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CHAPTER 1 

SUBJECT OF STUDY AND LITERATURE 

REVIEW 

 

 

1.1.  Scope 

 

  In this thesis, we examine the response of deeply embedded foundations 

(caissons) under combined axial, horizontal and moment loading. The initial goal of the 

thesis is the production of  the soil-foundation system’s “failure envelopes”; at the same 

time an effort is made to describe the laws that govern the behavior of the herein 

examined deeply embedded foundations, attempting to demonstrate the physical 

interpretation of the “failure envelopes”. Furthermore, we attempt to appropriately utilize 

the results of three-dimensional finite element method (FEM) analyses, in order to propose 

closed-form analytical expressions capable of describing the capacities of the specific 

foundation type, as well as their yield surfaces. This approach is driven by the lack of 

complete tools that can effectively capture the behavior of embedded foundations under 

combined loading and by the need to develop an innovative mathematical tool, known as 

“macro-element”. In the following sections a layout of the thesis is provided , as well as a 

short review of the literature regarding the analysis of deeply embedded foundations. 
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1.2. Layout 

 

  The second chapter deals with the modeling of the soil – foundation system using 

the commercial Finite Element code ABAQUS. The geometrical characteristics and 

constitutive laws adopted in the models, along with the Mohr-Coulomb failure criterion are 

analyzed in detail. 

In the third chapter, we describe the methods for the conduction of the numerical 

analyses and present the results in terms of ultimate capacities and failure envelopes. 

Moreover, the importance of the use of the appropriate load reference point is examined 

and the method for the extraction of failure envelopes is analyzed. Throughout this 

chapter, the results of various embedment ratios as well as of different coefficients of 

friction are continuously compared. 

In the fourth chapter,  the soil deformation mechanisms that are mobilized during 

the failure of the herein investigated system are recorded; those mechanisms solely 

depend on the position of the examined point on the failure envelope. We classify the 

characteristic points of a failure envelope and map the yield locus on the M-Q plane. 

In the fifth chapter, “closed-form” analytical expressions are provided for the 

description of the foundation’s capacities. More specifically, we compose expressions 

appropriate for the description of the ultimate horizontal and moment capacities of 

caissons and eventually develop the suitable equations that describe the yielding of the 

herein examined foundation system. 

In the last chapter, the basic conclusions derived from this thesis are summed up 

and further research recommendations are given. 
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1.3. Use of deeply embedded foundations 

 

Figure 1.1 presents a rough categorization of the types of foundations that are 

generally used in order to support structural systems. Surface or shallow embedded 

foundations are distinguished by small slenderness ratios, while pile foundations are 

generally more slender elements. Caisson foundations lie somewhere in between in terms 

of slenderness or embedment; yet their limits are vague. The compressibility of the soil and 

the structural element should also be taken into consideration for a more realistic 

distinction of different foundation types.  

Caisson foundations have been widely used on both soft and hard soils in order to 

support major structures, especially bridges. Characteristic examples include:  

 the Tagus bridge in Portugal  

 the San-Francisco-Oakland bay bridge  

 the Williamsburg and Verrazano Narrows bridges in New York  

 the Port island and Nishinomiya-ko bridges in Japan  

Despite their large dimensions, caisson foundations have been shown not to be 

immune to seismic loading as it was believed for many years. This was confirmed in the 

Kobe (1995) earthquake, which caused many structures founded on caissons to suffer 

severe damage.  

 

Deeply embedded foundations have also been consistently used in major offshore 

structures, where the study of their response under combined vertical, shear and moment 

loading is of great importance. 



