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[TPOAOTI'OX

H moagolou dimdwpotixd epyacio extoviinxe ota TAGI TOU DUTUNUATIXO
Tpoypduuatos otoudwy ‘Egapuocuévec Madnuatixée Emotiues’ tou Edvixot
Meroéfou Iloiuteyveiou.

1o TEQYBEANOVTO XATAVEUNUEVGY UTOROYIOUGY EVa VEU TOU EUTVEEL TOMMY
avnouvyla efvar 0 ao@dheta. Ao TIC TO ONUAVTIXES OMELAES YLOL TNV AGPIAELY
elvou uro otatind| emuPBrafrc diepyacia mou Peloxetar oe Evay x6uPo Tou dixtdu.
Mot opddo xavntedv mpaxTépwy KvelTon YEGU GTO BiXTUO UE 6XOTH VoL EVTOTIGEL
™V axeBr) VEor autol Tou xépfou.

e auth| TN dimhwpatixd| epyaoia Vo EAETHOOUUE To TEOBANUO TOU EVTOTL-
ool evhe eydorxol/xaxbBouhou xouBou péoa ot éva dixtuo. O o xowdc Ti-
T0G XUXOBOVALY xOuBwV ebvan 1) oder TEOTA 1) 0Ol XATAGTREPEL GTOLOV XWVNTO
TEUXTOPA QPTAVEL GE AUTAY YWPEIC var agrvel xavéva fyvog. Oa tapouctdcouye
OLapopeTIXES Tapoldayés Tou mpofBifuatog avalhtnone exdpxmy xoufwy 6-
TS Ao EVAY BLPORETHO TUTO xox6Boulou xOUPBou xou xATOlES ohyoptduxég
AGELC.

ILo cuyxexpiéva, oto Kegdhao 1 Yo napouctdcoouue oOvToud TG XEVTEL-
*EG EVVOLES xal WO€eC auTOU Tou EldouC TEOBANUATDY. Oa avaALGOUUE TNV LOE
TWY XIVNTOU TEAXTOPKY xat Yo ENYAGOUPE Yiol TOL0 AOYO Ol TPAXTORES YETOL-
HOTO00VTAL GUYVE 0TOUS xatavepnuévoug ahyoptiuous. Emmiéov do mapou-
OLAGOUUE OLAPOPES TARUANAYES TOU TEOPBAAHATOS xal®E Xt XATOol TAUPOUOLY
TEoBAAUATOL.

Y10 Kegdhono 2 o pehetricouye to mpofAnua avalhtnong uag podens ted-
roc ([FIS12, ICDLMIT, KMRS0T]) napoucidlovtag alyopiduous yia 0 hbon
xodevog amd autd Ue oxomd v xatavonlet 1 QUoT aUTOY TV TEOBANUATOY.

Téhog, oto Kegdhoo 3 uehetdue to mpoPhnua tne Iepodrc Avdxtnong
Aedoyévwy oe éva SaxtOMo 6nwe tapouctdotnxe oto [KMI0] to onoio Baot-
{eTon Xl AUTO OTOV EVIOTIOUS €VOC xaxOBouhou xOufou UE xdmoleg TPOGUETES
npobnovéceic. I 1o mpdBinua autd xatapépaue va anodetloupe 6Tl 4 TEdXTOPES
elvor amapalTnTor ahhd 2o emapxelc yior Vot AOGOUY 10 TEOBANUA 0TV TERITTWOT
TOU 1) XOWT| U1 TV x6uPwy civar allomioty), eCalelgoviag £ToL TNV andoTIo
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AVAUECU GTA TEOTYOUUEVOL Y VOO T XATW X0l Ve PEdyHaTa TwV 3 xat 9 TeaxTOpwY
avtioTorya.



ETXAPIXTIEY

Oa fdeha vo euydploTACW OGOUS GUVTERECAY GTO VoL OhoxhnpeUel auth 7
epyaoio xat xuplwe Tov emBAémovta g epyaotac x. ‘Apn Iayouptly, Enixougo
Kadnynts tou E.M.IL, v m Bofldeia, v eumotoolvny xar T othplt| Tou
o€ OAM Tr) Dudpxea TG eExtovnotc Tne. Enlong euyapiote tov x. Xtdidn Zdyo,
Kadnynts tou E.M.IL yio tig yveoeig xan Ti¢ eunetpleg mou porpdletar ol pog
OAAG xan Tov % Arnunten Pwtdxnn, Aéxtopa tou E.M.IL, yia tny eumiotocivn
TOU 0 €UEVA, TNV XUTOVOTCT) TOU X0t T1) CUVETELY TOU.

Puoixd Yo fleha vo euyopiothow Tov x. Buptnidn Mdpxou, Aéxtopa tou
Havemotnuiou Ytegedc EAMEDag, o onolog elvar xou cuvemBAénwy e epyasiag
Hou, Yl TN UEYAAYN BofUetd Tou, TO EVOLIPEROY XAl TNV EUTIGTOGUVY] TOU O
éyel oetlel. Erniong tov Bayyéhn Mrournd yio ti¢ mohlTiueg oulntfoelg tou
elyope xon T UEYAAT fordeia Tou You EYEL TEOGPEREL AhASL o OAOL TOL TOdLd TOU
Corelab yia tic oulntroelc xat TI¢ wealee oTypés, xuplng T Xetotiva, Yo T
Borj¥eia, UTOUOVY XU CUUTARAGTAGY| TN OTOLAOHTOTE WEA TOU EXOCTETEAUMROV,
xon Tov Anurten.

Téhog xou mo TOh) VEAR VO EUYARICTHOW TN YUY OV, TO UTOUTH OV o
TOV AdEPPS O VLol OAAL OGU EYOUY XAVEL Yio UEVOL Xot TOUS GIAOUE HOV.



vi



ABSTRACT

The current thesis has been elaborated in fulfillment of the thesis require-
ment for the inter-departmental postgraduate program “Applied Mathemat-
ical Sciences” of the National Technical University of Athens.

In distributed mobile computing environments a very pressing concern is
security. One of the most important security threats is a stationary harmful
process which resides at a host. A team of mobile agents is moving in the
network with the task to determine the location of this host.

In this thesis we will study the problem of locating a malicious node in a
network. One of the most common types of malicious hosts is a black hole
that destroys any incoming mobile agent without leaving any trace. We will
present different settings of the black hole search problem problem as well as
a different type of malicious host and some algorithmic solutions.

More precisely, in Chapter 1 we will present shortly the main concepts and
notions of these kinds of problems. We will analyze the agent paradigm and
we will explain why agents are very frequently used in distributed algorithms.
Moreover we will present different settings and variations of malicious-host-
search problems as well as some kinds of similar problems.

In Chapter 2 we will study the Black Hole Search problem in various
settings ([FIS12, [CDLMI11, KMRSOT7]) presenting algorithmic solutions to
each one of them in order to understand the nature of this kind of problems.

Lastly, in Chapter 3 we study the Periodic Retrieval problem in a ring
presented in [KM10] which is also based on locating a malicious host in a
network with some additional requirements. We have been able to prove
that 4 agents are necessary and sufficient to solve the problem in the case
of reliable whiteboards, closing the gap between the previously known lower
and upper bounds of 3 and 9, respectively.
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Chapter 1

Modeling the problem

1.1 Introduction

The problem of exploring an unknown environment is a fundamental problem
with applications ranging from robot navigation to searching the World Wide
Web. As such, a large body of work has focused on finding efficient solutions
to variants of the problem with restrictive assumptions on the form of the
environment.

A natural way to model the problem is by a robot (mobile agent) exploring
a graph. The case in which the graph has undirected edges and labeled
vertices can be solved in time linear in the number of edges by depth first
search. Other search techniques [PP99] improve this bound by a constant
factor. But often many exploration problems do not satisfy these constraints
and the problem may be represented by a graph with directed edges. The
problem with directed edges and labeled vertices can be solved by a greedy
search algorithm in time O(|V| - |E|). More sophisticated techniques [AHOO,
DP99] give improved running times.

Mobile agents are a powerful tool for implementing distributed applica-
tions in computer networks and have been extensively used for graph ex-
ploration problems in which the agents have to search through the graph
collecting information and interacting with each other. An agent is usually
modeled as a finite automaton and the first known finite automaton algo-
rithm designed for graph exploration was introduced by Shannon in 1951
([FIPT04]).

Many variants of the problem have been studied focusing on different
aspects of the setup (specific topologies, type of graphs, etc.) and the com-
plexity measure (number of agents used, performance, efficiency, etc.).

However, these problems assume that the network and the nodes are safe.

1



2 CHAPTER 1. MODELING THE PROBLEM

Of course, this might not be true as the network might be faulty. The nature
of faults can vary from faulty links to malicious hosts. In this thesis we
consider security problems of the latter type, i.e. nodes which may harm
agents in various ways (killing agents, changing the agents’ status, deleting
or changing stored data etc.). In order to solve such a problem we should
find a way to determine the location of the harmful node and report it, if
possible.

1.2 Mobile agents

The paradigm of mobile agent computing has seen use in fields as diverse as
artificial intelligence, computational economics and robotics. Agents bring
potential advantages in terms of efficiency, fault-tolerance, flexibility and
simplicity. We will study mobile agents as modelled in distributed systems
research and in particular within the framework of research performed in the
distributed algorithms community. In this literature, the agents are generally
modelled as automata that move on a network modelled as a graph.

Mobile agents can reduce the connecting time and bandwidth consump-
tion by processing the data at the source and sending only the relevant re-
sults. By moving the agents to data-residing hosts, they can reduce commu-
nication costs.

