝑐𝑟ℎ 

The approximate formulae are: 

𝑘ℎ𝑟 = 𝑘𝑟ℎ ≈
1

3
𝑑𝑘ℎℎ 

and 

𝑐ℎ𝑟 = 𝑐𝑟ℎ ≈
1

3
𝑑𝑐ℎℎ 

 For the dynamic rocking impedance the complex form is: 

 

𝐾𝑟𝑟̃ = 𝑘𝑟𝑟 + 𝑖𝜔𝑐𝑟𝑟 

where the dynamic stiffness is: 

𝑘𝑟𝑟 = 𝑘𝑟,𝑠𝑡𝑎𝑡𝑖𝑐
𝑒𝑚𝑏 (1 − 0.30𝛼0) 
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𝑘𝑟,𝑠𝑡𝑎𝑡𝑖𝑐
𝑒𝑚𝑏 ≈ 𝑘𝑟,𝑠𝑡𝑎𝑡𝑖𝑐

𝑠𝑢𝑟𝑓
[1 + 0.92 (

2𝑑

𝐿
)

0.6

] [1.5 + (
2𝑑

𝐿
)

1.9

(
𝑑

𝐷
)

−0.6

] 

where 𝑘𝑟,𝑠𝑡𝑎𝑡𝑖𝑐
𝑠𝑢𝑟𝑓

 is the static rocking stiffness of the caisson base, taken 

as that of a surface foundation on halfspace which is equal to: 

𝑘𝑟,𝑠𝑡𝑎𝑡𝑖𝑐
𝑠𝑢𝑟𝑓

≈
𝐺

1 − 𝑣
𝐼𝑏

0.75 [3 (
𝐿

𝐵
)

0.15

] 

and the rocking dashpot coefficient is: 

𝑐𝑟𝑟 = 𝑐𝑟
𝑠𝑢𝑟𝑓

+ 𝜌𝑉𝐿𝑎𝐴𝑤𝑐𝑒𝑐𝑒𝑚𝑏 + 𝜌𝑉𝑠 [𝐽𝑤𝑠 + ∑(𝐴𝑤𝑐𝑒𝛥𝑖
2)

𝑖

] 𝑐𝑒𝑚𝑏 

where 𝑐𝑟
𝑠𝑢𝑟𝑓

 is the damping coefficient of the caisson base, taken as that of a 

surface foundation on halfspace: 

𝑐𝑟
𝑠𝑢𝑟𝑓

= 𝜌𝑉𝐿𝑎𝐼𝑏𝑐𝑠𝑢𝑟𝑓 

𝑐𝑠𝑢𝑟𝑓: obtained from Graph f (Figure 3-2). 

𝑐𝑒𝑚𝑏 ≈ 0.25 + 0.65√𝛼0 (
𝑑

𝐷
)

−𝛼0/2

(
2𝐷

𝐵
)

−0.25

 

 

Figure 3-2: Graph (a): χemb, Graph (d): ch surf, Graph (f): cr surf 

In this project the caisson that is being studied is square in plan view and fully 

embedded. This means that Β=L and D=d. With these observations the formulae 

can be simplified. For more details on the simplified solutions the reader is referred 

to Appendix A. From the presented  formulae the dynamic impedances for each 

mode are calculated for every frequency and are compared with the corresponding 

results of PLAXIS. 
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3.2 Reference point 

The reference point plays a very important role when it comes for the embedded 

foundations. Traditionally for the surface foundations the reference point is taken at 

the center of the base of the foundation. However for the embedded foundations 

there is not a clear suggestion in the literature. Different researchers take different 

reference points, in the terms of different points where they measure the loads, the 

displacements and rotations. The different points will lead to different shapes of 

failure envelopes. The most common reference points that are used are, the center 

of the base, the center of the mass and the center of the top of the caisson. 

As it can be seen from Figure 3-3 below, the role of the applied load is different for 

different reference points. When the reference point is taken at the base the positive 

lateral force has competitive role comparing to the positive rotation moment. 

However when the reference point is at the top the positive lateral force has 

response (i.e. displacement and rotation) with the same direction as the positive 

rotation moment. In order to have the competitive response the rotation moment 

should be negative as it is shown in the figure. 

 

Figure 3-3: Competitive roles of the lateral force and the overturning moment. Above: reference point 
at the center of the base, below: reference point at the center of the top (after Souliotis ’12). 
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The formulas that presented in the previous chapter are referred at the base of the 

caisson. In this thesis the reference point has been taken at the top of the caisson. 

The reason for that is because by engineering point of view the springs and the 

dashpots that are calculated in order to be applied at the superstructure are easier to 

be understood and capture their physical meaning when the reference is at the base 

of the superstructure which is the top of the foundation. 

Thus, in order the dynamic impedances that derive from the numerical analyses 

(reference point at the top) to be comparable with the dynamic impedances of the 

aforementioned relations (reference point at the base) a proper transformation 

should be applied. The coordinate transformation is according to the following 

matrix. 

𝐴 = [
1 −𝐷

0 1
] 

 

𝐾𝑇𝑂𝑃̃ = 𝐴𝑇𝐾𝐵𝐴𝑆𝐸̃𝐴 = [
𝐾ℎℎ̃ 𝐾ℎ𝑟̃ − 𝐷𝐾ℎℎ̃

𝐾𝑟ℎ̃ − 𝐷𝐾ℎℎ̃ 𝐾𝑟𝑟̃ − 2𝐷𝐾ℎ𝑟̃ + 𝐷2𝐾ℎℎ̃

] 

 

For more details about the coordinate transformation the reader is referred to the 

Appendix B. 

 

3.3 Influence of mass 

As described before the general equilibrium equation of the movement of the 

caisson takes into account except for the stiffness and the damping also the mass. 

For more details the reader is referred to 3.6. 
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 At the numerical analyses that have been performed the mass of the caisson has 

been taken into account. The matrix of the mass that is referred at the base is by 

(Gerolymos & Gazetas, 2006): 

𝑀𝑏𝑎𝑠𝑒 = [
𝑚 𝑚

𝐷

2

𝑚
𝐷

2
(𝐽𝑐 + 𝑚

𝐷2

4
)

] 

Where  

m: mass, D: depth of embedment, Jc: mass moment of inertia about the center of 

gravity 𝐽𝑐 =
1

12
𝑚(𝐵2 + 𝐷2) 

 

Of course the proper coordinate transformation as described before for the matrix of 

impedance should also be applied at this matrix: 

𝐴 = [
1 −𝐷

0 1
] 

 

𝑀𝑡𝑜𝑝 = 𝐴𝑇𝑀𝑏𝑎𝑠𝑒𝐴 

This transformation results the following matrix which is referred at the top: 

 

𝑀𝑡𝑜𝑝 = [
𝑚 −𝑚

𝐷

2

−𝑚
𝐷

2
(𝐽𝑐 + 𝑚

𝐷2

4
)

] 

 

3.4 Numerical model 

In this study three dimensional finite element simulations have been conducted for 

the evaluation of the springs and dashpots coefficients of the caisson. The 
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simulations are performed using the FEM software package PLAXIS 3D version 2012 

which was presented in chapter 2.7. 

 Geometry 

The caisson that is being studied in this project is square plan with width B=10m. The 

caisson is considered to be fully embedded with depth D=20m. Thus, the ratio depth 

of embedment to width is D/B=2. It should be noted that because of the symmetric 

problem of the square plan caisson, only half of the numerical domain is simulated. 

In this way, taking advantage of the symmetry, considerable computational effort has 

been saved. 

 

Figure 3-4: Geometric features of the square plan caisson. Left half of the model that was used for the 
numerical analyses, right the dimensions of the full caisson. 

 

 Simulation of caisson 

The soil formation was simulated using 3D continuum soil-elements. For the caisson 

two different types of elements were compared. In model A the caisson was 

simulated by volume-elements (with different material parameters than the 

surrounding soil) and in model B the caisson was simulated with plate-elements 

(with equivalent parameters with model A). The results obtained from the two 

models found to be almost exact the same (Figure 3-5). The dynamic analyses that 
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will be presented in the following were performed using model A: volume-elements 

for the simulation of the caisson. 

 

 

Figure 3-5: Lateral displacement of the center of the top of the caisson for dynamic lateral loading for 
the two different models. 

 

The reason for choosing the volume elements is that the plates appeared to be a bit 

deformable so the caisson did not behave as a full rigid body. Although this effect 

could be considered negligible by comparing the response of the two models, model 

A considered to be more trustworthy for the analyses that follow.  

 

 Material models 

Both for soil and caisson elements the material-models have been considered linear 

elastic at this part. No special interface elements have been adapted because of the 

assumption of perfect bonding at the soil-structure interface. This means that no 

separation between the caisson and the surrounding soil is performed, not even 

under tensile stress. Figure 3-4 depicts the geometry of the caisson while Table 3-1 

presents the selected parameters for the material models. 
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Table 3-1: Material properties 

Parameter Name Soil Caisson Unit 

General 

Material model Model Linear 

elastic 

Linear 

elastic 

 

Drainage type Type Dry Non-porous  

Unit weight γ 20 25 kN/m3 

Parameters 

Young's modulus (constant) E 20*103 100*106 kN/m2 

Poisson's ratio v 0.30 0.20  

Shear modulus G 7692 4,17*107 kN/m2 

Shear wave velocity Vs 61.39 4041 m/s 

Primary wave velocity Vp 114.9 6600 m/s 

 

The values of moduli of elasticity of the soil and the caisson have been selected in 

such way that the caisson to behave as rigid block. The ratio Ecaisson/Esoil (= 5000) is 

selected so big to ensure this condition. 

 

 Absorbent boundaries 

For the implementation of dynamic effects, absorbent boundaries are created with 

the use of viscous boundaries (dampers). The damper at the boundary element 

ensures that an increase in stress on the boundary is absorbed without rebounding. 

When pressure waves strike the boundary perpendicular, relaxation is redundant. 

However, in the presence of shear waves, the damping effect of the absorbent 

boundaries is not sufficient without relaxation so shear waves cannot be fully 

absorbed and a limited boundary effect is noticeable. For more details the reader is 

referred to (PLAXIS3D, 2012, p. 57) 

  



66 
 

3.5 Optimization of the model 

At this part of the study sensitivity analyses have been performed considering the 

size of the finite element (mesh fineness) and the dimensions of the numerical 

domain. 

 Mesh discretization 

For a dynamic analysis, meshing plays a key role in obtaining a realistic result, if not 

for a simple geometry, but definitely for a complex one. A too coarse meshing fails to 

capture the subtle changes in the stresses generated in different parts of the 

medium, especially at the points where stress concentrations are expected. On the 

other hand, a too fine mesh renders the execution time to be very long, which is 

uneconomic. Hence, a trade-off is required to obtain an approximately accurate 

solution in a reasonable time. 

In order to determine the mesh density that has been used for the dynamic analyses 

in this project, sensitivity analysis for the maximum element size was initially 

performed. At this stage of the study different mesh densities have been applied for 

the analysis of the maximum frequency of interest which is 𝑓𝑚𝑎𝑥 = 3.9 𝐻𝑧 (or 𝑎0 =

2). The caisson is excited at its top with harmonic lateral uniformly distributed load of 

10kN/m2. The obtained results about the mesh size have also been adapted to lower 

frequencies. For this sensitivity analysis the far field, namely the viscous boundaries 

of the numerical domain, are placed at a distance equal to 4 times the diameter (B) 

of the caisson at both directions. The soil stratum reaches 20 meters deeper (=2B) 

from the caisson base in order to neglect the influence on the response. The width of 

the domain as well as its height, have also been investigated by sensitivity analysis 

(3.5.2). 

The main purpose of this sensitivity investigation is to evaluate the relation between 

the maximum element size (Δl) of the mesh and the wavelength (λ) of the input 

signal: 

 𝛥𝑙 ≤
𝜆

𝑘
, 𝑤ℎ𝑒𝑟𝑒 𝜆 = 𝑉𝑆𝑇 =

𝑉𝑆

𝑓
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Different values of k have been used for generating the global mesh while for the 

maximum dimension (Δl) of each element, estimations were made in three different 

ways. In the first way the total volume of the model was divided by the total number 

of elements (n) and then assuming that the element has a simplified geometry of a 

normal tetrahedral the maximum dimension was calculated. 

𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑉𝑡𝑜𝑡𝑎𝑙/𝑛 

𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝛥𝑙3 √2

12
 

In the second way the dimension of the element is defined by PLAXIS when 

generating the mesh by dividing the diagonal of the model by a certain number (nc) 

which is called relative element size and can be modified by the user. When the mesh 

has been generated PLAXIS provides the real average element size (AES) which is 

usually smaller because of the local refinements. This is the third way. The role of the 

local refinement at the region of the caisson was investigated too. The results are 

presented below. 

 

Results 

First the influence of the global mesh size was investigated by generating the global 

mesh by different values of k. Table 3-2 below presents the different mesh 

discretization that were used without local refinement at the region of the caisson. 

Table 3-2: Mesh description and parameters without local refinement at the region of the caisson 

mesh 

description 

n Δl (m) k=Vs/(Δl*f) 

number of 

elements 

simplified 

geometry (1) 

PLAXIS 

definition (2) 

PLAXIS 

AES (3) 
k(1) k(2) k(3) 

very coarse 820 11.88 10.83 14.06 1.3 1.5 1.1 

coarse 1753 9.22 8.12 9.61 1.7 1.9 1.6 

medium 5842 6.17 5.41 5.26 2.6 2.9 3.0 

fine 19781 4.11 3.79 2.86 3.8 4.2 5.5 

very fine 51177 3.00 2.71 1.78 5.2 5.8 8.8 
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Figure 3-6: Sensitivity of lateral displacement to element size for 3.9 Hz harmonic excitation at the top 
of the caisson without local refinement at the region of the caisson 

From the figure above it can be concluded that very coarse and coarse meshes are 

not suitable for the analyses as the response deviates enough from the finer meshes. 

Fine and very fine meshes have the almost exact same response while medium mesh 

presents a very small deviation from the finer meshes.  

In order to optimize the mesh size, local refinement at the region of the caisson was 

tested for the different mesh densities (very coarse – very fine). Different local 

refinements at the region of the caisson were used (lr0 – lr4) with lr4 being the 

densest refinement and lr0 the coarsest. The results for the different mesh densities 

are given in the figures below. 
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Figure 3-7: Sensitivity of lateral displacement to local refinement (lr) at the region of the caisson for 
different global meshes (very coarse – very fine) 

 

From Figure 3-7 can be concluded that the densest local refinement at the region of 

the caisson is suitable for the analyses. For this refinement a comparison has been 

made for the different global meshes. 

 Table 3-3 below presents the different mesh discretization that were used including 

the densest local refinement (lr4) at the region of the caisson. The results are 

presented in the following figure while conclusions about the final model and 

discussion on the validity of the guiding from the literature relation about the 

wavelength is discussed in the following. 
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Table 3-3: Mesh description and parameters including the densest local refinement at the region of 
the caisson 

mesh 

description 

n Δl (m) k=Vs/(Δl*f) 

number of 

elements 

simplified 

geometry 

(1) 

PLAXIS 

definition 

(2) 

PLAXIS 

AES (3) 
k(1) k(2) k(3) 

very coarse* 2337 8,38 10,83 8,33 1,9 1,5 1,9 

coarse* 3325 7,45 8,12 6,98 2,1 1,9 2,3 

medium* 17337 4,30 9,22 3,06 3,7 1,7 5,1 

fine* 27941 3,66 6,17 2,93 4,3 2,6 5,4 

very fine* 123391 2,23 2,71 1,15 7,0 5,8 13,7 

  

 

 

Figure 3-8: Sensitivity of lateral displacement to element size for 3.9 Hz harmonic excitation at the top 
of the caisson with local refinement (lr4) at the region of the caisson 
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From Figure 3-8 above, it can be clearly seen that very coarse and coarse meshes 

have improved but still are not appropriate for the analyses. Medium mesh could be 

used as global meshing since the deviation is small enough but fine and very fine 

meshes give almost identical results with negligible deviation with each other. 

Subsequently the fine global mesh with dense local refinement at the region of the 

caisson was selected for the dynamic analyses that follow. 

 

Conclusions 

With respect to computational requirement lowering the number of elements is 

always a very important issue which can become critical for dynamic 3D analyses .The 

main purpose of this sensitivity investigation was to evaluate the relation between 

the maximum element size (Δl) of the mesh and the wavelength (λ) of the input 

signal:  

𝛥𝑙 ≤
𝜆

𝑘
 

In literature the values that are proposed for k range between 4 and 10. (Kuhlemeyer 

& Lysmer, 1973) propose the value 8 as guideline for generating mesh but indicate 

the importance of investigating the influence of the element size. This value is most 

commonly used for dynamic analyses in case of no initial sensitivity analysis has 

performed. For more details the reader is referred to 2.6.1. 

The results presented above show the clear effects mesh coarsening can have. 𝑘 ≈ 4 

resulted to be critical as greater values of 𝑘 have negligible influence to the response. 

The reason that this value is smaller than the guiding from the literature value is 

because the volume elements implemented here are 10-node tetrahedral elements 

while the guiding value has derived from linear elements. Hence lower value of k was 

expected to be resulted because tetrahedral elements interpolate more nodes than 

linear elements. 

The mesh density that came up from the sensitivity analysis can be applied to lower 

frequencies because as the wavelength increases the maximum element 

requirement decreases. Thus, keeping the same fine mesh for lower frequencies the 
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accuracy increases. Instead applying the same mesh for higher frequencies is not 

recommended because the wavelength decreases and so more elements are 

required in order to obtain reliable results. In this study the mesh that has been 

resulted from the higher frequency of interest has been adapted to the lower 

frequencies for the rest dynamic analyses. 

 

 Domain dimensions 

The infinite domain represented by finite element models needs to be truncated at 

some finite boundary. Because optimization of the computational efficiency requires 

the boundary to be as close as possible to the finite structure, in this part of the 

study the influence of the domain dimensions have been investigated. Figure 3-9 

below shows the width (W) and the height (H) of the model as well as the 

dimensions of the caisson. 

 

Figure 3-9: Domain (blue) and caisson (green) dimensions. 

 

 Model width 

Since dynamic models involving the study of shear waves are largely affected by the 

waves transmitted and reflected from the boundaries of the model, it is imperative 
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to keep the region of interest (the region that will be under observation to study and 

interpret the results) as far as possible from any reflecting boundary. In general, the 

width of such dynamic models is chosen much larger than the corresponding static 

models. 

 

Figure 3-10: Plan view of the caisson and the model domain. W is the width of the domain, B (=10m) 
is the side of the caisson. 

 

In order to determine the optimum domain width for the problem, different 𝑊/𝐵 

(𝑊 is the width of the domain and 𝐵 = 10𝑚 is the side of the caisson) ratios for the 

soil medium have been considered. Figure 3-10 depicts these dimensions. The 

primary objective of this sensitivity analysis is to determine the optimum width of 

the domain, beyond which the soil is simulated as a semi-infinite medium. 

Dynamic analyses have been performed for a specific frequency 𝑓 = 1.5 𝐻𝑧 (or 𝑎0 =

0.77). Smaller frequency than the maximum frequency of interest was selected in 

order to improve the accuracy of the results considering the mesh element size. The 

mesh has been derived from the results of the previous sensitivity analysis. The 

caisson was excited at its top with harmonic lateral uniformly distributed load of 

10kN/m2. To simulate the semi-infinite domain the soil stratum has been set at 

depth equal to 2 times the depth (D=2B) of embedment of the caisson (H=2D=4B). 
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Results 

In order to investigate the influence of the lateral boundaries the width of the model 

was changed performing the same analysis while the height of the model was kept 

steady. The dimensions of the caisson were also kept the same. Table 3-4 below 

shows the different values of W/B that were used and the corresponding results 

while Figure 3-11 and Figure 3-12 that follow depict the results. 