Chapter 1

 

 

 

 

12 

 

1.4. Caisson Foundations under lateral loading 

 

Although a great deal of research has been done on the response of surface or 

shallow foundations under lateral loading and as a result numerous methods have been 

introduced, there is still a relatively small number of studies concerning the response of 

deeply embedded foundations and especially caissons. In crudely chronological order 

[Gerolymos and Gazetas, 2006], previous work on caisson foundations include: the 

analytical solution of Tajimi [1969] for a cylindrical foundation embedded in a stratum and 

bearing on bedrock; the versatile approximate analytical solutions of Novak and Beredugo 

[1972+; the ‘consistent-boundary’ finite element formulations of Kausel and Roesset *1975] 

for circular foundations in layered deposits over bedrock; the boundary element solution 

for rectangular foundations in a halfspace by Dominguez [1978]; the semi-numerical 

formulation of Tassoulas [1981] applied to embedded cylindrical foundations with variable 

sidewall heights; the time-domain boundary element method of Karabalis and Beskos 

[1986]; the hybrid boundary-element and finite element solution of Mita and Luco [1989] 

for square foundations embedded in a halfspace; and the ‘flexible-volume’ substructuring 

technique of Tajirian and Tabatabaie [1981]. Harada [1981] developed an approximate 

analytical solution for cylindrical foundations combining Tajimi’s and Novak’s concepts. 

One of the most comprehensive studies on the seismic response of flexible and rigid 

caissons was conducted by Saitoh [2001+, who extended Tajimi’s approximation to account 

for caisson flexibility and for soil and interface nonlinearities (separation and gapping of the 

caisson from the soil). He showed that Novak’s plane strain approximation, logical as it may 

be, leads to inaccurate results. Most of the above methods refer to cylindrical foundations. 

Finally, a sophisticated and versatile Winkler model has been recently developed by 

Gerolymos and Gazetas [2006], which involves 4 types of nonlinear springs and is able to 

realistically simulate various foundation shapes, soil profiles, loading conditions and may 
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also account for interface nonlinearities. This model is analyzed extensively in the second 

part of this thesis.  

A comprehensive series of studies on the static and dynamic response of embedded 

rigid foundations having various plan shapes (ranging from rectangular of any aspect ratio 

to triangular) have been published by Gazetas, and co-workers [Gazetas, Dobry, Tassoulas 

1985; Gazetas, Tassoulas 1987(a) και 1987(b); Fotopoulou, Kotsanopoulos, Gazetas, 

Tassoulas 1989]. Utilizing an efficient boundary-element method, and numerous results 

from the published literature, they developed closed-form semi-analytical expressions and 

charts for stiffness and damping of horizontally and rotationally loaded arbitrarily-shaped 

rigid foundations embedded in homogeneous soil. Incomplete contact between the 

foundation vertical walls and the surrounding soil were taken into account in a crude way. 

Ample confirmation of the basic validity of some of the main concepts and results in these 

publications were recently provided by Gadre and Dobry [1998] through centrifuge 

modeling.  

However, the above-mentioned analytical expressions and charts cannot directly 

apply to multi-layered soils. Furthermore, it would be impossible to even crudely extend 

them for use with nonlinearly behaving soils, or to model realistically phenomena such as 

separation (gapping) and uplifting that may take place under strong static and seismic 

excitation. On the other hand, the widely available commercial finite-element and finite-

difference computer codes, while in principle capable of treating soil nonlinearities, are not 

yet an easy solution when rectangular caissons are studied (requiring a 3D mesh), 

embedded in deep soil deposits and subjected to seismic shaking (both requiring special 

and very distant boundaries), and undergoing strong oscillations with the aforementioned 

interface nonlinearities (requiring special interface elements).  