A mobile agent in general has the following properties [KKM10a, [CD12]:

e Autonomy: Mobile agents should work with some degree of indepen-
dence from their creator and take control over their actions. They
should be able to execute, move and make some decisions without su-
pervision.

e Mobility: The agents must have the ability to move from one node to
another in a distributed system. Note that when such an agent moves
it is assumed that it carries its identity, execution state and program
code so that it can resume its execution in the destination node after
the move.

e Interactivity: An agent must be able to interact with its environment
and with the other agents (if there are any). In most cases this is
likely to be cooperative behavior but sometimes it is possible to be
competitive behavior. The exact form of interaction depends on the
model of the system.

e Adaptability: The ability of an agent to adapt to new situations and
learn from previous experience increases its usefulness.
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The advantages that the mobile agents offer over the traditional dis-
tributed computing approaches include among others [KKMI0al:

e Efficiency: Mobile agents offer potential savings in both latency and
network bandwidth due to their compactness. In a situation where n
sites must be visited in sequential order, where for instance the output
from one site is used as part of the input to the next, a mobile agent
can perform the task by moving along an n edge cycle incurring the
cost of n communication steps whereas a centrally located agent would
need 2n communication steps (to and from each site). In a situation
where parallel access to the sites is possible, then a team of mobile
agents can visit all of the sites faster than a single stationary agent.

e [uault-tolerance: In situations where a user has limited connectivity to
the network, a mobile agent may overcome this deficit by acting on
behalf of the user during blackout periods and returning useful infor-
mation when connectivity returns. In situations where nodes may go
down on a regular basis with limited notice, a mobile agent can poten-
tially move to another node and continue operating.

o Flexibility: It is generally easy to add features to agents that allow
them to adapt their behavior to new conditions. More sophisticated
agents may be designed to incorporate learning from past experience.

e Fase of use: In many situations, it is natural for the programmer to
imagine that they are dealing with autonomous agents. This makes the
systems design and implementation easier to perform.

As mentioned above, mobile agents are usually modeled using a finite
automaton consisting of a set of states and a transition function which takes
as input the agents current state as well as the state of the node it resides in
and outputs a new agent state, possible modifications to the current nodes
state and a possible move to another node. We may also consider an agent
to be a probabilistic automaton (randomized agent).

When studying a problem it is important to consider whether or not the
agents have distinct labels or identities. When the agents are indistinguish-
able they are called anonymous agents. Anonymous agents are limited to
running exactly the same program, i.e. they are identical finite automata.
Agents with distinct identities may run different programs.
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1.3 Network

An important factor that affects the problem’s difficulty is the network that
is about to be explored. The network is usually modeled by a graph whose
vertices represent the computing nodes (or hosts) and edges represent the
communication links.

The knowledge the agents have about the network can make a difference
in the solvability and efficiency of many problems. For example, knowledge
of the size of the network or its topology may be used as part of the agents
program. If available to the agents, this information is assumed to be part
of their starting state or the information is made available by the nodes of
the network.

Like mobile agents, the nodes of a network may also be distinguishable
or anonymous, i.e. the nodes have no identities. This means that an agent
can not distinguish two nodes except perhaps by their degree. The outgoing
edges of a node (ports) are usually considered distinguishable but an impor-
tant distinction is made between a globally consistent edge-labeling versus
a locally independent edge-labeling. For example, in a ring the ports may
be consistently marked as clockwise and counterclockwise or they may be
arbitrarily marked. If the labeling satisfies certain coding properties, it is
called a sense of direction [FMS98] and it greatly affects the solvability and
the efficiency of solution of many problems in distributed computing.

Another classification of the networks is made by how they deal with
time. The network may be synchronous or asynchronous. In a synchronous
network there exists a global clock available to all nodes and it is used by
the agents as well. It is also assumed that the agents perform their tasks
in synchronization and that it takes one time unit to take a step. In an
asynchronous network the time needed for an agent to move from one node
to another is not bounded but it is still finite.

Since the networks we are studying in this thesis are assumed to be unsafe,
there are many variations depending on the kind of the fault they present
but we will talk about the variety of faults in

1.4 Communication

Most of the times to locate a malicious host in a network we need more than
just one agent. Thus, it is important to consider how the agents interact and
the kind of the communication mechanism they use each time is an important
aspect of any model. One might consider the case where the agents are able
to detect the presence of other agents at a node and possibly read their state.
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In general, all nodes are assumed to provide enough space to store the
agent temporarily and computing power for it to perform its tasks but in
some cases we may consider nodes that provide some form of a long-term
storage which may be shared among all agents visiting the nodes. This
service is called a whiteboard and it is one of the communication mechanisms
that have been proposed and have been mostly studied in the literature:

e the whiteboard model: there is a whiteboard at each node of the network
where the agents can leave messages,

e the token model where the agents carry tokens which they can leave at
nodes (“pure” tokens) or at nodes and edges (“enhanced” tokens), and

e the time-out mechanism (only for synchronous networks) in which one
agent explores a new node and then (after a pre-determined fixed time)
informs another agent who waits at a safe node.

The whiteboard model is the most powerful of these mechanisms not only
because of the ability that it gives to agents to exchange messages but also
because of the mutual exclusion mechanism that is used in order for an agent
to have access. If the agents start at the same node, due to mutual exclusion,
they can get distinct identities and then assign different labels to all nodes.
Hence in this model, if the agents are initially co-located, both the agents
and the nodes can be assumed to be non-anonymous without any loss of
generality]M™12]. The whiteboard model has been studied in asynchronous
networks for initially collocated (e.g. [DFPS06, [DFPS01, BFMSI10]) or scat-
tered agents (e.g. [FKMS09b]) while synchronous networks do not seem to
need it.

The token model has mostly been used in safe network explorations. Ex-
cept the pure and enhanced tokens we also may have movable and unmowvable
tokens. Movable tokes are those which can be placed at a node and then an
agent can pick them up and move them somewhere else while the unmovable
ones are the ones that once placed they cannot be moved. The token model
has also been studied in both synchronous and asynchronous networks (e.g.
[FIS12, BFR02, [CDLMT1]).

Other properties that may be considered include mechanisms for sending
and/or receiving messages via message passing, whether or not the agents
have the ability to clone themselves, i.e., produce new identical copies of
themselves and whether or not they have the ability to “merge” upon meet-
ing.
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1.5 Malicious hosts

There are different types of malicious nodes in a graph which represent var-
ious kinds of malicious/faulty hosts in a network. The most common and
most studied type of malicious host is a black hole. A black hole is a node
that contains a stationery process which destroys anything that reaches that
node (hence the agents as well) without leaving any trace.

An alteration to the black hole concept is the grey hole which is a node
that may alter its behaviour between the behaviour of a black hole and that
of a safe node. This means that a grey hole may destroy an agent which
resides on it, without leaving any trace, or it may let the agent perform all
its tasks and computations and even move to another node safely, as if it
were a completely safe node.

Except these two types there are a lot of other variations since, in reality,
a host has many ways to harm the agents: it may not only kill any agent
residing in it at any time, it may also duplicate agents, introduce fake agents,
tamper the runtime environment (e.g. changing the contents of the white-

board), or disobey communication protocols (e.g. do not execute agents in
FIFO order) etc.

1.6 Other variations

Networks containing malicious hosts may be the most common scenario in
network security problems but other scenarios have been studied as well, not
that extensively though.

The case of black links in arbitrary networks has been studied in [CDS0T,
EFKMS09a], respectively for anonymous and non-anonymous nodes providing
non-optimal solutions in the case of multiple black holes and links in [CDS07],
and conditions for solvability in [FKMS09a]. All the previous literature con-
siders black holes in undirected graphs; the case of directed graphs has been
recently investigated in [CDK™10], where it is shown that the requirements
in number of agents change considerably.

1.7 Similar problems

Apart from the malicious host search problems there are many other problems
that are somehow related and can be solved using mobile agents and similar
techniques.

The rendez-vous problem it the one studied the most and it is the prob-
lem of how to achieve a rendez-vous, the gathering of two or more agents
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at the same node of a network. Of course, as above, the problem can be
studied under various models ([KMPOS, [KKM11, KKMI10bl, KKMO06]). Such
an operation is a useful subroutine in more general computations that may
require the agents to synchronize, share information etc. For example, in a
black hole search problem it might be convenient to make the agents gather
at one certain node so that they can work as collocated agents.

Another problem analogous to the previous ones is the firefighter problem.
The firefighter problem models the situation where an infection, a computer
virus, a fire etc. is spreading through a network and the goal is to save
as many nodes of the network as possible through targeted vaccinations.
The number of nodes that can be vaccinated at a single time-step is typi-
cally one, or more generally O(1). In a non-standard model, the so called
spreading model, the vaccinations also spread in contrast to the standard
model [FLP11].

Since searching for a piece of information is one of the most common tasks
in a distributed environment, the problem of locating a user or an item in a
network is also studied ([HKKKOS, KKS08]). A mobile agent tries to find it
doing queries to the nodes. The question is of the following form: “when did
you see it for the last time?” or “how do I get to it?”, respectively. And the
answer is of the form: “k time units before” (k = oo if the user was never
visited the node, and k& = 0 if the user is right now at the node) in the case of
searching for users or, in the other case, the node may answer with an edge
on the shortest path to the item. A node may answer truthfully or it may
lie; in the latter case we call this node a liar. In some cases, there is no liar
among the nodes.
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Chapter 2

The Black Hole Search Problem

2.1 Black Hole Search in Asynchronous Rings

First we will present the Black Hole Search Problem in an asynchronous ring
with mobile agents endowed with one token.

Note that in an asynchronous ring it is impossible to determine whether
or not there is a black hole in the ring as it is impossible for an agent to
distinguish between a slow link and a black hole. Thus the existence of a
black hole in the ring must be common knowledge. For the same reason,
even if the existence of a black hole is known to the agents, it is impossible
to find the black hole without knowing the size of the ring.

The optimal algorithm for this model is presented in [FIS12].

2.1.1 Network model and problem definition

The network in this model is a ring whose size n is known to the agents. At
each node there is a distinct label associated to each of its incident links.

All agents start from the same node of the network (homebase) and have
a complete map of the graph (in this case they know it is a ring and the size
of it). Every agent has a token; all tokens are identical. An agent can carry
a token, put it down at a node (if no other token is already there) and pick
it up from a node (if it does not carry another token). An agent entering a
node can see if there is a token there but it might not be able to see other
agents or to see whether they carry a token or not.

The network is asynchronous. This means that each agent can enter
the system at an arbitrary time, traversing an edge may take a finite but
otherwise unpredictable amount of time and an agent might be idle at a
node for an upredictable but still finite amount of time.

9
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The basic computational step of an agent (executed either when the agent
arrives to a node, or upon wake-up) is to look for a token at the node, drop
or pick up the token, if wanted, and leave the node through some chosen
port. The whole computational step is performed in local mutual exclusion
as an atomic action, i.e. as if it takes no time to execute it.

Links are not assumed to be FIFO, i.e. two agents traversing the same
edge to the same node may arrive in an arbitrary order.

It is also assumed that the transition between two states of the agent
and the corresponding move are instantaneous, i.e. there is no delay due to
asynchrony before the move of the agent. Furthermore, it is assumed that
the actions of the agents at different nodes occur at different instants.

