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i

PerÐlhyh

H paroÔsa metaptuqiak  ergasÐa ekpon jhke sta plaÐsia tou diatmhmatikoÔ
progr�mmatoc metaptuqiak¸n spoud¸n <<Efarmosmènec Majhmatikèc Epist mec>>
tou EjnikoÔ Metsìbiou PoluteqneÐou.

To prìblhma twn algebrik¸n monopati¸n antiproswpeÔei mÐa genikeumènh
kl�sh problhm�twn. Sthn kl�sh aut  up�gontai arkèta probl mata apì di-
aforetikoÔc tomeÐc thc jewrhtik c plhroforik c, gia par�deigma probl mata
pou sqetÐzontai me thn jewrÐa grafhm�twn, me dÐktua epikoinwnÐac, probl mata
sqetik� me pÐnakec kai tèloc probl mata pou afìroun se kanonikèc gl¸ssec.
Epomènwc, h eÔresh enìc apodotikoÔ algorÐjmou gia thn lÔsh tou genikoÔ
probl matoc, ja apoteloÔse �mesa mÐa apodotik  lÔsh kai gia ìlec tic kath-
gorÐec problhm�twn pou up�gontai se autì. K�ti tètoio, bèbaia, den kajist�
an¸felh thn melèth twn eidik¸n kathgori¸n, k�jwc, ìpwc ja doÔme sthn
sunèqeia, exaitÐac twn epiplèon idiot twn pou èqoun k�poia upoprobl mata
mporoÔme na èqoume apodotikìterouc algìrijmouc gia ta probl mata aut�.
Sthn ergasÐa aut  arqik� parousi�zontai seiriakoÐ algìrijmoi gia to prìblhma
twn algebrik¸n monopati¸n kai gia sugkekrimèna upoprobl mat� tou. Sthn
sunèqeia parousi�zontai par�llhloi algìrijmoi gia ta probl mata aut�.

H jewrhtik  melèth par�llhlwn upologism¸n xekÐnhse thn dekaetÐa tou
'70. H ter�stia upologistik  isqÔc pou mporoÔme na apokt soume mèsw twn
par�llhlwn susthm�twn apoteleÐ to ousiastikì kÐnhtro gia thn diereÔnhsh
tou pedÐou autoÔ. Kat� thn di�rkeia ìlwn aut¸n twn qrìnwn di�fora montèla
par�llhlwn upologist¸n èqoun prot�jei, kanèna ìmwc den kat�fere na gÐnei
eurèwc apìdekto wc kurÐarqo, ìpwc èqei sumbeÐ me to montèlo tou von Neu-
mann stouc seiriakoÔc upologistèc. To montèlo b�sei tou opoÐou melet�me
kai sugkrÐnoume touc par�llhlouc algorijmoÔc eÐnai èna arket� diadedomèno
montèlo, to BSP. To montèlo autì eÐnai arkèta realistikì kai tautìqrona
epark¸c aplì, me apotèlesma h kataskeu  kai h an�lush algorÐjmwn ba-
sizìmenwn sto montèlo autì na eÐnai apl  kai eunìhth.



ii

EuqaristÐec

Oloklhr¸nontac aut n thn metaptuqiak  ergasÐa ja  jela na euqarist sw
arqik� ton epiblèponta kajhght  thc ergasÐac k. 'Arh Pagourtz , gia thn
empistosÔnh pou èdeixe kat� thn an�jes  thc kaj¸c kai gia thn kajod ghsh
pou mou pareÐqe kaj�ìlh thn di�rkeia ekpìnhs c thc.

Ja  jela, epÐshc, na euqarist sw ton k. Eust�jio Z�qo kai ton k.
Dhm trh Fwt�kh pou mou èdwsan thn eukairÐa na sunergast¸ mazÐ touc kai
na entaqt¸ sto ergast rio Logik c kai Upologism¸n.

Euqarist¸ ìla ta paidi� tou ergasthrÐou kai kurÐwc thn MatoÔla Petrìlia
kai ton Dhm trh Sakab�la gia thn suneq  bo jeia pou mou pareÐqan upomon-
etik�.

Tèloc, ja  jela na euqarist sw idiaitèrwc thn oikogènei� mou gia thn
diark  kai empr�kth st rix  touc.
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Abstract
The current thesis has been elaborated in fulfillment of the thesis require-

ment for the inter-departmental postgraduate program ”Applied Mathemat-
ical Sciences” of the National Technical University of Athens.

Algebraic path problem represents a generalized class of problems. This
class consists of several problems, which fall under different fields of computer
science, e.g. problems related to graph theory, communication networks, ma-
trix problems, as well as regular language problems. Hence, designing an
efficient algorithm for solving the general problem, would provide instanta-
neously an efficient solution to all the subcategories of the problem. However,
this observation does not make useless the studying of several subcases, since,
as we will present, due to some extra properties that some subproblems have,
more efficient algorithms exist. In the current thesis, initially, are being pre-
sented sequential algorithms for the algebraic path problem, and for several
subproblems as well. Next, we present parallel algorithms for solving the
same problems.

The theoretical study of parallel computation begun in the decade of ’70.
The main motivation for studying such algorithms is the fact that through
parallel computers we could obtain tremendous computing power. During the
years a great variety of parallel models has been proposed in the literature,
however, none achieved to be universally accepted as dominant, in the same
way as von Neumann model is for sequential computing. The model on which
parallel algorithms are compared and analyzed through this thesis is the BSP
model. The proposed model is realistic enough and adequately simple as well,
as a result design and analysis of algorithms, based on this model, becomes
easier and more comprehensible.
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Chapter 1

Introduction

Problems related to finding paths in networks as well as matrix computations
are plentiful in computer science; they have been studied since the beginning
of the Computer Age, and are at the heart of the vast majority of applications
in the real world. Algorithms for many such problems were developed even
earlier. The first known algorithms for matrix multiplication and matrix
inverse were designed in the time of Gauss. Routing problems have been the
subject of research since the mid 40’s, initiated by the needs of telephone
companies and travel agencies.

In this chapter, initially, algebraic path problem is presented and the
two different approaches for solving the problem as well. Next, a variety of
problems, which are special cases of the algebraic path problem, is analyzed.
Finally, two most well known models of parallel computations are described
(one of which will be used for analyzing parallel algorithms during this thesis),
in order to investigate and evaluate the major differencies between parallel
models. We conclude with a brief description of other significant models of
parallelism.

1.1 Algebraic path problem

The algebraic path problem describes a general setting for solving various
matrix and graph problems, as well as problems on regular languages. By
developing a single algorithm for the specific generalized problem, a majority
of problems can be solved. The problem is concerned with a special algebraic
structure, called a closed semiring, with three generalized operations on the

1



2 CHAPTER 1. INTRODUCTION

elements of the set, and a unary operation called closure. These operations
are defined on single elements, as well as on square matrices over a closed
semiring. The algebraic path problem is the problem of finding the closure of
a square matrix over an arbitrary closed semiring [Fin92].

1.1.1 Definition of a semiring

A semiring is a structure (S,⊕,⊗, 0̄, 1̄), where S is a set, ⊕ (a generalized
addition) and ⊗ (a generalized multiplication) are binary operations on S,
0̄ and 1̄ are elements of S, and for all elements a, b and c of S the following
properties hold:

A1) (S,⊕, 0̄) is a commutative monoid

a) a⊕ (b⊕ c) = (a⊕ b)⊕ c
b) a⊕ b = b⊕ a
c) a⊕ 0̄ = a

A2) (S,⊗, 1̄) is a monoid

(d) a⊗ (b⊗ c) = (a⊗ b)⊗ c
(e) a⊗ 1̄ = 1̄⊗ a = a

A3) Generalized multiplication is distributive over generalized addition

(f) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a)

multiplication has precedence over addition. The operations ⊕ and ⊗ are
called generalized addition and multiplication respectively, because they may
be different from the usual addition and multiplication in applications of the
algebraic path problem to a particular graph problem. In subsection 1.1.4
are being presented several examples of semirings that correspond to certain
graph problems.

1.1.2 Matrix approach

In the matrix approach to the algebraic path problem, suggested by Lehmann
[Leh77], we define a new unary operation ∗, called closure, on the elements
of a semiring such that

(∀a ∈ S) a∗ = 1̄⊕ a⊗ a∗ = 1̄⊕ a∗ ⊗ a (closure property)
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Closure has precedence over the other operations. A semiring with a closure
operation is called a closed semiring.

In the case we have a partial closed semiring, that is a closed semiring, as
described above, where closure is a partial function satisfying the properties
(a) . . . (f) whenever the closure is defined, it can be extended to a closed
semiring. If S is a partial closed semiring, then S ∪ {u} can be transformed
to a closed semiring by adding the following definitions:

u⊕ a = a⊕ u = u
u⊗ a = a⊗ u = u
u∗ = u
a∗ = u, if a∗ was not previously defined

for all elements a ∈ S. S ∪ {u} is called the completion of S.

Operations similar to generalized addition, multiplication and closure can
be defined on n×n matrices over a closed semiring, that make this set nearly
a closed semiring.

Let A = (aij) and B = (bij) be n× n matrices over a closed semiring S.
We define

A⊕B = (aij ⊕ bij)
A⊗B = (cij), where cij =

n⊕
k=1

aik ⊗ bkj

The identity matrix I over a closed semiring, shown in Figure 1.1, is a
matrix whose all diagonal elements equal 1̄, and all other elements equal 0̄.
It is straightforward to verify that generalized addition of matrices is com-
mutative and associative, and generalized multiplication is associative and
distributes over addition.

The closure operation on matrices is defined inductively on the size of the
matrix by decomposing the matrix into four submatrices. The definition is
correct because the computation of the closure of a matrix does not depend
on the size of the submatrices.

Definition of the closure of a n× n matrix A:
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

1̄ 0̄ . . . 0̄ 0̄ 0̄
0̄ 1̄ . . . 0̄ 0̄ 0̄
...

...
. . .

...
...

...
0̄ 0̄ . . . 1̄ 0̄ 0̄
0̄ 0̄ . . . 0̄ 1̄ 0̄
0̄ 0̄ . . . 0̄ 0̄ 1̄


Figure 1.1: Identity matrix

If n = 1 (a)∗ = (a∗)

If n > 1 and A =

(
B C
D E

)
where, for some 0 < k < n :

B : k × k, C : k × (n− k), D : (n− k)× k, E : (n− k)× (n− k),

then,

A∗ =

(
B∗ ⊕B∗ ⊗ C ⊗X∗ ⊗D ⊗B∗ B∗ ⊗ C ⊗X∗

X∗ ⊗D ⊗B∗ X∗

)

for X = E ⊕D ⊗B∗ ⊗ C .
The proof that the closure matrix is well-defined boils down to computing

the closure of a matrix with nine submatrices in two different ways: A B C
D E F
G H I

 and

 A B C
D E F
G H I


and verifying nine identities. The verification is trivial using the properties of
matrix operations, in particular, commutativity and associativity of matrix
addition, associativity of matrix multiplication, and distributivity of matrix
addition over matrix multiplication.