This has led researchers to approach the response of deeply embedded foundations 

on the basis of “failure envelopes” or “interaction diagrams”, namely the locus of points 
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that lead a foundation system to failure under combined M-Q-N loading [Zaharescu 1961; 

Ticof 1977]. Various studies have been published that deal with the capacity of –mainly- 

lightly embedded or surface foundations in the above sense [Roscoe and Schofield 1957; 

Bransby and Randolph 1998; Taiebat and Carter 2000; Gourvenec and Randolph 2003; 

Gourvenec 2004, 2007, 2008; Randolph and Gourvenec 2011, Ukritchon et al. 1998; Martin 

and Houlsby 2001;]  

 

In a typical caisson foundation, the vertical component of loading originates from 

the weight of the supported structure as well as the self-weight of the foundation, which is 

of considerable importance in contrast to shallow foundations. Regarding the horizontal 

force and the overturning moment, the general approach so far has been that of a sDoF 

oscillator, where a force F is applied at a height h above the head of the caisson. This 

translates into a horizontal force H = F as well as an overturning moment M = F∙h at the 

head of the caisson. Typical loading conditions involve a small vertical component of 

loading (far from inducing failure in terms of vertical bearing capacity), while the 

combination of the two other load components M-Q is usually critical for the foundation. 

The “interaction diagram” approach introduced by Zaharescu and Ticof has been 

adopted by many researchers and has considerably facilitated the design of foundations 

through an analytical expression of their “pure” capacities and their interaction law. 

However, researchers have not yet agreed upon a fixed reference point for the load 

components, a fact that affects the shape of the interaction diagram as will be displayed 

throughout this thesis. 
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Figure 1.1  A rough categorization of different foundation types based on their slenderness or 

embedment ratio D/B. From left to right we can distinguish: (a) piles (b) deeply embedded 

foundations (rigid and flexible) and (c) surface (or shallow) foundations. For the case of deeply 

embedded foundations that are studied in the herein thesis, the flexibility depends on other factors 

such as their material, whether they are massive or cellular, as well as on the stiffness of the 

surrounding soil. 
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Figure 1.2  The Tagus River Bridge in Portugal,  founded on a 88-m high caisson. 
 
 

 
 

Figure 1.3  The Nishinomiya-ko Bridge in Kobe, Japan 
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Figure 1.4 The Akashi-kaikyo bridge in Kobe, Japan founded on two massive 80-m diameter 
caissons. 
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CHAPTER 2 

FINITE ELEMENT MODELING 

 

 

2.1  Introduction 

 

In the following chapter, we provide the main characteristics of the three-

dimensional finite element model that was created for the numerical analyses which were 

carried out with the finite element analysis program Abaqus. Special attention is given to 

the geometrical features as well as the soil’s constitutive law . 

 

2.2  The Finite Element Model 

 

2.2.1. Geometry and soil properties 

 

The herein examined problem consists of a square plan caisson of width B and 

embedment depth D that is subject to combined vertical load N, horizontal load Q and 

overturning moment M. The problem is analyzed with the use of the advanced Finite 
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Element code ABAQUS. Figure 2.1.a shows a half caisson cut through one of the 

orthogonal planes of symmetry. The size of the finite element mesh is 5Bx5Bx5B carefully 

weighing the effect of boundaries on the caisson’s response and the computational time. 

More specifically, the boundaries should be placed far enough from the region of interest 

in order not to affect deformations within this region. The conservative  approach would be 

to place the horizontal boundaries at least 5 times the width of the caisson measured from 

the foundations symmetrical axis, leading to a mesh 10Bx5Bx5B. However, in order to save 

a significant amount of computational time we examine whether the results of a 5Bx5Bx5B 

mesh are satisfactory compared to a 10Bx5Bx5B mesh. In Figures 2.2 we provide indicative 

load-displacement curves for different coefficients of friction and factors of safety and for 

embedment ratio D/B=1. It is evident that both the ultimate horizontal and moment 

capacity do not change for a mesh of larger dimensions. We can therefore conclude that it 

is safe to use the 5Bx5Bx5B mesh as it does not interfere with the accuracy of our results. 

 

In Figure 2.1.b the load or displacement reference point is specified as well as 

the signs of loads and displacements. Zero-displacement boundary conditions prevent the 

out of-plane displacements at the vertical sides of the model, while the base is fixed in all 

three coordinate directions. We investigate 3 typical embedment ratios: D/B = 1, 2 and 3 

and the respective models are displayed in Figure 2.3. Note that embedment ratios 1 and 3 

represent the limits of caisson foundations according to the conventional distinction. 