Table 3-4: Different values of W/B that were analyzed and the corresponding results. The first two 
columns present the distance measured between the lateral side of the caisson and the lateral 
boundary of the domain. The fifth column shows the deviation of the maximum response from the 
model with the wider width. 

distance of lateral 
boundaries from 
the sides of the 

caisson 
W/D 

number 
of 

elements 

umax 
deviation 

[m] D [mm] 

1.00 0.050 0.60 832 1.83 18% 

2.50 0.125 0.75 935 1.62 27% 

5.00 0.250 1.00 1036 1.59 29% 

7.50 0.375 1.25 1709 1.69 24% 

10.00 0.500 1.50 2239 1.88 16% 

12.50 0.625 1.75 2441 2.09 6% 

15.00 0.750 2.00 3063 2.29 -3% 

17.50 0.875 2.25 4753 2.39 -7% 

20.00 1.000 2.50 5008 2.40 -8% 

25.00 1.250 3.00 6961 2.30 -3% 

27.50 1.375 3.25 9089 2.23 0% 

30.00 1.500 3.50 10566 2.17 3% 

35.00 1.750 4.00 14193 2.14 4% 

40.00 2.000 4.50 27928 2.16 3% 

50.00 2.500 5.50 36256 2.22 0% 

65.00 3.250 7.00 41698 2.17 3% 

80.00 4.000 8.50 55693 2.18 2% 

90.00 4.500 9.50 68847 2.23 0% 
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Figure 3-11: Effect of domain width on the maximum lateral response at the top of the caisson due to 
lateral harmonic excitation. The arrow indicates the selected width beyond which the soil domain is 
considered to successfully represent semi-infinite medium. 

 

 

Figure 3-12: Effect of domain width expressed in total number of elements on the deviation of the 
maximum lateral response of the caisson due to lateral harmonic load of the wider model from the 
corresponding values of the other ratios. The arrow indicates the selected width beyond which the soil 
domain is considered to successfully represent semi-infinite medium. 

 

Conclusions 

Figure 3-11 reveals the effect of 𝑊/𝐷 in terms of the maximum displacement of the 

input excitation measured at the surface of the caisson and at the middle of its 

width. As it can be concluded the increase of width after the value of 4.5𝐷 provide 
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very small deviation. From Figure 3-12 can be observed that after the value of 4.5𝐷 

which is indicated by the arrow, the increase of the total number of finite elements 

that constitute the model, increases very much making the model inefficient by 

computational view. By these two observations the optimum width of the domain is 

determined to be 4.5𝐷. 

 

 Model height 

The height of the model is another parameter that needs to be investigated since the 

boundary at the bottom of the model influences the results as well. In order to 

determine the optimum height of the soil that will represent the halfspace, 

sensitivity analysis has been performed. The mesh discretization size and the width 

domain were determined from the previous sensitivity analyses. The excitation 

(frequency-load) has been the same as the previous analyses for the width. The only 

parameter that was varied here is the height of the domain.  

  

Figure 3-13: Cross section of the model. H is the height of the domain, B (=10m) is the side of the 
caisson and D (=20m) is the embedment of the caisson.  
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Results  

Table 3-4 below shows the different values of H/B that were used and the 

corresponding results while Figure 3-11 and Figure 3-12 that follow depict the 

results. 

 

Table 3-5: Different values of H/B that were analyzed and the corresponding results. The first two 
columns present the distance measured between the base of the caisson and the bottom boundary of 
the domain. The fifth column shows the deviation of the maximum response from the model with the 
deeper height (last row). 

distance of bottom 
boundary from the 
bottom side of the 

caisson 
H/B 

number of 
elements 

umax 
deviation 

[m] B [mm] 

0.00 0.00 2.00 9743 1.25 42% 

1.00 0.10 2.10 10053 2.18 -2% 

2.00 0.20 2.20 10053 2.17 -1% 

5.00 0.50 2.50 10693 2.06 4% 

10.00 1.00 3.00 13339 2.08 3% 

20.00 2.00 4.00 27941 2.16 -1% 

50.00 5.00 7.00 38623 2.14 0% 
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Figure 3-14: Effect of domain height on the maximum lateral response at the top of the caisson due to 
lateral harmonic excitation. The arrow indicates the selected height beyond which the soil domain is 
considered to successfully represent semi-infinite medium. 

 

 

Figure 3-15: Effect of domain height expressed in total number of elements on the deviation of the 
maximum lateral response of the caisson due to lateral harmonic of the deeper model from the 
corresponding of the other ratios. The arrow indicates the selected height beyond which the soil 
domain is consider to successfully represent the halfspace. 

 

Conclusions 

Figure 3-14 reveals the effect of 𝐻/𝐵 in terms of the maximum displacement of the 

input excitation measured at the surface of the caisson and at the middle of its 

width. As it can be concluded the increase of width after the value of 4𝐵 provides 
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very small deviation for the response. From Figure 3-15 can be observed that after 

the value of 4𝐵 which is indicated by the arrow the increase of the total number of 

finite elements that constitute the model, increases very much making the model 

inefficient by computational view. By these two observations the optimum height of 

the domain is determined to be 4𝐵. 

 

3.6 Formulation of impedance matrix 

Directly stemming from the fact that the elasticity modulus of concrete (25 GPa) is 

significantly higher than that of soil (2-5 MPa in general), the caisson foundation 

investigated in this study, namely foundation elements of intermediate depth-to-

diameter ratio (D/B=2), is here assumed to respond as a rigid body without 

significant loss of accuracy of the solution. As a result, application of a lateral force 

(Q) and an overturning moment (M) at the top will result in a net lateral 

displacement and a rotation of the caisson as shown in Figure 2-1. Based on the 

aforementioned assumption, the consequent response of the foundation is 

adequately described in terms of the displacement at the top (u), and the rotation 

angle of the rigid caisson (φ). 

Given these quantities, the horizontal displacement at any point is given by: 

 𝑢(𝑧) = 𝑢 − 𝜑𝑧 ( 3.2 ) 

.  

Figure 3-16: Response of caisson upon application of lateral load and overturning moment. 
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As described before in chapter 2.4, the response of the caisson is related to the 

forced excitation by the following equation of dynamic equilibrium in matrix notation 

assigned to the caisson’s degrees of freedom: 

 [𝑀]𝑢̈(𝑡) + [𝐶]𝑢̇(𝑡) + [𝐾]𝑢(𝑡) = 𝐹(𝑡) ( 3.3 ) 

Where 

[𝑀]: mass matrix 

[𝐶]: damping matrix 

[𝐾]: stiffness matrix 

𝑢̈(𝑡), 𝑢̇(𝑡), 𝑢(𝑡): acceleration, velocity, displacement vectors 

𝐹(𝑡): external force vector 

For harmonic excitation of a lateral force, Q(t), and an overturning moment, M(t), the 

external vector becomes: 

 
[𝐹] = [

𝑄(𝑡)
𝑀(𝑡)

] 
( 3.4 ) 

 

Where  

𝑄(𝑡) = 𝑄𝑠𝑖𝑛(𝜔𝑡) 

𝑀(𝑡) = 𝑀𝑠𝑖𝑛(𝜔𝑡) 

𝑄, 𝑀 are the maximum values of the forced vibration: 

[𝐹]𝑚𝑎𝑥 = [
𝑄
𝑀

] 

The response of the caisson, namely the displacement u and the rotation angle φ, is 

also harmonic and are given in matrix form as: 

[𝑋] = [
𝑢(𝑡)

𝜑(𝑡)
] 

 

where, displacements, velocities and accelerations are related by the following 

equations: 
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𝑢(𝑡) = 𝑢 sin(𝜔𝑡 + 𝑑𝑢) ( 3.5 ) 

𝑢̇(𝑡) = 𝑢̇ sin(𝜔𝑡 + 𝑑𝑢) = 𝜔𝑢 sin (𝜔𝑡 + 𝑑𝑢 +
𝜋

2
) 

( 3.6 ) 

𝑢̈(𝑡) = 𝑢̈ sin(𝜔𝑡 + 𝑑𝑢) = 𝜔2𝑢 sin(𝜔𝑡 + 𝑑𝑢 + 𝜋)

= −𝜔2𝑢 sin(𝜔𝑡 + 𝑑𝑢) 

( 3.7 ) 

For the rotation angle the corresponding equations are the following: 

𝜑(𝑡) = 𝜑 sin(𝜔𝑡 + 𝑑𝜑) ( 3.8 ) 

𝜑̇(𝑡) = 𝜑̇ sin(𝜔𝑡 + 𝑑𝜑) = 𝜔𝜑 sin(𝜔𝑡 + 𝑑𝜑 + 𝜋/2) ( 3.9 ) 

𝜑̈(𝑡) = 𝜑̈ sin(𝜔𝑡 + 𝑑𝜑) = 𝜔2𝜑 sin(𝜔𝑡 + 𝑑𝜑 + 𝜋) = −𝜔2𝜑 sin(𝜔𝑡 + 𝑑𝜑) ( 3.10 ) 

𝑢, 𝜑 are the maximum values of the response of the caisson: 

 [𝑋]𝑚𝑎𝑥 = [
𝑢
𝜑] 

( 3.11 ) 

 

And 𝑑𝑢, 𝑑𝜑 are the differenct phase angles due to the time lag between the 

displacement and the load or the rotation and the load respectively. 

Replacing the terms in equations ( 3.5 )-( 3.10 ) and ( 3.4 ) ,( 3.11 )  to equation ( 3.3 ) 

the latter becomes: 

[𝐹] = {[𝐾] − [𝑀]𝜔2}[𝑋]𝑚𝑎𝑥sin (𝜔𝑡) + [𝐶]𝜔[𝑋]𝑚𝑎𝑥sin (𝜔𝑡 + 𝜋/2) 

Which can be written in a more elegant way in the form of a complex number: 

[𝐹] = {[𝐾] − [𝑀]𝜔2 + 𝑖𝜔[𝐶]}[𝑋] 

 [𝐹] = [𝐾̃][𝑋̃] ( 3.12 ) 

Where [𝐾̃]and [𝑋̃] are complex matrices. 

The left-hand side of the equation represents the forcing function [𝐹]applied at the 

top of the foundation, and the right-hand side corresponds to the product of the so-

called impedance matrix [𝐾̃] of the soil-foundation system as interpreted from the 

foundation top to the response vector [𝑋̃], namely the displacement and rotation of 

the caisson. 

It is very important to be noted here that all the matrices above refer to the top of 

the caisson. In case of another reference system a coordinate transformation needs 
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to be applied for each matrix separately. Of course the dynamic equilibrium is still 

valid. 

The main purpose of this part of the study is to quantify the matrix [𝐾̃]for caissons. 

As it was defined before this matrix is equal to: 

[𝐾̃] = [𝐾] − [𝑀]𝜔2 + 𝑖𝜔[𝐶] 

Where [𝐾]is the springs matrix, [𝐶] the dashpots matrix and [𝑀]the mass matrix. 

The mass matrix referred to the top of the caisson, after the proper coordinate 

transformation that has already been described, is equal to: 

 

[𝑀] = [
𝑚 −𝑚

𝐷

2

−𝑚
𝐷

2
𝐽𝑐 + 𝑚

𝐷2

4

] 

 
( 3.13 ) 

 

Subsequently in order to determine the global impedance matrix [𝐾̃], the spring-

matrix [𝐾] and the dashpot-matrix [𝐶] need to be estimated. 

Considering the matrix formulation of the equation of equilibrium of externally 

applied forces and soil reactions evaluated in Equation (4.12), this expression can 

also be written as: 

[
𝑢
𝜑] = [

𝐾̃ℎℎ 𝐾̃ℎ𝑟

𝐾̃𝑟ℎ 𝐾̃𝑟𝑟

]

−1

[
𝑄
𝑀

] 

In particular for the case of two different load cases at the top of the caisson, 

externally applied lateral force combined with no moment and externally applied 

moment combined with no force the relation can be written as: 

 
[
𝑢𝑄 𝑢𝑀

𝜑𝑄 𝜑𝑀
] = [

𝐾̃ℎℎ 𝐾̃ℎ𝑟

𝐾̃𝑟ℎ 𝐾̃𝑟𝑟

]

−1

[
𝑄 0
0 𝑀

] 

 

 
( 3.14 ) 

 

where the displacement components on the right-hand side of the equation are: 
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uQ : displacement at top upon the application of a unit force 

φQ : rotation of the rigid body upon the application of a unit force 

uM : displacement at top upon the application of a unit moment 

φM : rotation upon the application of a unit moment 

𝐾̃𝑖𝑗 are the dynamic impedances. 

The indicators ij stand for: 

hh: horizontal 

hr: coupling horizontal-rotational 

rr: rotational 

rh: coupling rotational-horizontal 

As a result, the stiffness matrix can be evaluated by simply computing the 

displacements at top and rotations of caisson due to the application of a lateral force 

and a overturning moment separately and inverting the matrix in Equation ( 3.14 ). 

This method is typically referred to as the flexibility approach and is extensively 

applied in the field of structural mechanics. It should be noted here that because of 

the calculations involve complex number the computation is quite complicated if 

performed by hand. Special software (Mathcad v.14) has been used in this thesis in 

order to calculate the real and imaginary parts of all the impedances. 

 

 Static impedance 

The methodology that described before can be applied also to evaluate the static 

impedance.  The difference is that the impedance matrix [𝐾̃] instead of complex 

numbers consists now by real numbers [𝐾] as the imaginary part of the impedance is 

zero. 

The following Table 3-6 presents the different values of static stiffness evaluated by 

the numerical model and Gazetas formulations that are given below. For Gazetas 

formulations the proper coordinate modifications due to the different reference 

point have been applied as described previously in order to be comparable with the 

results calculated by PLAXIS. 
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𝐾ℎℎ ≈
9𝐺𝐵

2 − 𝑣
(1 + 0.15√

2𝐷

𝐵
) [1 + 1.58 (

𝐷

𝐵
)

2.4

] 

𝐾ℎ𝑟 = 𝐾𝑟ℎ ≈
1

3
𝐷𝐾ℎℎ 

𝐾𝑟𝑟 ≈
3.6𝐺𝐵3

1 − 𝑣
[1 + 0.92 (

2𝐷

𝐵
)

0.6

] [1.5 + (
2𝐷

𝐵
)

1.9

] 

Table 3-6: Comparison between static impedances and static response calculated by PLAXIS and 
GAZETAS formulations. 

STATIC IMPEDANCE 

|𝐾𝑖𝑗| PLAXIS GAZETAS deviation 

hh 1.11E+06 9.91E+05 -12% 

rr 2.72E+08 2.98E+08 9% 

hr -1.31E+07 -1.32E+07 1% 

    

STATIC RESPONSE 

u/φ PLAXIS GAZETAS deviation 

uQ 2.13E-03 2.46E-03 14% 

φQ 1.03E-04 1.09E-04 6% 

uM 1.71E-04 1.82E-04 6% 

φM 1.44E-05 1.36E-05 -6% 

 

As can be clearly seen the deviation between the two methods of calculation of static 

impedance is quite small (<15%) for all modes. This deviation is acceptable since 

Gazetas formulations have developed by simplicity, without any serious compromise 

in accuracy. In general, errors that may result from the use of these formulations are 

within an acceptable 15%. Use of the approximation symbol (≈) at the formulas, 

however, implies a slightly inferior accuracy. The deviation is greater for the 

horizontal mode as the lateral displacement for the applied lateral force is estimated 

smaller than the corresponding value of Gazetas formulation. 
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 Dynamic impedance 

 Methodology 

The problem that has been studied herein is that of a square plan caisson (10x10 m2) 

embedded in homogeneous elastic soil and subjected to lateral dynamic excitation at 

its top: Q(t) and M(t) as shown in Figure 3-17. 

 

Figure 3-17: Driving excitation atop (right) and response of the caisson (left) 

 

The range of frequencies that has been studied is [0‒3.9Hz] or equally in 

dimensionless frequency terms, αo [0-2] where α0=ωΒ/2Vs. For each frequency two 

dynamic analyses have been performed. The four dynamic impedances have been 

calculated using the results of this pair of analyses: 

 

1) input: 𝑄(𝑡) = 1000𝑠𝑖𝑛(𝜔𝑡 + 𝜋/2)  [kN] and 𝑀(𝑡) = 0 

output: 𝑢𝑄(𝑡) and 𝜑𝑄(𝑡) 

The equations between the input and output quantities are: 

 

𝑄𝑚𝑎𝑥 =   𝐾̃ℎℎ𝑢̃𝑄  +  𝐾̃ℎ𝑟𝜑̃𝑄 ( 3.15 ) 

0 =   𝐾̃𝑟ℎ𝑢̃𝑄  +  𝐾̃𝑟𝑟𝜑̃𝑄 ( 3.16 ) 
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2) input: 𝑀(𝑡) = 1667𝑠𝑖𝑛(𝜔𝑡 + 𝜋/2)  [kN] and 𝑄(𝑡) = 0 

output: 𝑢𝑀(𝑡) and 𝜑𝑀(𝑡) 

The equations between the input and output quantities are: 

 

0 =   𝐾̃ℎℎ𝑢̃𝑀  +  𝐾̃ℎ𝑟𝜑̃𝑀 ( 3.17 ) 

𝑀𝑚𝑎𝑥 =   𝐾̃𝑟ℎ𝑢̃𝑀  +  𝐾̃𝑟𝑟𝜑̃𝑀 ( 3.18 ) 

 

where 𝐾̃𝑖𝑗 are the global dynamic impedances, 𝑄𝑚𝑎𝑥 = 1000 𝑘𝑁 , 𝑀𝑚𝑎𝑥 =

1667 𝑘𝑁𝑚 and 𝑢, 𝜑 are the corresponding complex response for each analysis 

respectively Q-0 or 0-M. 

The complex values of the response have obtained by taking into account the 

different lag angle between the load and the response, i.e. Q(t)-uQ(t) and Q(t)-φQ(t) 

or M(t)-uM(t) and M(t)-φM(t) respectively. The lag angle for each mode of the 

response has been calculated by the time lag as shown in Figure 3-18 and it is equal 

to: 

𝑑𝑖𝑗 = 𝜔𝛥𝑡𝑖𝑗  

Where ω is the angular frequency and Δtij is the time lag between the response and 

the load. The indicators i,j stand for: 

i: the lateral displacement u or the rotation angle φ 

j: the lateral force Q or the rotation moment M 

Thus the real and imaginary parts of the response can be written as: 

𝑅𝑒(𝑢̃𝑄) = 𝑢𝑄cos (𝑑𝑢𝑄) 

𝐼𝑚(𝑢̃𝑄) = 𝑢𝑄sin (𝑑𝑢𝑄) 

, where 𝑢𝑄 is the amplitude of the response. With the same procedure all the modes 

of the response can be obtained, 𝑢̃𝑄 , 𝜑̃𝑄 and 𝑢̃𝑀 , 𝜑̃𝑀. 
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Figure 3-18: Schematic illustration of the time lag between the applied load and the out coming 
response. 

By the four complex equations ( 3.15 )-( 3.18 ) using the methodology that described 

before, the four unknown global impedances can be calculated. Thus, the global 

impedance matrix has been calculated. 

[𝐾̃] = [
𝐾̃ℎℎ 𝐾̃ℎ𝑟

𝐾̃𝑟ℎ 𝐾̃𝑟𝑟

] 

A first comparison has been performed between the maximum values of the 

response and their corresponding lag angles derived from PLAXIS analyses, and the 

values of the corresponding relations from 3.1 Gazetas elastodynamic formulations, 

after the proper modification in order to be comparable as described there. 

Furthermore, comparisons have been performed between the values of the norm of 

each mode of the global impedance calculated by the two methods. The results 

followed by remarks and conclusions are presented in the following.  

 

Results 

In order to present the results of the numerical analyses the response of the caisson 

has been normalized to the corresponding static values. In this way the results can be 

generalized. The different lag angles are presented in radians. The dimensionless 

frequency 𝛼0 =
𝜔𝛣

2𝑉𝑠
 is used in all graphs.  
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Figure 3-19: Normalized lateral maximum displacement at the center of the top of caisson resulted by 
lateral dynamic load: Q(t)=1000sin(ωt+π/2) and M(t)=0. 

 

 

 

 

Figure 3-20: Increasing absolute value of the lag angle between the load Q(t) and the lateral 
displacement uQ. 
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Figure 3-21: Normalized lateral maximum rotation angle of caisson resulted be lateral dynamic load: 
Q(t)=1000sin(ωt+π/2) and M(t)=0. 

 

 

 

 

Figure 3-22: Increasing absolute value of the lag angle between the load Q(t) and the rotation angle 
φQ(t). 
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Figure 3-23: Normalized lateral maximum displacement at the center of the top of caisson resulted be 
lateral dynamic load: M(t)=1667sin(ωt+π/2) and Q(t)=0. 

 

 

 

 

Figure 3-24: Increasing absolute value of the lag angle between the load M(t) and the lateral 
displacement uM. 
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Figure 3-25: Normalized lateral maximum rotation angle of caisson resulted be lateral dynamic load: 
M(t)=1667sin(ωt+π/2) and Q(t)=0. 