The network contains exactly one black hole. The problem is to locate
the black hole, i.e. at least one agent must survive and know the location of
the black hole.

It is also assumed that the clockwise direction is the same for both agents.
An agent exploring to the right (clockwise) is said to be a right agent and
an agent exploring to the left (counterclockwise) is said to be a left agent.
An agent might change role, i.e. become a right agent when it was a left and
vice versa.

The two measures of complexity of a solution protocol are the number of
agents used to locate the black hole and the total number of moves.

2.1.2 The algorithm

Firstly, we will describe the main moves of the agents. We say that a right
agent traverses an edge u, v from u to (right neighbor) v using cautious walk
when it has one token, drops it at u, moves to v, comes back to u, picks up
the token and goes to v. A left agent traverses an edge u,v from u to (left
neighbor) v using double cautious walk when it has one token while the other
is at u, goes to v, drops its token at v, comes back to u, picks up the other
token and goes to v again. So, In the first phase, exploration to the right is
always done using cautious walk, while exploration to the left is always done
using double cautious walk.

For 7 > 0, a node at distance ¢ to the right of the homebase will be called
node ¢ and a node at distance i to the left of the homebase will be called
node —i.

The idea of the Ping-Pong algorithm is that one agent explores the right
side of the ring and the other explores the left side. However, only one
agent at a time is allowed to explore, thus the agents cannot make progress
simultaneously in two different directions.



2.1. BLACK HOLE SEARCH IN ASYNCHRONOUS RINGS 11

Now, suppose we have two agents, A and B. The algorithm has two
phases.

Phase 1:
e Initially both agents explore to the right using cautious walk.

e At some point eventually, one agent (say A) will find the token of agent
B at a node.

o A wants to steal B’s token so it goes to the previous node and comes
back to pick up B’s token.

— If, in the meantime, B has picked its token and moved on, then A
resumes its cautious walk in the same direction.

— Otherwise, A steals B’s token and becomes a left agent, starting
to explore left using double cautious step.

e If B comes back and finds out that its token has been stolen, it goes
left until it finds a token, then picks it up, returns to the last node it
had visited and resumes exploration to the right.

e If A realizes that one of its tokens has been stolen, it changes role and
explores to the right using cautious walk.

The first phase of the algorithm is already correct by itself but Phase 2 is
used to decrease the number of moves. Phase 2 happens when at least two
nodes have been explored to the right.

Phase 2:

e [f aright agent A finds the token of right agent B at a node p with p > 2
then steals it, returns to node p — 1, ignores the token A had released
there and starts cautious walk to the left, becoming a left agent.

— If agent B returns at node p to pick up its token and does not
find it there, it starts moving to the left and finds a token it at
node p — 1. That indicates that Phase 2 has started and that the
remainig unexplored nodes have been divided in two groups: A
explores the left side and B explores the right side. Thus, B starts
cautious walk exploring to the right.
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— If agent B has not been back to node p before A finishes exploring
its part, then A computes the new workload and divides it again in
two parts. Then starts exploring again its part. This may happen
more than once since B might be blocked or vanished.

— If the latter happens more than once, then if B goes back to node
p to pick up its token and does not find it there, again it starts
moving to the left until it finds a token. Now the number of steps
it takes until it finds one indicate the number of times that the
above case happened so B can compute the current unexplored
part and thus its current workload.

Obviously, Phase 2 may never be executed in some cases. In any case
though, when only one node remains unexplored, this remaining node is the
black hole and the algorithm terminates.

2.1.3 Bounds

As mentioned above, the first part of the algorithm (Phase 1) solves the
problem by itself but the number of moves can be ©(n?) in the worst case. It
is proved that Phase 2 decreases the worst case number of moves to O(nlogn)
which is the optimal bound [DFPS01]. This algorithm is also optimal in the
sense that it cannot be solved with fewer agents and clearly not with fewer
tokens.

Another very interesting result of this paper is the proof that the token
model is computationally as powerful as the whiteboard model (for networks
of known topology) since the same optimal bounds are obtained for number
of agents and number of moves.

2.1.4 Modified algorithm for arbitrary graphs

The algorithm we described above can be modified so that it works for arbi-
trary networks. It is interesting that the same bounds as before are obtained.

The idea that allows that algorithm to be applied to general graphs is to
find a cyclic ordering of the network nodes, i.e. a mapping between the node
numbers and the actual nodes on the network in a way that allows an agent
to know what means “go left” and “go right” at any point.

Since the network does not necessarily contain an Hamiltonian cycle, a
single edge in the “virtual” ring may correspond to a longer path in the actual
network. In order not to increase too much the move complexity, the cyclic
ordering of the network nodes is constructed by following a DFS traversal of
some spanning tree avoiding the current suspicious node (the node where the
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other agent is apparently blocked). Since the location of the suspicious node
changes throughout the execution of the algorithm, so does the spanning tree
and thus the cyclic ordering. (In fact, only the ordering of the unexplored
nodes may change.) This is done in such a way that both agents agree on
the cyclic ordering when it is necessary.

2.2 Black Hole Search in Tori

In [CDLMT11] the BHS problem is examined under some different settings.
First of all the network is a torus and it is synchronous. The agents use
tokens as well and are initially scattered in the network.

2.2.1 Network model and problem definition

The model consists of & > 2 anonymous and identical agents, placed at
distinct nodes of an anonymous, synchronous torus of size n x m, n > 3,
m > 3. The torus is also oriented in the sense that at each node the four
incident agents are consistently marked as North, South, East and West.
Each mobile agent owns a constant number of t identical tokens which can
be placed at any node visited by the agent. A node may contain at most
three tokens at the same time and an agent carries at most three tokens at
any time. A token or an agent at a given node is visible to all agents on the
same node, but is not visible to any other agent. The agents follow the same
deterministic algorithm and begin execution at the same time and being at
the same initial state.

At any single time unit, a mobile agent occupies a node u of the network
and may 1) detect the presence of one or more tokens and/or agents at node
u, 2) release/take one or more tokens to/from the node u, and 3) decide to
stay at the same node or move to an adjacent node.

All computations by the agents are independent of the size n x m of the
network since the agents have no knowledge of n or m. There is exactly one
black hole in the network. An agent can start from any node other than the
black hole and no two agents can start from the same node. Once an agent
detects a link to the black hole, it marks the link permanently as dangerous
(i.e., disables this link). Since the agents do not have enough memory to
remember the location of the black hole (an agent is a finite automaton), it
is required that at the end of a black hole search scheme, all links incident
to the black hole are marked dangerous, that none of the other links of the
network is marked as dangerous and that there is at least one surviving
agent. This is a slightly different definition for a succesful BHS scheme. The
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time complexity of a BHS scheme is the number of time units needed for
completion of the scheme, assuming the worst-case location of the black hole
and the worst-case initial placement of the agents.

2.2.2 Bounds

Before we describe the algorithms that solve the problem, we will present
some results which provide lower bounds for the Black Hole Search problem
in a torus.

First of all, the following theorem is proved which tells us that we will
only need to consider movable tokens for this problem.

Theorem 2.2.1. No algorithm can solve BHS in all oriented tori containing
one black hole and k scattered agents, where each agent has constant memory
and t unmovable tokens, for any constant numbers k, t.

The next lemma gives a lower bound for the number of agents, despite of
the number of tokens they may have.

Lemma 2.2.2. Two agents carrying any number of movable tokens cannot
solve the BHS problem in an oriented torus even if the agents have unlimited
memory.

The proof of lemma is based on the fact that the adversary may
decide which nodes the agents will start from and also the location of the
black hole in the torus.

Without loss of generality we may assume that the first move of the agents
is East. The idea is that the adversary may place the black hole at the East
neighbor of an agent so that it vanishes into the black hole right after its first
move and also place the second agent such that it vanishes into the black
hole right after its first vertical move.

Thus, for any algorithm the number of agents in order to solve the problem
must be at least three.

The next lemma gives a lower bound on the number of tokens each agent
carries.

Lemma 2.2.3. There exists no algorithm that can solve the BHS problem in
all oriented tori using three agents with constant memory and one movable
token each.

Thus, for an algorithm using three agents, each agent must have at least

two tokens.
From lemmas 2.2.2] and 2.2.3] the next theorem can be deduced.
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Theorem 2.2.4. At least three agents are required to solve the BHS problem
in an oriented torus of arbitrary size. Any algorithm solving this problem
using three agents requires at least two movable tokens.

The main algorithm presented in the paper is an optimal algorithm since
it matches the lower bounds for the number of agents and number of tokens
per agent mentioned above (i.e. it solves the BHS problem in a torus using
three agents and two tokens per agent).

2.2.3 The algorithms

Three algorithms are presented, the first one being a really simple one and
the third one being really involved. We will try to describe them as well
as possible. All algorithms use obviously only movable tokens and the main
technique used is the Cautious Walk.

Algorithm BHS-torus-33

The first algorithm we are going to describe is the simplest one which needs
three agents provided with three tokens each.

e An agent leaves one token on its starting node (homebase) and moves
East performing cautious walk with two tokens (i.e. puts down two
tokens, goes one step East, goes back, picks up both tokens and goes
one step East).

e An agent repeats cautious walk in the Fast direction until it meets a
node containing one token twice. (A node containing one token is a
homebase either of this agent or of another agent.)

o After the agent meets two homebases it performs a cautious walk in
the South direction with three tokens (it picks up the homebase token
as well)

e If it survives and the node it reaches contains, it repeats cautious walk
in the South direction with two tokens until it reaches an empty node.
This empty node is its new homebase and it repeats the same process.

e [f during its cautious walk the agent meets a node with two tokens then
it concludes that the black hole is the neighboring node to East.

e [f during its cautious walk the agent meets a node with three tokens
then it concludes that the black hole is the neighboring node to South.
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e In any of the last two cases the agent stops its execution and traverses a
cycle around the black hole marking all links leading to it as dangerous.

The idea in this algorithm is that an agent may visit an unexplored node
only while going East or South. Thus, if one agent enters the black hole going
East (resp. South), there will be two (resp. three) tokens on the previous
node and thus, no other agent would enter the black hole through the same
link. Therefore, at least one agent always survives. Whenever an agent meets
two or three tokens at the end of a Cautious-Walk, the agent is certain of
the location of the black hole since any alive agent would have picked up its
Cautious-Walk tokens in the second step of the cautious walk.