  

Both caisson and soil are modeled with C3D8 3-D elements, elastic for the former 

and nonlinear for the latter. The caisson is connected to the soil through a special contact 

surface that allows for slippage but not separation to occur, thus permitting us to simulate 

reality, and we adopt a Coulomb friction law with a parametrically investigated coefficient of 

friction. To achieve a reasonable stable time increment without jeopardizing the accuracy 

of the analysis, we modified the default hard contact pressure-overclosure relationship 
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with a suitable exponential relationship (Figure 2.4). To ensure uniform stress distribution 

at the head of the caisson, the nodes of the associated elements are properly kinematically 

constrained. 

 

2.2.2. Constitutive Soil Model 

 

The plasticity model used in this study for cohesionless soil is an extension of the 

model used by Gerolymos et al [2006] for cohesive soils. Soil behavior is modeled through 

a constitutive model with kinematic hardening and associated plastic flow rule. According 

to this model, the evolution of stresses is described by the relation: 

 𝜎 = 𝜎0 + 𝛼 (2.1) 

where 𝜎0 is the value of stress at zero plastic strain, assumed to remain constant. The 

parameter α is the ‘‘backstress’’, which defines the kinematic evolution of the yield surface 

in the stress space. Integration of the backstress evolution law over a half cycle of a 

unidirectional load (e.g. tension or compression) yields the following expression: 

 
𝛼 =

𝐶

𝛾
[1 − exp(−𝛾휀𝑝𝑙 )] (2.2) 

in which C and γ are hardening parameters that define the maximum transition of the yield 

surface, and the rate of transition, respectively, and 휀𝑝𝑙  is the plastic strain. Differentiating 

α with respect to 휀𝑝𝑙 and taking the limit at zero, one obtains for parameter C: 
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  𝜕𝑎

𝜕휀𝑝𝑙
 
휀𝑝𝑙 →0

= 𝐶 = 𝐸 (2.3) 

where E is the modulus of elasticity. 

 

The evolution law of the model consists of two components: a kinematic hardening 

component, which describes the translation of the yield surface in the stress space (defined 

through the backstress α), and an isotropic hardening component, which defines the size of 

the yield surface σ0 at zero plastic deformation. The kinematic hardening component is 

defined as an additive combination of a purely kinematic term (linear Ziegler hardening 

law) and a relaxation term (the recall term), which introduces the nonlinearity. The 

evolution of the kinematic component of the yield stress is described as follows: 

 
𝑎 = 𝐶

1

𝜎0

 𝜎 − 𝛼 휀  𝑝𝑙 − 𝛾𝛼휀  𝑝𝑙  
(2.4) 

 

where  휀 𝑝𝑙  is the plastic flow rate (obtained through the equivalent plastic work), 휀  𝑝𝑙  the 

equivalent plastic strain rate : 

 

휀  𝑝𝑙 =  
2

3
 휀 𝑝𝑙 : 휀 𝑝𝑙  (2.5) 

 
The evolution law for the kinematic hardening component implies that the 

backstress is contained within a cylinder of radius: 

 

 
 

2

3
𝑎𝑠 =  

2

3
 
𝐶

𝛾
 (2.6) 
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where 𝑎𝑠  is the magnitude of α at saturation. Since the yield surface remains bounded, this 

implies that any stress point must lie within a cylinder of radius  
2

3
(𝛼𝑠 + 𝜎𝑠) where 𝜎𝑠 is 

the equivalent stress defining the size of the yielding surface at large plastic strain and  𝜎𝑦  

is the uniaxial yield stress given by :  

 
𝜎𝑦 =

𝐶

𝛾
+  𝜎0 (2.7) 

 

In the Mohr-Coulomb failure criterion  𝜎𝑦  is equal to : 