 

 

 

 

Figure 3-26: Increasing absolute value of the lag angle between the load M(t) and the rotation angle 
φM(t). 
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As it can be observed from the presented figures above, the numerical analyses 

match the simplified solutions with a very good approximation. The deviation 

between the response obtained from the numerical analyses and the corresponding 

response obtained from the analytical solutions is very small. Considering the 

maximum response, it can be seen that the deviation is increasing as the frequency 

increases. An explanation for this trend is that the numerical model is more accurate 

for the lower frequencies considering the element size and the domain dimensions. 

In general it can be concluded that the numerical analyses underestimate the 

response because of the smaller damping coefficients that are derived as it will be 

shown and explained in the following.  

Another important remark that can be obtained from the results is the importance of 

the normalization. Although the coupling terms, rotation angle φQ due to force and 

lateral displacement uM due to moment, are not equal as normal values because 

different amplitudes of force and moment were applied (Q=1000kN and 

M=1667kNm), these terms coincide when are presented in normalized charts. 

As far as concerns the phase angles the remarkable fit with the analytical solutions 

can be seen in the figures. The deviation here is under 6% for all modes. 

In the following the results of the calculated impedance are presented. First the 

norm of the impedance is presented with the real and imaginary part following and 

afterwards, the springs Kij and the dashpots Cij are subtracted. The relations that have 

been used are the following: 

𝐾̃ℎℎ = (𝐾ℎℎ − 𝑀ℎℎ𝜔2) + 𝑖𝜔𝐶ℎℎ |𝐾̃ℎℎ| = √(𝐾ℎℎ − 𝑀ℎℎ𝜔2)2 + (𝜔𝐶ℎℎ)2 

𝐾̃ℎ𝑟 = (𝐾ℎ𝑟 − 𝑀ℎ𝑟𝜔2) + 𝑖𝜔𝐶ℎ𝑟 |𝐾̃ℎ𝑟| = √(𝐾ℎ𝑟 − 𝑀ℎ𝑟𝜔2)2 + (𝜔𝐶ℎ𝑟)2 

𝐾̃𝑟𝑟 = (𝐾𝑟𝑟 − 𝑀𝑟𝑟𝜔2) + 𝑖𝜔𝐶𝑟𝑟 |𝐾̃𝑟𝑟| = √(𝐾𝑟𝑟 − 𝑀𝑟𝑟𝜔2)2 + (𝜔𝐶𝑟𝑟)2 

𝐾̃𝑟ℎ = (𝐾𝑟ℎ − 𝑀𝑟ℎ𝜔2) + 𝑖𝜔𝐶𝑟ℎ |𝐾̃𝑟ℎ| = √(𝐾𝑟ℎ − 𝑀𝑟ℎ𝜔2)2 + (𝜔𝐶𝑟ℎ)2 

Where Mij are the mass coefficients presented in matrix ( 3.13 ), Kij are the dynamic 

spring coefficients and Cij are the dynamic dashpot coefficients. The dynamic 

coefficients are frequency dependent and are functions of both caisson geometry 

and soil stiffness.  
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Table 3-8presents the results of the norms obtaining from the two methods, the 

dynamic analyses of PLAXIS and Gazetas formulations. A comparison between the 

corresponding values has been made in the last column. Figures that follow depicts 

these results in normalized graphs. The horizontal impedance has been normalized 

by EB, the rotational impedance by EB3 and the coupling impedance by EB2. The 

dimensionless frequency 𝛼0 =
𝜔𝛣

2𝑉𝑠
 is used in all graphs. 

 

Table 3-7: Units for each mode of impedance 

|𝐾𝑖𝑗| units 

hh kN/m 

rr kNm 

hr kN 
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Table 3-8: Comparison between dynamic global impedances calculated by PLAXIS results and GAZETAS 
formulations. The dynamic impedances are given in kN/m. 

 

f (Hz) α0 
IMPEDANCE 

|𝐾̃𝑖𝑗| PLAXIS GAZETAS deviation 

0 0 

hh 1.11E+06 9.91E+05 -12% 

rr 2.72E+08 2.98E+08 9% 

hr -1.31E+07 -1.32E+07 1% 

0.5 0.26 

hh 9.09E+05 9.71E+05 -6% 

rr 2.31E+08 2.82E+08 -18% 

hr 1.10E+07 1.31E+07 -16% 

1 0.51 

hh 1.01E+06 1.05E+06 -3% 

rr 2.26E+08 2.85E+08 -14% 

hr 1.23E+07 1.43E+07 -21% 

1.5 0.77 

hh 1.59E+06 1.30E+06 22% 

rr 2.87E+08 3.23E+08 -11% 

hr 1.80E+07 1.76E+07 2% 

2 1.02 

hh 1.88E+06 1.74E+06 8% 

rr 3.09E+08 4.02E+08 -23% 

hr 2.05E+07 2.29E+07 -10% 

2.5 1.28 

hh 2.46E+06 2.34E+06 5% 

rr 3.80E+08 5.13E+08 -26% 

hr 2.63E+07 2.98E+07 -11% 

3 1.54 

hh 3.06E+06 3.04E+06 1% 

rr 4.68E+08 6.48E+08 -28% 

hr 3.22E+07 3.78E+07 -15% 

3.5 1.79 

hh 3.72E+06 3.82E+06 -3% 

rr 5.63E+08 8.00E+08 -30% 

hr 3.88E+07 4.64E+07 -16% 

3.9 2 

hh 4.61E+06 4.49E+06 3% 

rr 6.78E+08 9.31E+08 -27% 

hr 4.74E+07 5.37E+07 -12% 
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Figure 3-27: Normalized horizontal global dynamic impedance calculated by PLAXIS analyses and 
GAZETAS formulations. 

 

Figure 3-28: Normalized coupling horizontal-rotational global dynamic impedance calculated by 
PLAXIS analyses and GAZETAS formulations. 

 

Figure 3-29: Normalized rotational global dynamic impedance calculated by PLAXIS analyses and 
GAZETAS formulations. 

0

15

30

0.00 0.50 1.00 1.50 2.00

K
h

h
/E

B

α0

IKhhI

PLAXIS

GAZETAS

0

15

30

0.00 0.50 1.00 1.50 2.00

Κ
h

r/
ΕΒ

2

α0

IKhrI=IKrhI

PLAXIS

GAZETAS

0

25

50

0.00 0.50 1.00 1.50 2.00

Κ
R

R
/E

B
3

α0

IKrrI

PLAXIS

GAZETAS



96 
 

 

Figure 3-30: Normalized real part of the resultant horizontal impedance atop a square caisson for 
slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations.  

 

Figure 3-31: Normalized real part of the resultant cross horizontal-rotational impedance atop a square 
caisson for slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 

 

Figure 3-32: Normalized real part of the resultant rotational impedance atop a square caisson for 
slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 
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Figure 3-33: Normalized imaginary part of the resultant horizontal impedance atop a square caisson 
for slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 

 

Figure 3-34: Normalized imaginary part of the resultant cross horizontal-rotational impedance atop a 
square caisson for slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS 
formulations. 

 

Figure 3-35: Normalized imaginary part of the resultant rotational impedance atop a square caisson 
for slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 
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Figure 3-36: Normalized coefficients of the resultant horizontal stiffness atop a square caisson for 
slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 

 

Figure 3-37: Normalized coefficients of the resultant coupling stiffness atop a square caisson for 
slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 

 

Figure 3-38: Normalized coefficients of the resultant rotational stiffness atop a square caisson for 
slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 
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Figure 3-39: Normalized coefficients of the resultant horizontal damping atop a square caisson for 
slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 

 

Figure 3-40: Normalized coefficients of the resultant coupling damping atop a square caisson for 
slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 

 

Figure 3-41: Normalized coefficients of the resultant rotational damping atop a square caisson for 
slenderness ratio D/B=2. Solutions derived by PLAXIS analyses and GAZETAS formulations. 
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Figure 3-42: Geometric relation between the horizontal mode and the coupling mode for the stiffness, 
Khr/(KhhD). Gazetas suggestion value is -0.667 and Plaxis results derive an average value of -0.669. 

 

 

 

Figure 3-43: Geometric relation between the horizontal mode and the coupling mode for the 
dashpots, Chr/(ChhD). Gazetas suggestion value is -0.667 and Plaxis results derive an average value of -
0.555. 
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Some general observations that can be made from the presented results are the 

following. First it should be mentioned that the deviations for the norm of the 

impedance are the smaller comparing to its separate real and imaginary parts. This 

deviation is shown in Table 3-8. When subtracting from these impedances the springs 

and the dashpots, the deviation is increasing. Possible explanation for this is the 

uncertainty of the influence of the mass matrix and the corresponding mass-

coefficients. 

Another important observation that can be made is that the dashpots coefficients 

are underestimated by the numerical analyses. This leads to less maximum values of 

the response of the foundation as was noted before. Possible reason for this might 

be the uncertainty in the use of the viscous boundaries. Considering the computing 

of the dashpot-coefficients an alternative calculating method has been used which is 

described in the following chapter. The results of the two methods seem to be similar 

especially for the greater frequencies. 

Considering the spring coefficients also another alternative method was used. The 

idea was to determine them independently from the dashpots by running the 

analyses again but without the absorbing boundaries. In this way the response of the 

caisson would be only due to the spring coefficients K and the mass coefficients M, as 

no radiation damping would be introduced (C=0) because the provided energy would 

remain in the system. The results of the analyses that performed in this way weren’t 

as expected and no steady state response was obtained, probably because of the 

compliance of the wave reflections. 

The geometric relation between the horizontal mode and the coupling mode that 

Gazetas formulas suggest is: 
𝐾̃ℎ𝑟

𝐾̃ℎℎ
= −

2

3
𝐷 = −0.667𝐷. The results from the finite 

element analyses show that this relation is totally confirmed for the stiffness where 

the average value of the rate is:  
𝐾ℎℎ

𝐾ℎ𝑟
= −0.669𝐷 while for the dashpots it seems that 

the analyses underestimate this rate, as the average value is 
𝐶ℎℎ

𝐶ℎ𝑟
= −0.555𝐷. As it 

was explained before this might be due to the usage of the viscous boundaries. This 

was the trigger to introduce Rayleigh damping as it is discussed in 3.6.4. 
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 Dashpot coefficients 

Dashpots coefficients represent the loss of energy due to radiation damping and 

material damping. The behavior of soil, meaning the constitutive model that 

describes it, is considered to be linear elastic in this part of the study. This fact means 

that no material damping is performed during the dynamic loading and dashpots 

coefficients represent only the radiation damping. However, despite the assumption 

of linear elasticity, the behavior of the caisson is described by hysteretic loops. These 

loops are the results of loss of energy which is only due to radiation damping and 

their areas represent the amount of the dissipated energy. 

From the areas of these loops that are formed between the load and the response in 

charts Q-u, Q-φ and Μ-u, M-φ of each analysis, the dashpot coefficients for each 

mode can be calculated. By the definition of the dashpots, the areas (DE) of the 

loops are equal to the following relations: 

 

𝐷𝐸𝑄−𝑢 = ∫ (𝑐ℎℎ𝑢̇
𝑇

0

+ 𝑐ℎ𝑟𝜑̇)𝑑𝑢 

 

𝐷𝐸𝑄−𝜑 = ∫ (𝑐ℎℎ𝑢̇
𝑇

0

+ 𝑐ℎ𝑟𝜑̇)𝑑𝜑 

 

𝐷𝐸𝑀−𝑢 = ∫ (𝑐𝑟𝑟𝜑̇
𝑇

0

+ 𝑐𝑟ℎ𝑢̇)𝑑𝑢 

 

𝐷𝐸𝑀−𝜑 = ∫ (𝑐𝑟𝑟𝜑̇
𝑇

0

+ 𝑐𝑟ℎ𝑢̇)𝑑𝜑 

 

Where 𝑐𝑖𝑗 are the dashpots coefficients for each mode, 𝑢̇ = 𝑑𝑢/𝑑𝑡 and 𝜑̇ = 𝑑𝜑/𝑑𝑡, 

and 𝑇 is the period. It should be noted here that the loop that is formed should be 
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taken after the first couple of cycles in order to represent the steady state response 

of the caisson. 

For each analysis four charts are derived, two of them form loops and the other two 

are zero charts because of the zero corresponding driving lateral force or moment 

respectively. 

The area of the loops has been computed graphically by dividing the area into 

columns. The steps have chosen to be small enough (see Figure 3-44) so the accuracy 

of the results to be sufficient. The equations that describe this graphical method of 

calculating the loop area are the following: 

 

𝐷𝐸𝐹−𝑥 = ∑ 𝑑𝑥𝑖  𝑑𝐹𝑖

𝑛−1

𝑖=1

 

𝑑𝑥 = 𝑥𝑖+1 − 𝑥𝑖  

𝑑𝐹 = (
𝐹𝑖+1 + 𝐹𝑖

2
) 

 

Where F represents the load, force Q or moment M, and x represents the 

corresponding response, u displacement or φ rotation angle. 
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First analysis: 

input: 𝑄(𝑡) = 1000𝑠𝑖𝑛(𝜔𝑡 + 𝜋/2)  [kN] and 𝑀(𝑡) = 0 

output: 𝑢𝑄(𝑡) and 𝜑𝑄(𝑡) 

 

 

 

Figure 3-44: Illustration of the loops formed by the load and the response, Q-u (top) and Q-φ (below) 
from the first analysis. 

 

From the areas of these two charts two equations are derived: 

𝐷𝐸𝑄−𝑢 = 𝜋𝜔[𝑢2𝑐ℎℎ + 𝑢𝜑 cos 𝛿1 𝑐ℎ𝑟] 

𝐷𝐸𝑄−𝜑 = 𝜋𝜔[𝑢𝜑 cos 𝛿1 𝑐ℎℎ + 𝜑2𝑐ℎ𝑟] 

Where 𝛿1 is the phase angle between the two different modes of the response i.e. 

the displacement and the rotation angle. 
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As was mentioned before, there are another two charts (M-u) and (M-φ) for this 

analysis which correspond to the other mode of loading. However, because the 

driving moment M is zero for this analysis, the areas of these two loops are zero 

(chart M-u  𝐷𝐸𝑀−𝑢=0 and chart M-φ 𝐷𝐸𝑀−𝜑=0) and thus two new equations 

between the dashpot coefficients are derived: 

𝐷𝐸𝑀−𝑢 = 𝜋𝜔[𝑢2𝑐ℎℎ + 𝑢𝜑 cos 𝛿1 𝑐ℎ𝑟] = 0 

𝐷𝐸𝑀−𝜑 = 𝜋𝜔[𝑢𝜑 cos 𝛿1 𝑐ℎℎ + 𝜑2𝑐ℎ𝑟] = 0 

Second analysis: 

input: 𝑀(𝑡) = 1667𝑠𝑖𝑛(𝜔𝑡 + 𝜋/2)  [kN] and 𝑄(𝑡) = 0 

output: 𝑢𝑀(𝑡) and 𝜑𝑀(𝑡) 

 

 

 

Figure 3-45: Illustration of the loops formed by the load and the response, M-u (top) and M-φ (below) 
from the second analysis. 
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𝐷𝐸𝑀−𝑢 = 𝜋𝜔[𝑢2𝑐ℎℎ + 𝑢𝜑 cos 𝛿2 𝑐ℎ𝑟] 

𝐷𝐸𝑀−𝜑 = 𝜋𝜔[𝑢𝜑 cos 𝛿2 𝑐ℎℎ + 𝜑2𝑐ℎ𝑟] 

Where 𝛿2 is the phase angle between the two different modes of the response i.e. 

the displacement and the rotation angle. 

 

As in the first analysis there are another two charts between the lateral force and the 

response, (Q-u) and (Q-φ) for this analysis. Because the driving force Q is zero, the 

areas of these two loops are zero (chart Q-u  𝐷𝐸𝑄−𝑢=0 and chart Q-φ 𝐷𝐸𝑄−𝜑=0) 

and thus two new equations between the dashpot coefficients are derived: 

𝐷𝐸𝑄−𝑢 = 𝜋𝜔[𝑢2𝑐ℎℎ + 𝑢𝜑 cos 𝛿2 𝑐ℎ𝑟] = 0 

𝐷𝐸𝑄−𝜑 = 𝜋𝜔[𝑢𝜑 cos 𝛿2 𝑐ℎℎ + 𝜑2𝑐ℎ𝑟] = 0 

 

For more details about the aforementioned equations and how they have been 

derived the reader is referred to Appendix C. 

 

 Results 

The results of the dashpots calculated by the Loop Area Method are presented in the 

following. The charts that follow include also the dashpots calculated by the previous 

methodology (complex numbers) for comparison. Some general observations and 

conclusions can be conducted. First of all it can be seen that the methodology of the 

loop area is not very accurate for the low frequencies. However as the frequency 

increases the values of the dashpots calculated by the two different methods tend to 

coincide. At the high frequencies the deviation between these values is less than 3%. 

It can be concluded that the loop area methodology is accurate for the high 

frequencies. 
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Figure 3-46: Normalized coefficients of the horizontal damping atop a square caisson for slenderness 
ratio D/B=2. Solutions derived by PLAXIS (loop area and complex) and GAZETAS formulations. 

 

Figure 3-47: Normalized coefficients of the coupling damping atop a square caisson for slenderness 
ratio D/B=2. Solutions derived by PLAXIS (loop area and complex) and GAZETAS formulations. 

 

Figure 3-48: Normalized coefficients of the rotational damping atop a square caisson for slenderness 
ratio D/B=2. Solutions derived by PLAXIS (loop area and complex) and GAZETAS formulations. 
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Figure 3-49: Geometric relation between the horizontal mode and the coupling mode for the 
dashpots, Chr/(ChhD). Solutions derived by PLAXIS analyses by two different methodologies (loop area 
and complex) and GAZETAS formulations. 

 

 

 Linear elastic analyses with Rayleigh damping 

Rayleigh damping is a very convenient method of representing the nonlinearities of 

soil in numerical analyses. The advantages of this kind of damping have been 

described in the literature review (2.5.4). At this part of the study all the sets of the 

analyses were performed again with the only difference now, adding Rayleigh 

damping. Linear elastic model has been used as constitutive model for both soil and 

caisson with same parameters as the previous analyses. Two scenarios have been 

investigated. In the first one 2% critical Rayleigh damping has been added and in the 

second one 5% critical Rayleigh damping. 

It should be noted here that the dashpot coefficients calculated by Gazetas 

formulations do not include the soil material damping. Thus, in order the response to 

be comparable with Gazetas formulations, material damping has been added to the 

radiation damping by simply adding the corresponding material dashpot coefficient 

2kξ/ω, where ω is the angular frequency, k is the stiffness and ξ is 2% or 5% for 

the two scenarios. The total damping that is derived is: 

-1.00

-0.50

0.00

0.00 0.50 1.00 1.50 2.00
C

h
r/

C
h

h
D

α0

Chr/Chh

GAZETAS

LOOP AREA

COMPLEX



109 
 

𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 +  
2𝑘

𝜔
𝜉 

 

The response of the caisson is derived by the spring coefficients, the total dashpots 

coefficients and the mass coefficients. The material damping is in the order of 2% or 

5% thus, its influence on the response is very small as the dominant damping is the 

radiation damping which can exceed 40%. According to Gazetas relations the spring 

coefficients do not change no matter how much hysteretic damping is added. 

However following the methodology of calculating the springs and dashpots from the 

numerical analyses it can be said that Rayleigh damping has influence not only in the 

dashpots coefficients but also in the spring coefficients. The difference between the 

analyses of 2% and 5% Rayleigh damping have almost the same deviation from 

Gazetas relations for all the coefficients. For simplicity reasons only the graphs for 

Rayleigh damping 2% will be presented in the following as the 5% curves are the 

same but with a bit smaller values. For comparison in the charts are included the 

results from 0% Rayleigh for both Gazetas and PLAXIS. The dashpots coefficients that 

are presented for 2% Rayleigh damping are referred to the pure radiation damping as 

the material damping has been subtracted from the total damping in order to be 

comparable with the pure elastic analyses. 
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Figure 3-50: Normalized lateral maximum displacement at the center of the top of caisson resulted by 
lateral dynamic load: Q(t)=1000sin(ωt+π/2) and M(t)=0. Results for Rayleigh damping 0% and 2%. 