Lehmann has shown that the closure operation on matrices satisfies the
closure property. That is, if A is an n× n matrix then:

A∗ = In ⊕ A⊗ A∗ = In ⊕ A∗ ⊗ A

where In is the identity matrix.
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A class of closed semirings is simple semirings, in which the closure op-
eration is simple to perform, a∗ = 1̄. A closed semiring S is called simple if
and only if

a⊕ 1̄ = 1̄ ∀a ∈ S
Simple semirings are exactly the Q-semirings of Yoeli [Yoe61]. The reg-

ular algebras of Carre and Backhouse [BC75] are close to simple semirings.
They do not assume a⊕ 1̄ = 1̄, but assume a⊕ a = a. From this property a
number of identities follow:

1̄⊕ 1̄ = 1̄, a∗ = 1̄, a⊕ a = a, 1̄⊕ 1̄ = 1̄,
a∗ = 1̄, a⊕ (a⊗ b) = a⊕ (b⊗ a) = a
(a⊗ b)⊕ (a⊗ b⊗ c) = a⊗ b, 0̄⊗ a = a⊗ 0̄ = 0̄

From these properties arises the fundamental property of simple semirings
from which derives that a simple semiring is a special case of the graph
approach to the algebraic path problem. Fundamental property of simple
semirings:
If A = (aij) is a n× n matrix over a simple semiring, In = (dij) the identity
matrix, and B = A∗ = (bij), then

bij = dij
⊕

k1,...,kr∈[1,...,n]
kl 6=km 6=i,j, ∀l,m∈[1,...,n]

aik1 ⊗ ak1k2 ⊗ . . .⊗ akr−1kr ⊗ akrj

If we consider a n × n matrix as a weighted directed graph on n vertices,
the fundamental property says that the (i, j) − th element of the closure of
a matrix is the generalized sum of the weights of all elementary paths from
i to j. A path is called elementary if no vertices appear more than once in
it. The property can be proved by using the inductive definition of A∗.

Lehmann has proved that if A is a n× n matrix over a simple semiring,
then

A∗ = In ⊕ A⊕ A2 ⊕ . . .⊕ An−1

The proof is based on the fact that an elementary path has length less or
equal to n− 1 and the weights of all elementary paths of length r are terms
in some element of Ar.

In simple semirings, the definition of the closure of a matrix becomes:



6 CHAPTER 1. INTRODUCTION

If A =

(
B C
D E

)
then

then,

A∗ =

(
X∗ X∗ ⊗ C ⊗ E∗

E∗ ⊗D ⊗X∗ E∗ ⊕ E∗ ⊗D ⊗X∗ ⊗ C ⊗ E∗
)

for X = B ⊕ C ⊗ E∗ ⊗D.

Futrhermore, there is a special case of simple semirings introduced by
Dijkstra [Dij59]. A Dijkstra semiring is a simple semiring with the extra
property

a⊕ b =

{
a

b

A Dijkstra semiring is totally ordered, where the order between two elements
is defined by the rule: a � b iff a⊕ b = a. The generalized addition then,
can be viewed as a maximum operation in the ordered set.

1.1.3 Graph approach

The graph approach to the algebraic path problem, most clearly summarized
by Rote [Rot85], is slightly less general than matrix approach, due to the
fact that we assume two additional properties of a semiring, idempotence of
addition and absorption rule:

i) a⊕ a = a
ii) a⊗ 0̄ = 0̄⊗ a = 0̄

for all a ∈ S.
We consider a weighted graph G = (V,E), which consists of a finite vertex set
V , an edge set E ⊆ V × V , together with a weight function w : V × V → S,
where S is a semiring with additional properties i) and ii). Pairs of vertices
that are connected by an edge, are assigned with non-zero weights other-
wise, are assigned with 0̄. In the following we shall always assume that
V = {1, 2, . . . , n}. A weighted path from i to j in a weighted graph is an
arbitrary sequence of vertices of the form p = (i, k1, k2, . . . , km, j), where ki
are vertices of the graph. The weight of a weighted path is defined as the gen-
eralized product of the weights of all edges of the path in order (generalized
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multiplication is associative):

w(i, k1, k2, . . . , km, j) = w(i, k1)⊗ w(k1, k2)⊗ . . .⊗ w(km, j)

We assume that the edges in the path are in order, due to the fact that
generalized multiplication is not necessarily commutative.

A distinction should be made between empty paths, paths containing
non-existing edges and loops. In the first case, an empty path, which begins
and ends in the same vertex, containing no edges has weight equal to 1̄. In
the second case, non-existing edges’ weights equals to 0̄, hence, the weight of
paths containing such edges equals to 0̄. In the latter case, loops also begins
and ends in the same vertex, as in empty paths, but contain arbitrarily many
edges, thus, loops may have non-zero weights.

In the algebraic path problem, what we want to compute is, in terms of
the semiring, the ⊕-sum of the weights of all paths from i to j. Hence, we
have the definition:

Given a weighted graph G = (V,E,w), w : E → S, with weights from a
semiring (S,⊕,⊗, 0̄, 1̄) find dij for all pairs of vertices i, j, where

dij =
⊕
p∈Pi,j

w(p)

Pi,j denotes the set of paths from i to j.

A solution to this problem need not exist, because the set of weights of
the paths from i to j, over which the sum is taken, may be infinite. However,
there may be semirings where such countable infinite sums may be defined
in a consistent way, at least for some cases. To overcome this difficulty, we
ask that the following axioms hold in addition to the existing:

Infinite distributivity
If A and B are countable, that is either finite or countably infinite, and the
sums ⊕a∈Aa and ⊕b∈Bb are both defined, then the sum ⊕a∈A,b∈Ba⊗ b is also
defined, and ⊕

a∈A,b∈B

a⊗ b = (
⊕
a∈A

a)⊗ (
⊕
b∈B

b)

Infinite associativity
Let A be a countable subset of S, and {Ak|k ∈ K} be a disjoint partition of
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A. If for all Ak, ak = ⊕a∈Ak
a is defined, and if ⊕k∈Kak is defined, then ⊕a∈A

is also defined, and ⊕
a∈A

a =
⊕
k∈K

ak

Such semirings are called partially complete, or, if the sum is defined for every
countable subset of S, complete semirings. These two axioms are sufficient
for our purposes.

The algebraic path problem can also be formulated in a different way:
With the weighted graph (V,E,w) we can associate a n×n adjacency matrix
A = (aij), in which for all (i, j) ∈ {1, 2, . . . , n} the element aij contains the
weight of the edge (i, j):

aij =

{
w(i, j), if(i, j) ∈ E
0̄, if(i, j) /∈ E

Figure 1.2 gives an example of a weighted graph and its adjacency matrix.
Generalized addition and multiplication of matrices over a semiring is

defined as in matrix approach. We consider, now, the successive powers of
square matrix A:

A2 = (a
(2)
ij ), where

(a
(2)
ij ) =

⊕
1≤r≤n

air ⊗ arj

A3 = (a
(3)
ij ), where

(a
(3)
ij ) =

⊕
1≤r1,r2≤n

air1 ⊗ ar1r2 ⊗ ar2j
...

Ak = (a
(k)
ij ), where

a
(k)
ij =

⊕
r1,...,rk−1∈[1,...,n]

air1 ⊗ ar1r2 ⊗ . . .⊗ ark−1j

From these relations we see that an element a
(r)
ij of Ar contains the gen-

eralized sum of the weights of all r-edge paths from i to j. Therefore, if
the matrix D = (dij) is the n × n matrix of the elements that are defined
in algebraic path problem, we get, by the infinite associativity axiom, the
matrix formulation of the algebraic path problem:

D = A∗ =
⊕
r≥o

Ar = In ⊕ A⊕ A2 ⊕ A3 ⊕ . . .



1.1. ALGEBRAIC PATH PROBLEM 9

1
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3

2

4

3

2

5

(a) A weighted graph

1 2 3
1 2 3 6
2 4 ∞ 3
3 2 5 ∞

(b) Adjacency matrix

Figure 1.2: A graph and its corresponding adjacency matrix

1.1.4 Examples of closed semirings

We will consider now several examples of closed semirings in order to exhibit
the great variety of problems that algebraic path problem generalizes.

Transitive closure
The problem of computing the transitive closure of a graph is, given a graph
G = (V,E), compute a new graph G′ = (V,E ′) with the same set of vertices
as the given graph, and with a set of edges that satisfy the following property:
(i, j) ∈ E ′ if and only if there is a path from i to j in the initial graph.

The semiring for this problem has two elements, zero and unity, as well
as disjunction and conjuction for generalized addition and multiplication re-
spectively, S = ({0, 1},∨,∧, ∗, 0, 1). Zero is the neutral element for disjunc-
tion, and unity the neutral element for conjuction. This semiring is called
Boolean semiring. The closure operation, in this case, is easy to perform,
since 0∗ = 1∗ = 1. Table 1.1 displays the properties of the two operations.

To compute the reflexive-transitive closure of a graph, we define the fol-
lowing weight function

w(i, j) =

{
1, if(i, j) ∈ E
0, if(i, j) /∈ E

We denote W the corresponding matrix. The closure of W is equivalent
to the adjacency matrix of the transitive closure of the initial graph, since



10 CHAPTER 1. INTRODUCTION

∨ 0 1
0 0 1
1 1 1

∧ 0 1
0 0 0
1 0 1

Table 1.1: Boolean operations

d(i, j) = 1 if and only if there is a path from i to j (where (dij) is defined in
graph approach).

All pairs shortest path
In the problem of all pairs shortest path we are given a directed graph G =
(V,E), on every edge of which has been assigned some length (equivalent
to weight), expressed as a non-negative real number. The length of a path
equals to the sum of the lengths of its edges. The problem is to find for each
pair of vertices (i, j) of the graph the length of their shortest path.

The semiring in this case is the set of non-negative real numbers including
+∞, with minimum operation min for generalized addition and usual addi-
tion for generalized multiplication, S = (R+,min,+,+∞, 0). The neutral
element of min is +∞ and 0 is the neutral element of addition.

To solve this problem, we consider the graph approach to the algebraic
path problem, hence, we define the following weight function

w(i, j) =

{
l(i, j), if(i, j) ∈ E
+∞, if(i, j) /∈ E

where l(i, j) denotes the length of (i, j). The closure of matrix W , W is
the corresponding matrix to the weight function, will be equivalent to the
adjacency matrix we are looking for, since d(i, j) equals the length of the
shortest path from i to j.

Maximum capacity problem
This problem is similar to the all pairs shortest path problem. We are given
a graph with some positive real valued cost assigned to every edge. The cost
of a path is defined as the minimum of the costs of its edges. The problem
is to find the path wich has maximal cost for every pair of vertices.

The semiring for this problem, as before, is the set of non-negative real
numbers including +∞, but in this case maximum operation corresponds to
⊕ and minimum operation corresponds to⊗, thus, S = (R+,max,min,+∞, 0).
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The weight function is the same with the previous one, with the only
difference that l(i, j) denotes the cost of (i, j). Due to the properties of op-
erations in the semiring, once again, W ∗ corresponds to the correct solution
to the problem.