 𝜎𝑦 =  3𝐽2 (2.8) 

in which  𝐽2 is the square root of the second deviatoric stress invariant that satisfies the 

following equation: 

 
𝐼1 sin 𝜑 +

1

2
 3(1 − sin 𝜑) sin 𝜃 +  3  3 + sin 𝜑 cos 𝜃] 𝐽2 −

− 3𝑐 cos 𝜑 = 0 
    (2.9) 

where 𝐼1 is the first principal stress invariant , c is the cohesion, φ is the friction angle and 𝜃 

the Lode angle which is given by : 

 
cos 3𝜃 =

3 3

2

𝐽3

𝐽2

3
2 
 (2.10) 
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where 𝐽2 and 𝐽3 are the second and third deviatoric stress invariants. Combining  equations  

(2.3), (2.9) and (2.10) one obtains for γ : 

 
𝛾 =

𝛦

 3𝐽2

− 𝜎0 
(2.11) 

 

 

A user subroutine is imported in ABAQUS, which relates the model parameters to 

the principal stresses and the Lode angle at every loading step. Incorporating the Lode 

angle effect allows for significant accuracy in three-dimensional shear response 

environments. The yield surface of the proposed constitutive model is determined to fit the 

Mohr–Coulomb failure response in a triaxial loading test for both compression and 

extension conditions assuming linear interpolation for the intermediate stress states. For 

this reason, the parameter k is introduced which is a function of Lode angle and takes 

values from 0 to 1. k = 0 corresponds to pure triaxial extension conditions and k = 1 to pure 

triaxial compression conditions. In summary, the constitutive model parameters are 

calibrated to match the Coulomb failure criterion on the principal stresses plane for every 

apex of the hexagon with the smooth envelope of Figure 2.5. 

 

In this study, the distribution of tangent Young’s Modulus varies parabolically with 

depth according to: 

 𝐶 = 𝐸 = 𝐸0 𝑝
𝑚  (2.12) 

 

 

where 𝐸0 is the reference Young’s Modulus, p is a  stress invariant and m is a parameter 

that defines the rate of increase of E with depth.  
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In Figure 2.6  the soil profile considered in the FE analyses is presented. The herein 

examined cohesionless soil has the following characteristics:  

 friction angle φ=30o   

 mass density ρ=2 Mg/m3 

 Poisson’s ratio ν=0.25 

 Shear modulus Go= 1000 kII  𝑝  (empirical relation for cohesionless soils). 

For a loose sand (Dr ~ 35%) kII =8 , therefore Go= 8000 𝑝 and Young’s 

modulus  Eo = 2 𝐺𝑜(1 + 𝜈)= 20000 𝑝.  
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                              Figure 2.1.a  Geometry of the 3D Finite Element model used in the numerical analyses 
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Figure 2.1.b  Displacement and load sign conventions as well as load and displacement reference 

point. 

 

a) 
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b)  

 

 

 

 

 

 

 

 

c)  
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d) 

 

 

 

 

 

 

 

 

 

e)  
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Figure 2.2 Comparison of static pushover tests for mesh 5Bx5Bx5B and 10Bx5Bx5B   (a)  Moment-

rotation curve for FSv=∞, μ=1 (b)  Horizontal load-displacement curve for FSv=∞, μ=1  (c)  Moment-

rotation curve for FSv=∞, μ=0.5  (d)  Horizontal load-displacement curve for FSv=∞, μ=0.5 (e)  

Moment-rotation curve for FSv=2, μ=1. 