 

 

 

 

Figure 3-51: Increasing absolute value of the lag angle between the load Q(t) and the lateral 
displacement uQ. Results for Rayleigh damping 0% and 2%. 
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Figure 3-52: Normalized lateral maximum rotation angle of caisson resulted be lateral dynamic load: 
Q(t)=1000sin(ωt+π/2) and M(t)=0. Results for Rayleigh damping 0% and 2%. 

 

 

 

 

Figure 3-53: Increasing absolute value of the phase angle between the load Q(t) and the rotation angle 
φQ(t). Results for Rayleigh damping 0% and 2%. 
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Figure 3-54: Normalized lateral maximum displacement at the center of the top of caisson resulted be 
lateral dynamic load: M(t)=1667sin(ωt+π/2) and Q(t)=0. Results for Rayleigh damping 0% and 2%. 

 

 

 

 

Figure 3-55: Increasing absolute value of the phase angle between the load M(t) and the lateral 
displacement uM. Results for Rayleigh damping 0% and 2%. 
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Figure 3-56: Normalized lateral maximum rotation angle of caisson resulted be lateral dynamic load: 
M(t)=1667sin(ωt+π/2) and Q(t)=0. Results for Rayleigh damping 0% and 2%. 

 

 

 

 

Figure 3-57: Increasing absolute value of the phase angle between the load M(t) and the rotation 
angle φM(t). Results for Rayleigh damping 0% and 2%. 
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Figure 3-58: Normalized horizontal global dynamic impedance calculated by PLAXIS analyses and 
GAZETAS formulations. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-59: Normalized coupling horizontal-rotational global dynamic impedance calculated by 
PLAXIS analyses and GAZETAS formulations. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-60: Normalized rotational global dynamic impedance calculated by PLAXIS analyses and 
GAZETAS formulations. Results for Rayleigh damping 0% and 2%. 
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Figure 3-61: Normalized real part of the resultant horizontal impedance atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-62: Normalized real part of the resultant cross horizontal-rotational impedance atop a square 
caisson for slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-63: Normalized real part of the resultant rotational impedance atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 
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Figure 3-64: Normalized imaginary part of the resultant horizontal impedance atop a square caisson 
for slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-65: Normalized imaginary part of the resultant cross horizontal-rotational impedance atop a 
square caisson for slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-66: Normalized imaginary part of the resultant rotational impedance atop a square caisson 
for slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 
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Figure 3-67: Normalized coefficients of the resultant horizontal stiffness atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-68: Normalized coefficients of the resultant coupling stiffness atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-69: Normalized coefficients of the resultant rotational stiffness atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 
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Figure 3-70: Normalized coefficients of the resultant horizontal damping atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-71: Normalized coefficients of the resultant coupling damping atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-72: Normalized coefficients of the resultant rotational damping atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 
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Figure 3-73: Normalized coefficients of the resultant horizontal damping atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-74: Normalized coefficients of the resultant coupling damping atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 

 

Figure 3-75: Normalized coefficients of the resultant rotational damping atop a square caisson for 
slenderness ratio D/B=2. Results for Rayleigh damping 0% and 2%. 
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4 Inelastic response 

4.1 Introduction 

In the previous the response of a caisson embedded in an elastic half space and 

subjected to dynamic loading was studied. The major limitation of that model is that 

soil nonlinear behavior was not taken into account, and that the caisson assumed to 

remain in complete contact with the surrounding soil (perfect bonding at the 

boundaries). These conditions can be assumed to represent reality only in the very 

small deformation region which for practical cases is not the case. Soil–caisson 

interaction involves complicated material and geometric nonlinearities such as soil 

inelasticity, separation (gapping) between the caisson shaft and the soil, slippage at 

the soil–caisson shaft interface, base uplifting, and perhaps even loss of soil strength 

(e.g. due to development of excess pore water pressures). Moreover, the waves 

emanating from the caisson periphery generate radiation damping which is strongly 

influenced by such nonlinearities. The general problem of a caisson embedded in 

cohesionless or cohesive soils and subjected to lateral loading is conceptualized in 

the sketch below. With strong interface and soil nonlinearities a substantially 

different response emerges. 

 

Figure 4-1: The important role of the nonlinearities on the response of a caisson. Left the illustration 
of the soil nonlinearity with full bonded conditions, right both soil and interface nonlinearities. 

At this part of the study new numerical analyses have been performed for the same 

caisson (embedment ratio D/B=2) by taking into account this time the soil 
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nonlinearity. First full bonded conditions have been considered and afterwards the 

effect of the interfaces has been studied by a new set of analyses. 

By taking into account the nonlinearities of the caisson the problem becomes much 

more complicated comparing to the elastic conditions as many more parameters play 

now significant role to the response of the caisson. The impedance as defined in the 

previous is not now applicable to the nonlinear system of the soil-structure as the 

coefficients are not steady for a particular frequency because more parameters 

influence now their values. The definition that was previously given refer now to the 

secant impedance of the system. The response of a nonlinear system depends not 

only on the frequency of the excitation but also on the magnitude of the load and 

the combination of the loading modes e.g. the loading ratio of the lateral force and 

overturning moment (h=M/Q), the applied vertical loading (V), thus the 

superposition cannot be applied in the nonlinear systems. 

In this thesis the inelastic behavior of the caisson is studied under certain conditions 

and not extensively. First it should be noted that the caisson is considered to be 

massless. This assumption was made in order to take out the influence of the inertial 

forces that arise from the mass of the caisson. In this way the dynamic response 

would be caused only due to the soil stiffness and damping, which of course now are 

not steady for a specific frequency as in elastic conditions for different load levels. 

The magnitude of the vertical loading changes the response as well. So at different 

levels of vertical loading the response of the caisson is different. The levels of the 

vertical loading are described by the vertical safety factor which is equal to the 

ultimate vertical load at failure divided by the applied vertical load, FSv=V/Vu, (pure 

vertical loading without horizontal and rotational loading, V≠0, H=0, M=0). Many 

times in the literature can be found as reference instead of the vertical safety factor 

the reversed of it which is defined as χ=1/FSv. The bigger the χ factor is more soil 

elements have come into the plastic area already so the response can be completely 

different for heavily loaded foundations (low FSv or high χ) and lightly loaded 

foundations (high FSv or low χ). In this study the reference level of the vertical loading 

which is described by the vertical safety factor is set to infinity, FSv=Vu/V =∞ or 

equally the factor χ=0. In reality this would never be the case as there is always 
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vertical load on the caisson from the superstructure. However in practice the vertical 

safety factor for caissons is very big as the loading is very far away from the failure. 

So the assumption of χ=0 can be considered reasonable. 

Secondly, the lateral force to overturning moment ratio as mentioned before plays an 

important role to the response. The factor h=M/Q can be considered to be the 

effective height of the superstructure where the lateral force is applied. In this study 

the effective height has been set equal to zero, h=M/Q=0. This means that the 

driving load is pure lateral force as no moment has been applied at the caisson. 

The response of the caisson has been studied for three different levels of lateral 

loading. These levels are defined by the horizontal safety factor FSH=Qu/Q, where Qu 

is the ultimate pure horizontal load at failure without any other kind of loading, 

vertical or rotational. The three levels that have been studied are for lateral force 

equal to 10%*Qu, 50%*Qu and 80%*Qu corresponding to FSH=10, 2 and 1.25 

respectively. 

 

4.2 Numerical model 

The geometry of the numerical model that has been used is the same that derived 

from the sensitivity analyses that were described in 3.5. The dimensions of the 

domain are 9Bx9Bx4B (length x width x depth) where B is the diameter of the caisson 

(10m). Taking into account the symmetry of the model half of the domain needed to 

be analyzed. At the boundaries viscous dampers have been set in order to be able to 

absorb the incoming waves. The caisson is simulated by volume elements. It is either 

rigidly connected to the soil (“bonded” interface), which means that separation and 

slippage are not allowed to occur, or connected through a special contact surface 

that allows for realistic simulation of the response (“nonlinear” interface). The 

foundation is considered rigid. The ratio Ecaisson/Esoil=5000 along with the relatively 

small slenderness ratios considered render the rigidity assumption safe. 
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 Materials model 

The constitutive model that has been used for the volume elements of the caisson is 

the Linear Elastic model with the same parameters that were described at the elastic 

analyses. The properties are given in Table 4-1. This time the unit weight of the 

caisson has been set equal to zero in order to extract the influence of the mass. In 

this way no additional vertical loading is applied at the soil due to caisson’s weight. 

However in order to achieve a vertical safety factor of infinity a vertical static load is 

applied at the top of the caisson equal to the soil weight that was replaced due to 

the caisson’s volume (𝑉 = 𝛾𝑠𝑜𝑖𝑙𝐵
2𝐷). The reason for this load is because all the 

calculations have been considered at the certain level of vertical safety factor FSv=∞ 

as discussed before. 

For the behavior of soil the Hardening Soil Small constitutive model has been used. A 

brief description of the model with some comments were given in 0. For more details 

of the model the reader is referred to (PLAXIS3D, 2012, p. Materials models). The soil 

represents a soft normal consolidated clay and the material parameters are given in 

Table 2-1. The soil profile studied herein is of a constant undrained shear strength Su 

= 50 kPa. The density of the soil has been set to ρ=2Mgr/m3. 

Table 4-1: Constitutive model parameters for the soil profile and the caisson 

Parameter Name Soil Caisson Unit 

General 

Material model Model HS small Linear Elastic  

Drainage type Type Undrained B Non-porous  

Unit weight γ 20 0 kN/m3 

Undrained shear strength Su 50 - kN/m2 

Parameters 

Young's modulus (constant) E - 210*10^6 kN/m2 

Triaxial conditions E50 5000 - kN/m2 

Oedometer conditions Eoed 10000 - kN/m2 

Unloading-Reloading conditions (cut-off) Eur 15000 - kN/m2 

Shear modulus at small deformations Go 25000 87.5*10^6 kN/m2 

deformation at which G=0.73Go γ0.7 6*10^-4 -  

unloading Poisson's ratio v 0.20 0.20  

Initial 

Lateral earth pressure coefficient Κο 1.00 1.00 
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Considering the material of the interfaces the same set of model parameters have 

been used. The strength is not considered to be reduced. In Plaxis one way of 

defining the strength of the interfaces is in relation to the strength of the 

surrounding soil, 𝑆𝑢
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

= 𝑅𝑓𝑆𝑢
𝑠𝑜𝑖𝑙. The relative coefficient Rf has been chosen to 

be 1 which is a realistic value for soft clays. Except for the slippage also gapping is 

allowed to the interface elements, this was achieved by turning on the Tension cut-

off option in the input program. In this way the elements cannot bear tensile stresses 

and gapping is occurred. 

 

4.3 Bonded Interface 

At this part of the study the dynamic response of the caisson is investigated for 

inelastic soil behavior and full contact conditions at the interfaces. First a static 

monotonic push over is performed in order to estimate the ultimate failure lateral 

load, Qu. For three levels of load (10%, 50% and 80% of Qu) the dynamic response is 

investigated for two specific frequencies (f=4Hz and f=8Hz). 

 

 Monotonic loading 

In general, embedment increases vertical, horizontal and moment capacity as failure 

mechanisms are forced deeper within the soil mass. The soil mechanisms that are 

developed in the case of pure horizontal at the head of the caisson vary with the 

magnitude of the embedment ratio and the load. Gerolymos and Souliotis (2012) 

proposed analytical expressions for computing the ultimate bearing capacity of 

caissons under pure loading, either pure lateral force or pure rotational moment: 

𝑄𝑢 = 𝐵𝐷𝑆𝑢 (
𝐷

𝐵
)

−2.15

(1 +
𝐷

𝐵
)

2.89

(1 − 𝑥)0.17 

𝑀𝑢 = 0.46𝐵2𝐷𝑆𝑢 (
𝐷

𝐵
)

−1.49

(1 +
𝐷

𝐵
)

3.39

(1 − 𝑥)0.17 

As expected, the soil plastification taking place around the caisson prior to the lateral 

loading increases as the vertical load (χ) increases, thus reducing the system’s 
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margins for further plastification till failure. The embedment ratio is shown to have a 

significant effect on the ultimate capacities and especially the moment capacity Mu. 

As D/B increases the soil resisting mechanisms are forced deeper into the soil mass 

mobilizing a greater part of it. Note also that the two capacities decline in about the 

same fashion with respect to FSV. 

 

Regarding the effect of the undrained shear strength, Souliotis and Gerolymos have 

shown that the ultimate capacities have a linear dependence on Su at least in the 

case where it is uniformly distributed with depth. In fact, Su is the sole indicator of 

the system’s strength since the interface is considered bonded, and slippage or 

gapping may not occur.  

Using the afore mentioned equation for the pure lateral loading and taking into 

account that the coefficient χ is equal to zero for the case studied herein the ultimate 

lateral force is computed as  𝑄𝑢 = 53910𝑘𝑁. In order to confirm this value a 

monotonic static push over has been carried out. The results are presented in graphs 

in terms of lateral force, Q, versus lateral displacement, u, and an equivalent tangent 

stiffness, dQ/du, versus lateral displacement, u. It should be mentioned here that 

this stiffness is not the stiffness in horizontal mode because of the two degrees of 

freedom of the system. Thus this stiffness includes except for the influence of the 

horizontal mode, the influence of the coupling mode between the horizontal and 

rotational mode. Because with one analysis where the load is imposed, the four 

modes of the impedance cannot be calculated as there are only two equations with 

four unknowns only qualitatively approximation can be conducted considering the 

impedance of the caisson meaning the springs and the dashpots. 

As it can be seen from Figure 4-2 the system presents a continuous hardening as the 

load keeps increasing even at very large displacements. In order to define the failure 

the criterion that has been used consists of two conditions that should be satisfied 

simultaneously. First the tangent stiffness should be reduced to less than 1% of the 

initial stiffness and secondly the displacement at which failure occurs should not 

exceed the value of B/10=1m where B is the diameter of the caisson. B/10 is a 

reference value that comes out quite often in the literature as a first approximation 
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for the level of failure of caissons. Taking into account the above criterion the 

ultimate lateral load computed by the numerical analysis is 𝑄𝑢 = 54017𝑘𝑁 and it is 

reached at the lateral displacement of 0.82m. The numerical analysis as well as the 

analytical expression are in total agreement. In Figure 4-4 the pole of rotation of the 

caisson is depictured. It can be seen that the pole is located at a depth of 2D/3 where 

D is the embedment of the caisson. 

 

Figure 4-2: Monotonic Static push over test, graph load versus response. The dashed lines indicate the 
ultimate load and the displacement at which failure occurs. 

 

Figure 4-3: Monotonic Static push over test, graph dQ/du versus u. The dashed line indicates the 
displacement where failure is considered to be occurred. The initial stiffness is 1791000 kN/m and is 
not shown in the figure. 
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Figure 4-4: Illustration of the total absolute displacements of the caisson due to pure lateral loading. It 
can be seen that the pole of rotation of the caisson is located about at depth 2D/3. 

 

 Dynamic loading 

At this part the caisson is studied under dynamic loading at two specific frequencies. 

The frequencies that have been chosen are 4Hz and 8Hz because as it was concluded 

from the elastic analyses the Loop Area Method is more accurate for the greater 

frequencies. For each frequency three dynamic calculations have been performed 

with three different amplitudes, namely 10%, 50% and 80% of the ultimate lateral 

load Qu. It should be mentioned here that because the Hardening Soil with small 

strain stiffness soil model even though it follows a G-γ reduction curve, it works with 

an elastic unloading-reloading part, which means that no accumulation of plastic 

strains is occurred, only in the first cycle permanent deformation takes place and 

afterwards a steady state response is achieved. Thus, the oscillation is not around the 

point where displacement is zero (as in elastic analyses) but around a permanent 

displacement value. This value is very low for the 10% of Qu amplitude because as it 

will be seen in the following the behavior is nearly elastic for this level of load while 

for the greater amplitudes of 50% and 80% of Qu where the stiffness has been 

reduced more, the permanent deformation of the initial cycle increases. 
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In Figure 4-5 and Figure 4-6 the dynamic loops that have formed from the three 

levels of loading are presented for the small and the big frequency respectively. In 

the vertical axis the load has been normalized with the ultimate lateral load at failure 

(Qu) while in the horizontal axis the displacements have been normalized with the 

failure displacement (uf) meaning the displacement at which in monotonic loading Qu 

is achieved. As it can be seen from each figure the loops are located in different 

places because of the permanent deformation of the initial loading as it was 

explained before. Comparing the same load level for the two frequencies it can be 

concluded that as the frequency arises the response becomes stiffer for the same 

load level. The center of the loop for the lowest load level is oriented almost at zero 

for both frequencies which means that the behavior of the system is almost elastic. 

Moreover it can be seen that the loops are rotating as the load level increases for the 

small frequency while for the greater frequency this rotation is very limited. As the 

loops are turning the difference between the displacements at which the maximum 

force is occurred, and the maximum displacement of the response, becomes greater. 

The area of the loops represent the dissipated energy of the system. There are two 

reasons that energy dissipates, except for the energy dissipated due to radiation of 

the system, energy dissipates also due to the material damping of the soil elements 

that is caused by the inelastic soil model that has been adapted. The loops from the 

dynamic calculations represent the total damping of the system. More details about 

the dampings and their meaning are described in the following. 
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Figure 4-5: Loops of the dynamic analyses with frequency f=4Hz for the three levels of loading, namely 
10%, 50% and 80% of the ultimate load Qu. 

 

 

Figure 4-6: Loops of the dynamic analyses with frequency f=8Hz for the three levels of loading, namely 
10 %, 50% and 80% of the ultimate load Qu. 

 

 Cyclic loading 

In order to distinguish the material damping from the total damping cyclic static 
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corresponding dynamic analyses. In this way the material damping can be calculated 

from the cyclic loops that are formed and then can be subtracted from the total 

damping of the dynamic loops. In Figure 4-7 the cyclic loops are presented. The 

normalization has been performed with the same way as for the dynamic loops. 

 

Figure 4-7: Loops of the cyclic analyses for the three levels of loading, namely 10%, 50% and 80% of 
the ultimate load Qu corresponding to the small frequency f=4Hz. 

 

Figure 4-8: Loops of the cyclic analyses for the three levels of loading, namely 10%, 50% and 80% of 
the ultimate load Qu corresponding to the greater frequency f=8Hz. 
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It can be seen that for the lowest level of load the loop that is formed is very small, 

this is another way of concluding that at this level the behavior is almost elastic. As 

the load level increases the area of the corresponding loop increases too, depicturing 

in this way the bigger influence of the material damping. Because the cyclic loading is 

performed under static conditions, the maximum force is achieved at the same place 

where the maximum displacement is occurred. The reason for this is the absence of 

the radiation damping. 

Comparing the small with the large frequency it can be seen that for each load level 

the lower frequency presents much more material damping as the loops that are 

formed are quite bigger. This is because the permanent deformation at which the 

oscillation occurs is greater for the lower frequency so in static conditions more load 

is needed in order this displacement to be reached. 

In order to quantify the damping that is occurred due to the cycling loading a 

damping ratio is defined by the ratio of the energy that dissipates to the maximum 

elastic energy that is stored in the system as the figure below shows. 

 

Figure 4-9: Definition of the damping ratio. 

It must be noted here that the damping ratio that has been computed from the loops 

that are formed in the graphs load-response is not the pure corresponding damping 

ratio in horizontal mode as it also includes the coupling mode (horizontal-rotational) 
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due to the second degree of freedom of the caisson. Thus this damping ratio is only 

an expression of the dissipated energy of the soil-structure system. 

The areas of the loop (𝛥𝑊) have been computed with the column method while the 

maximum stored elastic energy has been computed according to the following 

formula: 𝑊 =
1

2
𝑄𝑚𝑎𝑥𝑢𝑚𝑎𝑥. In cyclic static loading the maximum load is achieved at 

the same time that the maximum displacement is reached due to the absence of tha 

radiation damping. In the following Table the damping ratio, 𝜉𝑐𝑦𝑐𝑙𝑖𝑐 = 4𝜋
𝛥𝑤

𝑊𝑚𝑎𝑥
, for 

the cyclic loops for both frequencies is presented. As it can be seen by comparing the 

corresponding damping ratios of the same load level for the two frequencies, the 

lower frequency presents greater ratios for the same reasons that were explained 

before. 