Note that this algorithm solves the problem if there are k > 3 agents.
This means it would work even if we had more than 3 agents though we will
see that this is not always the case.

Algorithm BHS-torus-42

We will now present the second algorithm which uses only two tokens per
agent but on the other side it needs at least four agents to solve the problem.
But first we need the following definition.

Definition 2.2.5. If there is node v such that there are exactly two tokens
at its North neighbor and exactly two tokens at its West neighbor, then we
say that there exists a Black-Hole-Configuration at v.

The agent puts down both its tokens on its homebase and performs a
cautious walk in the East direction. If it survives, it returns, picks up one of
the tokens and repeats the cautious walk with one token in the East direction
until it reaches a node with one or two tokens.

e [f it reaches a node with two tokens then the black hole is either the
neighbor on the East or the neighbor in the South. Then the agent
stops its execution and checks whether the black hole is the East or the
South neighbor.

e [f it reaches a node with one token then it performs a cautious walk
in the East direction with two tokens and then continues the cautious
walk with one token in the East direction. If it reaches a node with one
token three times then it performs a cautious walk with two tokens in
the South direction. If the node it reaches contains a token, it repeats
cautious walk with two tokens to the East until it reaches an empty
node. Then it repeats the same exploration using that empty node as
its homebase. Whenever it reaches a node with two tokens its stops an
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checks whether the black hole is the East or the South neighbor of that
node.

Now we will describe how that checking process happens. Suppose that
the agent has reached a node u which contains two tokens and it wants to
check whether the black hole is the East neighbor v or the South neighbor
w. The agent visits the West neighbor of w, x (with two steps and waiting
one step in between). If it finds two tokens on z then w is te black hole. If x
is empty or contains one token, it performs a cautious walk to w with one or
two tokens respectively. If it survives then the black hole is at v. Otherwise
it will vanish into the black hole leaving a Black Hole Configuration at node
w which was apparently the black hole. An agent that discovers the location
of the black hole traverses a cycle around it and, as in the previous algorithm,
it marks all incident links as dangerous.

Note that the waiting step during the checking process happens due to
synchronization reasons so that all surviving agents have picked up their
cautious walk tokens. Also, it is easy to see from the description of the
algorithm that at most three agents can enter the black hole: at most one
agent going South (and thus leaving two tokens at the North neighbor of the
black hole) and at most two agents going East (each leaving one of its tokens
at the West neighbor of the black hole). Therefore, at least one agent will
survive.

Also, we can observe that after an agent starts exploring a horizontal ring,
one of the following will happen: if the ring is safe then the agent will move
to the next horizontal link below or if the ring is not safe either all agents
will vanish into the black hole or one of them will mark all the links incident
to the black hole as dangerous. This property concludes the corectness of
the algorithm described.

Lastly, note again that this algorithm may use k > 4 agents to solve the
problem.

Algorithm BHS-torus-32 (Optimal)

In [CDLMII] there is finally presented an algorithm which matches both
lower bounds proven earlier (i.e. for agents and for tokens per agent) and
therefore is an optimal one. This algorithm we are about to roughly describe
uses 3 agents and each agent carries 2 tokens.

This algorithm contains a lot of technical details and is quite complicated
thus we will only present the main ideas. The techniques used in the previous
algorithms are now used again here.

The main and most important idea of this algorithm is to make two agents
meet when they are relatively close to each other. If two agents meet then
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the problem is easy to solve using a very simple technique we will describe
later.

Before we start describing the algorithm let us redefine the notion of the
Black-Hole-Configuration (BHC) for the purposes of this algotithm.

Definition 2.2.6. If there is node v such that there is one or two tokens at
both the West and the North neighbors of v, then we say that there exists a
Black-Hole-Configuration at v.

The two main procedures that the algorithm uses are First-Ring and
Next-Ring:

e First-Ring is only used once, when the algorithm starts. With this
procedure each agent explores only the first horizontal ring (i.e. the
horizontal ring that contains their starting location) moving in the
East direction and using a cautious walk with one token (the second
token is left on the agent’s homebase).

— If it enters a node that contains two tokens then the next node is
the black hole.

— If it enters a node containing a single token then this is a homebase
(not necessarily its own). In this case it leaves its other token there
and continues without tokens.

x If it finds another node containing one single token then the
next node is the black hole.

x If this is not the case then the agent keeps travelling to the
East until it meets six times a node containing two tokens and
the procedure terminates, the agent being at a node with two
tokens and ready for the Next-Ring procedure.

e Next-Ring is used every time an agent has finished the exploration
of an horizontal ring, to explore the next ring. The agent starts from
a node with two tokens, leaving one on the homebase and using the
other one it performs a cautious walk to the South. Thus, it checks
the node below and goes back to its homebase. Then it moves to the
East direction with one token and again performs a cautious step to
the South and keeps doing this until it meets a node with one token on
the safe ring. In this case the agent does not go South but instead it
goes West and South and

— if it meets a token there then we have a BHC.
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— if there is no token there, it leaves a token and goes East. If the
black hole was there, then the agent has left a BHC.

If it survives, it goes back to its exploration, doing the same check every
time it encounters a node with one token on the safe ring. When it has
met six such nodes, the procedure terminates.

An additional procedure called Init-Next-Ring is used every time an agent
is about to start Next-Ring, in order to choose its new homebase for exploring
next ring. Without this particular procedure there would be a possibility that
the homebases of two agents would form a BHC. Actually, if this was the
case (i.e. two agents’ tokens form a BHC) then this procedure ensures that
the two agents meet, thus they can solve the problem on their own.

If two agents manage to meet then they can locate the black hole by
executing BHS-with-collocated-agents, a procedure that is really simple and
is based on the time-out mechanism. The first thing they do once they meet
at a node is pick up all their tokens from the nodes they had left them. When
both agents have their tokens, one agent becomes the leader and the other
one becomes the follower (breaking symmetry at this point is easy to do
since they arrive at the node from a different direction). Then they perform
a special Cautious-Walk:

e First they leave 3 tokens at the node they start from

e The leader goes to the next node in the East direction while the follower
waits at the current node. Then the leader comes back and they move
together to the now explored node and continue this process.

e When they meet their 3 tokens, the leader goes one step South while
the follower waits and then comes back and they move together with
their tokens to the ring below and start exploring it as above.

e [f at some point the leader does not return within two time units, the
follower knows exactly where the black hole is.

Note that only the leader may be killed falling into the black hole. Also
note that apart from this procedure, there is no other part of the algorithm
where we may have a node with 3 tokens, thus if the third agent comes across
a node containing three tokens it knows that the other two agents have met
and stops executing the algorithm. Similarly, if the two agents meet the
third one while executing BHS-with-collocated-agents, the third agent stops
executing the algorithm.
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The algorithm obviously contains many more procedures for different
technical details which we will not describe here as they are very involved
and we wanted to just give the main ideas of it.

Let us note at this point that although the algorithm BHS-Torus-32 is
an optimal algorithm regarding the number of agents needed, there is one
downside to it: it only works with 3 agents. That means that BHS-Torus-32
will not correctly locate the black hole if the agents are more than 3. If we
combine this algorithm with algorithm BHS-Torus-42 then we can solve the
problem for any k£ > 3, k the number of agents. But the number £ has to be
known in advance since these two algorithms cannot be combined to give an
algorithm for solving the problem for k£ > 3 without the knowledge of k.

Hence, it remains an interesting question whether there exists an algo-
rithm that solves the problem for £ > 3 without knowing k in advance.
Another interesting question would be to determine the number of agents
required to solve the problem carrying only one token each.

2.3 Black Hole Search in Arbitrary Networks

An algorithm for solving the Black Hole Search Problem in arbitrary networks
was presented in [KMRS07].

2.3.1 Network model and problem definition

The model consists of a connected, undirected graph with no multiple edges
and no self loops. The network is synchronous and there is at most one black
hole in it. There are two agents initially collocated on the starting node
s. The only node known to be safe is the starting node. The agents can
communicate only when they are in the same node.

Now to define the BHS problem, suppose we have a connected undirected
graph G(V,E) and a node s € V. An exploration scheme &g, = (X,Y)
for G and s consists of two equal-length sequences of nodes in G, X =
(xo,z1,...,x7), Y = (Yo,y1,...,yr). The measure is the cost of the BHS
based on &g s which is the worst execution time over all possible configura-
tions. The objective is to find an exploration scheme which minimizes the
cost of the BHS based on it.

Agent-1 and Agent-2 follow the paths defined by X and Y, respectively.
When an agent deduces the existence of a black hole and its exact location,
aborts the exploration and returns to s traversing only safe nodes. The ex-
ploration is deterministic and the scheme is calculated before the exploration
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starts. Then, the agents must follow the sequences until one realizes that the
other has died.

Also, note that a node may have been visited by an agent but becomes
explored only when the agents meet and that the explored territory is defined
for an exploration scheme & s, not for the BHS based on it. that is, it doesn’t
take into account the possible existence of a black hole.

The exploration scheme must satisfy these constraints to guarantee the
feasibility of it:

1. Both agents start from the same node s and end at the same node.

2. During each step, an agent can either wait in the node v where it was,
or move to a node adjacent to v.

3. Each node in V is visited at least once by at least one agent during the
exploration.

4. During each phase, an agent can visit at most one unexplored node (a)
and the two agents cannot visit the same unexplored node during the
same phase (b).

Using these constraints we can observe that the first node of the explo-
ration is always the starting node s and that at the last step of the exploration
scheme the explored territory contains all the nodes of the network.

Now it is easy to see that each phase of the exploration scheme must
have length at least two (otherwise the fourth constraint would be violated).
There two kinds of such phases that can be used in exploration schemes and
that increase the explored territory by two nodes. If m is the meeting point
at step j, Agent-1 and Agent-2 visit unexplored nodes adjacent to m, vy, v
respectively, at step j+1. Then, at step j + 2 the agents meet:

e in m (b-split(m, vy, vs)), or
e in a node m’ # m, adjacent to vy, vy (a-split(m, vy, ve, m’)).

Finally, in the case that there is no black hole in the network, the execu-
tion time is defined to be the lenght of the exploration scheme &g ¢ plus the
shortest path from the last node of the exploration scheme to s, otherwise
the execution time is the length of the part of £; s the agents have executed
until one falls into the black hole plus the shortest path from the last meeting
point to s.