Matrix inversion
The problem of matrix inversion is, given a real matrix A compute its multi-
plicative inverse A−1, by satisfying: A · A−1 = A−1 · A = I, where I denotes
the identity matrix.
The semiring that fits to this problem, is the set of real numbers with ordinary
addition and multiplication for generalized addition and multiplication re-
spectively, along with zero and unity as neutral elements, S = (R,+, ·, ∗, 0, 1).
The closure of a real number is given by:

x∗ =
1

1− x

In this case, particularly, we have a partial closed semiring, where unity is
the element of the semiring whose closure is not defined.
For matrices we can derive the formula for computing the inverse of the
matrix from the relation A∗ = I ⊕ A⊗ A∗, that is:

A∗ = I + A · A∗ ≡ A∗ − A · A∗ = I
≡ A∗ · (I − A) = I
≡ A∗ = (I − A)−1

Now, instead of A, in the last formula, we substitude (I − A), hence we
get:

A−1 = (I − A)∗

For matrix inversion we used matrix appoach to the algebraic path problem.

1.2 Parallel computing paradigms

Over the years, various models of parallel and distributed computation have
been proposed and studied in the literature. In this section we investigate two
well known and representative parallel models of the two major categories of
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parallel computations; memory-shared models and distributed memory mod-
els. Initially we examine the PRAM model, which for many years, had been
the main model for studying parallel complexity theory. Next, we present
the BSP model, a quite simple model, yet realistic enough to develop and
analyze parallel algorithms. We conclude with a brief presentation of two
other significant parallel models.

1.2.1 Fine-grained parallelism: The PRAM model

Shared memory parallel computers vary widely, but they all have in common
the ability for each processor to be connected to one, shared, memory. The
most representative shared memory model is the Parallel Access Random
Machine (PRAM), originally introduced by Fortune and Wyllie, [FW78]. As
its name indicates, the PRAM model is a straightforward parallel generaliza-
tion of the Random Access Machine (RAM), [Pap95]. The PRAM model is
an abstract model, which neglects various practical issues, such as communi-
cation and synchronization. This results to easier complexity and correctness
analysis of algorithms, however, this level of abstraction might also lead to
false estimations of practical situations. Another drawback of this model, as
we will describe below, is the unrealistic assumption that the model consists
of unbounded many processors (fine-grainess).

A PRAM consists of an unbounded global access memory, an unbounded
collection of numbered processors {P0, P1, . . .}, a set of input registers, and a
finite program. Each processor knows its id, executes its own program, has
an unbounded local memory, a program counter, its own accumulator, and
a flag that indicates whether the processor is active or not.

Since PRAM is a parallel version of RAM model, a PRAM program is a
finite sequence Π = (π1, . . . , πm) of instructions of the kinds READ, ADD,
LOAD, JUMP, JZERO, STORE, SUB, HALT, with arguments standing for
the contents of registers. The input of a PRAM program consisting of n
bits, is placed at n designated shared memory cells. Initially, only processor
P0 is activated, it computes the number of required processors and places
the number of processors in the designated shared-memory cell, then the
corresponding processors start executing their programs. At each step, each
processor executes the instruction defined by the program counter in one unit
of time synchronously, it can access either a cell of the global memory, or a cell
of its local memory. The only way for processors to communicate is by writing
into and reading from shared memory cells. The problem that arises from



1.2. PARALLEL COMPUTING PARADIGMS 13

concurrent writing on the same shared memory cell will be discussed below.
Computation proceeds until P0 halts, at which time all active processors
are halted. The output of the program consistng of n′ bits is placed at n′

designated shared memory cells.
The complexity analysis of a PRAM program is defined as follows: Let

M be a PRAM. M computes in parallel time t(n) with p(n) processors if for
every input x ∈ {0, 1}n, machine M halts within at most t(n) time steps
having activated at most p(n) processors. M computes in sequential time
t(n) if it computes in parallel time t(n) using a single processor.

At this point we can observe that the number of processors needed to
solve a problem varies in function of the size of the input. This consists an
unrealistic assumption, since at most cases the number of available processors
is significant less than the size of the problem. For this reason we are more
interested in models in which the number of processors is fixed. Therefore, in
that case the goal would be to partition the data and opeations into blocks
in order to distribute them equivalently to the available processors. Such a
model is BSP, presented below.

Variations of the PRAM model

As stated previously, the operation of a synchronous PRAM can result in
concurrent access of the same cell of shared memory by more than one pro-
cessors. To be more precise, PRAM instructions are being executed in cycles
consisting of three phases. In the first phase, each processor which has an
instruction to read, reads from the shared memory. In the second phase, each
processor performs a local computation, if it has been assigned any, and in
the final phase if it has been assigned an instruction to write, writes to the
shared memory. There have been developed several variants of the model to
solve the possible conflicts, their description follows.

Exclusive Read Exclusive Write (EREW) PRAM
This variant does not allow any kind of simultaneous access neither read, nor
write, to a common shared memory cell.

Concurrent Read Exclusive Write (CREW) PRAM
This variant allows concurrent reads but only one processor is allowed to
write to a shared memory cell at every step.

Exclusive Read Concurrent Write (ERCW) PRAM
This variant does not allow simultaneous reading from a common memory
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location, but permits to any processors to write to a single cell.

Concurrent Read Concurrent Write (CRCW) PRAM
This variant allows for concurrent reading as well as concurrent writing to a
common shared memory cell.

Concurrent write has to be further constrained, in order to determine how
the value written in a memory cell is selected among the many simultaneous
writing attempts. We get the following submodels:

PRIORITY CRCW PRAM:
In this submodel the processors are assigned fixed distinct priorities and the
processor with the highest priority writes in the cell.

ARBITRARY CRCW PRAM:
In this submodel one arbitrarily chosen processor is allowed to write in the
common memory cell.

COMMON CRCW PRAM:
In this submodel concurrent write is allowed if and only if all the processors
attempting to write to the same location have the same value to store.

1.2.2 Coarse-grained parallelism: The BSP model

The Bulk-Synchronous Parallel (BSP) model proposed by Valiant [Val90] is a
unifying bridging model for parallel computation, in the same way as the von
Neumann model is for sequential computation. The major purpose of BSP
model is to provide a useful model that is simple, efficiently implementable,
and acceptable to all parties involved: hardware designers, software develop-
ers, and end users. It is intended neither as a hardware nor as a programming
model, but something in between, it is intended as a standard on which peo-
ple can agree.

BSP computations

A BSP computer consists of a number of components, each with private
memory, performing processing and/or memory functions, and a router that
delivers messages point to point between pairs of components. Each com-
ponent can read from or write to every memory cell in the entire machine.
If the cell is local, the read or write operation is relatively fast. If the cell
belongs to another component, a message should be sent through the router,
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and this operation is slower. This implies that the router can be viewed as
a black box, where the connectivity of the network is hidden in the interior.
The router abstracts the underlying interconnection network of the compo-
nents by introducing certain parameters in the model, described below. As
users of a BSP computer, we need not to be concerned with the details of
the interconnection network. We only care about the remote access time
delivered by the router, which should be uniform. In the BSP computer is
incorporated a barrier-style synchronization mechanism where all or a subset
of the components are synchronized at regular intervals of L time units where
L is the periodicity parameter.

A BSP computation consists of a sequence of supersteps. In each super-
step, each component is allocated a task consisting of performing a sequence
of operations on local data, message transmissions and message arrivals from
other components, followed by global barrier synchronization. Consequently,
a superstep consists of an input phase, a local computation phase and an
output phase. In the input phase, a component receives data that were sent
to it in the previous superstep; in the output phase, it can send data to other
components, to be received in the next superstep. At the end of a superstep
all components synchronize as follows. After each period of L time units,
a global check is made to determine whether the superstep has been com-
pleted by all the components (or a subset), that is, each component checks
whether all the local computations are finished and whether it has sent all
messages that had to be sent and it has received all the messages that it
had to receive. If it has, the machine proceeds to the next superstep. Oth-
erwise, the next period of L units is allocated to the unfinished superstep.
This form of synchronization is called bulk synchronization, because usually
many computation or communication operations take place between succes-
sive syncronizations. There exist alternative synchronization mechanisms,
for example, the system could continuously check whether the current step is
completed, or synchronization methods, for example, pairwise synchroniza-
tion; the results of the run-time analysis, however, will not change by more
than small constant factors in the first case, and in the second case it would
be in contrast to global barrier style synchronization.

BSP cost

The cost function of a BSP computation can be measured by summing the
cost of its supersteps. We assume that in one time unit an operation can
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be computed by a processing component on data available in memory local
to it. The communication cost of a superstep is defined as follows. An
h-relation is a superstep where each component sends and is sent at most
h messages. Let h′ denote the maximum number of messages received by
each processor, h′′ denote the maximum number of messages sent by each
processor and h = max{h′, h′′} (another possible definition is h = h′ + h′′),
then the communication cost of a computation which consists of S supersteps
is

H =
S∑
s=1

hs.

The local computation cost within a superstep is defined by w, where w is the
maximum number of local operations performed by each processor. Hence,
the local computation cost of a computation which consists of S supersteps
is

W =
S∑
s=1

ws.

As a result, the total cost of a BSP algorihtm is given by

W +H · g + S · l,

where g and l are machine-dependent parameters, defined below.
A BSP computer can be characterized by three basic parameters: p,

g, and l. Here, p denotes the number of the components. Parameter g
defines the basic throughput of the router when in continuous use (also called
”bandwidth inefficiency” or ”gap”). More precisely, g can be seen as the ratio
between the number of local computational operations performed per second
by all the components and the the total number of data units delivered
per second by the router. Finally, l is the communication latency, which
includes the startup cost of the h-relation realization, as well as the cost of
synchronization (synchronization periodicity). In theory, parameters g and l
can be bounded, but in reality the characteristic parameters of a computer
are measured by computer benchmarking. The values of g and l depend on
the underlying interconnection network and are nondecreasing functions of p.
As a result, the larger the number of the components p, the more powerful
the communication network must be to keep g and l low. The parameter
g can be kept low, within limits, by using more pipelining or by having
wider communication channels. Keeping g low or fixed, on the other hand,
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p number of components
g communication throughput ratio
l communication latency

Table 1.2: BSP Parameters

as the number of components p increases incurs extra costs. Hence, as the
machine scales up, it may be preferable to spend more money on a better
communication network than on faster components. Table 1.2 summarizes
the BSP parameters.

We can predict the execution time of an implementation of a BSP al-
gorithm on a parallel computer by theoretically analysing the cost of the
algorithm and, independently, benchmarking the computer for its BSP per-
formance [Bis04].

A representative BSP algorithm

The problem of matrix multiplication is one of the most studied problems in
parallel computations. McColl and Valiant proposed a BSP coarse-grained
algorithm for solving the problem, [McC95, McC96]; an algorithm which we
will be using in chapter 3 for parallel matrix multiplications.