Table 4-2: Damping ratios for cycling static loading for the case of bonded interfaces. 

Load Level 10% 50% 80% 

Damping Ratio ξ ξ ξ 

CYCLIC (f=4Hz) 2% 15% 23% 

CYCLIC (f=8Hz) 1% 5% 9% 
 

 

 Radiation damping 

In order to calculate the radiation damping, the material damping of the cyclic 

analyses must be subtracted from the total damping of the dynamic analyses. To 

make the results more accurate linear interpolation has been made with the use of 

special mathematic software for the densification of the points that form the loops. 

For each loop 100 points have been computed. This action was necessary as in Plaxis 

the number of the steps of the process is generated automatically and thus different 

number of points formed the dynamic loops from the cyclic loops. 

As has been mentioned before the area of the dynamic loop represents the total 

damping of the system which includes both the material and the radiation damping. 

Subtracting the area of the cyclic loops from the area of the dynamic loops, the area 
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of the radiation loops is derived. In order to quantify the damping of the system a 

dashpot coefficient is defined according to the following relation:  

𝐷𝐸𝑄−𝑢 = ∫ 𝐶𝑢̇
𝑇

0

𝑑𝑢 → 𝐶 =
𝐷𝐸𝑄−𝑢

𝜋𝜔𝑢𝑚𝑎𝑥
2

 

 

It must be noted here again that this damping coefficient is not the pure 

corresponding damping ratio in horizontal mode as it also includes the coupling 

mode (horizontal-rotational) due to the second degree of freedom of the caisson. 

Thus this damping coefficient is only a generalized expression of the dissipated 

energy of the soil-structure system. The areas of the loop (𝛥𝑊) have been computed 

with the column method.  

In the following Tables the computed areas of the loops as well as the corresponding 

damping coefficients for each kind of loop are presented for both frequencies. It can 

be clearly seen that the area of the dynamic loops is a sum of the area of the cyclic 

loops and the area of the radiation loops. An important conclusion that can be 

conducted here is that although the material damping ratio is increased as the load 

level increases (see Table 4-2) the corresponding radiation damping coefficient 

decreases. However, the decrease of the radiation damping is greater than the 

increase of the cyclic damping causing eventually the total dynamic damping 

coefficient to be reduced. A general conclusion that can be said is that the total 

damping coefficient is reduced for a specific frequency as the soil becomes more and 

more plastic. The meaning of this reduction of the dashpot coefficient is that the 

wave is not transferred to the whole domain. The figures that follow illustrate clearly 

this fact. 
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Figure 4-10: Absolute values of displacements due to dynamic loading. The low amplitude of loading 
indicates elastic conditions. The waves propagate to the whole domain as the soil elements have not 
be plastified extensively. 

 

 

Figure 4-11: Absolute values of displacements due to dynamic loading. The high amplitude of loading 
indicates inelastic conditions. The waves propagate mainly at the region of the plastified soil indicating 
a low dashpot coefficient. 
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Table 4-3: Computed areas and damping coefficients for each kind of loops for the frequency of 4Hz 
and 8Hz. 

Frequency f=4Hz 

Load Level 10% 50% 80% 

Loop Area  [kN*m] ΔW ΔW ΔW 

DYNAMIC 41.29 1666.39 5139.62 

CYCLIC 1.36 384.60 1660.64 

RADIATION 39.93 1281.78 3478.99 

    

Frequency f=4Hz 

Load Level 10% 50% 80% 

Damping Coefficient C C C 

DYNAMIC 7.41E+04 5.57E+04 4.22E+04 

RADIATION 7.17E+04 4.28E+04 2.86E+04 

 

Frequency f=8Hz 

Load Level 10% 50% 80% 

Loop Area  [kN*m] ΔW ΔW ΔW 

DYNAMIC 22.28 645.46 1690.49 

CYCLIC 0.14 34.12 143.67 

RADIATION 22.13 611.34 1546.82 

    
Frequency f=8Hz 

Load Level 10% 50% 80% 

Damping Coefficient C C C 

DYNAMIC 8.37E+04 6.06E+04 4.92E+04 

RADIATION 8.31E+04 5.74E+04 4.50E+04 
 

For the visualization of the radiation loops the cyclic loops need to be rotated in such 

way that their maximum displacement will match the maximum displacement of the 

dynamic loops. This rotation is necessary to be done in order the radiation loops that 

are formed after the subtraction of the cyclic loops from the dynamic loops to be 

horizontal. The figures that follow include all kinds of loops for all load levels and for 

both frequencies. 
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Figure 4-12: The three loops for the load level of 10% of Qu for frequency f=4Hz. The radiation loop is 
formed from the difference between the dynamic loop and the cyclic loop. 

 

 

 

Figure 4-13: The three loops for the load level of 10% of Qu for frequency f=8Hz. The radiation loop is 
formed from the difference between the dynamic loop and the cyclic loop. 
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Figure 4-14: The three loops for the load level of 50% of Qu for frequency f=4Hz. The radiation loop is 
formed from the difference between the dynamic loop and the cyclic loop. 

 

 

 

Figure 4-15: The three loops for the load level of 50% of Qu for frequency f=8Hz.. The radiation loop is 
formed from the difference between the dynamic loop and the cyclic loop. 
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Figure 4-16: The three loops for the load level of 80% of Qu for frequency f=4Hz. The radiation loop is 
formed from the difference between the dynamic loop and the cyclic loop. 

 

 

 

Figure 4-17: The three loops for the load level of 80% of Qu for frequency f=8Hz. The radiation loop is 
formed from the difference between the dynamic loop and the cyclic loop. 
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Figure 4-18: Loops that represent the radiation damping for the three levels of loading, namely 10%, 
50% and 80% of the ultimate load Qu for the frequency 4Hz. 

 

 

Figure 4-19: Loops that represent the radiation damping for the three levels of loading, namely 10%, 
50% and 80% of the ultimate load Qu for the frequency 8Hz. 
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more energy is dissipated comparing to the lower load levels for the same frequency. 

However, by the increase of the areas of the loops it cannot be concluded that the 

damping is increased. This can be concluded by the dashpot coefficient C. As it can 

be seen from Table 4-3 for a specific frequency as the load level increases the 

computed dashpot coefficient becomes smaller or equivalently as the soil becomes 

more and more plastic C reduces. This fact can be explained by the physical meaning 

of the dashpot coefficient. The dashpot coefficient C, represents the amount of the 

soil elements that participate to the transmission of the waves. As the soil becomes 

more and more plastic the wave “sees” more and more surfaces at which it reflects. 

Another reason that C is reducing is because the velocities of the waves decrease as 

the soil plastifies. 

For the elastic region of a square plan foundation it is known from the literature that 

as the frequency increases, the dashpot coefficient presents a trend to increase until 

the value of 𝐶ℎ = 𝜌𝑉𝑠𝐴. However for a plain strain analysis the dashpot coefficient in 

elastic region presents opposite behavior, meaning reductive trend but until the 

same asymptote value. Comparing the dashpots coefficients for each load level it can 

be observed that the increment of C due to the rise of frequency is getting higher 

(14%, 25%, 36% respectively for the low load level till the high load level) as the soil 

gets more into the plastic area. Comparing the areas of each load level for the two 

frequencies it can be clearly seen that for the small frequency the dissipated energy 

which is represented by the area of the loop is much bigger. 

 

4.4 Comparison between inelastic and elastic analyses 

At this part of the thesis, the aim is to compare the inelastic analyses with elastic 

analyses. A new set of elastic analyses have been performed where the constitutive 

model for the soil has been selected to be the Linear Elastic model. The Poisson’s 

ratio has been chosen to be the same as the inelastic analyses (v=0.2) while 

considering the shear modulus G investigation has been performed in such way that 

for each load level the corresponding dynamic elastic loop would match the inelastic 

dynamic loop in terms of horizontal maximum and minimum displacements. No 
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additional damping, in terms of Rayleigh damping, has been included to the elastic 

analyses as in the inelastic analyses that were described before. 

The shear moduli that were eventually selected for both frequencies are presented in 

the following Table. As it can be seen the reduction of the initial shear modulus G0 

that needed to be chosen in order to take the same magnitude of amplitudes for the 

response, is very close to the reduction of the load for each load level for both 

frequencies. 

Table 4-4: Reduction of the initial shear modulus for the elastic analyses for the two frequencies. 

Shear modulus G [kN/m2] for f=4Hz 

Load Level 10% 50% 80% 

inelastic analyses (Go) 25000 25000 25000 

elastic analyses (G) 22500 10000 5000 

reduction 10% 60% 80% 

 

Shear modulus G [kN/m2] for f=8Hz 

Load Level 10% 50% 80% 

inelastic analyses (Go) 25000 25000 25000 

elastic analyses (G) 21500 12000 7500 

reduction 14% 52% 70% 

 

Some general comments that should be mentioned for the elastic analyses are 

described here. First the cyclic loops because of the absence of the material damping 

become now straight lines. As a consequence of this the radiation loop that comes 

from the subtraction of this line from the dynamic loop is only the rotation of the 

loop without any change at the area at all. This is something that is expected from 

the elastic analyses as the area of the dynamic loop is a representation of the 

dissipated energy of the system only due to the radiation as the material damping is 

zero. As the figure below shows, the radiation loop that is derived becomes 

horizontal. 
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Figure 4-20: Loops derived from the elastic analysis. The radiation loop has the same area as the 
dynamic loop and is horizontal. 

 

Another difference that should be mentioned between the elastic and inelastic 

analyses is the location of the steady state response. For the inelastic analysis, as has 

been described in the previous, the steady state response is reached at a certain 

level of permanent deformation. This level increases as the load magnitude increases 

and causes the maximum and minimum values of the displacement to vary. The 

reason for this permanent deformation is the initial cycle at which plastic 

deformations occur. However for the elastic analyses the steady state response is 

reached without any permanent deformation and thus the center of the loops that 

are derived is located at zero. In order to compare the elastic dynamic loops with the 

corresponding inelastic the latter have been relocated in such way that their center 

would match with zero as well. In the figures that follow the permanent deformation 

that is reached due to the inelastic soil model and can be observed. The deviation 

from the elastic response increases as the load level rises. 
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Figure 4-21: Lateral response of the caisson at load level 10% for the elastic and inelastic analyses. 

 

 

Figure 4-22: Lateral response of the caisson at load level 50% for the elastic and inelastic analyses 

 

 

Figure 4-23: Lateral response of the caisson at load level 80% for the elastic and inelastic analyses. 
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Figure 4-24: Lateral response of the caisson at load level 10% for the elastic and inelastic analyses. 

 

 

Figure 4-25: Lateral response of the caisson at load level 50% for the elastic and inelastic analyses 

 

 

Figure 4-26: Lateral response of the caisson at load level 80% for the elastic and inelastic analyses. 
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Figure 4-27: Comparison between the dynamic loops for the inelastic response and the elastic 
response with a reduced shear modulus, reduction 10%Go, for f=4Hz. 

 

Figure 4-28: Comparison between the dynamic loops for the inelastic response and the elastic 
response with a reduced shear modulus, reduction 60% Go, for f=4Hz.  

 

 

Figure 4-29: Comparison between the dynamic loops for the inelastic response and the elastic 
response with a reduced shear modulus, reduction 80% Go, for f=4Hz. 
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Figure 4-30: Comparison between the dynamic loops for the inelastic response and the elastic 
response with a reduced shear modulus, reduction 14% Go, for f=8Hz. 

 

Figure 4-31: Comparison between the dynamic loops for the inelastic response and the elastic 
response with a reduced shear modulus, reduction 14% Go, for f=8Hz. 

 

 

Figure 4-32: Comparison between the dynamic loops for the inelastic response and the elastic 
response with a reduced shear modulus, reduction 70% Go, for f=8Hz. 
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Table 4-5: Areas of the dynamic loops for each kind of analysis 

Frequency f=4Hz 

Load Level 10% 50% 80% 

Loop Area  [kN*m] ΔW ΔW ΔW 

ELASTIC 39.5 1690.4 5368.6 

INELASTIC 41.3 1666.4 5139.6 

deviation -4% 1% 4% 

 

Frequency f=8Hz 

Load Level 10% 50% 80% 

Loop Area  [kN*m] ΔW ΔW ΔW 

ELASTIC 22.5 679.7 1934.5 

INELASTIC 22.3 645.5 1690.5 

deviation 1% 5% 13% 

 

As the above Tables show the deviation of the areas of the loops is very small. The 

loops present a slightly different shape. This difference increases as the load level 

increases. For the smallest load level it can be seen that the dynamic loops match 

almost identically. This is due to the fact that for the low load level the behavior at 

the inelastic analysis is almost elastic as has been explained in the previous.  
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4.5 Nonlinear Interface 

The bonded interface does not represent the real soil-structure interaction behavior 

where slippage and gapping are very likely to occur, especially for magnitudes of load 

where inelastic response is expected, i.e. greater deformations. At this part, the same 

procedure as in the bonded interface part was followed with the only difference now 

that interface elements have been introduced at the base of the caisson as well as 

the sidewalls of it. The data material set is described in 4.2.1. 

First a static monotonic push over is performed in order to estimate the ultimate 

failure lateral load, Qu and then for three levels of load (10%, 50% and 80% Qu) the 

dynamic response is investigated for the small frequency (f=4Hz). 

 

 Monotonic loading 

As there are no analytical expressions for the ultimate load at failure for the case of 

the nonlinear interface, the failure was considered to be achieved at the same value 

of the displacement (uf) where the failure occurred for the bonded interface. The 

load (Qu= 39260kN) at which this displacement was reached was 27% smaller than 

the corresponding load of the bonded interface. As it was expected the introduction 

of the interfaces reduced the load at failure. In the figures that follow the monotonic 

push over test is depictured in load-displacement (Q-u) terms and in an equivalent 

tangent stiffness (dQ/du-u) terms. In Figure 4-35 the gap that is occurred at the 

sidewall of the caisson can be clearly observed. Moreover the rotation pole is located 

about at the same depth (2D/3) as in the bonded interface analysis. 
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Figure 4-33: Monotonic Static push over test, graph load versus response. The dashed lines indicate 
the ultimate load and the displacement at which failure is considered. 

 

 

 

 

Figure 4-34: Monotonic Static push over test, graph dQ/du versus u. The dashed line indicates the 
displacement where failure is considered to be occurred. 
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Figure 4-35: Illustration of the total absolute displacements of the caisson due to pure lateral loading. 
The gapping can be observed at the right side of the caisson. The pole of rotation of the caisson is 
located at the depth of 2D/3, same as in bonded interface analysis. 

 

 Dynamic loading 

Following the same procedure as in the bonded interface analyses the results for the 

nonlinear interfaces are presented in the following. In order to make comparisons 

between the nonlinear interfaces and the bonded interfaces both resulting loops 

have been included in the graphs. The dynamic loops that are formed from the 

nonlinear analyses seem to be located almost at the same place as the ones formed 

from the bonded interface analyses. The main difference that can be observed is the 

clockwise rotation of the loops. The introduction of nonlinear interface elements at 

the caisson influence the shape of the dynamic loops. As the load level increases the 

dynamic loops tend to become horizontal. 
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Figure 4-36: Loops formed from the dynamic analyses for the three load levels. The light colors 
indicate the results where the interface is considered to be bonded with the surrounding soil while 
the solid lines indicate the nonlinear interfaces where slippage and gapping are allowed. 

 

 Cyclic loading 

In order to calculate the radiation loops, cyclic static push overs needed to be 

performed. The cyclic loading was chosen to be in such way that the maximum 

response of the dynamic loops would be achieved. In this way the loops are 

compatible. As it can be observed from Figure 4-38 below the shape of the cyclic 

loops for the nonlinear analyses and the bonded analyses is almost the same. The 

shape of the cyclic loops for the case that slippage and gapping have occurred at the 

interfaces is completely different than the shape of the loops of the full contact 

conditions as Figure 4-37 reveals.  However this is not the case here as the shape of 

the loops is identical. The most possible reason for this is because gapping has not 

achieved in great depths as the magnitude of the deformations is very small. As it 

can be seen very close maximum and minimum values of the displacement are 

achieved for both scenarios. For the bonded interfaces these values are slightly 

greater so the material damping ratio is expected to be a bit greater in this case as 

Table 4-6 reveals in comparison with Table 4-2. 
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Figure 4-37: Cyclic loops for the case of light loaded caisson with embedment ratio (D/B=3). Left the 
case of full contact conditions, right the case of nonlinear Coulomb interfaces that allow gapping and 
sliding, (after Karapiperis (2012)). 

 

 

Figure 4-38: Loops formed from the cyclic analyses for the three load levels. The light colors indicate 
the results where the interface is considered to be bonded with the surrounding soil while the solid 
lines indicate the nonlinear interfaces where slippage and gapping are allowed. 

 

Table 4-6: Damping ratios for cycling lstatic oading for the case of the nonlinear interfaces. 

Load Level 10% 50% 80% 

Damping Ratio ξ ξ ξ 

CYCLIC (f=4Hz) 2% 12% 20% 
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 Radiation damping 

Following the same procedure as in bonded interfaces the radiation damping is 

computed. Radiation loops can be computed by subtracting the cyclic loops from the 

dynamic loops after the rotation of the cyclic loops in such way that would match 

with the maximum and minimum displacements of the dynamic loops.. Again here 

linear interpolation has been performed in order to compute the loops (area and 

shape) more accurately. 100 points have been calculated for each kind of loops. 

Considering the dashpots coefficients, Table 4-7 shows that the same trend as in 

bonded interfaces is followed. The dashpot reduces as the load level increases and 

the soil becomes more plastic. 

 

Figure 4-39: Loops that represent the radiation damping for the three levels of loading. The light 
colors indicate the results where the interface is considered to be bonded with the surrounding soil 
while the solid lines indicate the nonlinear interfaces where slippage and gapping are allowed. 

Table 4-7: Areas and damping ratios for each kind of loops. 

Load Level 10% 50% 80% 

Loop Area [kN/m] ΔW ΔW ΔW 

DYNAMIC 24.5 1170.9 3989.8 

CYCLIC 0.9 232.6 1129.4 

RADIATION 23.6 938.3 2860.4 

    

Load Level 10% 50% 80% 

Damping Coefficient C C C 

DYNAMIC 4.14E+04 3.94E+04 3.27E+04 

RADIATION 3.99E+04 3.15E+04 2.35E+04 
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Figure 4-40: The three loops for the load level of 10% of Qu for the nonlinear interfaces. 

 

 

Figure 4-41: The three loops for the load level of 50% of Qu for the nonlinear interfaces. 

 

 

Figure 4-42: The three loops for the load level of 80% of Qu for the nonlinear interfaces. 
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5 Winkler approach 

A different approach for the caisson’s behavior is performed at this section. Until now 

the caisson has been considered to be a full rigid body that interacts with the 

surrounding soil under elastic or inelastic conditions. Now a Winkler type method is 

followed to describe the caisson’s response. It is considered that the caisson is 

divided into horizontal plains along its depth. Each of these plains can be considered 

to be under plain strain conditions. The sum of the resistance of the surrounding soil 

of all the plains represents the resistance of the sidewall of the caisson. In the 

Winkler method the soil at each plain can be replaced by a set of pairs of horizontal 

and rotational springs and dashpots. The resistance of the base is different than the 

resistance of the sidewall so different springs and dashpots are needed to be applied 

at the base and the sidewall. In total four types of springs and dashpots for the 

analysis of inertially and kinematically loaded caissons are needed as Figure 5-1 

depicts. 

 

 

Figure 5-1: The Winkler approach for the behavior of the caisson. Four types of springs and dashpots 
are needed for the analysis of inertially and kinematically loaded caissons. 

At this part of the thesis numerical analyses have been performed in order to 

evaluate the behavior of the horizontal plain. The dynamic lateral loading of the plain 

is investigated by forming the stiffness-displacement (K-u) and damping-
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displacement (C-u) curves for each different frequency. Important conclusions are 

made by the physical meaning of these curves while frequency-dependent relations 

are developed for their description. For the Winkler model some suggestions are 

made for the mathematical analog that consists of different types of elements 

(springs, dashpots, mass) that are frequency independent but with the proper 

connection provide frequency dependent behavior. An attempt is made to calibrate 

these horizontal springs and dashpots coefficients of the sidewall of the caisson for 

both elastic and inelastic conditions by following the physics of the problem. 