An agent discovers the location of the black hole using a time-out mech-
anism. If the second agent doesn’t show up at a meeting point then it know
the exact location of the black hole as the agents visit only one unexplored
node during a phase each. Then the surviving agent returns to s.
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2.3.2 NP-hardness of BHS

The BHS problem in planar graphs is NP-hard. To prove this, a reduction
from a specific version of the Hamiltonian cycle problem to the decision ver-
sion of the BHS problem is used.

Hamiltonian cycle problem for cubic planar graphs (cpHP)

Instance: a cubic planar 2-edge connected graph G(V,E) and an edge
(x,y) € E.
Question: does G contain a Hamiltonian cycle that includes edge (x,y)?

The cpHP problem without the requirement that the Hamiltonian path
passes through a given edge is NP-complete and so this one is also NP-

complete because of a simple reduction.

Decision Black Hole Search problem for planar graphs (dBHS)

Instance: a planar graph G' = (V’', E’), a starting node s € V' and a
positive integer X.

Question: does there exist an exploration scheme g, for G’ starting from
s, such that the BHS based on &¢ s has cost at most X7

For the reduction from ¢cpHC to dBHS, let G = (V,E) and (z,y) an
instance for cpHC. We construct the corresponding instance of the dBHS
problem following the steps described below.

1. Replace edge (z,y) in G with edges (z,s), (s,y), s a new node. Get
graph G.

2. F the set of the faces of G. Identify each f € F with the sequence of
the consecutive edges adjacent to f.

3. For each f and each edge (v,w) adjacent to f, add a new node z}v’w)

(v,w) (v,w)

and two edges (v, 2; ), (w,z; ).

4. For each f = (e1,ez,...,e3) € F, add the shortcut edges (2§, 25),
(27, 25), -, (257, 25).

5. For each v € VU {s} \ {z} add a new node v*" (flag node) and edge
(v,0").
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6. Obtain G'. Set X =n'—1=>5n+2, wheren’ =n+1+2(e+1)+n =
5n+3 the number of nodes in G’, n, e nodes and edges in G respectively
(e =3n).

f//

(v,w)

Zf//

Note that each edge e in G is adjecent to exactly two faces f’, f”. The
nodes z§,, 2%, added are called twin nodes for e. Also, G is planar and can
be constructed in linear time. The nodes in G’ inherited from G are called
original nodes.

The following Lemmas prove that graph GG has a Hamiltonian cycle pass-
ing through edge (z,y) if and only if there is an exploration scheme for G’
and the starting node s with cost at most X = 5n + 2.

Lemma 2.3.1. If G has a Hamiltonian cycle that includes (x,y), then there
exists an exploration scheme E¢ ; on G from s such that the BHS based on
it has cost at most bn + 2.

Lemma 2.3.2. If there exists an exploration scheme Eq s on G' starting
from s such that the cost of BHS based on it is at most bn + 2, then G has
a Hamiltonian cycle that includes edge (x,y).

The proof of lemma [2.3.1| uses the following exploration scheme for graph
G/

Let {v1 = y,e1,V2,...,€n_1,Un = T,€,,v1 = y} be a Hamiltonian cycle in
G that includes (z,y).

1. b-split(s, s, y).
2. a-split(s, z1, 29, ¥), 21, 22 the twin nodes of (s,y).
3. for each v; of the Hamiltonian cycle (i =1,...,n —1):

(a) let v; be the third neighbor of v; (other than v;_;, v;41); if 7 >4
then b-split(v;, 21, 22), 21, 22 the twin nodes of (v;, v;).
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(b) b-Split(Ui, UiF7 Ui—&—l)‘

(c) a-split(v;, 21, 22, vi11), 21, 22 the twin nodes of (v;, v;11).

4. a-split(x, 21, 29, ), 21, 22 the twin nodes of (z, s).

Lemmas [2.3.1], imply the following theorem.

Theorem 2.3.3. The dBHS problem for planar graphs is NP-hard.

2.3.3 An approximation algorithm for the BHS

The idea to construct an approximation algorithm for the BHS problem in
arbitrary networks is to find a spanning tree in G and explore the graph by
traversing its edges. A simple example of this approach is having both agents
traverse the tree together in depth-first order. One explores a new node p
while the other waits in the parent of p. This example gives an approximation
ratio of 4 as observed in [CKMPO05], in the sense that any exploration of an
n-node graph requires at least n — 1 steps while the example we described
explores an n-node tree within (4(n — 1) — 2l) steps, where [ is the number
of leaves.

To follow this approach effectively a good exploration scheme for trees and
an algorithm for constructing spanning tree of (G, suitable for the scheme,
are needed.

We will first try to describe the exploration scheme for trees given. This
scheme guarantees an approximation ratio of at most 3%.

Let T be an n-node tree rooted at s, n > 2. The idea for the scheme
is to partition the z children of an internal node p into two groups, |z/2],
[£/2]. Then agents follow the depth-first traversal of internal nodes and
when Agent-1 comes to a new node it visits all its children in the first group
and respectiveley, when Agent-2 comes to a new node it visits the children
in the second group.

Now we will define an order Ly of all unexplored nodes of T'. We order
the children of a node according to the number of its descendants so that
one with more descendants comes before and the ties are resolved arbitrarily.
If I7 = (ws,...,wy) is the sequence of the internal nodes in the depth first
order, then Lt is the same sequence if we replace each w; with its children
(ordered). Then Lp contains all nodes of T except s and each node occurs
only once in Lp. Let v; be the i-th node in the order Ly and P; be v;’s parent.

We also need to classify all nodes of T' except s:

e type-1 nodes: the leaves;
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e type-3 nodes: the internal nodes with at least one sibling;
e type-4 nodes: the internal nodes without siblings.

We define z; to be the number of type-t nodes.

The exploration scheme

Consider a tree T" with no type-4 nodes but with an odd number of nodes
n=2¢+12>3.
We also define P(u,r) to be the sequence of the nodes on the tree path
from node u to node r, excluding u. If u = r, P(u,r) is the empty sequence.
Now, we define the exploration sequences X, Y for Agent-1, Agent-2
respectively as follows:

XT:<8>O¢%O¢%O...O¢;

YT:<S>O¢%O¢§O...O¢2
where

%1' = P(paj_2,P2j-1) © (V2j-1,P2j-1) © P(p2j—1, P2;)

¢7 = P(paj—2,p2j-1) © P(p2j-1,p2) © (V3. Pay)-

It is easy to see that the sub-sequences gzﬁjl., gb? have the same length and
both end at the same node (py;). Moreover, the described exploration scheme
satisfies the constrains given earlier. The cost of the BHS based on it is equal
to 1 + 3x3.

Because the above scheme is constructed for trees with no type-4 nodes,
we will extend it so that it also applies to trees containing type-4 nodes.
Consider a tree T that may have type-4 nodes. Then for each type-4
node, add a new leaf [ as its sibling and if the total number of nodes is odd,
add one more leaf to an arbitrary internal node. Now the obtained tree T’
has no type-4 nodes and has an odd number of nodes, thus we obtain an
exploration scheme & = (Xr,Y7) from & = (Xgv, Y7v) by replacing the
traversal of the new edges with waiting.

Lemma 2.3.4. If T is a tree rooted at s with n > 2, the exploration scheme
Er = (Xp,Yq) for T is feasible, can be constructed in linear time and its cost
1S at most

I +3J]3+4$4+ ]_
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Generating a good spanning tree

We will now present an algorithm which computes a spanning tree T of a
given graph G = (V| E), trying to achieve a relatively small value of z; +
3r3 + 44 + 1, thus trying to avoid creating type-4 nodes.

We define to be the set of nodes in the current tree 7" (initially, Vp = {s}),
Vi =V \ Vr the set of external nodes, an external neighbor of u is a neighbor
of v in G that belongs to V1, an expandable leaf in T is a leaf which has at
least two external neighbors and an ezpandable external nodeis a node in Vo
which has at least one neighbor in 7" and at least two external neighbors or
at least three external neighbors.

We are ready now to describe the algorithm which is divided in two parts.

Part 1

1. If there is an expandable leaf in T', extend T by selecting an arbitrary
expandable leaf u and attaching to it all its external neighbors.

2. If there is no expandable leaf and if there is an expandable external
node, then:

- P = (uj,us,...,u;) a path in G of external nodes, u; is the only
one adjacent to T', uy is the only expandable external node on P.

up a node in T" adjacent to uy;

- Wi, Wy, ..., w; the neighbors of u; which are neither in 7" nor on
P;

- ug must be a leaf in T,

3. extend T by attaching P to ug and wy, ..., wy as children of uy. Now
P is called a mid-tree path.

Let T be the tree at the end of the first part. Then there is no expand-
able external node left in 77 and what remained from G is just paths. Only
end nodes of these paths are adjacent to 77, at least one for each path. Let
P be the collection of these paths.

Part 2

e If a path P has two end nodes adjacent to T, split to P’, P” and
replace P with those in P.

e Now each P has only one end node adjacent to 77.
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e For each P, extend Tj by attaching P to a neighbor of w; in T} (leaf).
If P has at least two nodes, it’s called a leaf path (without wy).

When the second part ends (i.e. all paths from P are attached to T'), T
becomes a spanning tree Tz and it is returned by the algorithm.

This algorithm completed the attempt to find a solution for the BHS
problem in an arbitrary network. The technique used for this algorithm
is based on finding a suitable spanning tree of the input graph and using
an algorithm for constructing exploration schemes for trees, construct an
exploration scheme for the spanning tree and take it as an exploration scheme
for the given graph. It can be shown that no graph exploration using this
technique can guarantee a better approximation ratio than % Also, the
3% ratio for the STE algorithm can be improved for restricted graphs, or
using other methods (like selecting a maximal forest of bushy trees and then
connecting them into a spanning tree), but it is believed that to obtain a
much better ratio, one would need to abandon the idea of spanning trees, or
at least improve it with some new ideas.
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Chapter 3

The Periodic Data Retrieval
Problem

The Periodic Data Retrieval problem is the problem of locating a malicious
host and then visiting every other (safe) node infinitely often. We will ex-
amine this problem in an asynchronous ring with FIFO links. This problem
was introduced by Miklik, Kralovic in [KM10], where they proved that the
problem cannot be solved with two agents, using the fact that the network is
asynchronous and therefore one cannot distinguish the case of an agent that
has beem killed from the one that the agent is too slow.