The problem consists in computing the matrix product of two n×n dense
matrices A ·B = C on p processors. The matrix product is computed by

C(i, j) =
n∑
k=1

A(i, k) ·B(k, j), 1 ≤ i, j ≤ n

To do so, initially we assume that A,B are distributed uniformly but arbi-
trarily across the p processors. Next, we partition matrices A,B and C into
p2/3 blocks of size s× s each, where s = n/p1/3, i.e.

A =

 A[1, 1] · · · A[1, p1/3]
...

. . .
...

A[p1/3, 1] · · · A[p1/3, p1/3]


similarly for B and C. Then we have C[i, j] =

∑
1≤k≤p1/3

A[i, k] · B[k, j]. In

this way we partition the initial problem into p distinct block multiplication
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subproblems, which will be computed by all p available processors. To be
more precise, we proceed with the description of the BSP algorithm.

In the first superstep of the computation each processor receives blocks
A[i, k], B[k, j] for which is responsible. Thus, the total cost of this superstep
is equal to its communication cost which is equal to n2/p2/3. In the second
superstep each processor computes the product of the blocks received during
the first superstep, and sends each one of the n2/p2/3 resulting values to the
unique processor which is responsible for computing the corresponding value
in C. The computation cost of this superstep is n3/p and the communication
cost is n2/p2/3. During the final superstep each processor computes each of
its n2/p elements of C by adding the p1/3 values received for that element.
The cost of this superstep is equal to its computation cost which is n2/p1/3.

Hence, the total BSP cost of the algorithm is

W = O(n3/p) H = O(n2/p2/3) S = O(1)

1.2.3 Other models

Systolic arrays

Systolic arrays were proposed by Kung and Leiserson as a formalization of
parallel programming for VLSI, [KL78]. A systolic array is a grid-like planar
mesh of processors, called cells. The main difference between this model and
most other parallel models is that each processor may communicate only with
neighbouring processors. This restriction makes the systolic architecture less
flexible, however it does allow a more efficient hardware implementation.
Each processor performs a sequence of operations on data that flows between
them. In other words, we could say that every processor regularly ”pumps”
data in and out, hence the name systolic. Furthermore, each cell in the
systolic array may keep some values in its own memory, but the size of
its memory is O(1). Systolic arrays is a scalable model meaning that the
architecture can be easily extended to many more processors, since systolic
arrays are built of cellular building blocks. Another advantage of the model
is that it is capable of high communication throughput. Main disadvantages
of the model are that it has an expensive implementation cost due to high
bandwidth requirements, as well as the difficulty in building such arrays.
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LogP

Based on the BSP model Culler et al. presented LogP, a distributed memory
model for parallel computations, [CKP+93]. The main difference to the BSP
model consists in being asynchronous, i.e. it features no barrier-style syn-
chronization. The processors in this model communicate by point-to-point
messages; pairwise messages are the exclusive means of synchronization of
the processors. In this model, once again, processors are connected through
an abstract interconnection network in which point-to-point communication
is allowed. LogP uses parameters for modeling the performance of the com-
munication medium. The parameters defining the LogP model are:

L: the latency, the delay of a sent message to reach its destination

o: the overhead, the time engaged for sending or receiving a message

g: the gap, minimum time among two message transmissions (per processor)

P : the number of processing units

We assume that each local operation costs one unit of time, called a processor
cycle. The parameters L, o and g are measured as multiples of the processor
cycle.
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Chapter 2

Sequential algorithms

In this section we present sequential algorithms for solving the algebraic path
problem and specific instances of its’. The first one is Gauss-Jordan elimina-
tion algorithm, the second one is Warshall’s algorithm, and the third one is
Dijkstra’s algorithm. Warshall’s algorithm solves the transitive closure prob-
lem, an instance of algebraic path problem, but we show that with a small
modification to the algorithm we can derive a solution to the general prob-
lem. Dijkstra’s algorithm computes the single source shortest path problem,
another instance of our general problem.

2.1 Gauss-Jordan elimination algorithm

Rote presented an algorithm for the algebraic path problem [Rot90] which,
eventually, corresponds to the Gauss-Jordan elimination algortihm of ordi-
nary linear algebra, hence it carries this name.

Before describing the procedure, let us rewrite the equation that corre-
sponds to the graph approach for the algebraic path problem.

xij =
⊕
p∈Pi,j

w(p)

From this equation we can derive a new one, if we partition the set of all
paths from i to j according to the first vertex of each path. This way we get:

21
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xij =
n⊕
k=1

(aik ⊗ xkj), for i 6= j

xjj =
n⊕
k=1

(ajk ⊗ xkj)⊕ 1̄

where xij represents the sum of the weights of all paths from i to j. The
quantities aij are the given weights of edges and xij are the unknowns. In
matrix form we have X = I ⊕ A⊗X, where I is the identity matrix and A
the adjacency matrix of the given graph.

We are looking now for a solution to the matrix equation. In order to find
a solution for n× n matrices we first investigate the case of 1 × 1 matrices.
Thus, we derive the iteration equation:

x = 1̄⊕ a⊗ x

If we repeatedly sustitute the expression for x into the right side of the equa-
tion, we have

x = 1̄⊕ a⊗ x
= 1̄⊕ a⊗ (1̄⊕ a⊗ x)
...
= 1̄⊕ a⊕ a2 ⊕ a3 ⊕ a4 ⊕ . . .

If this sequence remains stable after a finite number of iterations, then
the sum, which is equivalent to a∗, is a solution of the iteration equation.
Correspondingly, the solution of the matrix form of this equation, is given
by A∗. We can obtain a solution of a more general problem by multiplying
iteration equation from the right side with any element b ∈ S, where if
x = a∗ is the solution of the initial equation then y = a∗ ⊗ b is a solution of
y = b⊕ a⊗ y.

2.1.1 Elimination procedure

In order to describe the procedure, without loss of generality, firstly, we
present the method by investigating a specific example.

Suppose our problem consists of a (4 × 4) matrix. If we examine the
system of equations of the definition of the problem, we can observe that the
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column index j of the unknown xij quantities is the same for all variables
that occur in one equation. Hence, our initial system of equations consists of
four decoupled systems of equations, one for each column of X, for example:

x13 = a11 ⊗ x13 ⊕ a12 ⊗ x23 ⊕ a13 ⊗ x33 ⊕ a14 ⊗ x43
x23 = a21 ⊗ x13 ⊕ a22 ⊗ x23 ⊕ a23 ⊗ x33 ⊕ a24 ⊗ x43
x33 = a31 ⊗ x13 ⊕ a32 ⊗ x23 ⊕ a33 ⊗ x33 ⊕ a34 ⊗ x43 ⊕ 1̄
x43 = a41 ⊗ x13 ⊕ a42 ⊗ x23 ⊕ a43 ⊗ x33 ⊕ a44 ⊗ x43

This system is very much like an ordinary linear system of equations,
with the difference that the unknowns appear on both sides; they appear
explicitly on the left side and implicitly on the right side. We use the so-
lution to the more general iteration equation we described earlier in order
to solve the first equation, since it can be written: x13 = a ⊗ x13 ⊕ b, with
a = a11 and b = a12⊗x23⊕a13⊗x33⊕a14⊗x43. If we assume that a∗ exists,
then we get that x13 = a∗ ⊗ b is a solution of the above equation. This way
we get an explicit expression for x13:

x13 = a∗11 ⊗ (a12 ⊗ x23 ⊕ a13 ⊗ x33 ⊕ a14 ⊗ x43)
= a∗11 ⊗ a12 ⊗ x23 ⊕ a∗11 ⊗ a13 ⊗ x33 ⊕ a∗11 ⊗ a14 ⊗ x43

Substituting this into the rest of equations and collecting terms, we get
a new system:

x13 = a
(1)
12 ⊗ x23 ⊕ a

(1)
13 ⊗ x33 ⊕ a

(1)
14 ⊗ x43

x23 = a
(1)
22 ⊗ x23 ⊕ a

(1)
23 ⊗ x33 ⊕ a

(1)
24 ⊗ x43

x33 = a
(1)
32 ⊗ x23 ⊕ a

(1)
33 ⊗ x33 ⊕ a

(1)
34 ⊗ x43 ⊕ 1̄

x43 = a
(1)
42 ⊗ x23 ⊕ a

(1)
43 ⊗ x33 ⊕ a

(1)
44 ⊗ x43

where the new coefficients a
(1)
ij are defined as follows:

a
(1)
1j = a∗11 ⊗ a1j, for j > 1

a
(1)
ij = aij ⊕ ai1 ⊗ a∗11 ⊗ a1j, for i 6= 1, j > 1
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The four equations in the current system fall in two different categories;
in the first one, the first equation has an explicit expression for x13, and in
the second one, the remaining three equations form an implicit system for
the other three variables x23, x33 and x43. Our new system has the same
structure as the initial system, but one variable less. This way, we repeat
the elimination procedure in essentialy the same way as before. Firstly, we
eliminate x23 from the second equation, assuming that (a

(1)
22 )∗ exists, and sub-

stitute this variable into the other three equations. The new system, looks
like the last one, with the differnce that variable x23 does not appear on the
right side and the number in the superscripts of the coefficients is 2 instead
of 1 (second step). During the elimination of the variable x33, though, there
is a difference because of the 1̄ term on the right side of the third equation.
This time, we have:

x33 = (a
(2)
33 )∗ ⊗ (a

(1)
24 ⊗ x43 ⊕ 1̄)

= (a
(2)
33 )∗ ⊗ a(1)24 ⊗ x43 ⊕ (a

(2)
33 )∗

By substituting this into the other equations of the system, we get the
following set:

x13 = a
(3)
13 ⊕ a

(3)
14 ⊗ x43

x23 = a
(3)
23 ⊕ a

(3)
24 ⊗ x43

x33 = a
(3)
33 ⊕ a

(3)
34 ⊗ x43

x43 = a
(3)
43 ⊕ a

(3)
44 ⊗ x43

where the new coefficients of the system are defined, this time, as follows:

a
(3)
33 = (a

(2)
33 )∗

a
(3)
i3 = a

(2)
i3 ⊗ (a

(2)
33 )∗, for i 6= 3

a
(3)
3j = (a

(2)
33 )∗ ⊗ a(2)3j , for j > 3

a
(3)
ij = a

(2)
ij ⊕ a

(2)
i3 ⊗ (a

(2)
33 )∗ ⊗ a(2)3j , for i 6= 3, j > 3
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Without loss of generality, we regard the constant terms as the third col-
umn of the coefficient matrix. The final elimination is of variable x43 from
the last equation. Once again, by substitution, we arrive to the solution:

x13 = a
(4)
13

x23 = a
(4)
23

x33 = a
(4)
33

x43 = a
(4)
43

with coefficients determined by:

a
(4)
44 = (a

(3)
44 )∗

a
(4)
i4 = a

(3)
i4 ⊗ (a

(3)
44 )∗, for i 6= 4

The final step consists of substitutions of variables and applications of
the semiring properties.