 

5.1 Plain Strain numerical analyses 

For the plain strain analyses a section of one meter width of the previous caisson has 

been studied. The side of the caisson is B=10 meters while the lateral boundaries 

have been set to a distance 4B far away from the caisson.  

 

Figure 5-2: Numerical model for the plain strain analyses. The deformation at the vertical direction is 
not allowed. 

The constitutive model that has been used is the Hardening Soil small and the 

parameters that have been selected are the same as in the previous analyses and are 

given in Table 4-1. It must be noted here that the caisson is massless. This section of 

the caisson has been studied for lateral static and dynamic loading under drained and 

undrained conditions and for bonded interfaces as well as nonlinear interfaces 

between the soil and the caisson. 



157 
 

In order to simulate the undrained conditions the Poisson’s ratio has been set 

automatically to a value very close to 0.50 as the undrained Method B has been 

adapted. For the drained conditions the Poisson’s ratio has been set to 0.20. The 

strength of the soil for both conditions is defined as the undrained shear strength 

(Su=50 kPa). 

 

 Static lateral Push over 

First static push overs were performed. Defining the failure as the moment when the 

tangent stiffness becomes less than 1% of the initial stiffness the strength of the plain 

found to be 13.6𝑆𝑢𝐵 for the bonded case and 13.3𝑆𝑢𝐵 for the nonlinear case. These 

normalized values where verified by additional pushovers that performed for a 

different caisson with width, B=5m. For circular in plan view caissons, as discussed 

before the strength can reach till 12𝑆𝑢𝐵. The slightly greater strength that derived 

from the numerical analyses can be attributed to the different shape (square instead 

of circle) of the foundation as well as to the fineness of the numerical mesh.  

 

 Dynamic loading 

For the dynamic loading of the inelastic behavior of the plain strain problem, six 

different frequencies were investigated. For each frequency different load levels were 

applied in order to form the stiffness-displacement and dashpot-displacement 

curves. The plain strain problem involves only one degree of freedom in the direction 

of lateral load. Thus the dynamic impedance can be defined immediately as the ratio 

between the applied force and the resulting displacement. Working with complex 

numbers the real part of this ratio corresponds to the stiffness or spring as the 

caisson is massless, and the imaginary part divided by the angular frequency, w, 

corresponds to the dashpot coefficient. Graphically from the dynamic loops that are 

formed between the force and the displacement, the spring coefficient can be 

calculated as the ratio between the force at the moment when the maximum 

displacement is achieved, and the maximum displacement. The dashpot coefficient, 

which includes both the radiation and the material damping in the case of inelastic 
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conditions, can be calculated from the area of the loop as has been explained 

extensively in the previous. The ratio between the maximum force and the maximum 

displacement corresponds to the norm of the impedance. From the loop that is 

formed between the force and the velocity these values can be verified. The ratio 

between the force at the moment when the maximum velocity is achieved and the 

maximum velocity, the dashpot coefficient can be calculated. Also, the maximum 

force divided by the maximum velocity times the angular frequency, gives the norm 

of the impedance. The following figures illustrate the aforementioned definitions. 

 

Figure 5-3: Schematic dynamic loop between the applied force and the resulting displacement. 

 

Figure 5-4: Schematic dynamic loop between the applied force and the resulting velocity. 
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 Results 
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 Discussion and conclusions 

Some very important conclusions can be conducted by the graphs that presented in 

the previous pages. First of all it should be noted that for the drained conditions 

(v=0.20) and the bonded interface the stiffness K remains almost the same for each 

frequency at the small deformations region. This is something that was expected as 

the conditions at this region can be considered elastic and as it is already known 

from the literature, for the case of the lateral loading of a plain strain foundation 

problem the stiffness remains independent of the frequency in the elastic conditions. 

However this is not true for the case of the nonlinear interfaces. As it can be seen, as 

the frequency increases the elastic stiffness at the small deformations region 

increases too. It should be denoted that for the lowest frequency, which is nearest to 

the static conditions, the difference between the bonded curve and the nonlinear 

curve is very small. 

For all frequencies and for all cases the stiffness decrease as the deformations 

increase. Of course as the soil plastifies the resistance of the soil reduces. This 

resistance is being represented by the stiffness, K. One important difference between 

the K-u curves for the bonded and nonlinear interfaces is that the former curves take 

negative values as the frequencies increase and the deformations increase while the 

nonlinear curves remain at the positive side. This is something that can be explained 

easily if someone considers that for the case of the bonded interfaces there is no gap 

between the caisson and the soil so as the load level increases and consequently the 

deformations increase, a time lag between the applied oscillation of the caisson and 

the oscillation of the soil elements is being created thus when the caisson is moving 

through one direction the soil from the opposite side pushes the caisson and etc. 

This condition cannot happen for the case of the nonlinear interfaces because 

gapping is occurred so there is no interaction of the opposite side of the moving 

caisson. 

Considering the dashpots it can be observed that for both cases, bonded and 

nonlinear interfaces for the drained conditions, the behavior is quite similar. At the 

small deformations region, the elastic dashpot decrease as the frequency increase 

with a decreasing tempo and tends to reach one specific value as the frequency 
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increase. This value is not random. As it will be explained later it is the value that 

comes from the theory of the one dimensional wave propagation. For the case of the 

nonlinear interface this value is smaller because of the gap that is occurred and so 

the one side does not participate to the propagation of the wave that is formed from 

the oscillation. 

As far as concerns the numerical analyses for the case of the undrained conditions 

(v=0.50), it should be mentioned that the problem becomes much more sensitive to 

the boundaries of the model because of the wave velocity of the P-waves that 

becomes infinite. The animations that were created from the analyses revealed that 

the viscous boundaries do not work properly as the waves found to partially reflect 

at the boundaries. This is something that was not presented in the drained 

conditions. 

Comparing the bonded interface for the drained conditions and the undrained 

conditions it can be observed that for the case of the undrained conditions the 

stiffness becomes negative already for the elastic region for the greater frequencies. 

This is also something that is not new to the literature for the case of the lateral 

dynamic loading of a plain strain problem under undrained conditions. As the load 

level increase for each frequency the stiffness becomes smaller or in the case of the 

negative area becomes more negative. Considering the dashpots the same behavior 

is presented. The damping reduces as the soil plastifies for every frequency. 

The wave cannot be transferred through the plastified area as the figure below 

reveals. Something else that should be observed from this figure is that for the case 

of the great load level (80%Qu) the color of the caisson is different than the color of 

the surrounding soil. This fact reveals the time lag between the oscillation of the 

caisson and the soil indicating in this way the negative stiffness. As it can be seen this 

is not true for the case of the low load level where elastic conditions can be 

considered. The colors of the caisson and the surrounding soil are the same, a fact 

that indicates positive stiffness. 
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Figure 5-5: Absolute displacements due to dynamic low loading for the case of bonded interfaces 
under drained conditions at the steady state. Because of the low amplitude of the load and 
consequently the low deformations, the conditions can be considered to be elastic. The waves 
propagate to the whole domain. 

 

Figure 5-6: Absolute displacements due to dynamic high loading for the case of bonded interfaces 
under drained conditions at the steady state. Because of the high amplitude of the load the soil 
plastifies and the conditions are inelastic. There is a permanent deformation at the direction of the 
first half cycle (left at the picture). The different color between the caisson and the soil indicate the 
negative stiffness.  
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5.2 Development of relations for the K-u and C-u curves 

In order to quantify the behavior of the caisson relations that describe the curves 

that presented before have been developed. First the curves were normalized with 

the elastic values, Kmax or Cmax, (values at the smallest deformation) for both the 

springs and the dashpots. The relations that can describe these curves found to have 

the following form: 

𝜥

𝜥𝒎𝒂𝒙
= 𝒙𝟓

𝒙𝟏

𝒙𝟏 + 𝒙𝟐 (
𝒖
𝒙𝟑

)
𝒙𝟒

+ (𝟏 − 𝒙𝟓) 

and 

𝑪

𝑪𝒎𝒂𝒙
= 𝒙𝟓

𝒙𝟏

𝒙𝟏 + 𝒙𝟐 (
𝒖
𝒙𝟑

)
𝒙𝟒

 

Of course for each equation the coefficients 𝒙𝒊  are different for the stiffness and the 

dashpot. These coefficients are frequency dependent. Their calibration was made by 

curve fitting using advanced genetic algorithms and the optimization was achieved 

using special software (MATLAB). It should be noted here that the last term in the 

first equation has been added in order the stiffness K to be able to get negative 

values. This term is not necessary for the dashpots because the dashpot tends to 

zero as the displacement increase and cannot take negative values. In the following 

charts the coefficients and their equations are presented for the case of the bonded 

interfaces under drained conditions. 
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Figure 5-7: Frequency dependent coefficients Xi that are included in the developed relations for the 
stiffness K and the dashpot C. The x axis shows the dimensionless frequency a0. 
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5.3 Proposed model 

After understanding the mechanisms of the plain strain problem, an attempt has 

been made to develop a proper mathematical model using the Winkler approach for 

the drained conditions. One of the advantages of such a model is of course the 

minimum computational effort that it needs. A Winkler model is expected to give the 

same results with the numerical analyses only after a few seconds and not several 

minutes or hours as the finite element programs need. Moreover and most 

importantly such models can easily adapted to structural codes and represent the 

real soil. In the suggested mathematical model frequency independent elements of 

springs, dashpots and masses are connected properly in order to achieve the 

desirable frequency dependent inelastic behavior. In the following the process of the 

work until the final solution is described. The reader is recommended to read the 

following process with reference to Figure 5-76. 

First restriction is the static inelastic behavior. The solution of one simple linear 

spring is not correct as the relation that it gives between the force and the 

displacement is linear something that it is not realistic. In order to achieve real 

inelastic static response a nonlinear spring needs to be adapted. For the description 

of the nonlinear spring the BWGG law was adapted. The reaction of the nonlinear 

spring, K2, is given by the simple following equations. For more details about the 

mathematical description of BWGG the reader is referred to (Gerolymos & Gazetas, 

2006) and (Gerolymos, 2002). 

F = Κ2u = 𝐹𝑦𝜁,      𝐹𝑦 = 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑑𝜁 =
1

𝑢𝑦
[(1 − |𝜁|𝑛) (0.5 − 0.5𝑠𝑖𝑔𝑛(𝑑𝑢 𝑑𝜁))] 𝑑𝑢 

After having fixed the static behavior next step is to fit the behavior in dynamic 

loading. Of course it is already known that damping is occurred in dynamic analyses 

and that dashpots are proper mathematical tools to describe it. The case of adding a 

dashpot in series to the inelastic spring would not be correct as the model will not 

work in static loading because the load would not be able to be transferred through 
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the dashpot because of the zero velocity that describes the static conditions. 

Consequently, the dashpot needs to be added in parallel to the inelastic spring. 

It is known, and validated by the previous numerical analyses, that in elastic drained 

conditions the dynamic lateral loading of a plain strain problem gives the same spring 

for every frequency. However considering the dashpots in elastic conditions it is 

known that there is a constantly decreasing rate as the frequencies increase. The 

asymptote value of the dashpots comes from the one dimensional propagation of 

waves’ theory and more details are given in the following. The model with the 

nonlinear spring and the dashpot in parallel is not able to describe this elastic curve 

for the dashpots. In order to achieve the decreasing curve it found that another pair 

of a spring and a dashpot connected in parallel needed to be added to the model. In 

this way the model is able to describe except for the static loading also the dynamic 

loading in elastic conditions. 

Next step is to make the model to be able to describe the inelastic dynamic behavior. 

As we saw from the numerical analyses the stiffness of each frequency is reducing as 

the displacements increase and is also able to take negative values. The dashpot 

found also to have similar behavior as it reduces with the increase of the 

displacement but it remains at the positive side and tends to zero as the load level 

rise. The model with the two pairs of springs and dashpots connected in parallel is 

able to describe the decrease for each frequency of the stiffness. This is due to the 

first nonlinear spring. However it cannot make the stiffness to go to the negative 

side. Considering the dashpots, the model is not able to describe the reductive 

curves as the dashpots for each frequency remains almost steady with the increase 

of the displacement. In order to fix these two conditions it found that a special 

element of mass needed to be added to the model. The mass element that is added, 

is called “gyro” mass and is frequency independent. It is defined as a unit system that 

generates a reaction force due to the relative acceleration of the nodes between the 

gyro mass is placed. Adding a gyro mass at the nearest-to-the-foundation pair of the 

nonlinear spring and dashpot makes the model to be able to fit not only the static 

and the elastic dynamic behavior but also the dynamic inelastic behavior.  
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Figure 5-8: Process of concluding to the suggested Winkler model. The yellow dashed line indicate the nonlinear spring. At the 
charts the blue color indicate static conditions, the pink color the elastic dynamic condition and the yellow color the inelastic 
dynamic conditions. 
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 Calibration of the coefficients of the model 

The calibration of the coefficients of the suggested model was made in such way that 

the model would fit the numerical results. However some general principles that 

derive from the physics of the model were followed and are given below. The global 

stiffness and the global dashpot of the suggested model for the elastic conditions are 

given by the following relations: 

𝐾ℎ
𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑅𝑒 (

𝐾̃1𝐾̃2

𝐾̃1 + 𝐾̃2

) 

and 

𝐶
ℎ 

𝑠𝑞𝑢𝑎𝑟𝑒
=

𝐼𝑚 (
𝐾̃1𝐾̃2

𝐾̃1 + 𝐾̃2
)

𝑤
 

The caisson that has been studied until now is square in plan view with side length B. 

Following the theory from the plain strain analysis we can assume that the square 

plan section consists simplified by four different strips. Applying a lateral force in the 

plain with direction parallel to one of the sides, two of the four strips are loaded 

horizontally while the other two are loaded vertically. 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑝𝑙𝑎𝑛 = 2 ∗ 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑖𝑝𝑠 + 2 ∗ ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑖𝑝𝑠 

 

 

Figure 5-9: The square plan plain strain problem consists of four strips. For lateral loading, two vertical 
strips and two horizontal. 
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With this simplifying assumption the static stiffness of the surrounding soil can be 

calculated as the sum of the stiffnesses of these strips. The most common elastic 

relations (Gazetas) for vertically and horizontally loaded strips are given below. G is 

the shear modulus, v is the Poisson’s ratio and Es is the modulus of elasticity. 

 𝐾𝑣
𝑠𝑡𝑟𝑖𝑝 =

1.2𝐺

1 − 𝑣
=

1.2𝐸𝑠

(1 − 𝑣)2(1 + 𝑣)
 

 𝐾ℎ
𝑠𝑡𝑟𝑖𝑝 =

2.1𝐺

2 − 𝑣
=

2.1𝐸𝑠

(2 − 𝑣)2(1 + 𝑣)
 

Subsequently the initial static global stiffness of the square section is given by: 

𝐾ℎ
𝑠𝑞𝑢𝑎𝑟𝑒 = 2𝐾𝑣

𝑠𝑡𝑟𝑖𝑝 + 2𝐾ℎ
𝑠𝑡𝑟𝑖𝑝 = 2

1.2(2 − 𝑣) + 2.1(1 − 𝑣)

(1 − 𝑣)(2 − 𝑣)
𝐺 

This formula corresponds to the initial elastic stiffness for static conditions for the 

plain strain for full bonded conditions meaning that no gapping or slippage is allowed 

to occur. In case of nonlinear interfaces between the caisson’s section and the soil 

because of the fact that gapping is occurred at the very beginning of the lateral 

loading the vertical strip at the opposite direction of the load does not contribute to 

the resistance. Thus, the stiffness reduces to: 

𝐾ℎ
𝑠𝑞𝑢𝑎𝑟𝑒 = 1𝐾𝑣

𝑠𝑡𝑟𝑖𝑝 + 2𝐾ℎ
𝑠𝑡𝑟𝑖𝑝 , in the case of nonlinear interfaces. 

Considering the dynamic stiffness (Gerolymos & Gazetas, 2006) have estimated that 

the lateral stiffness of the distributed horizontal springs is constant and equal to 

𝑘ℎ = 2.18 (
𝐷

𝐵
)

−0.13

𝐸𝑠 . Taking into account that the section of the caisson is studied 

under plain strain conditions (so D equals to infinity), the dynamic stiffness for elastic 

conditions for the case that is studied herein should be also constant and equal to 

the initial elastic stiffness as given above. 

Considering the global dashpot coefficient, following the same procedure we can 

assume that the waves generated at the foundation-soil interface can propagate 

from the four sides each of which is a strip. Shear loading produces primarily shear 

waves which propagate with the S-wave velocity, 𝑉𝑠. On the other hand, vertical 

loading produces compression-extension as well as shear deformations, thereby the 

selection of an appropriate wave velocity is not so obvious. Gazetas and Dobry have 

suggested the use of Lysmer’s analog wave velocity defined as 𝑉𝐿𝑎 =
3.4

𝜋(1−𝑣)
𝑉𝑠. 
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Figure 5-10: Simplified approximation for the propagation of waves from the four strips that consist 
the plain strain problem. 

Taking into account the fact that as the frequency arises all the dashpot coefficients 

despite the shape of the foundation or the direction of the loading tend to the one 

dimensional value: 𝐶 = 𝜌𝑉𝐴𝑏 where ρ is the density of the soil, Ab is the area of the 

perpendicular surface on which the wave is induced, V is either the S-wave velocity 

or the Lysmer’s analog as explained before. At very high frequency factors (or very 

small wavelengths) waves propagate only in the vertical direction perpendicular to 

the plane of the source. This one-dimensionality of the travelling waves suggests that 

the global dashpot coefficient will tend asymptotically to this value. 

𝐶𝛼𝜊→∞ = 𝜌𝑉𝐴𝑏 

For very high frequencies and vertically loaded strips or horizontally loaded strips the 

dashpot coefficients is given as: 

𝐶𝑣
𝑠𝑡𝑟𝑖𝑝 = 𝜌𝑉𝐿𝑎𝐴𝑏 

𝐶ℎ
𝑠𝑡𝑟𝑖𝑝

= 𝜌𝑉𝑠𝐴𝑏 

Subsequently for the square plan plain strain problem the asymptotic value is: 

𝐶ℎ
𝑠𝑞𝑢𝑎𝑟𝑒 = 2𝐶𝑣

𝑠𝑡𝑟𝑖𝑝 + 2𝐶ℎ
𝑠𝑡𝑟𝑖𝑝 = 𝜌𝐵(2𝑉𝐿𝑎 + 2𝑉𝑠) 

Considering the case that nonlinearities are taken into account at the interfaces 

between the soil and the foundation the dashpot coefficient is given by: 

𝐶ℎ
𝑠𝑞𝑢𝑎𝑟𝑒 = 1𝐶𝑣

𝑠𝑡𝑟𝑖𝑝 + 2𝐶ℎ
𝑠𝑡𝑟𝑖𝑝 = 𝜌𝐵(𝑉𝐿𝑎 + 2𝑉𝑠) 

Furthermore (Gazetas, 1987) have shown using a simple cone model for radiation 

damping of the plain strain problem that the radiation dashpot coefficient can be 

readily obtained from the following equation: 

𝐶 = 𝜌𝑉𝐴𝑏𝑅𝑒 [−𝑖
𝐻1

(2)
(𝑎𝑜)

𝐻0
(2)

(𝑎𝑜)
] 
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In which Re[∙] denotes the real part and Ab=B is the area (per unit length) of the 

foundation and 𝐻1
(2)

, 𝐻0
(2)

 denote the complex-valued second kind Hanklel functions 

of first and zero order, respectively. It is evident that for the strip 𝐶 ≥ 𝜌𝑉𝐴𝑏 and that 

the exact value of C depends on frequency. 

All the above relations are referred to the small deformations (elastic conditions) and 

can be used as constraints mainly for the calibration of the distributed horizontal 

springs and dashpots of the caisson (K1,K2,C1,C2). Considering inelastic conditions 

where the shear modulus is reduced and subsequently the wave velocities decrease 

too, there are not much information in the literature that can be used for the 

calibration of the springs and the dashpots, thus only the numerical analyses that 

performed in order to study qualitatively the inelastic problem for drained and 

undrained conditions as well as for bonded and nonlinear interfaces were used for 

the calibration of the coefficients. 

As far as concerns the ultimate resistance of the shaft under static conditions the 

theoretical value Fy for cylindrical foundations ranges between 6SuB and 12SuB. The 

lowest value is approximately the plasticity solution for the bearing capacity of a 

surface footing and the highest value of a deeply embedded footing with rough 

footing-soil interface. For square foundations these values are expected to be a bit 

higher, a fact that was verified with the numerical analyses as it was shown in the 

previous. 