3.1 Network model and problem definition

The agents operate in a ring network where each node contains one host
(we will use the terms “host” and “node” interchangeably). Each host is
identified by a unique label, and is connected to each of its two neighbors
via labeled communication ports. Each port is associated with two order-
preserving queues: one for incoming agents and a second one for outgoing
agents. Additionally, each host contains a whiteboard, i.e., a piece of memory
that is shared among the agents present in the node at any given time,
and a queue of agents who are waiting to acquire access to the whiteboard.
Neighboring hosts are connected via bidirected asynchronous FIFO links,
forming an undirected graph G.

The agents are modeled as deterministic three-tape Turing machines: the
first tape serves as the private memory of the agent, the second tape holds
the label of the port to which the agent wishes to be transferred, and the
third tape holds a copy of the whiteboard of the current node, if the agent has
acquired access to the whiteboard. All agents are initially located on the same

29
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node of the network, which we will call “the homebase.” Each agent possesses
a distinct identifier and knows the complete map of the network. The only
way for agents to interact with each other is through the whiteboards: they
are not aware of the presence of other agents on the same node or on the
same link, and they cannot exchange private messages.

Each host is responsible for removing agents from the front of its incoming
queues and executing them. We assume that this happens in one atomic step,
i.e., as soon as one agent is removed from the front of an incoming queue,
no other agent in that node can execute a transition before it executes its
own first transition. The host is also responsible for executing the agent
that is at the front of the whiteboard queue. Finally, the host is responsible
for removing agents from the front of its outgoing queues and transmitting
them over the link to the neighboring node (the whiteboard tape is not
transmitted). The host has to perform these tasks while ensuring fairness:
no queue can be neglected for an infinite amount of time. Each host is
capable of executing multiple agents concurrently. The set of states of each
agent contains special states corresponding to the following actions:

1. Request the whiteboard lock (qeq): When an agent enters this state,
it is inserted in the whiteboard queue. We assume that this happens
atomically, i.e., any other agent who subsequently enters this state will
be placed in the whiteboard queue behind this agent. Its execution is
suspended until it reaches the front of the queue. When this happens,
the host continues to execute this agent (possibly concurrently with
other agents who are not accessing the whiteboard) without removing
him from the whiteboard queue. Simultaneously with the transition
from gyeq, the whiteboard of the node is copied to the third tape of the
agent.

2. Release the whiteboard lock (g.): When an agent enters this state, its
whiteboard tape is copied back to the whiteboard of the node and the
agent is removed from the whiteboard queue.

3. Leave through a specified port (gport): When an agent enters this state,
it is atomically inserted in the outgoing queue of the port indicated on
its second tape. If the agent has not yet released the whiteboard lock,
its whiteboard tape is also copied back to the whiteboard of the node
and the agent is removed from the whiteboard queue.

The system is asynchronous, meaning that any agent can be stalled for
an arbitrary but finite amount of time while executing any computation
or traversing any link. We assume that the system contains exactly one
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malicious host which may deviate from the system specification in several
ways:

1. It can choose to kill any agent which is stored in any of its queues or is
being executed. In this case, the agent disappears without leaving any
trace, apart from what it may have already written on the whiteboards.

2. It can operate without fairness, i.e., it can neglect one or more of its
queues forever.

3. It can choose to transmit an agent to a node different from the one that
it requested to be transmitted to, or it can transmit an agent without
the agent asking for a transmission.

4. Tt can choose to execute (resp. forward) any agent in the incoming or
the whiteboard (resp. outgoing) queues, without respecting the queue
order.

5. It can create and execute multiple copies of an agent at any stage.

6. It can choose to provide to each agent that requests access to the white-
board a completely different whiteboard tape, possibly erroneous or in-
consistent with the whiteboard tapes that it has provided to the other
agents.

7. It can tamper with the state of any agent which it is executing.

The agents do not have any information on the location of the malicious host,
except from the fact that the homebase is safe.

In the case that the malicious host can only deviate from the system
specification in the first way (i.i. kill an agent when it chooses to), we say
that it is a gray-hole.

In our case, the malicious host z, apart from killing a visiting agent when
it wishes, can also transmit the visiting agent to a different destination node
than the agent requested or even without the agent requests a transmission.
Host & may also serve incoming agents in different order than the order they
arrived. Finally x may copy an incoming agent A and forward A more than
once. We call such a malicious host a red-hole. The location of the malicious
host is unknown to the agents. Unless explicitly mentioned, the red-hole
cannot change the contents of its whiteboard or the state (i.e., memory) or
the identity of a visiting agent.

The agents operate in the network and their aim is to deliver the data from
any safe node to the homebase infinitely many times. During the delivery,
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the data may be stored at an intermediate node and possibly read by another
agent before reaching the homebase. This problem is known as the Periodic
Data Retrieval problem.

Definition 3.1.1 ([KMI10]). Consider an arbitrary execution of the system.
A node w is said to be reported from time t if there exist a natural num-
ber r, a sequence of (not necessarily distinct) agents Ay, ..., A, a sequence
of nodes vy, ...,v,., and an increasing sequence of times tg < --- < t,, such
that vg is w, v, is the homebase, t < ty, and, for each i, agent A; visits
node v; at time t; and node vy, at time t,, where t; <t < t;i1.

An algorithm solves the Periodic Data Retrieval problem if in any erecu-
tion, for any node v and any time t, v is reported from time t.

3.2 Lower Bounds

Before we present the algorithms for the Periodic Data Retrieval problem we
will give a new lower bound for the problem proving that no algorithm can
solve this problem using three agents.

Theorem 3.2.1. No algorithm can solve the Periodic Data Retrieval problem
in rings containing a red-hole with reliable whiteboard using less than four
agents.

Proof. Clearly any algorithm using only one agent cannot solve the problem.
Consider an algorithm using more than one agents. Let u, v, w, z be adjacent
nodes in clockwise order. Suppose agent A is the first agent blocked while
going from node v to node w. One of the remaining agents has to visit at
least one of the nodes v, w, since otherwise agent A may have been vanished
while leaving v or entering w and not all safe nodes are visited. If a second
agent B visits v or w then B may also vanish and therefore two agents are
not enough. Hence a second agent, say B has to visit v or w and for the
same reason, a third agent C' has to visit v or w. If agents B and C visit
the same node then all of them may vanish. Hence suppose that B wants to
visit node v and C' wants to visit node w.

If B tries to visit v traveling counterclockwise then both A, B may have
been vanished either while A exits v and B enters v or while both enter w
(from different directions). Hence the adversary may select the location of
the red hole to be either v or w and therefore agent C' will vanish as well
when it visits any of those two nodes.

Suppose that B visits v traveling clockwise and C' visits w traveling coun-
terclockwise. Suppose also that agent B is unblocked. If B next visits w then
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all agents may vanish. For the same reason if agent C' is unblocked and C'
visits v then again all agents may vanish. Hence when B is unblocked it must
visit u and when C' is unblocked it must visit z. Now suppose that agent A
is unblocked and sees that B has left v going to u and C' has left w going to
z.

o If agent A decides to visit z then both A, C' may vanish on the link
(w, z) and since B has to visit either w or z all agents may vanish.

e Similarly as before, if agent A decides to visit v then both A, B may
vanish on the link (v, u) and since C' has to visit either v or u all agents
may vanish.

e If agent A does not visit u, z then it can only move on the link (v, w).
Since all safe nodes have to be visited, agents B and C have to travel
in opposite directions: B counterclockwise and C' clockwise. If they
never visit the same node then one of them may vanish and therefore,
after that, there will be nodes never visited by the other agent. If they
visit the same node then both may vanish and (since A moves between
u and v forever), not all safe nodes will be visited periodically.

&

Therefore an algorithm which solves the Periodic Data Retrieval problem
requires at least four agents.

3.3 The Algorithms

The first algorithm we will describe is the one presented in [KMI0].

First of all, when an agent enters a node and since it has the whiteboard
lock and before it performs any other actions, it writes on the whiteboard
its ID, the number of the steps it has walked, the node it came from and the
node it wants to visit next. Also each agent has an internal variable called
transfer_ID for the ID of the node it wants to be transfered to and another
one called steps which counts the numbers of its steps.

We will call an agent clockwise if it travels in the clockwise direction on
the ring and respectively counterclockwise if it travels in the counterclockwise
direction.

The agents use the cautious walk to visit a node, i. e. one step forward,
on step back, one step forward. When they start the first step forward of
their cautious walk they leave a flag at the port they left from and they
remove the flag when they start their second step forward.
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If an agent makes the first step of its cautious walk and finds that there
is a flag at the port it would like to use, then it bounces, i.e.makes the back
step but does not complete the cautious walk; it starts walking using cautious
walk in the opposite direction.

Now, to prevent the malicious node from forwarding an agent without
running it or sending an agent to a node without the agent’s request, the
agent when entering a node compares its transfer_ID to the node’s ID and
if it is not equal, it dies. Therefore, forwarding an agent without running it
or sending an agent to a node without the agent’s request is equivalent to
killing the agent.

Forwarding an agent more than once can also be prevented using the
steps variable. Since an agent’s steps are also stored in nodes, the agent can
detect if it was forwarded over a link more than once and, if this is the case,
die.

When an agent is about to leave a node while still holding the whiteboard
lock it first gets a copy of the list with the agents that left the node before
from the same port. When it arrives to the next node it compares that list to
the one which contains the agents who came to that new node from that port.
If it finds a difference it dies. Therefore, if the malicious node try to break
the FIFO property of the nodes the agent will know and die so breaking the
FIFO property is equivalent to killing the agent.

If the malicious host decides to kill an agent in the middle of its computa-
tion, then the lock of the whiteboard is never releases thus every other agents
that reaches the malicious host will wait forever effectively being killed too.

So without loss of generality we can assume that the malicious node
cannot do any of the above.

Krélovic and Miklik in [KMI0] proved that with this algorithm at most 8
agents die, therefore 9 agents can solve the Periodic Data Retrieval problem.

3.3.1 A new 7-agent algorithm

Agents move using the cautious walk. Suppose that an agent A moves clock-
wise and suppose it moves from node u to node v. Since A moves using the
cautious walk, it takes on step in the clockwise direction and then one step
in the counterclockwise direction, from v to w. During this back step, the
agent won’t take a copy of the list with the agents that left v to visit u. Thus
it ignores all counterclockwise agents.