To sum up the procedure we have followed to derive the solution, for the
specific case we have investigated, we formulate the equations we have ob-
tained, in a general way. Hence, we get:

xil =
n⊕

j=k+1

a
(k)
ij ⊗ xjl, for 0 ≤ k < l, i 6= l

xll =
n⊕

j=k+1

a
(k)
lj ⊗ xjl ⊕ 1̄, for 0 ≤ k < l

xil =
n⊕

j=k+1

a
(k)
ij ⊗ xjl ⊕ a

(k)
il , for l ≤ k ≤ n

where k denotes the step number. We assume that the elements a
(0)
ij

equals to the elements of the original coefficient matrix aij. In the example
we illustrated above, we had l = 3. Finally, the equations for the coefficients
are, for k ≥ 1:
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a
(k)
kk = (a

(k−1)
kk )∗

a
(k)
ik = a

(k−1)
ik ⊗ (a

(k−1)
kk )∗, for i 6= k

a
(k)
kj = (a

(k−1)
kk )∗ ⊗ a(k−1)kj , for j 6= k

a
(k)
ij = a

(k−1)
ij ⊕ a(k−1)ik ⊗ (a

(k−1)
kk )∗ ⊗ a(k−1)kj , for i 6= k, j 6= k

We may observe now that the above recursions are the same for all
columns l, as far as they overlap for different columns. Thus, for our prob-
lem, where we want to compute the whole matrix X, we get just the above
recursions, and the final result is given by

xij = a
(n)
ij

The algorithm that we derive from the recursive procedure, described above,
corresponds to the Gauss-Jordan elimination algorithm of linear algebra. The
algorithm follows.
Gauss-Jordan elimination algorithm

1. for k := 1 to n do
2. akk = (akk)

∗;
3. for i = 1 to n with i 6= k do
4. aik := aik ⊗ akk;
5. for i = 1 to n with i 6= k do
6. for j = 1 to n with j 6= k do
7. aij := aij ⊕ aik ⊗ akj;
8. for j = 1 to n with j 6= k do
9. akj := akk ⊗ akj;

The described algorithm has O(n3) time complexity.

2.1.2 An alternative interpretation

We shall give now an alternative interpretation to the equations studied in
subsection 2.1.1. In contrast to the previous approach, where coefficients
were derived by purely algebraic means, we will interpet the coefficients as
generalized sums of path weights. Due to the fact that we are dealing with
infinite sums, and since the purpose of this subsection is to provide a different
insight to the aforementioned expressions, for simplicity, we assume that all
infinite sums exist.
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Let us define a family of sets of paths as follows: We assume that vertices
are numbered 1, 2, . . . , n. In addition, for 1 ≤ i, j ≤ n and 0 ≤ k ≤ n, P

(k)
ij

denotes the set of all paths from i to j whose intermediate vertices belong
to the subset of vertices {1, 2, . . . , k}. Furthermore, we have to take into
consideration empty paths, in the case of an empty path (i) we count i as an

intermediate node, hence, path (i) is contained in P
(i)
ii and not in P

(i−1)
ii .

Let us begin with the formulas for the coefficients. We can now give
the following interpretation of the coefficients a

(k)
ij , taking into account the

previously stated notations. We have,

a
(k)
ij =

⊕
p∈P (k)

ij

w(p)

The correctness of the above expression can be verified by induction, using
the set of recursive equations for the coefficients; starting from k = 0 we get
the initial values of edges of the graph, since, P

(0)
ij contains only the initial

edge (i, j) (if it belongs to the graph), hence, a
(0)
ij = aij.

In the first expression we have a
(k)
kk = (a

(k−1)
kk ). A path in P

(k)
kk starts from

vertex k and ends at vertex k; meanwhile, it can pass arbitrarily many times
through k. We can get a more precise expression for this kind of paths, by
cutting the path into pieces at these intermediate vertices k, thus, we get
r ≥ 0 subpaths which are contained in the set P

(k−1)
kk . For this reason, the

formula (a
(k−1)
kk )∗ = 1̄⊕ a(k−1)kk ⊕ (a

(k−1)
kk )2 ⊕ . . .⊕ (a

(k−1)
kk )r ⊕ . . . accounts for

every path in P
(k)
kk in a unique way.

In the second formula we have a
(k)
ik = a

(k−1)
ik ⊗ (a

(k−1)
kk )∗, for i 6= k. A path

in P
(k)
ik can be divided in a unique way, by considering the first occurence of

vertex k in the path. This way, we get that the first subpath is in P
(k−1)
ik , and

the remaining subpath is accounted for by (a
(k−1)
kk )∗. In the third formula the

same argument holds, with the difference that we split the path according to
the last occurence of k, instead of the first.

In the fourth and last equation, we have a
(k)
ij = a

(k−1)
ij ⊕a(k−1)ik ⊗(a

(k−1)
kk )∗⊗

a
(k−1)
kj , for i 6= k, j 6= k. Following the same procedure, and with the same

arguments holding, we split a path in P
(k)
ij according to the first and last

occurence of vertex k. In this case, though, we have to take into consideration
the paths that do not go through k at all, hence, we add the term a

(k−1)
ij .

Using the same arguments as inductive steps from k to k + 1, we finally
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get that a
(n)
ij = xij, because P

(n)
ij denotes the set of all paths from i to j.

Consider, now, the set of equations of the terms xil, which contain the
coefficients a

(k)
ij as well. In this interpretation there is no actual difference

between the variables and the coefficients, since we consider them both as
sums of path weights.

In the first expression we have xil =
n⊕

j=k+1

a
(k)
ij ⊗ xjl, for 0 ≤ k < l, i 6= l.

The left side represents all paths from i to l, for some i 6= l. Since l is
greater than k, such a path must contain at least one intermediate vertex
whose index is greater than k. Let j be the first intermediate vertex of
the path whose index is greater than k’s, and decompose the path into two
subpaths according to this vertex. The first subpath from i to j contains no
intermediate vertex greater than k, this is taken into account by the term
a
(k)
ij . The second subpath can be any arbitrary path from j to l, and is

represented be the term xjl; this way, the product a
(k)
ij ⊗xjl is the sum of the

weights of all paths whose first intermediate node which is greater than k is
j. Concluding, we have that the right hand side of the equation represents
every path from i to l in a unique way, because vertex j can be any vertex
between k + 1 and n.

In the second equation, xll =
n⊕

j=k+1

a
(k)
lj ⊗ xjl ⊕ 1̄, for 0 ≤ k < l, the only

difference from the first one is that 1̄ is added, due to the fact that we have
to take into account the empty paths that are contained in P

(n)
ll .

Finally, the third equation where xil =
n⊕

j=k+1

a
(k)
ij ⊗xjl⊕a

(k)
il , for l ≤ k ≤ n,

differs from the first one due to the addition of the last term. Term a
(k)
il is

added because of the fact that a path from i to l does not need to contain
an intermediate vertex j whose index is greater than k (that is k is the last
intermediate vertex).

2.1.3 Block decomposition method

As in the case of real matrices, we can decompose a matrix into blocks and
carry out the computations blockwise. As we described matrix decomposition
in the matrix approach to the algebraic path problem, if we decompose matrix

A into four blocks, we get: A =

(
A11 A12

A21 A22

)
where,
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A11 : k × k, A12 : k × (n− k), A21 : (n− k)× k, A22 : (n− k)× (n− k), for
some 0 < k < n. Hence, equation X = A⊗X ⊕ I changes to:(

X11 X12

X21 X22

)
=

(
A11 A12

A21 A22

)
⊗
(
X11 X12

X21 X22

)
⊕
(
I11 0
0 I22

)
Next, we follow the elimination procedure, as described, for this block equa-
tion without any change. The only difference lies within computations, where
during the elimination of XIJ we use the iteration equation X = A⊗X ⊕B
and the problem of computing A∗ is of the same type as the original prob-
lem. However, the new problem has a smaller size, and this gives us the
opportunity to develop recursive divide and conquer algorithms.

We apply the elimination algorithm to the above decomposition, this way
we get the following:

A
(1)
11 := (A11)

∗ X22 = A
(2)
22 := (A

(1)
22 )∗

A
(1)
21 := A21 ⊗ A

(1)
11 X12 = A

(2)
12 := A

(1)
12 ⊗X22

A
(1)
22 := A22 ⊕ A(1)

21 ⊗ A12 X11 = A
(2)
11 := A

(1)
11 ⊕X12 ⊗ A

(1)
21

A
(1)
12 := A

(1)
11 ⊗ A12 X21 = A

(2)
21 := X22 ⊗ A

(1)
21

Hence, the solution is given by the following matrix:

X = A∗ =

(
A∗11 ⊕ A∗11 ⊗ A12 ⊗ F ∗ ⊗ A21 ⊗ A∗11 A∗11 ⊗ A12 ⊗ F ∗

F ∗ ⊗ A21 ⊗ A∗11 F ∗

)
for F = A22 ⊕ A21 ⊗ A∗11 ⊗ A12.

In section 3.1 we shall describe a recursive algorithm, for the above de-
composition, using the divide and conquer technique.

2.2 Warshall’s algorithm

As we presented in section 1.1.4 the problem of computing the transitive clo-
sure of a graph is an instance of the algebraic path problem. One of the most
famous algorithms for solving the transitive closure problem is Warshall’s al-
gorithm [AHU74]. The method that Warshall has described [War62] can be
used to solve the algebraic path problem as well (a property that not all al-
gorithms for instances of algebraic path problem have). Furthermore, Floyd,
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following the same procedure [Flo62], presented his well-known algorithm for
the all pairs shortest path problem, as described in section 1.1.4.

2.2.1 Transitive closure version

In the case of the transitive closure problem we sum only simple paths, as
opposed to the algebraic path problem where we sum all paths. Simple paths
are paths in which no vertex appears twice, except possibly the first and the
last one. The original algorithm is based on the following observation. Con-
sider all the possible paths from vertex i to vertex j, for each pair of vertices
i, j ∈ V , whose intermediate vertices belong to the subset {1, 2, . . . , k}, for
1 ≤ k ≤ n. Let p denote one of all the possible paths. Path p, now, may
have one of the following two properties:

• Vertex k is an intermediate vertex of path p. In this case, we can
decompose p into two subpaths p1, p2 according to k, that is, i

p1 k
p2 

j, where subpaths p1, p2 consist of vertices that belong to the subset
{1, 2, . . . , k − 1}. This property holds since we have assumed that p is
a simple path, hence, vertex k appears only once in this path.

• Vertex k is not an intermediate vertex of path p. In this case, all
intermediate vertices belong to the subset {1, 2, . . . , k − 1}. Thus, a
path from vertex i to vertex j whose intermediate vertices belong to
the subset {1, 2, . . . , k−1}, may denote, as well, a path from vertex i to
vertex j whose intermediate vertices belong to the subset {1, 2, . . . , k}.