Considering the mass element, the calibration was made in such way that the results 

would fit the results of the numerical analyses. For the mathematical description of 

the model the reader is referred to Appendix D. 

 

 Results 

In the following figure qualitatively comparisons are made between the proposed 

Winkler model and the numerical analyses for one frequency (5.70Hz) and different 

levels of loading. The results are very satisfactory. 
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6 Case study: Suction caisson 

6.1 Description of field tests 

At this part of the thesis a real case study is compared with numerical results of 

Finite Element analyses using PLAXIS 3D. A set of tests of caisson foundations in clay 

at the Bothkennar test site has been conducted and analyzed by (Houlsby, et al., 

2005). The tests are relevant to the design of foundations for offshore wind turbines, 

in the form of either monopod or tetrapod foundations. This type of caissons is called 

“suction” caissons and they were subjected to intermediate scale experiments. The 

rigid caisson that has been studied till far in this study is quite different in behavior 

from the suction caissons that has been tested at the Bothkennar site. A brief 

description of the new type of caissons follows below.  

Suction caissons are large cylindrical structures, open at the base. During installation 

they cut a small distance into the seabed under their own weight, but are then 

installed to their full depth (with the caisson lid flush with the seabed) by pumping 

out the water that is trapped within the caisson (see Figure 6-1). They can be 

installed in either clays or sands. The use of suction caisson foundations as an 

alternative kind of foundation is getting more and more famous. They are widely 

used as anchors for floating structures, and have also been used offshore as 

foundations for a small number of fixed platforms. The principal advantage for the 

offshore wind application is that the caissons can be installed rapidly, using relatively 

inexpensive equipment. 

 

Figure 6-1: Installation of a suction caisson and its installation. 
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Considering the field experiments, two main structural configurations using caissons 

have been tested, either a ‘monopod’ consisting of a single large caisson (typically 

20–25 m in diameter for a modern large turbine structure), or a ‘tetrapod’ in which 

the load is transferred through a truss structure to four smaller caissons. For the 

monopod the most important load on the foundation is the overturning moment. In 

the case of the tetrapod the moment loading is carried principally by ‘push–pull’ 

action by opposing footings, and it is the variation of vertical load (and in particular 

the possibility of tension on a footing) that is most important. The part of the 

experiments that concerns this thesis is the dynamic records for the monopod. 

The caisson that represented the monopod was subjected, among others, to cyclic 

moment loading under dynamic conditions. The caisson that constructed for the 

experiments was fabricated from mild steel. Its diameter was 3.0 meters and the 

length of the skirt was 1.5 meters resulting an embedment ratio of 2, the same ratio 

as the rigid caisson that was studied till far. The thickness of the wall was 8.0mm. It 

should be mentioned that the lid of the caisson was stiffened by I-sections. 

 

Figure 6-2: The 3 meters diameter suction caisson that was subjected to dynamic loading in the field. 

 

Small-amplitude cyclic horizontal loads were applied at the top of a frame (4.23 m 

above the lid of the caisson) by means of a machine (SEMV), operating at 10 Hz, at 

which frequency the amplitude of the applied load was 5.0 kN. These loads are 

intended to be representative primarily of wave loads experienced by a prototype 
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structure. Undrained conditions were assumed. The undrained shear strength at the 

base of the caisson is Su=14.4 kPa and the bulk density of the clay at relevant depths 

is estimated as 1680 kg/m3. 

Figure 6-3 shows the record of the applied moment against time. The test starts at an 

offset moment of approximately 16.6 kNm. The amplitude of loading builds up 

steadily with the frequency, with a minor fluctuation at about 7 Hz. After the 15th 

second the frequency remains steady at 10Hz causing a steady state response of the 

caisson. Figure 6-4 shows the resulting moment–rotation response. When the steady 

state response is achieved the dynamic loop becomes stable. The purpose of the 

numerical analyses that follow is to capture this dynamic loop at the steady state. 

Thus, the applied moment profile for the numerical analyses, as it will be discussed 

below, includes only the last part of the profile that was used in the dynamic 

experiment where the frequency is steady at f=10Hz and the dynamic loop is stable. 

 

 

Figure 6-3: Applied moment against time. The frequency becomes 10Hz and remains steady after the 
15th second. 
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Figure 6-4: Full moment-rotation response of the caisson. The yellow line indicates the steady state 
dynamic loop for f=10Hz. 

 

6.2 Numerical model 

The geometry of the numerical domain has been chosen following the previous 

sensitivity analyses that concerned the rigid caisson that was studied before and 

were extended even more. Thus, the lateral boundaries have been set to a distance 

of 5D (D=3 meters: diameter of the caisson) from the center of the caisson and the 

lower boundary to a distance of 5D from the center of the lid of the caisson. Proper 

care has also been taken for the fineness of the mesh.  

The suction caisson was simulated by plate elements. The diameter of the lid has 

been set to 3 meters while its thickness has been chosen to be big enough (1.5 

meters) in order to behave as rigid body, so the model would capture the fact that 

the lid of the caisson in the experiment was stiffened by I-sections. The depth of the 

skirt has been set to 1.5 meters and its thickness to 8mm, values exact same as in the 

experiment. The material of the caisson is steel so the moduli of elasticity for all the 

plate elements has been chosen to be Esteel=210 GPa. 



178 
 

In order to apply the moment loading to the caisson, following the same procedure 

as in the real experiment, a beam in the center of the lid of the caisson has been 

added. At the top of the beam a lateral point load was applied, 𝐹 = 𝐹𝑚𝑎𝑥sin (𝜔𝑡), 

where ω=2πf (f=10Hz) transmitting in this way a rotational moment at the lid of the 

caisson 𝑀 = 𝐹ℎ ,where h is the height of the beam. The beam was set to 4.23 

meters high and its properties were chosen in such way (A=1 meter, Esteel=210 GPa) 

that it would behave rigid, so no P-δ effects would take place. It should be mentioned 

here that the thickness of the plates and the area (A) of the beam have no physical 

meaning, these parameters have effect only on the stiffness of the corresponding 

elements.  

 

Figure 6-5: Numerical simulation of the suction caisson: D=3 meters, L=1.50 meters, h=4.23 meters. 

 

The soil has been simulated with volume elements. The constitutive model that has 

been chosen to represent the behavior of the real soil is the Hardening Soil small 

model. The parameters of the constitutive model that were chosen are discussed in 

the following section where comparisons are made with the suggested parameters 

from (Houlsby, et al., 2005). Moreover, in order to represent the real conditions of 

the field tests, interface elements both outside of the skirt as well as inside of the 

skirt have been introduced. The material parameters of these elements are the same 

as the soil elements. The parameter that represents the strength of the interface 
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elements has been set to Rinter=1. This means that the interfaces have the same 

strength as the surrounding soil. However for the interface elements, in contrast to 

the soil elements, the tension cut off option has been activated in order to allow 

gapping to occur. 

 

6.3 Comparison and conclusions 

The suction caisson is a type of embedded foundations, thus normally proper care 

should be taken to the cross-coupling between the moment and the horizontal 

loading.  (Houlsby, et al., 2005) although recognizing the importance of the 

embedment, they use a preliminary analysis based on factors for surface footings. 

For surface foundations, the rocking impedance can be defined directly as  𝐾̃𝑟 =
𝑀

𝜃̃
 

where M is the moment loading and θ is the rotation angle. The rocking impedance is 

a complex number where the real part represents the stiffness and the inertial 

effects, and the imaginary part the damping. As it is mentioned in the report of the 

experiments, the principal effect of ignoring the footing embedment is that the 

stiffness coefficients may be underestimated by a factor that may be in the region of 

1.5, but depending on the assumptions about interactions on the side of the caisson, 

and the variation of stiffness with depth. This factor as the numerical analyses 

revealed and is presented in the following is 1.90. 

Following the methodology for the surface footings the rocking stiffness is given by: 

𝑘 =
8𝐺𝑅3

3(1−𝑣)
 where G is the shear modulus and v is Poisson’s ratio. The tests have been 

considered to be under undrained conditions so the Poisson’s ratio is half (v=0.50). In 

the report it is given that 
𝑘0

𝑘50
= 10 where ko is the initial stiffness corresponding to a 

value of G0=14000 kPa and G50=1400 kPa or equally E50=4200 kPa. Moreover in the 

report is given the reduction curve of the secant shear modulus in relation to the 

rotation angle [log(Δθ)-G curve]. Taking into account that the rotation of the caisson 

is of course approximately proportional to the shear strain amplitude in the soil, the 

shear strain where the initial shear modulus has been reduced to 70% of the initial 

value can be estimated as γ0.7=6*10-4. 
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The aforementioned values have been adapted for the parameters of the Hardening 

Soil small model. Taking into account that the clay is considered to be quite soft the 

rest parameters of the model can be estimated according to the following relations: 

1.25𝐸𝑜𝑒𝑑 = 𝐸50 and  𝐸𝑢𝑟 = 3𝐸50. 

The analyses that were performed with the aforementioned parameters revealed 

that in order the dynamic loop to capture the maximum displacements Rayleigh 

damping in the order of 22% needed to be added. This amount of Rayleigh damping 

is unrealistic however. The loops that derived from this set of material parameters for 

0% Rayleigh damping and 22% Rayleigh damping are given in the following figures. 

 

 

Figure 6-6: Dynamic loops for the steady state response at the frequency of 10Hz. The analyses with 
Plaxis have been performed with the parameters that have been calculated from the surface footing 
approximation. 22% Rayleigh damping is needed to be added in order the maximum rotation angles to 
match. 
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From the areas of the loops the dashpot coefficient can be estimated as 𝐶 =
𝐷𝑊

𝜋𝜃𝑚𝑎𝑥
2 𝜔

 

where DW is the area of the loop, θmax is the amplitude of the rotation angle and ω is 

the rotational frequency (ω=2πf). The two loops that are depictured in the figure 

below have the same frequency and almost the same amplitude of the rotation 

angle. The areas of the loops deviate less than 1%, thus the dashpot coefficients are 

almost the same. 

Taking into account that 22% Rayleigh damping is considered unrealistic a new set of 

analyses were performed where the secant stiffness E50 was changed in such way 

that the dynamic loop from the numerical analysis would match the dynamic loop 

from the experimental data. Subsequently the shear strain γ0.7 has also been 

changed. Rayleigh damping in the order of 2% was added in these analyses. Since E50 

is changed, Eoed and Eur are also changed according to the relations that were given 

before. The initial shear modulus G0 has remained the same as before (G0=14MPa). 

The value of the E50 that eventually was selected to match the dynamic loops is 

E50=9200 kPa and the shear strain parameter is γ0.7=1*10-4. This values reveals that 

the stiffness was underestimated by a factor of 56%. This underestimation is 

something that was expected as was mentioned before because of the simplified 

assumption that the caisson behaves as surface foundation. It can be seen that this 

assumption is not correct and leads to soil parameters that can be half of the real 

ones. In the following picture the dynamic loop that has derived from the numerical 

analysis where E50 has chosen to be almost twice the suggested one, and Rayleigh 

damping has been selected to be 2%, is compared with the dynamic loop that has 

derived from the experiment. As it can be seen in the figure that follows the fit is 

quite satisfactory. 
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Figure 6-7: Dynamic loop for the steady state response at the frequency of 10Hz. The analysis with 
Plaxis has been performed with the secant E50 from the surface footing approximation multiplied by a 
factor of 1.90. 5% Rayleigh damping has been added. 

 

A general conclusion that can be conducted from this part is the significance that the 

embedment can have. The simplified assumption that the suction caisson can behave 

as a surface footing can lead to underestimated moduli. This underestimation cannot 

be ignored as it can reach the factor of 2. 

Moreover it can be seen how an advanced materials’ model such as the Hardening 

Soil small can capture the real behavior of a foundation including the interaction 

between the soil and the caisson. 
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7 General conclusions and future work 

7.1 General conclusions 

This thesis dealt with the response of caisson foundations resting on a uniform 

undrained and drained clay profile and subjected to lateral static monotonic and 

dynamic loading under elastic and inelastic conditions. After developing appropriate 

Finite Element models for the soil-foundation system, numerous analyses were 

carried out that served the purposes of this work. 

The first aim was to optimize the numerical model in terms of the maximum element 

size (Δl) of the mesh and the domain dimensions. The sensitivity analysis that was 

performed lead to the conclusion that the maximum size of the finite elements of the 

model needs to satisfy the following inequality in relation to the wavelength (λ) of 

the input signal: 𝛥𝑙 ≤
𝜆

4
 .The reason that the denominator is smaller than the guiding 

from the literature value, 8, is because the volume elements implemented in Plaxis 

are 10-node tetrahedral elements while the guiding value has derived from linear 

elements. Hence lower value of k was expected to be resulted because tetrahedral 

elements interpolate more nodes than linear elements. 

Considering the domain dimensions of the numerical model sensitivity analyses both 

for the width and the depth of the model were performed. The optimum width of 

the domain resulted to be  4.5𝐷, where 𝐷 is the depth of the caisson while the 

optimum depth of the domain resulted to be 4𝐵, where 𝐵 is the width of the 

caisson. Values greater than those make the model inefficient by computational view 

and have a very small improvement in the accuracy of the results. Values smaller 

than the proposed are not suggested as they would lead to inaccurate results due to 

the greater influence of the boundaries of the numerical model. 

The second aim was to evaluate the elastic response of the caisson under dynamic 

loading and investigate the influence of each component of the dynamic impedance, 

namely the stiffness which is represented by springs and the damping which is 

represented by dashpots. The fact that the case of the caisson consists of two 

degrees of freedom makes the problem complicated because except for the normal 
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horizontal and rotational modes, a coupling mode is introduced. The complex 

dynamic impedance was computed from the numerical analyses (complex method) 

and from analytical expressions, their results were compared. The reverse problem 

of computing the impedance from the numerical analyses seemed to be very 

sensitive to the time step of the analyses. Although the deviation for the 

corresponding response, namely the displacement and the rotation, remained at low 

levels the corresponding deviation for each separate coefficient of the impedance 

was increased considerably. However the trend of the results from the numerical 

analyses and the analytical expressions was the same. 

Considering the damping a second method, which was named Loop Area Method, 

was used for the computation of the dashpot coefficients of each mode. This method 

is based on the definition of the dashpots and the areas of the loops that are formed 

between the load, force or moment, and the response, displacement or rotation. The 

results of this method lead to the conclusion that the two different methods, namely 

the Complex Method and the Loop Area Method, match only for the greater 

frequencies. For the smaller frequencies the latter method found to be inappropriate 

for the calculation of the dashpots. 

Moreover the effect of the Rayleigh damping was investigated. 2% and 5% Rayleigh 

damping were introduced to the elastic analyses. The results that came up revealed 

only a very small influence on the response, the amplitude of which as was expected 

was slightly reduced. The influence seemed to be greater for the impedance 

coefficients, a fact that revealed the great sensitivity that the reverse calculation 

problem presents. One important conclusion that was made is that the Rayleigh 

damping has influence not only on the dashpots coefficients as it was expected but 

also on the spring coefficients. However this influence is very small for the selected 

ratios of Rayleigh damping. 

Following the elastic behavior of the caisson the more realistic case of the inelastic 

caisson under dynamic loading was investigated forming the third aim of this thesis. 

The evaluation was limited to two specific frequencies for three different load levels 

under pure horizontal excitation, without moment or vertical loading. The load levels 

were defined as a percentage of the ultimate horizontal load at failure (10%, 50% and 
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80%). The response was evaluated qualitatively in terms of the lateral force – lateral 

displacement terms. Comparisons were performed between the case of full contact 

conditions considering the interfaces of the soil-structure (bonded interface) and the 

more realistic case of the nonlinear interfaces where sliding and gapping were 

allowed to be occurred. Moreover comparisons were performed between the 

inelastic analyses and equivalent elastic analyses where the initial shear modulus was 

properly reduced. The conclusions that can be conducted from this part are 

summarized in the following. 

For the case of the inelastic behavior with bonded interfaces, the ultimate resistance 

in static loading that was derived from the numerical analysis confirmed the 

analytical relation that exist in the literature as the deviation was negligible. 

Considering the loops that formed from the dynamic calculations seemed to be 

different for the three load levels. As was expected the area of the loops increased as 

the load level increased. Moreover, the loops present a clockwise rotation with 

increasing loading and their center was moving towards the direction of the first half 

cycle of loading due to the plastification of the soil. The static cyclic loops seemed to 

have realistic shape with the lowest load level being very close to the elastic 

behavior. The dashpots coefficients of the dynamic analyses that derived presented a 

reductive trend as the load level increased, a fact that means that the total damping 

(material and radiation) is reducing as the soil plastifies although the material 

damping is increasing. These conclusions were made for both the two tested 

frequencies. 

Considering the comparison between the inelastic and elastic analyses, it revealed 

that in order to match the amplitude of the inelastic analyses a reduced shear 

modulus needed to be applied. The reduction of the stiffness was about at the same 

level of the reduction of load level for both frequencies. However this observation 

cannot be generalized. The dynamic loops that formed seemed to be very similar 

with the corresponding inelastic dynamic loops, especially for the case of the lowest 

load level. There was not significant change in the areas of the loops. However, the 

main difference between the inelastic and elastic analyses was that the steady state 

loops of the inelastic analyses did not have their center at the initial center of the 
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caisson but at a permanent displacement which was increasing as the load level was 

increased, as it was explained before. With the elastic analyses this transfer of the 

dynamic loop could not be achieved. 

Considering the case of the nonlinear interfaces, the ultimate load in static 

monotonic loading found to be smaller than for the case of the bonded interfaces of 

the tested caisson. The dynamic loops that formed showed a smaller clockwise 

rotation comparing to the corresponding loops of the bonded interface, a fact that 

reveals greater stiffness. The static cyclic loops did not show any difference from the 

corresponding cyclic loops with bonded interfaces. 

Furthermore, another Winkler type approach was attempted for the dynamic 

inelastic behavior of the caisson. The caisson was divided into several horizontal 

plains and the dynamic behavior of one of these plains was investigated in horizontal 

static and dynamic loading under plain strain conditions. Important observations and 

conclusions were made by the formation of stiffness-displacement (K-u) and 

dashpot-displacement (C-u) curves. Drained and undrained conditions were 

considered as well as bonded and nonlinear interfaces. 

For the case of drained conditions and bonded interfaces the numerical analyses 

revealed that in the elastic region the horizontal spring remains steady for all 

frequencies while the horizontal dashpot presents a reductive trend that tends 

asymptotically to the value of the one dimensional wave propagation theory as the 

frequency increase. This was something that was expected. For each frequency the 

stiffness reduces as the displacements increase (more soil elements into the inelastic 

region) and takes negative values for the greater frequencies. This negative stiffness 

means time lag between the oscillation of the caisson and the oscillation of the soil 

elements. For the case of the nonlinear interfaces the stiffness is not able to take 

negative values. Considering the dashpots it was observed that for both cases, 

bonded and nonlinear interfaces, as the load increases, the dashpots decrease and 

tend to zero for each frequency. Nonlinear interfaces as expected showed lower 

values for the dashpot comparing to the bonded interface due to the gap that 

occurred and consequently the non-participation of the one side. As far as concerns 

the undrained conditions the numerical analyses revealed that waves were partially 
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reflecting at the boundaries. The horizontal stiffness presented negative values 

already at the elastic region for the greater frequencies, something that it is not new 

to the literature. The dashpots showed the same trend as for the drained conditions 

however the quantitatively evaluation cannot be considered trustworthy due to the 

reflection of the waves. 

Utilizing the numerical results a Winkler type model was suggested considering the 

horizontal mode of the shaft of the caisson. The proposed connection of different 

springs (nonlinear and elastic), dashpots and masses presented to be able to 

represent the inelastic behavior for different load levels and frequencies. 

The final aim of this thesis was to compare the numerical simulation of a suction 

caisson with a real case study. The comparison revealed the significance that 

embedment can have. Ignoring the embedment of a suction caisson can lead to 

underestimation of the stiffness by a factor that can reach more than 2. Thus, the 

approach of a suction caisson as a surface foundation is not suggested. 

 

7.2 Suggestions for future work 

The problem of the dynamic excitation of embedded foundations is very extensive. 

Because of the time limitation of a diploma thesis an extensive research is not 

allowed. In order to evaluate the dynamic response of caissons from different 

aspects in the following some recommendations are presented for future work. 