3.3. THE ALGORITHMS 35

We will use the notation u™ (resp. u~ for a flag that a clockwise (resp.
counterclockwise) agent left at node u. Thus, a u™ flag can be found only at
the clockwise port of u and a v~ flag can be found only at the counterclock-
wise port of wu.

Therefore, the agents will follow the algorithm described above but with
this modification which makes the algorithm even simpler but also allows us
to prove that 7 agents can solve this problem.

The following lemmas lead us to this conclusion. For all lemmas we
assume that w is the black hole and its two adjacent nodes are u and v.

O, O, ©

Lemma 3.3.1. If a flag is left at u™ at time t then no clockwise agent is
killed aftert.

Proof. If a flag is left at u™ then every other clockwise agent that reaches u
will bounce and continue in the opposite direction. Therefore, no clockwise
agent can be killed. O

Lemma 3.3.2. If a flag is left at w™ at time t then at most one clockwise
agent is killed after t.

Proof. Let B be the next clockwise agent that is killed. Then w can kill
B only right before entering or right before leaving w, otherwise B would
bounce and continue in the opposite direction because of the flag at w.
Thus B leaves a flag at u* and by Lemma no other clockwise agent will
be killed. &

Lemma 3.3.3. If an agent is killed at w at time t, and leaves no flag at u™,
w™, then the next clockwise agent that is killed at w at time ty > t; leaves a
flag at u™ or wt or the third clockwise agent that is killed at w leaves a flag
at u™.

Proof. Let A be the first clockwise agent that is killed at w without leaving
a flag at u™, w™, B the second clockwise agent that is killed at w and C' the
third one.

The only possible ways of A dying without leaving a flag are while travers-
ing the link u — w or w — v for the second time.

(a) A dies while traversing the link v — w for the second time.
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Then B dies traversing the same link for the first time because of A’s
death and leaves a flag at u™.

(b) A dies while traversing the link w — v for the second time.

Then one of the following will happen:
(i) w kills B right before or right after visiting w for the first time thus
B leaves a flag at u™.

(ii) w kills B right before entering w for the second time. Then C' will
die while traversing the link v — w for the first time because of B’s
death and leaves a flag at u™.

(iii) B is killed while traversing the link w — v for the first time (by w
or because of A’s death) leaving a flag at w™.

o

By lemmas [3.3.1] [3.3.2] and [3.3.3| we have:

Theorem 3.3.4. At most three agents coming from the same direction die
at w.

The above theorem immediately implies that at most six agents will die
in w.

Theorem 3.3.5. At most siz agents die at w.

3.3.2 An optimal algorithm

Before presenting an optimal algorithm for the problem let us give some
preliminary definitions.
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e The whiteboard at any node v contains a queue W BoardQueue(v)
and an another queue W BoardList(v). Any agent A at v requests
access to the whiteboard when W BoardQueue(v) is empty. When
the access is granted (assuming a mutual exclusion mechanism), agent
A inserts its ID in W BoardQueue(v) and until W BoardQueue(v) is
again empty, no other agent coming to v may request access. Agent A
completes its computations at v and departs from v removing its entry

from W BoardQueue(v).

e When an agent A is ready to depart from a node v with destination
an adjacent node w in selected direction dir, it first gets a copy of
a queue W BoardList(v) which is stored in the whiteboard (initially
W BoardList(v) is empty). Then, the agent inserts the message <
AgentI D, depart, dir, Stp > in W BoardList(v), where AgentID is A’s
ID, depart is a constant, dir is the selected direction (ClockWise or
CounterClockWise), and Stp is the total number of traversals done by
A. Then A may (depending on its computations) put a flag on node v
which will be v~ (if the selected direction is CounterClockWise) or v™
(if the selected direction is ClockWise). Then A removes its entry from
W BoardQueue(v) and moves in direction dir to an adjacent node w.

e Immediately after an agent A has come to a node w from a node v trav-
eling in direction dir and after has been granted access to its white-
board, it gets a copy of a queue W BoardList(w) which is stored in
the whiteboard (initially W BoardList(w) is empty). Then A checks
for inconsistencies between W BoardQueue(v) and W BoardQueue(w).
If A finds an inconsistency then it places a flag at the incoming port
of w, removes its entry from W BoardQueue(w) and deactivates itself.
A also checks whether it itself is a copy created by the red-hole. If
this is the case it can imply that the red-hole location is at node v
and in that case can periodically visit all safe nodes without visiting
v. Finally, A checks whether w is the node which had been selected
as a destination by A before moving from v. If w was not the selected
destination then if the distance between v and w is 1 it implies that
the red-hole location is at node v, otherwise the red-hole location is at
the selected destination. And in any of those cases it can periodically
visit all safe nodes without visiting the red-hole location. If no errors
are found, A inserts the message < AgentID,arrive,dir, Stp + 1 >
in W BoardList(v), where AgentID is A’s 1D, arrive is a constant,
dir is the direction (ClockWise or CounterClockWise) at which A was
moving before entering w, and Stp+ 1 is the total number of traversals
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done by A. Then A may (depending on its computations) remove a
flag from node w which had been placed by A earlier and is w™ (if dir
is ClockWise) or w™ (if dir is CounterClockWise). Then A computes a
new direction to move, removes its entry from W BoardQueue(w) and
is ready to depart.

Now we are ready to present the algorithm. Let u,v be two adjacent

nodes, where v is clockwise of u. Consider an agent A at w. A high level
description of the algorithm is the following.

e If u is the HomeBase then A waits until W BoardQueue(u) is empty

and at least one port of u does not have a flag. Agent A inserts its ID
in W BoardQueue(u) and then chooses the direction which does not
have a flag (or ClockWise if both ports of u are free).

If w is not the HomeBase then A waits until W BoardQueue(u) is empty
and then inserts its ID in W BoardQueue(u). If A can continue moving
in the same direction as before (i.e., the port of uw in that direction is
free) then A selects this direction, otherwise A selects the opposite
direction (i.e., going back).

Suppose that the selected direction is ClockWise (i.e., there is no flag u™). A
leaves a message at v and a flag u™, removes its ID from W BoardQueue(u)
and moves to node v. After A reaches v it waits until W BoardQueue(v) is
empty and inserts its ID in W BoardQueue(v). (We sometimes refer to this
move from u to v as ‘the first part of the phases’.) Then:

e If there is a flag vt or v, agent A leaves a message at v, removes its ID

from W BoardQueue(v) and returns to u. After A reaches u it waits
until W BoardQueue(u) is empty, inserts its ID in W BoardQueue(u)
and then A removes flag u™, and leaves a message at u. If A can con-
tinue moving in the same direction (i.e., there is no flag v~) then A
selects this direction, otherwise A selects the opposite direction (i.e.,
towards v). Then A removes its ID from W BoardQueue(u). We call
this cycle (together with the first part of the phases) from u to v and
back to u Phase-1. Phase-1 starts when agent A removes its ID from
W BoardQueue(u) and finishes when A (after coming back to u) re-
moves its ID from W BoardQueue(u).

If there is a no flag at v, agent A leaves a message at v and a flag
v~, removes its ID from W BoardQueue(v) and returns to u. After
A reaches u it waits until W BoardQueue(u) is empty, inserts its 1D
in W BoardQueue(u) and then A removes flag u™, leaves a message
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at u, removes its ID from W BoardQueue(u) and again moves to wv.
After A reaches v it waits until W BoardQueue(v) is empty, inserts
its ID in W BoardQueue(v) and then A removes flag v~ and leaves a
message at v. If A can continue moving in the same direction (i.e.,
there is no flag v™) then A selects this direction, otherwise A selects
the opposite direction (i.e., towards u). Then A removes its ID from
W BoardQueue(v). We call this zig-zag (together with the first part
of the phases) from u to v, back to u and then again to v Phase-2.
Phase-2 starts when agent A removes its ID from W BoardQueue(u)
and finishes when A (after coming for the second time to v) removes
its ID from W BoardQueue(v).

The agent is instructed to execute an infinite sequence of phases.

In the analysis of the algorithm we assume that no agent has found the
exact location of the red-hole, since in such a case, this agent (which has a
map of the ring) can periodically visit all safe nodes of the ring.

Let u,v be adjacent nodes. Suppose that an agent A starts a phase at
u, after having selected to move towards v. We say that ‘agent A enters
link (u,v)’. We also say that ‘agent A exits link (u,v)’ when the phase has
finished.

Before proving the correctness of the algorithm we give a few preliminary
lemmas.

Function Symbol(dir)

. if dir = ClockWise then
return ‘+’

else
return ‘-’

—_

Lemma 3.3.6. Let u,x,v be adjacent nodes in clockwise order and x be the
red-hole node. Consider the following configuration: there are, i) flag u™ or
flag v~ or an agent blocked at u (i.e., having the access of the whiteboard
at u) or an agent blocked at v (i.e., having the access of the whiteboard at
v) and i) an agent blocked (or vanished) at x (i.e., having the access of
the whiteboard at z) or a flag at x. Then at most one more agent (executing
Algorithm PeriodicTraverse) can enter either link (u, ) (starting its phase
at w) or link (v, x) (starting its phase at v).

Proof. Suppose wlog there is either a flag u™ or an agent blocked at u (i.e.,
having the access of the whiteboard at u). Since there is also a flag at  or an
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Procedure Check(DepList, ArrList, src, v, w, dir, Stp)
1: if v # w then
2. if distance(src,w) = 1 then
3: HoleFound(src)
4: else
5: HoleFound(v)
6: if 3 N: < AgentID,arrive,dir, N > € ArrList, where Stp < N then
7. HoleFound(src)
8: for all M: < M, depart,dir, N > € DepList do
9: if < M,arrive,dir, N +1 > ¢ ArrList then

10: Put a flag Symbol(Opposite(dir)) at w

11: Remove < AgentID > from W BoardQueue(w)
12: Deactivate

13: for all M: < M, arrive,dir, N +1 > € ArrList do
14: if < M, depart,dir, N > ¢ DepList then

15: Put a flag Symbol(Opposite(dir)) at w

16: Remove < AgentID > from W BoardQueue(w)
17: Deactivate

agent blocked at z (i.e., having the access of the whiteboard at ), another
agent C' can only enter link (x,v) starting starting its phase at node v and
thus leaving a flag v~ at v. Moreover, this agent C' will be either blocked
at x or executing a Phase-1. At the end of its phase, C' may be blocked for
some time at v. In any case no other agent can enter links (u,x) or (v, z)
until C exits link (z,v) from v. &

Lemma 3.3.7. Let u,x,v be adjacent nodes in clockwise order and x be the
red-hole node. Consider two agents (following Algorithm PeriodicTraverse)
that have entered at links (u,x), (v,z). Then the following configuration ap-
pears and remains until one agent exits both links: there are flags u™ and v~

or both (i) and (ii) below hold:

e i) aflagu™t ora flagv~ or an agent blocked at u (i.e., having the access
of the whiteboard at u) or an agent blocked at v (i.e., having the access
of the whiteboard at v) and

e ii) an agent blocked (or vanished) at x (i.e., having the access of the
whiteboard at x) or a flag at x.