Based on the above properties of simple paths, Warshall presented the fol-
lowing algorithm:
Warshall’s algorithm

1. for k = 1 to n do
2. for i = 1 to n do
3. for j = 1 to n do
4. A(i, j) = A(i, j)⊕ A(i, k)⊗ A(k, j);

(recall that ⊕ denotes min and ⊗ denotes +). The time complexity of this
algorithm is O(n3).
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2.2.2 Generic version

Lehmann [Leh77] based on Warshall’s algorithm for transitive closure prob-
lem [War62], Floyd’s algorithm for all pairs shortest path problem [Flo62],
and Kleene’s proof that every regular language can be represented by a reg-
ular expession [Kle56], presented a generalized algorithm to compute the
closure of a matrix, which he named after them. The description of the pro-
cedure follows:
WFK algorithm

1. for k = 1 to n do
2. for i = 1 to n do
3. for j = 1 to n do
4. A(i, j) = A(i, j)⊕ A(i, k)⊗ A(k, k)∗ ⊗ A(k, j);

The proof of correctness of the algorithm is based, as in the previous cases,
by induction on k. The time complexity of WFK - algorithm is, as before,
O(n3).

2.3 Dijkstra’s algorithm

The problem of single source shortest path is another instance of the algebraic
path problem. In this case, we want to compute all the shortest paths, which
have a specific starting vertex (source), of a given directed graph whose edges
are assigned with nonnegative weights. The most well known algorithm for
this problem was introduced by Dijkstra [Dij59]. In this case, unfortunately,
we cannot derive a generalized algorithm for the algebraic path problem; we
can get, however, an algorithm for the problem of all pairs shortest path,
which is timewise equally efficient to the previously described.

Let s denote the starting vertex of the problem. In Dijkstra’s algorithm
[ZF12, CLRS01] a set T is used, in order to keep the indices of the already
processed vertices. In the beggining of the procedure set T is empty, the
cost of each node is set to ∞ except of the cost of s that is set to 0. The
algorithm at each step of the procedure picks a vertex u ∈ V \ T that has at
the current step the lower cost. Next, the selected vertex is added to set T
and the costs of the remaining vertices in V \ T , which are adjacent to the
previously added vertex, are being recalculated. The procedure stops when
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the set V \ T has emptied. The description of the algorithm follows:
Dijkstra’s algorithm

1. l(s) := 0;
2. for all v ∈ V \ {s} do l(v) :=∞;
3. T := ∅; Q := V ;
4. while Q 6= ∅ do
5. v := min(Q, l);
6. T := T ∪ {v};
7. for all u adjacent to v do
8. if l(u) > l(v) + w(v, u) then
9. l(u) := l(v) + w(v, u);

The time complexity of the algorithm is O(|V 2|+ |E|) = O(|V 2|) = O(n2).

As mentioned before, we can compute the all pairs shortest path problem
using Dijkstra’s method. In order to achieve this, we add the following extra
statement at the beggining of the algorithm:
1′. for all s ∈ V do
This way, we compute for each vertex s of the given graph the shortest paths
which have s as a starting vertex. The time complexity of the modified
algorithm is O(n3), since we execute n times Dijkstra’s algorithm.



Chapter 3

Parallel algorithms

In this chapter we present coarse-grained parallel versions of algorithms, pre-
sented in chapter 2. In addition, we describe two parallel algorithms for the
instance of algebraic path problem, all pairs shortest path. All the algorithms
will be described and analyzed on the BSP model (section 1.2.2).

3.1 Blocks Gauss-Jordan

A BSP approach to the block version of Gaussian elimination, described in
section 2.1.3, was proposed by Tiskin [Tis02]. The proposed recursive algo-
rithm uses the divide and conquer technique, since the only parallelism that
can be exploited, in the procedure, is within block operations.

In this algorithm, as described previously, we divide matrix A into square

blocks, A =

(
A11 A12

A21 A22

)
, with the difference, that we specify the block size

to be (n/2× n/2). As a result, the expression of our problem changes to

(
X11 X12

X21 X22

)
=

(
A11 A12

A21 A22

)
⊗
(
X11 X12

X21 X22

)
⊕
(
I11 0
0 I22

)

Next, we apply block Gauss-Jordan elimination, thus, we get the system of
equations:

33
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A
(1)
11 := (A11)

∗ X22 = A
(2)
22 := (A

(1)
22 )∗

A
(1)
21 := A21 ⊗ A

(1)
11 X12 = A

(2)
12 := A

(1)
12 ⊗X22

A
(1)
22 := A22 ⊕ A(1)

21 ⊗ A12 X11 = A
(2)
11 := A

(1)
11 ⊕X12 ⊗ A

(1)
21

A
(1)
12 := A

(1)
11 ⊗ A12 X21 = A

(2)
21 := X22 ⊗ A

(1)
21

The procedure can be applied recursively to compute A∗11 and (A
(1)
22 )∗.

Initially, we assume that the matrices are distributed across the processors
evenly, but otherwise arbitrarily. In the first step, all p processors are avail-
able to compute the block Gauss-Jordan elimination. There is no substantial
parallelism between block decomposition and block operations in the derived
system of equations. For this reason, we compute the recursion tree in depth
first order. On each level of recursion block multiplications of the above set
are performed in parallel by all processors available at current level. Each
block decomposition is also performed in parallel by all processors available at
the current level, assuming that block size is large enough. If blocks become
sufficiently small, block Gauss-Jordan elimination is performed sequentially
by a random processor. We can have a variation over the depth at which the
algorithm switches from parallel to sequential computation. This variation
allows us to trade off the costs of communication and synchronization in a
certain range. Therefore, a real parameter α is introduced, which controls
the depth of parallel recursion. The algorithm follows:

Tiskin’s algebraic path computation algorithm

Parameters: integer n ≥ p; real number α, αmin = 1/2 ≤ α ≤ 2/3 = αmax

Description The computation is defined by recursion on the size of the ma-
trix. Denote the size of the matrix at the current level of recursion by m,
keeping n for the original size. Let n0 = n/pα. The value n0 is the threshold
at which the algorithm switches from parallel to sequential computation.
On each step of recursion the matrix is divided into regular square blocks of
size m/2. Then, computations of our set of equations are performed by the
following schedule.

Small blocks: If 1 ≤ m ≤ n0, from all the processors that are currently
available choose arbitrarily a single processor and compute block Gauss-
Jordan elimination on this processor.
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Large blocks: If n0 < m ≤ n, compute A
(1)
11 by recursion. Then compute

A
(1)
21 , A

(1)
22 and A

(1)
12 by McColl-Valiant algorithm. Next, compute A

(2)
22 by

recursion. Finally, compute A
(2)
12 , A

(2)
11 , and A

(2)
21 by McColl-Valiant algorithm

[McC95, McC96]. Each of these computations is performed with all available
processors.

In the cost analysis of this algorithm, the values for the costs of compu-
tation, communication, and synchronization can be found from the following
reccurence relations:

W (m) =

{
2 ·W (m/2) +O(m3/p), if n0 < m ≤ n

O(n3
0), if m = n0

H(m) =

{
2 ·H(m/2) +O(m2/p2/3), if n0 < m ≤ n

O(n3
0), if m = n0

S(m) =

{
2 · S(m/2) +O(1), if n0 < m ≤ n

O(1), if m = n0

which gives the following BSP cost:

W = O(n3/p) H = O(n2/pα) S = O(pα)

For α = αmin = 1/2 the BSP cost of Tiskin’s algorithm is W = O(n3/p),
H = O(n2/p1/2), S = O(p1/2). On the other hand, for α = αmax = 2/3
the total cost of the algorithm is W = O(n3/p), H = O(n2/p2/3), S =
O(p2/3). In the first case the synchronization cost is lower in comparison
to the second case. In the latter case, for α = αmax the communication
cost is lower in comparison to the first case. Therefore, this improvement in
communication efficiency is offset by a reduction in synchronization efficiency.
For large n, though, the communication efficiency of the described algorithm
dominates the synchronization cost, and consequently the improvement of the
communication cost should outweigh the loss of synchronization efficiency.
Smaller values of α should be considered when the problem is moderately
sized.

3.2 Transitive closure

In this section we present two BSP algorithms for the transitive closure prob-
lem. The first algorithm is a straightforward parallel coarse-grained imple-
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1 2 3 4 5 6

Figure 3.1: A graph with 6 vertices

mentation of Floyd’s algorithm, which solves as well the algebraic path prob-
lem. The second one approaches the transitive closure problem with the use
of dependency graphs. This approach allows us to exploit a large degree of
independence.

3.2.1 Blocks Warshall

A straightforward parallel implementation of Warshall’s algorithm was pre-
sented by Chan et al. [CGPR98] for the transitive closure problem, which
also extends to the algebraic path problem.

Initially, a simplistic parallel implementation of the Warshall algorithm
was attempted, which unfortunately was proved to be incorrect. In this
”naive” approach we partition matrix A into p (p, the number of processors)
blocks X̃I,J of size (s × s), where s = n/

√
p, and perform on blocks X̃I,J

similar operations as for A(i, j). The algorithm would be:
Naive blocks Warshall algorithm

1. for K = 1 to n/s do
2. for all 1 ≤ I, J ≤ n/s in parallel do
3. X̃I,J = X̃I,J ⊕ X̃I,K ⊗ X̃K,J ;

We can prove that this algorithm is incorrect with a simple example. Con-
sider the adjacency matrix A of the graph shown in Figure 3.1. We denote
by A′ the matrix that is computed if we use the naive algorithm for block
size s = 3 and by A∗ the expected result.

A =


1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

A′ =


1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

A∗ =


1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1


We get the corrected version if we add an extra statement. We need to

compute the closure of each diagonal block and ascertain that each processor
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holds this information. The algorithm follows:
Blocks Warshall algorithm

1. for K = 1 to n/s do
2. for all 1 ≤ I, J ≤ n/s in parallel do
3. compute X̃∗K,K ;

4. X̃I,J = X̃I,J ⊕ X̃I,K ⊗ X̃∗K,K ⊗ X̃K,J ;

We give an intuitive proof of correcteness of the Blocks Warshall algorithm.
In the case of the sequential algorithm, alternatively fine-grained version,
each path is computed according to the greatest intermediate vertex that it
may contain, using the fact that no intermediate vertex may appear twice;
since we compute only simple paths. In contrast, in the coarse-grained ver-
sion in the fourth line of the algorithm is not computed a single path, but a
set of paths, namely those that are contained in block X̃I,J . This set of paths
is not computed according to a single intermediate vertex, but according to
a set of vertices, the vertices that belong to the set X̃K . As a result, we have
to compute all these additional subpaths. We achieve that by computing the
closure of block X̃K,K .

We may observe that this algorithm also computes the algebraic path
problem, even though the initial fine-grained algorithm did not.

In the cost analysis of this algorithm, we have n/s = p1/2 synchronization
steps, hence O(p1/2). Next, the communication cost of each step is equal to
the size of the blocks that are sent to the processors, that is 4 · (s × s) =
4 · (n/√p× n/√p) = 4 · n2/p. Hence, the communication cost over all steps
is O(n2/p · p1/2) = O(n2/p1/2). Finally, the computation cost of each step is
defined by the multiplications between the blocks, which are computed by
the McColl-Valiant algorithm, and the computation of the closure of block
X̃K,K , which we assume is computed by Warshall’s algorithm. The resulting
computation cost of each step is 3 · n3/p3/2, thus the total computation cost
of the algorithm is O(n3/p3/2 · p1/2) = O(n3/p). To sum up, the BSP cost of
the Blocks Warshall algorithm is:

W = O(n3/p) H = O(n2/p1/2) S = O(p1/2)
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3.2.2 Leighton’s algorithm

Another coarse-grained parallel algorithm was proposed by Pagourtzis et al.
[PPR01] for the transitive closure problem. Initially a fine-grained parallel
algorithm was created, which adapted the main idea of a systolic algorithm
presented by Leighton [Lei92], by investigating the dependency graph of the
computation; a dependency graph represents which operations must be exe-
cuted before other operations. Next, the coarse-grained algorithm is derived
from the fine-grained one.