Considering the elastic analyses, parametric investigation in terms of different 

aspects of the problem of caisson could be performed. The embedment ratio and the 

shape of the plan are some suggestions for the geometry of the caisson. For the soil 

profile parametric investigation could be performed for the Poisson’s ratio and the 

density of the soil. The latter has great influence on the damping of the soil and it 

would be very interesting to investigate its influence on the dashpots. Most 

importantly research should also be conducted for the case of non-uniform/layered 

soil profiles since this type constitutes he majority of the profiles in practice. 
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Considering the inelastic analyses a more extensive research is suggested. In order to 

generalize the conclusions of this thesis. A greater range of frequencies needs to be 

applied in order to find out the influence of the frequency on the case of the inelastic 

behavior of embedded foundations. This is a very difficult problem that represent the 

real seismic problems where the range of frequencies vary. Moreover the dynamic 

response should be evaluated in the more realistic case of combined loading (M, Q, 

N) except for the pure horizontal load that was studied herein. The inelastic behavior 

was studied for three different load levels, in future it would be very interesting to 

extent this study to greater levels and investigate whether the ultimate static loading 

can be exceeded under dynamic conditions. Future work should also focus more on 

the effects that the nonlinear interfaces have on the response of the caisson. 

As far as concerns the proposed Winkler model, it would be very interesting and 

useful for the design to extend the research on the calibration of its parameters. The 

meaning of each component and the physics behind the whole model can lead to a 

theory that would make the calibration of the coefficients easy and practical.  
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8 Appendices 
 

A. Gazetas elastodynamic formulations 

In this project the caisson that is being studied is rectangular and fully embedded. 

This means that Β=L and D=d. With these observations the formulae can simplified. 

First the geometrical parameters can be modified as following: 

𝐴𝑏 = 𝐵2 

ℎ =
𝑑

2
 

𝐼𝑏 =
1

12
𝐵4   

𝐴𝑤 = 4𝐵𝐷 

𝐴𝑤,𝑠 = 𝐴𝑤,𝑐𝑒 = 2𝐵𝐷 

𝐽𝑤𝑠 =
2

3
𝐵𝐷 [(

𝐵

2
)

2

+ 𝐷2] 

𝐽𝑤𝑐𝑒 =
2

3
𝐵𝐷3  

Consequently the formulae can be simplified to the following: 

 For the horizontal axis the dynamic impedance is: 

𝑲𝒉𝒉̃ = 𝑘ℎℎ + 𝑖𝜔𝑐ℎℎ 

where the dynamic stiffness is: 

𝑘ℎℎ = 𝑘ℎ,𝑠𝑡𝑎𝑡𝑖𝑐
𝑒𝑚𝑏 𝜒𝑒𝑚𝑏 

𝑘ℎ,𝑠𝑡𝑎𝑡𝑖𝑐
𝑒𝑚𝑏 ≈

9𝐺𝐵

2 − 𝑣
(1 + 0.15√

2𝐷

𝐵
) [1 + 1.58 (

𝐷

𝐵
)

2.4

] 

The coefficient 𝜒𝑒𝑚𝑏 is a dynamic stiffness coefficient presented in chart form 

(Figure 6-8) in terms of D/B and d/B as a function of the dimensionless 
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parameter α0=ωB/(2Vs). In the case of fully embedded caisson (d=D), curve 

fitting gives 𝜒𝑒𝑚𝑏 in the following form: 

𝜒𝑒𝑚𝑏 ≈ 1 + 𝛼0 (
𝐷

𝐵
) {[0.08 − 0.0074 (

𝐷

𝐵
)] 𝛼0

2 − [0.31 − 0.0416 (
𝐷

𝐵
)] 𝛼0

− 0.0442 (
𝐷

𝐵
) + 0.14} 

and the horizontal dashpot coefficient is: 

𝑐ℎℎ = 𝜌𝑉𝑠𝐵2𝑐𝑠𝑢𝑟𝑓 + 𝜌𝑉𝑠𝐵𝐷 + 𝜌𝑉𝐿𝑎𝐵𝐷 

𝑐𝑠𝑢𝑟𝑓: obtained from Graph d 

 

Figure 8-1: Graph χemb for square plan caisson (L/B=1) for various ratios of embedment (D/B) 

 For the dynamic coupled swaying-rocking complex impedance: 

𝐾ℎ𝑟̃ = 𝑘ℎ𝑟 + 𝑖𝜔𝑐ℎ𝑟 

𝐾𝑟ℎ̃ = 𝑘𝑟ℎ + 𝑖𝜔𝑐𝑟ℎ 

The approximate formulae remain the same: 

𝑘ℎ𝑟 = 𝑘𝑟ℎ ≈
1

3
𝑑𝑘ℎℎ 

and 

𝑐ℎ𝑟 = 𝑐𝑟ℎ ≈
1

3
𝑑𝑐ℎℎ 

 For the dynamic rocking impedance the complex form is: 

𝐾𝑟𝑟̃ = 𝑘𝑟𝑟 + 𝑖𝜔𝑐𝑟𝑟 
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where the dynamic stiffness is: 

𝑘𝑟𝑟 =
3.6𝐺𝐵3

1 − 𝑣
[1 + 0.92 (

2𝐷

𝐵
)

0.6

] [1.5 + (
2𝐷

𝐵
)

1.9

] (1 − 0.30𝛼0) 

and the rocking dashpot coefficient is: 

𝑐𝑟𝑟 =
1

12
𝐵4𝜌𝑉𝐿𝑎𝑐𝑠𝑢𝑟𝑓 +

1

12
𝐵𝐷3𝜌𝑉𝐿𝑎𝑐𝑒𝑚𝑏 +

1

12
𝐵𝐷(𝐵2 + 𝐷2)𝜌𝑉𝑠𝑐𝑒𝑚𝑏

+
1

3
𝐵3𝐷𝜌𝑉𝑠𝑐𝑒𝑚𝑏 

𝑐𝑠𝑢𝑟𝑓: obtained from Graph f 

𝑐𝑒𝑚𝑏 ≈ 0.25 + 0.65√𝛼0 (
2𝐷

𝐵
)

−0.25

 

 

From all these formulae the dynamic impedances for each mode are calculated for 

every frequency and are compared with the corresponding results of PLAXIS. 
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B. Coordinate transformation of impedance and mass matrix 

When the coordinate system of reference differs a coordinate transformation should 

be applied in each matrix (Forces, Impedance, and Displacement). Gazetas 

formulations refer to the base of the caisson while in the numerical analyses of 

PLAXIS the reference has been taken on the top of the caisson. The transformation 

follows the procedure that is described below. 

The relation between the displacement at the base (𝑢𝑏) and the displacement at the 

top (𝑢𝑡) is: 

𝑢𝑏 = 𝑢𝑡 − 𝜑𝐷 

Considering the forces referred to the base of the caisson and the top of the relation 

is: 

𝑄𝐵𝐴𝑆𝐸 = 𝑄𝑇𝑂𝑃 

𝑀𝐵𝐴𝑆𝐸 = 𝑀𝑇𝑂𝑃 + 𝑄𝑇𝑂𝑃𝐷 

Applying the dynamic equilibrium the following equations should be equal: 

[𝐹]𝑇𝑂𝑃 = [𝐾]𝑇𝑂𝑃[𝑋]𝑇𝑂𝑃 

[𝐹]𝐵𝐴𝑆𝐸 = [𝐾]𝐵𝐴𝑆𝐸[𝑋]𝐵𝐴𝑆𝐸 

 

Elaborating the matrices the following equations are derived: 

𝑄𝐵𝐴𝑆𝐸 =   𝑄𝑇𝑂𝑃 = 𝐾ℎℎ
𝐵𝐴𝑆𝐸𝑢𝑏  + 𝐾ℎ𝑟

𝐵𝐴𝑆𝐸𝜑 =  𝐾ℎℎ
𝐵𝐴𝑆𝐸(𝑢𝑡 − 𝜑𝐷) + 𝐾ℎ𝑟

𝐵𝐴𝑆𝐸𝜑

= 𝐾ℎℎ
𝐵𝐴𝑆𝐸𝑢𝑡  + (𝐾ℎℎ

𝐵𝐴𝑆𝐸 − 𝐷𝐾ℎ𝑟
𝐵𝐴𝑆𝐸)𝜑 

 

𝑄𝑇𝑂𝑃 =   𝐾ℎℎ
𝑇𝑂𝑃𝑢𝑡  +  𝐾ℎ𝑟

𝑇𝑂𝑃𝜑 

Thus the relation between the impedance referred at the top and at the base is the 

following: 

𝐾ℎℎ
𝑇𝑂𝑃𝑢𝑡  +  𝐾ℎ𝑟

𝑇𝑂𝑃𝜑 = 𝐾ℎℎ
𝐵𝐴𝑆𝐸𝑢𝑡  + (𝐾ℎℎ

𝐵𝐴𝑆𝐸 − 𝐷𝐾ℎ𝑟
𝐵𝐴𝑆𝐸)𝜑 
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With the same procedure considering the moment the equations that are derived 

are: 

𝑀𝐵𝐴𝑆𝐸 = 𝑀𝑇𝑂𝑃 + 𝑄𝑇𝑂𝑃𝐷 =  𝐾𝑟ℎ
𝐵𝐴𝑆𝐸𝑢𝑏  +  𝐾𝑟𝑟

𝐵𝐴𝑆𝐸𝜑 =  𝐾𝑟ℎ
𝐵𝐴𝑆𝐸(𝑢𝑡 − 𝜑𝐷) +

 𝐾𝑟𝑟
𝐵𝐴𝑆𝐸𝜑 = 𝐾𝑟ℎ

𝐵𝐴𝑆𝐸𝑢𝑡  + (𝐾𝑟𝑟
𝐵𝐴𝑆𝐸 − 𝐷𝐾𝑟ℎ

𝐵𝐴𝑆𝐸)𝜑  

 

𝑀𝑇𝑂𝑃 =   𝐾𝑟ℎ
𝑇𝑂𝑃𝑢𝑡  + 𝐾𝑟𝑟

𝑇𝑂𝑃𝜑  

𝑀𝑇𝑂𝑃 =   𝑀𝐵𝐴𝑆𝐸 − 𝑄𝑇𝑂𝑃𝐷 = 𝐾𝑟ℎ
𝐵𝐴𝑆𝐸𝑢𝑡  + (𝐾𝑟𝑟

𝐵𝐴𝑆𝐸 − 𝐷𝐾𝑟ℎ
𝐵𝐴𝑆𝐸)𝜑 − [𝐾ℎℎ

𝐵𝐴𝑆𝐸𝑢𝑡  +

(𝐾𝑟ℎ
𝐵𝐴𝑆𝐸 − 𝐷𝐾ℎℎ

𝐵𝐴𝑆𝐸)𝜑]𝐷 = (𝐾𝑟ℎ
𝐵𝐴𝑆𝐸 − 𝐷𝐾ℎℎ

𝐵𝐴𝑆𝐸)𝑢𝑡 + (𝐾𝑟𝑟
𝐵𝐴𝑆𝐸 − 2𝐷𝐾𝑟ℎ

𝐵𝐴𝑆𝐸 +

𝐷2𝐾ℎℎ
𝐵𝐴𝑆𝐸

) 𝜑 

Thus the relation between the impedance referred at the top and at the base is the 

following: 

𝐾𝑟ℎ
𝑇𝑂𝑃𝑢𝑡  +  𝐾𝑟𝑟

𝑇𝑂𝑃𝜑

= (𝐾𝑟ℎ
𝐵𝐴𝑆𝐸 − 𝐷𝐾ℎℎ

𝐵𝐴𝑆𝐸)𝑢𝑡 + (𝐾𝑟𝑟
𝐵𝐴𝑆𝐸 − 2𝐷𝐾𝑟ℎ

𝐵𝐴𝑆𝐸 + 𝐷2𝐾ℎℎ
𝐵𝐴𝑆𝐸)𝜑 

 

In a more elegant way the previous equations can be written in matrix form. In this 

way the coordinate transformation is given by the following matrix. 

𝐾𝑇𝑂𝑃̃ = [
𝐾ℎℎ̃ 𝐾ℎ𝑟̃ − 𝐷𝐾ℎℎ̃

𝐾𝑟ℎ̃ − 𝐷𝐾ℎℎ̃ 𝐾𝑟𝑟̃ − 2𝐷𝐾ℎ𝑟̃ + 𝐷2𝐾ℎℎ̃

] 

 

where D  is the depth of embedment and 𝐾𝑖𝑗̃ are the impedances referred at the 

base. 

In this way the corresponding transformation matrix that is derived is: 

𝐴 = [
1 −𝐷

0 1
] 

 

𝐾𝑇𝑂𝑃̃ = 𝐴𝑇𝐾𝐵𝐴𝑆𝐸̃𝐴 
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The same procedure is followed for the mass matrix. Thus the corresponding mass 

matrix with reference the top of the caisson is derived from the  mass matrix that is 

referred at the base: 

𝑀𝑏𝑎𝑠𝑒 = [
𝑚 𝑚

𝐷

2

𝑚
𝐷

2
(𝐽𝑐 + 𝑚

𝐷2

4
)

] 

Where m: mass, D: depth of embedment, Jc: mass moment of inertia about the 

center of gravity 𝐽𝑐 =
1

12
𝑚(𝐵2 + 𝐷2) 

𝑀𝑡𝑜𝑝 = 𝐴𝑇𝑀𝑏𝑎𝑠𝑒𝐴 

 

𝑀𝑡𝑜𝑝 = [
𝑚 −𝑚

𝐷

2

−𝑚
𝐷

2
(𝐽𝑐 + 𝑚

𝐷2

4
)

] 
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C. Loop area method 

The equations that are used in order to calculate the dashpots coefficients by the 

area of the loops that are formed in the charts between load (Q or M) and response 

(u or φ) have derived according to the following process. Ana extended description is 

made for one of the two analyses, Q(t)≠0 and M(t)=0. 

𝐷𝐸𝑄−𝑢 = ∫ (𝑐ℎℎ𝑢̇
𝑇

0

+ 𝑐ℎ𝑟𝜑̇)𝑑𝑢 

Where 

𝐷𝐸𝑄−𝑢: the area of the loop calculated by the graph Q-u 

𝑢(𝑡) = 𝑢 sin(𝜔𝑡 − 𝑑𝑢): the lateral displacement of the reference point 

𝜑(𝑡) = 𝜑 sin(𝜔𝑡 − 𝑑𝜑): the rotation angle of the reference point 

𝑢̇ =
𝑑𝑢

𝑑𝑡
: the lateral velocity of the reference point 

𝜑̇ =
𝑑𝜑

𝑑𝑡
: the angular velocity of the reference point 

𝑢, 𝜑 are the maximum values of the response of the caisson and 𝑑𝑢, 𝑑𝜑 are the 

phase angle due to the time lag between the load and the displacement or the load 

and the rotation angle respectively. 

 

𝐷𝐸𝑄−𝑢 = ∫ (𝑐ℎℎ𝑢̇
𝑇

0

+ 𝑐ℎ𝑟𝜑̇)𝑑𝑢 = ∫ (𝑐ℎℎ𝑢̇
𝑇

0

+ 𝑐ℎ𝑟𝜑̇)𝑢̇𝑑𝑡 = ∫ (𝑐ℎℎ𝑢̇2
𝑇

0

+ 𝑐ℎ𝑟𝜑̇𝑢̇)𝑑𝑡

= ∫ [𝑐ℎℎ(𝜔𝑢)2𝑐𝑜𝑠2(𝜔𝑡 + 𝑑𝑢)
𝑇

0

+ 𝑐ℎ𝑟𝜔2𝑢𝜑 cos(𝜔𝑡 + 𝑑𝑢) cos(𝜔𝑡 + 𝑑𝜑)]𝑑𝑡

= 𝑐ℎℎ(𝜔𝑢)2 ∫ 𝑐𝑜𝑠2(𝜔𝑡 + 𝑑𝑢)𝑑𝑡
𝑇

0

+ 𝑐ℎ𝑟𝜔2𝑢𝜑 ∫ cos(𝜔𝑡 + 𝑑𝑢) cos(𝜔𝑡 + 𝑑𝜑)𝑑𝑡
𝑇

0

= 𝑐ℎℎ(𝜔𝑢)2
𝑇

2
+ 𝑐ℎ𝑟𝜔2𝑢𝜑

𝑇

2
cos (𝑑𝑢 − 𝑑𝜑) 
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Taking into account that 𝜔 =
2𝜋

𝛵
 the equation that is derived is: 

𝐷𝐸𝑄−𝑢 = 𝜋𝜔[𝑢2𝑐ℎℎ + 𝑢𝜑 cos(𝑑𝑢 − 𝑑𝜑) 𝑐ℎ𝑟] 

Following the same procedure for the graph  Q-φ the equation that is derived is: 

𝐷𝐸𝑄−𝜑 = ∫ (𝑐ℎℎ𝑢̇
𝑇

0

+ 𝑐ℎ𝑟𝜑̇)𝑑𝜑 

𝐷𝐸𝑄−𝜑 = 𝜋𝜔[𝑢𝜑 cos(𝑑𝑢 − 𝑑𝜑) 𝑐ℎℎ + 𝜑2𝑐ℎ𝑟] 

 

The areas of the graphs M-u and M-φ are  zero. So the corresponding equations are: 

𝐷𝐸𝑀−𝑢 = ∫ (𝑐𝑟𝑟𝜑̇
𝑇

0

+ 𝑐𝑟ℎ𝑢̇)𝑑𝑢 

0 = 𝜋𝜔[𝑢2𝑐ℎℎ + 𝑢𝜑 cos(𝑑𝑢 − 𝑑𝜑) 𝑐ℎ𝑟] 

and 

𝐷𝐸𝑀−𝜑 = ∫ (𝑐𝑟𝑟𝜑̇
𝑇

0

+ 𝑐𝑟ℎ𝑢̇)𝑑𝜑 

0 = 𝜋𝜔[𝑢𝜑 cos(𝑑𝑢 − 𝑑𝜑) 𝑐ℎℎ + 𝜑2𝑐ℎ𝑟] 

 

The aforementioned four equations have been derived from the one analysis where 

Q(t)≠0 and M(t)=0. From the second analysis where M(t)≠0 and Q(t)=0 four more 

equations are derived. Of course here the corresponding maximum response u,φ are 

different than the previous analysis. 

0 = 𝜋𝜔[𝑢2𝑐ℎℎ + 𝑢𝜑 cos(𝑑𝑢 − 𝑑𝜑) 𝑐ℎ𝑟] 

0 = 𝜋𝜔[𝑢𝜑 cos(𝑑𝑢 − 𝑑𝜑) 𝑐ℎℎ + 𝜑2𝑐ℎ𝑟] 

𝐷𝐸𝑀−𝑢 = 𝜋𝜔[𝑢2𝑐ℎℎ + 𝑢𝜑 cos(𝑑𝑢 − 𝑑𝜑) 𝑐ℎ𝑟] 

𝐷𝐸𝑀−𝜑 = 𝜋𝜔[𝑢𝜑 cos(𝑑𝑢 − 𝑑𝜑) 𝑐ℎℎ + 𝜑2𝑐ℎ𝑟] 
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D. Mathematical description of the proposed Winkler model 

 

Figure 8-2: Schematically illustration of the proposed Winkler model. 

 

The model works by taking as input data the load F=Fmaxsin(ωt) and giving as output 

data the displacement u0(t) or the opposite way around. In the following description 

it is used as input data the load F(t) and as output the displacements u0(t). 

The model needs as input parameters the following coefficients: K1, K2=Fy/uy, C1, 

C2, M2 and Dt (a very low value is suggested). Considering the nonlinear spring K2 

the BWGG law needs as input parameters the following: Fy (=6-12SuB) and n (a very 

low value is suggested for the fit of the numerical results). The mathematical 

description is the following: 

 

 

 

  

matrixu0( )

u10 0

u11 0

u00 0

u01 0

z0 0

u1i 2
Dt

C1
Fi K1 u1i 1  u1i 1

u0i 2
Dt

2

M2
Fi Fy zi 

Dt C2

M2
u0i 1 u0i  u1i 1 u1i   2 u0i 1 u0i u1i 2 2 u1i 1 u1i

zi 1 zi
u0i 1 u1i 1  u0i u1i  

uy
1 zi n

1

2

1

2
sign u0i 1 u1i 1  u0i u1i   zi 




















i 0 10000for
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