 

 

 

a) 

 

 

 

 

 

 

 

 

b) 
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c)  

 

 

 

 

 

Figure 2.3  3-D visualization of the FE models for the three embedment ratios considered. a) D/B = 1, 

b) D/B = 2, c) D/B = 3 

 

 

 

 

 

 

Figure 2.4 The modified pressure-overclosure relationship for the nonlinear interface adopted in the 

model 
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a) 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

Figure 2.5  (a) Simplified one-dimensional representation of the hardening  (b) Three-dimensional 
representation of the hardening in the nonlinear isotropic/kinematic model 
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Figure 2.6  The soil profile considered in the FE analyses. The enormous stiffness ratio renders the 
foundation absolutely rigid with respect to the caisson for the embedment ratios considered. 
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CHAPTER 3 

FAILURE ENVELOPES 

 

 

3.1 Introduction 

 

The primary goal of the three-dimensional analyses that are executed with the 

finite element modeling program ABAQUS is the production of deeply embedded 

foundations’ - caissons - failure envelopes in cohesionless soil for different coefficients of 

friction and embedment ratios. Similar work has already been carried out for foundations 

embedded in cohesive soil for the cases of both “bonded interface” [Gerolymos, Souliotis 

2012] - and of “nonlinear interface” [ Gerolymos, Karapiperis 2012]. 

The term “failure envelope” defines the locus of the points that represent failure of 

the foundation in M-Q-N space. The relationship between two of the above – in other 

words a cross-section of the failure envelope – is conventionally termed an “interaction 

curve”. However the term “failure envelope” is preferred over the term “interaction curve” 

to better describe the interdependent relationship of the three section forces (the vertical 

load N, the horizontal load Q and the moment load M) which is after all solely responsible 

for the soil-foundation system’s failure. Besides, the loading of the caisson, being coplanar, 

only permits displacements along three “active” degrees of freedom at the load reference 
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point of the foundation: vertical displacement v, horizontal displacement u and rotation θ 

(Figure 3.1). Therefore, since the 6-degree-of-freedom system is reduced to a 3-degree-of-

freedom system we are able to graphically define the failure envelopes of a deeply 

embedded foundation by specifying in M-Q-N space every point that represents failure. 

Figures 3.2 a and 3.2 b depict typical failure envelopes of surface foundations on sand 

[Nova and Montrasio 1991; Gottardi and Butterfield 1995; Chatzigogos, Figini, Pecker, 

Salençon 2011] and clay respectively [Cremer, Pecker, Davenne 2001]). 

Literature provides us with many different methods of producing failure envelopes 

of embedded foundations, through an appropriate expansion of similar methods that 

pertain to surface foundations. The two most common methods are (a) static pushover 

tests and (b) swipe tests and they are distinguished by different loading paths leading to 

the failure of the soil-foundation system. In this thesis, static pushover tests are used to 

extract the failure envelopes. In the following section the impact of the foundation’s load 

reference point on the shape of a failure envelope is examined. 

 

3.2  Load reference point 

 

The choice of the appropriate load reference point is of great importance, since it 

immediately affects the shape of a failure envelope. In Figure 3.3 different failure 

envelopes of shallow foundations are presented and absolute symmetry can be observed. 

Furthermore, we do not detect an enhanced capacity for the system. Therefore, as far as 

surface foundations are concerned, the load reference point is of little significance to the 

failure envelopes’ shape and the base of the foundation is chosen as such (Figure 3.4). 
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On the contrary, in embedded foundations (and especially in deeply embedded 

foundations that are examined in this thesis) the choice of the load or displacement 

reference point is of greater impact. In Figure 3.5 a random example of a deeply embedded 

foundation’s failure envelope *in terms of horizontal load-moment (Q-M)] is provided. In 

the specific example the embedment ratio D/B = 1, and the load reference point is  the 

centre of the foundation’s base. The branch of over-strength is specifically observed in the 

first quadrant , i.e. where the horizontal load and the moment are of same sign (positive). 

On the other hand, in Figure 3.6 the corresponding failure envelope of the same 

embedded foundation is illustrated, for the same embedment ratio, also in terms of 

horizontal load-moment (Q-M) but with a different load of reference point: the centre of 

the foundation’s head . As a result of this simple shift of the reference point, the over-

strength is now observed in the fourth quadrant, for positive horizontal load and negative 

moment. Considering that the change of load reference point is the only difference 

between the two models, we can conclude that it is also the cause of the failure envelope’s 

shape alteration. 