Let us describe, at first, the main idea of Leighton’s algorithm. This sys-
tolic algorithm is based on the concept of restricted paths. Restricted path is
a path from vertex i to some other vertex such that all intermediate vertices
have indices smaller than i. We define the following predicates.
i→ j : there is a single edge from i to j

i j : there is a restricted path from i to j

i
∗→ j : there is a path from i to j

We may observe that the transitive closure of a graph can be obtained by
computing the predicate i

∗→ j, for each i, j. For the above defined predicates
hold the following two properties:

Property 1
i  j ⇔ (∃1 ≤ i1 < . . . < ik < i) i → i1  . . .  ik  j or i → j
Property 2
i
∗−→ j ⇔ (∃i < i1 < . . . < ik ≤ n) i i1  . . . ik  j or i j

Before we continue to the description of the fine-grained algorithm let
us define the dependency graph. A dependency graph is a graph G = (V , E)
where the set of vertices V is a set of operations and each edge (u, v) ∈ E
means that operation u should be executed before operation v. Next, we
define two basic operations:

Procedure AtomicOperation(i, k, j)
A(i, j) := A(i, j)⊕ A(i, k)⊗ A(k, j);

Procedure MainOperation(i, k)
for all j in parallel do AtomicOperation(i, k, j);

We define byM(n) the set of all main operations, that is all MainOperation(i, k),
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i

k

Figure 3.2: The dependency graph G(5). The black vertex at (i, k) is the
operation MainOperation(i, k).

where 1 ≤ i, k ≤ n, i 6= k. The dependency graph G(n), whose vertices are el-
ements ofM(n), i.e. each vertex (i, k) corresponds to MainOperation(i, k) is
shown in Figure 3.2. We can make the following observations by investigating
the derived dependency graph. The vertices below the diagonal correspond
to the set of operations related to Property 1, and the nodes above the di-
agonal correspond to Property 2. Also, we have that for each vertex above
the diagonal, except for the top row, there is an edge to its next upper ver-
tex, and for each vertex strictly below the diagonal there are edges to all
vertices in the next upper row. This property allows us to split the set of
all MainOperations(i, k) into two passes. In the first pass all operations that
correspond to vertices below the diagonal are being executed, and during the
second pass the operations that correspond to the vertices above the diagonal
are being executed. In other words, during the first phase we compute all
restricted paths for which Property 1 holds, and during the second phase we
compute all paths for which Property 2 holds. By splitting the operations
into these two passes we can see that we gain a large degree of independence
during the second pass. A property that is very useful in parallel compu-
tations, since processors may execute the tasks that are assigned to them
without having the extra cost of synchronization. As a result the following
fine-grained algorithm is derived:
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Leighton’s fine-grained algorithm
Pass I

1. for k = 1 to n do
2. for all i > k in parallel do MainOperation(i, k);

Pass II

1. for all i < n in parallel do
2. Process i : for k = i+ 1 to n do MainOperation(i, k);

In order to obtain a coarse-grained algorithm, based on the fine-grained
one, as before we initially divide matrix A into p blocks of size (s× s), where
s = n/

√
p. Hence, we get

√
p subsets of vertices {1, 2, . . . , n} each containing

s elements: VI = {(I − 1) · s + 1, . . . , I · s}, 1 ≤ I ≤ n/s. Once again, we
denote by X̃I,J the block of A that contains all elements A(i, j) such that
i ∈ VI and j ∈ VJ .

As in the case of Warshall’s algorithm, a straightforward transformation
of the fine-grained algorithm to a coarse-grained one, i.e. by simply replacing
elements A(i, j) by blocks X̃I,J , would not lead to a correct solution, with
the same arguments holding. We need to take into account the closure of all
the diagonal blocks. In this way, we define the block version of the previous
procedures:

Procedure BlockAtomic(I,K, J)
X̃I,J = X̃I,J ⊕ X̃I,K ⊗ X̃K,J ;

Procedure BlockMain(I,K)
if I = K then X̃K,K = (X̃K,K)∗;

for all J in parallel do BlockAtomic(I,K, J);

The dependency graph G ′(n) related to BlockMain(I,K) operations is
shown in Figure 3.3. The new dependency graph, in comparison to the
previous one, has the additional edges from the diagonal element of a row
to the rest elements of the row (on the right hand side), as well as, for each
diagonal element, except for the first row, there is an edge from its previous
lower neighbour. Despite the fact that we have additional edges in G ′(n),
we can split computations into two phases, as before, and have the same
degree of independence during the second pass. The derived coarse-grained
algorithm follows:
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I

K

Figure 3.3: Additional edges of G ′(5) (compared to G(5)). The black vertex
at (I,K) corresponds to block operation BlockMain(I,K).

Leighton’s coarse-grained algorithm
Pass I

1. for K = 1 to n/s do
2. BlockMain(K,K);
3. for all I > K in parallel do BlockMain(I,K);

Pass II

1. for all I < n/s in parallel do
2. Process I : for K = I + 1 to N do BlockMain(I,K);

In the cost analysis of this algorithm during the first pass we have 2·n/s =
2 ·p1/2 synchronization steps, and during the second pass we have n/s = p1/2

steps. Hence, the total synchronization cost of the algorithm is O(p1/2).
Next, the communication cost of each step of both passes is equal to the
size of the blocks that are sent to the processors, hence, the cost of each
step is 3 · (n/p1/2 × n/p1/2) = 3 · n2/p. The total communication cost of the
algorithm is O(n2/p·p1/2) = O(n2/p). Last, the computation cost of each step
consists of the multiplication operations between the sub-matrices, which are
computed by the McColl-Valiant algorithm, and the closure operation of the
diagonal blocks, which we assume is computed by Warshall’s algorithm. The
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resulting cost of each step is 3 · n3/p3/2, thus, the total computation cost of
the algorithm is O(n3/p3/2 · p1/2) = O(n3/p). To summarize, the BSP cost
of Leighton’s coarse-grained algorithm is:

W = O(n3/p) H = O(n2/p1/2) S = O(p1/2)

3.3 All pairs shortest path

In this section two BSP algorithms are being presented for the all pairs short-
est path problem. The first algorithm solves a special case of the problem in
which we assume that the costs assigned to the edges are nonnegative. The
second algorithm extends the method of the first one to solve the general
problem.

3.3.1 Tiskin’s nonnegative edge costs algorithm

Tiskin proposed a coarse-grained parallel algorithm for the case of nonnega-
tive edge costs [Tis01]. In this algorithm he combined two different methods
for solving the all pairs shortest path problem that were proposed earlier.

The first method is the implementation of Dijkstra’s algorithm (case of
all pairs shortest path) in parallel, [Joh77]. Due to the use of Dijkstra’s
algorithm we ask for the edges to be assigned with nonnegative costs. To
be more specific, each processor is assigned with n/p vertices (the sources),
next, the processors apply Dijkstra’s algorithm to compute the shortest paths
originating in the assigned vertices. The synchronization cost of the resulting
algorithm is S = O(1), since, all computations are performed in one step. The
communication cost is H = O(n2), due to the fact that matrix A is sent to
all processors. Finally, the computation cost is W = O(n2 · n/p) = O(n3/p).
The advantage of this algorithm is the low synchronization cost.

The second method implements the principle of path doubling. Since, no
shortest path may contain more than n edges, we have that A∗ = An. In path
doubling we obtain matrix An by repeated squaring in log n steps, therefore,
the synchronization cost of this algorithm would be S = O(log n). Assuming
that matrix multiplications are performed by McColl-Valiant algorithm, the
communication cost would be H = O(n2/p · log n) and the computation cost
W = O(n3/p·log n). Tiskin, in the proposed algorithm, used a refined version
of path doubling in combination with Dijkstra’s algorithm. The description



3.3. ALL PAIRS SHORTEST PATH 43

of the algorithm follows.

Initially, without loss of generality, we assume that all edge and path
costs are distinct, thus, all shortest paths are unique. We can achieve that
by a small perturbation of edge costs. The main idea of Tiskin’s algorithm
is to perform path doubling, keeping track not only of path costs, but also
of path sizes. Path size denotes the number of edges contained in a path. In
order to keep the information of path costs and sizes as well, we define a data
structure called path matrix. A Path matrix X is a matrix in which each
entry X[i, j] is either ∞, or corresponds to the cost of a simple path from i
to j. In addition, for an integer k, X(k) denotes the matrix of all paths in
X of size exactly k. That is,

X(k)[i, j] =

{
X[i, j], if path X[i, j] has size k

∞, otherwise

Addition and multiplication of path matrices are defined in the natural way.
Let X(k1, . . . , ks) = X(k1)⊕ . . .⊕X(ks). If the maximum path size of X is
m, we have

X = X(0, 1, . . . ,m) = X(0)⊕X(1)⊕ . . .⊕X(m)

To complete the properties of path matrices we have X ≤ Y , if X[i, j] ≤
Y [i, j] for all i, j. Furthermore, we call an entry X[i, j] trivial, if it is equal
to ∞. Last, we call X and Y disjoint, if either X[i, j], or Y [i, j] is trivial for
all i, j.

Let us consider the nonnegative all pairs shortest path problem defined
by path matix A. In this matrix are contained all shortest paths of size 0,
in the diagonal, and of size 1, in the off-diagonal elements. Next, we have
that matrix Ak, for an integer k, contains all shortest paths of size at most
k. Suppose now, that we have computed Ak for some 1 ≤ k < n. The next
step would be to compute all shortest paths of size at most 3k/2. In order
to achieve this we decompose Ak into a disjoint generalized sum:

Ak = Ak(0, 1, . . . , k) = I ⊕ Ak(1)⊕ . . .⊕ Ak(k)

We consider now, the upper half of this sum, that is, Ak(k/2+1)⊕. . .⊕Ak(k).
In the matrices contained in this sum, the total number of nontrivial elements
is at most n2 (recall that the matrices are disjoint), therefore, the average



44 CHAPTER 3. PARALLEL ALGORITHMS

number of nontrivial entries per matrix is at most 2n2/k. We find a path size
l, k/2 < l ≤ k, with negligible cost of search, such that path matrix Ak(l)
contains at most 2n2/k nontrivial elements. Let us return now to our goal,
we want to compute all shortest paths of size at most 3k/2. Consider any
shortest path of size in the range l + 1, . . . , 3k/2, such a path consists of an
initial subpath of size l, and a final subpath of size at most k. For that reason,
all shortest paths of size at most 3k/2 can be computed by Ak ⊕Ak(l)⊗Ak,
more precisely:

(I ⊗ Ak)⊕ (Ak(l)⊗ Ak) = (I ⊕ Ak(l))⊗ Ak ≤ A3k/2

Hence, for the path doubling phase we want to compute the product Ak(l)⊗
Ak, for which we have that matrix Ak(l) contains at most 2n2/k nontriv-
ial elements, therefore the matrix product requires at most 2n3/k element
multiplications.