Proof. Let A, B be the two agents that have entered at links (u, z), (v, x).
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Function Phase(CurrNode, PhaseState, dir, Stp)
1: Let v be the node which is adjacent to CurrNode in direction dir
2: DepList < W BoardList(CurrNode)
3: Insert < AgentID,depart,dir, Stp > at W BoardList(CurrNode)
4: if ((PhaseState = 0) OR (PhaseState = 3)) then
5. Put a flag Symbol(dir) at CurrNode
6: Remove < AgentID > from W BoardQueue(CurrNode)
7: Move in direction dir to v
8: Let w be the reached node
9: Wait until W BoardQueue(w) is empty

10: Insert < AgentID > at W BoardQueue(w)

11: ArrList <~ W BoardList(w)

12: Check(DepList, ArrList, Curr Node, v, w, dir, Stp)
13: Insert < AgentI D, arrive,dir, Stp + 1 > at W BoardList(v)
14: if PhaseState = 0 then

15:  if there are no flags at v then

16: PhaseState < 3

17.  else

18: PhaseState < 1

19: else

20:  PhaseState < PhaseState + 1

21: return PhaseState

Procedure HoleFound(H oleNode)
1: Visit periodically all nodes apart from HoleNode ignoring any flags

e Case 1: Both agents started their entering phases at the same adjacent
node of x. Suppose without loss of generality that this node is wu.
Suppose also wlog that agent A departed first from node u (hence
placing a flag u™). Since B cannot leave node u going towards x before
A returns to u and removes the flag, A must have been executing
a Phase-2. Then A is either vanished or blocked before finishing its
phase or exits link (u,z) from z. Agent B may enter link (u,z) and
until either B exits link (u, x) from u or A exits link (u, z) from « there
is a flag u™ (or B is blocked at u) and either A is blocked at x or there
is a flag at x.

e Case 2: Agent A started at u and B at x entering link (z, u).

a) If A is vanished before getting access to x’s whiteboard and B is van-
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Function Initialize(s)

1:

Wait until ((W BoardQueue(s) is empty) AND
(at least one port of s without a flag))

Insert < AgentID > at W BoardQueue(s)

if there are no flags at s then

dir < ClockWise

else

Let dir be the direction of s without a flag

return dir

ished before getting access to u’s whiteboard then there are permanent
flags ™ and x~.

b) If A gets access to x’s whiteboard before B appears at x to start its
entering phase then:

— If there is no flag x* at = (flag = is impossible since A, B are
the only ones entered links (u, ) and (v, x)) then A will continue
performing a Phase-2, placing a flag . Hence in that case B will
not be able to enter link (z,u) before A finishes its phase.

— If there is a flag 2+ at z then A will continue performing a Phase-
1. If A is vanished while coming back to u then after B enters link
(z,u) (placing a flag 2~ at x) will block itself at u. Otherwise,
until A finishes its phase and exits link (u, z) or B exits link (u, x),
there will be (an agent blocked at u or a flag u™) and (an agent
blocked at x or a flag ™ at x).

c) If A gets access to x’s whiteboard after B appears at = to start
its entering phase then if B is blocked at x, A will be also blocked
while there is a flag u™. The remaining case is that A gets access
to x’s whiteboard after B has entered link (x, ) having placed a flag
x~. Hence A continues performing a Phase-1. If B is vanished before
getting access to u’s whiteboard then flags vt and z~ permanently
remain. Otherwise B will get access to u’s whiteboard before A finishes
its phase. Hence B will continue performing a Phase-1 and until A exits
link (u, z) or B finishes its phase (there is a flag u™ or an agent blocked
at u) and (there is a flag = or an agent blocked at z).

d) If B gets access to u’s whiteboard before A appears at u to start its
entering phase then if B performs a Phase-2 then A will not be able to
enter link (u,x) until B finishes its phase. Hence B should perform a
Phase-1. If A or B vanish before B finish its phase then there will be a
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Algorithm PeriodicTraverse

1: PhaseState < 0
2: Stp+ 0
3: Let s be the HomeBase node
4: dir < Initialize(s)
5. NewPhaseState < Phase(s, PhaseState, dir, Stp)
6: Stp < Stp+ 1
7: loop
8  Let s be the current node
9:  PhaseState < NewPhaseState
10:  switch (PhaseState)
11:  case 1, 3: dir < Opposite(dir))
12:  case 2:
13: Remove flag Symbol(Opposite(dir)) from s
14: PhaseState < 0
15: if there is a flag Symbol(dir) at s then
16: dir < Opposite(dir))
17:  case 4:
18: Remove flag Symbol(Opposite(dir)) from s
19: dir < Opposite(dir))
20: case 5:
21: Remove flag Symbol(Opposite(dir)) from s
22: PhaseState < 0
23: if there is a flag Symbol(dir) at s then
24: dir < Opposite(dir))
25:  end switch
26:  NewPhaseState < Phase(s, PhaseState, dir, Stp)
27 Stp <+ Stp+1

permanent flag u™ and either a permanent flag 2~ or an agent blocked
forever at x. If none of them vanish until B finishes its phase there will
be a flag ut and either an agent blocked at x or a flag at x.

e Case 3: Agent A started at w and B at x entering link (z,v). If B
executes a Phase-1 then until B finishes its phase or A finishes its
phase (which has to be also a Phase-1) and exits link (u,z) from w,
there is a flag u™ and either a flag ™ or an agent blocked at x. If B
executes a Phase-2 then it places a flag v~ and upon B’s return to =,
flag u™ remains. If B removes " from z while performing its Phase-
2 before A reaches x then A will place a flag = at x (performing a
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Phase-2) before removing flag u* from u. Flag v~ and either a flag 2~
or an agent blocked at x remain until either A finishes its phase or B
exits link (z,v).

Case 4: One agent started its entering phase at u and the other one
at v. Suppose wlog that agent A started at v and B at v. If both of
them vanish before they get access to x’s whiteboard then there are
permanents flags v and v~. Suppose wlog that A is the first one that
gets access to z’s whiteboard. As long as A is blocked at x the flags
u™ and v~ remain. If A is unblocked then he has to continue its phase
which will be a Phase-2 (B has not yet been able to place a flag at x).
Hence A places a flag x~ at . There is (a flag x~ or agent A is blocked
at x or a flag ™) and v~ which remain until either A finishes its phase
(and until then B cannot enter link (x,u)) or B exits link (v, x) from
v.

Case 5: Both agents started their entering phases at x. Let A be the
first agent starting a phase at x entering wlog link (z,v). Then before
A finishes its phase, B should have entered either link (u,x) from u or
link (v, x) from v in both cases performing a Phase-2 (otherwise B will
not finish to x for starting its entering phase from x).

— Suppose that before A finishes its phase, B has entered link (u, x)
from u performing a Phase-2. If A executes a Phase-1 then B
cannot enter link (x,v) before A finishes its phase. Also B cannot
enter link (z,u) starting at = after A has started its phase and
before finishing because this would require that B approaches first
node = which does not have flags (hence placing a flag x7) and in
that case A could not perform a Phase-2 from v or u ending first
at x to start its entering phase. If A executes a Phase-2 then the
only way that B can start its phase at x before A finishes is when
B starts its phase at = after A has passed from z for the second
time (otherwise B could not end up at z performing a Phase-2
and if B approaches = before A appears then A cannot end up at
x first by a Phase-2 from u or v). Then until A finishes its phase
there is a flag 21 and either a flag v~ or an agent blocked at v.

— Suppose that before A finishes its phase, B has entered link (v, x)
from v performing a Phase-2. If B approaches x before A appears
at x then (since B places a flag x7), A cannot enter link (z,v)
before B finishes its phase. Hence A will not be the first starting
a phase at x entering link (z,v). If B approaches x after A has
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entered link (z,v), then A should perform a Phase-2 (otherwise
B will not be able to perform a Phase-2 before A finishes). But
it is impossible for both of them to perform a Phase-2 before A
finishes its phase.

&

Lemma 3.3.8. Let u,z,v be adjacent nodes in clockwise order and x be the
red-hole node. Suppose that three agents have entered the links (u,x), (v, z)
and they have not exited. Then the remaining agent following Algorithm
PeriodicTraverse periodically visits all safe nodes.

Proof. In view of Lemmas|3.3.7/and [3.3.6, after two agents have entered links
(u,z), (v,x) and have not exited at most one more agent can also enter the
links. Hence a forth agent will never enter those links. An agent following
Algorithm PeriodicTraverse never permanently leaves a flag unless is van-
ished at the red-hole or it is blocked at the red-hole where another agent has
vanished. Hence all nodes except x are periodically visited. &

In view of Lemma [3.3.8] and Theorem we get:

Theorem 3.3.9. Algorithm PeriodicTraverse solves the Periodic Data Re-
trieval problem in rings containing a red-hole using an optimal number of four
agents.
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Conclusion

In this thesis we first studied the Black Hole Search problem under vari-
ous settings, presenting also some interesting algorithms and impossibility
results.

The main part of the thesis dealt with the Periodic Data Retrieval Prob-
lem which we studied in the case of reliable whiteboards and we provided a
better upper bound for the number of agents needed and a matching lower
bound, thus giving an oprimal algorithm. As a byproduct we gave a simple
T-agent algorithm for the problem. Our optimal algorithm solves the Periodic
Data Retrieval Problem with 4 agents.

Regarding future research, it would be ineresting to study the following:

e the case of unreliable whiteboards, i.e. the malicious host may change
the content of the whiteboard; we wish to improve the number of agents
needed (the upper bound for this case is 27 agents as proved in [Mik10])
and provide new lower bounds for the problem,

e consider much stronger malicious host who may alter the agent’s state,
delete or change their memory, change their IDs, change their program
or even produce malicious agents,

e consider other topologies such as trees, grids, general graphs etc.

47
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