In order to compute the sparse by dense matrix product efficiently, as
before, we need to partition the problem into p subproblems. The difference
in this algorithm is that Tiskin described a more sophisticated partitioning of
the problem into p sparse by dense submatrix multiplications, where all the
sparse arguments have an approximately equal number of nontrivial entries.
The description of the partitioning follows.

Initially, we partition the set of rows in Ak(l) into p1/3/k1/3 equal sub-
sets, such that each subset contains at most 2n2

k2/3p1/3
nontrivial entries. This

partitioning defines, up to a permutation of rows, a decomposition of the
sparse matrix into p1/3/k1/3 equal horizontal strips. Each strip defines an

(n·k
1/3

p1/3
×n)×(n×n) sparse by dense matrix multiplication subproblem. Next,

consider one of the defined subproblems. We partition the set of columns in
the strip into p1/3/k1/3 equal subsets, such that each subset contains at most

4n2

k1/3p2/3
nontrivial entries. This partitioning defines, up to a permutation of

columns, a decomposition of the strip into equal square blocks. Each block
defines an (n·k

1/3

p1/3
× n·k1/3

p1/3
)× (n·k

1/3

p1/3
×n) sparse by dense matrix multiplication

subproblem. Last, we partition the set of columns of the dense matrix into
p1/3 ·k2/3 equal subsets. This way, we obtain p1/3 ·k2/3 sparse by dense matrix
multiplication subproblems of size (n·k

1/3

p1/3
× n·k1/3

p1/3
)× (n·k

1/3

p1/3
× n

p1/3·k2/3 ).
The total number of sparse by dense matrix multiplication subproblems is

p, in which the sparse argument of each subproblem contains at most 4n2

k1/3p2/3

nontrivial entries. As in the case of finding path size l, the cost of computing
the partitioning is negligible.
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The path doubling phase is stopped after at most log3/2 p steps, when
matrix Ap has been computed. The BSP cost of each step during this phase
consists of the synchromization cost S = O(1), the communication cost H =
O(n2/(k1/3 · p2/3)), and the computation cost W = O(n3/(k · p)).

In the next phase Dijkstra’s algorithm is adapted, the description of the
implementation follows. For some q, 1 ≤ q ≤ p, there exists some matrix
Ap(q) which contains at most n2/p nontrivial elements. This matrix is being
broadcasted to all processors. Next, each processor receives matrix Ap(q),
picks n/p vertices and computes all shortest paths originating in these ver-
tices, by n/p independent runs of Dijkstra’s algorithm. After the completion
of this phase, the closure of matrix Ap(q) has been computed. As a re-
sult, matrix Ap(q)∗ contains all shortest paths whose sizes are multiples of
q; along with some other paths. The synchronization cost of this phase is
H = O(1), the communication cost is H = O(n2/p), and the computation
cost is W = O(n2 · n/p) = O(n3/p).

In the final phase, one matrix product is being computed, based on the
following observation. Any shortest path in A∗ consists of an initial subpath
of size that is a multiple of q, and a final subpath of size at most q ≤ p (recall
that 1 ≤ q ≤ p). Therefore, for the initial matrix A all the shortest paths
can be computed by the matrix product:

A∗ = Ap(q)∗ ⊗ Ap

Before we proceed with the summary of the algorithm and its cost analysis,
we can achieve a reduction in the synchronization cost. We terminate the
path doubling phase after fewer than log3/2 p steps, to be more precise, for

1 ≤ r ≤ p3/2 we can find a q such that matrix Ar(q) contains at most n2/r
nontrivial elements. As a result, the communication cost of the second phase
changes to H = O(n2/r).

To sum up the procedure:
Tiskin’s all pairs shortest path algorithm (nonnegative case)

Parameters: integer n ≥ p; integer r, 1 ≤ r ≤ p2/3

Description: The computation proceeds in three stages:

First stage
Compute Ar by at most log3/2 r rounds of path doubling.

Second stage
Select q, 0 < q ≤ r such that Ar(q) contains at most n2/r nontrivial entries.
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Broadcast Ar(q) and compute the closure Ar(q)∗ by n independent runs of
Dijkstra’s algorithm, n/p runs per processor.

Third stage
Compute the product Ar(q)∗ ⊗ Ar = A∗.

In the cost analysis of this algorithm we have, for the first stage the
computation and communication costs are dominated by the cost of the first
step (k = 1), hence, W = O(n3/p), H = O(n2/p2/3), and the synchronization
cost is S = O(log r). For the second stage the costs are W = O(n3/p),
H = O(n2/r) and S = O(1). Finally, the cost of the third stage is W =
O(n3/p), H = O(n2/r) and S = O(1) (McColl-Valiant matrix multiplication
algorithm). Therefore, the total BSP cost of Tiskin’s algorithm is

W = O(n3/p) H = O(n2/r) S = O(log r)

In the case of this algorithm, parameter r allows us to trade off the costs
of communication and synchronization.

Before we proceed to the description of a more general algorithm we
present a modification in the second stage of the procedure. This variation
will be useful in the following algorithm. During the second phase of the pro-
cedure instead of using matrix Ar(q) with at most n2/r nontrivial elements,
we use matrix Ar(r). In order to avoid broadcasting the whole matrix, we
may represent it as the matrix product

Ar(r) = Ar(q)⊗ Ar(r − q)

For some q, 0 ≤ q < r/2, the disjoint sum Ar(q)⊕Ar(r− q) contains at most
2n2/r nontrivial elements, otherwise matrix Ar(r) should contain more than
n2 elements. As a result, the second stage of the algorithm can be replaced
by broadcasting the disjoint sum of matrices Ar(q) and Ar(q − r), next,
recovering their product Ar(r), and finally, computing the closure Ar(r)∗.

3.3.2 Tiskin’s general edge costs algorithm

Tiskin extended the previous algorithm to solve the all pairs shortest path
problem with general edge costs, [Tis01]. This more general algorithm though,
has an increase in its cost. In contrast to the previous case, we cannot use
Dijkstra’s algorithm due to the fact that edges may be assigned with nega-
tive costs. The proposed technique by Tiskin, to overcome this difficulty, is
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to replace Dijkstra’s algorithm during the second stage with an extra phase
of sequential path doubling. The description of the generalized algorithm
follows.

As in the previous case, the extended algorithm consists of three stages.
In the first stage, we implement parallel path doubling in order to compute
path matrix Ap

2
. Hence, the procedure is stopped after 2 log3/2 p rounds of

path doubling.
We introduce, now, a slightly different path matrix. Define

Ap
2

((p)) = Ap
2

(p, 2p, . . . , p2)

and
Ap

2

((p)− q) = Ap
2

(p− q, 2p− q, . . . , p2 − q)

To be more precise, path matrix Ap
2

contains all shortest paths whose size
is a multiple of p in the range p, . . . , p2.

In the second stage, we represent path matrix Ap
2

as the product

Ap
2

((p)) = Ap
2

(q)⊗ Ap2((p)− q)

We have that for some q, 0 ≤ q < p/2, the disjoint sum Ap
2
(q)⊕Ap2((p)− q)

contains at most 2n2/p nontrivial elements. As described in the previous
subsection, we collect matrices Ap

2
(q) and Ap

2
((p)− q) in a single processor

and recover their product Ap
2
((p)). Next, for some l, l ∈ {(p/2) ·p, (p/2+1) ·

p, . . . , p2}, matrix Ap
2
((p))(l) contains at most 2n2/p nontrivial elements. We

compute the closure of Ap
2
((p)), for which holds that Ap

2
((p))∗ = Ap

2
(p)∗,

by sequential path doubling, in which the first step computes the generalized
sum (

I ⊗ Ap2((p))
)
⊕
(
Ap

2

((p))(l)⊗ Ap2((p))
)
≤ A3p2/2((p))

In the final stage, since any shortest path in A∗ consists of an initial
subpath of size that is a multiple of p and a final subpath of size at most p,
it suffices to compute the matrix product

A∗ = Ap(q)∗ ⊗ Ap

In this algorithm, early termination of the parallel path doubling stage is
not considered; since the average number of nontrivial elements per matrix
would be increased, leading to an increase of the communication cost, as well
as to the computation cost of the second stage.
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To sum up the algorithm:
Tiskin’s all pairs shortest path algorithm (general case)
Parameters: integer n ≥ p

Description: The computation proceeds in three stages

First stage
Compute Ap

2
and Ap

2
((p)) by at most 2 log3/2 p rounds of path doubling.

Second stage
Select q, 0 ≤ q < p/2 such that Ap

2
(q)⊕ Ap2((p)− q) contains at most n2/p

nontrivial entries. Collect Ap
2
(q) ⊕ Ap

2
((p) − q) in a single processor and

recover Ap
2
((p)) = Ap

2
(q) ⊗ Ap2((p) − q). Compute the closure Ap

2
((p))∗ =

Ap
2
(p)∗ by sequential path doubling.

Third stage
Compute the product Ap

2
(p)∗ ⊗ Ap2 = A∗.

In the cost analysis of Tiskin’s extended algorithm we have, during the
first stage the computation and communication costs are dominated by the
cost of the first step (k = 1), hence, W = O(n3/p), H = O(n2/p2/3), and
the synchonization cost is S = O(log p). For the second stage, once again,
the computation cost is dominated by the cost of its first step, thus, W =
O(n3/p), the communication cost isH = O(n2/p) and the syncronization cost
is S = O(1). Finally, the costs of the third stage are W = O(n3/p), H =
O(n2/p2/3) and S = O(1). Therefore, the total BSP cost of the algorithm is

W = O(n3/p) H = O(n2/p2/3) S = O(log p)

Tiskin’s algorithm for the general case, computes correctly not only the
all pairs shortest path problem, but also any instance of the algebraic path
problem in which generalized addition (⊕) is idempotent.



Conclusion

In this thesis we present the algebraic path problem and several of its in-
stances. Initially, we describe sequential algorithms for solving the problem
and special cases of it. Next, we present parallel coarse-grained algorithms
in order to examine the benefits of parallelism for this problem, and compare
their complexities. In Leighton’s algorithm we observe that despite the large
degree of independence that operations have, there is no impact on the BSP
cost of the algorithm. This lack of exploitation leads to the need of further
investigation of the algorithm. One possible direction would be to adapt the
algorithm to other parallel models. Another direction would be to use dif-
ferent approaches for obtaining coarse-grained algorithms for the transitive
closure problem [GPPR03]. Finally, one might try to use more refined meth-
ods of matrix multiplication as in Tiskin’s algorithm, or to use fast matrix
multiplication (current bound on ω < 2.3727 [Wil12]).
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