This shape difference between the failure envelopes of the two embedded 

foundations can be attributed to the different ways in which the loading itself can cause 

the system soil-foundation to result in different deformations when imposed on another 

load reference point. In the first case, when the load is imposed on the centre of the 

foundation’s base, the combination of positive horizontal load and positive moment guides 

the system to an enhanced capacity because the two same signed loads are competitive : 

each one attempts to balance the effect of the other resulting in a system of enhanced 

load-bearing capacity. On the contrary, when the load reference point concurs with the 

centre of the foundation’s head, similar “competitive” behavior can be observed for the 

combination of positive horizontal load and negative moment. In Figure 3.7 the 

deformation of the soil-foundation system for the two aforementioned occasions is 

illustrated with very similar results. Therefore, the load reference point only affects the 
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failure envelopes’ shape and in this specific study the chosen point is the centre of the 

foundation’s head.  

 

3.3  Static Pushover Tests 

 

3.3.1. Introduction 

 

In this method, static pushover tests are conducted in the horizontal load-moment 

plane, Q-M. Having defined the system’s failure criterion, it remains to determine the way 

in which the loading is imposed on the foundation, causing it to fail. In the herein thesis, a 

realistic approach of the embedded foundation’s actual loading is attempted.  Besides, if 

the construction that is founded on the caisson can be simulated with a 1 degree of 

freedom (1-Dof) oscillator (e.g. a bridge pier in dynamic problems) or generally with a 

cantilever (e.g. a bridge pier in pseudo-static analyses of seismic problems) then it follows 

that radial loading paths on the Q-M plane, under constant vertical load N, should be 

applied in the system [Cremer, Pecker, Davenne 2001; Gouvernec 2004; Gajan, Kutter, 

Phalen, Hutchinson, Martin 2005]. In Figure 3.8 the radial loading paths in the loading 

plane Q-M are portrayed, as they were defined by Cremer, Pecker και Davenne [2001] for 

constructions characterized by one mode during dynamic problems’ analyses. Considering 

that on the mass centre of the superstructure an inertial force F = ma is imposed, in hi 

distance from the foundation level, then a moment of M= Fhi = mahi  is transferred to the 

foundation, as well as a horizontal load equal to the inertial force (Q=F=ma). At the same 

time, the vertical load imposed on the foundation is maintained constant and equal to the 

self-weight of the superstructure N= W= mg.  
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3.3.2. Designing the numerical analyses 

 

In the present thesis, we initially chose as a load reference point the centre of the 

caisson’s head. The steps followed in our numerical experiments represent the actual 

conditions in the field. The soil undergoes geostatic loading and then a part of the soil is 

replaced by the foundation, on which a vertical load N is imposed on the load reference 

point increasingly till a specified value of χ = Ν/Νu is reached. Afterwards, the vertical load 

is kept constant, and a combination of horizontal force and moment is imposed on the 

head of the caisson till the complete failure of the system. As state of failure we consider 

the point at which the change in the section forces is equal to zero : the soil-foundation 

system is incapable of undertaking any more load. Our aim is to extract the ultimate 

capacities under moment Mu and horizontal force Qu, and then sweep the M-Q plane so 

that a cross-section of the failure envelope is revealed. 

More specifically, for a given embedment ratio D/B ( i.e. for a given foundation 

geometry), we calculate the soil-foundation system’s bearing capacity against vertical 

loading (Nu). Then, nine different static safety factors are examined : FSv=1.11; 1.25; 1.43; 

1.66; 2; 2.5; 3.33; 5; 10 και ∞ (for vertical load equal to zero). In this study, however, 

instead of presenting the results with respect to the safety factor FSV, we adopt the inverse 

of the static safety factor, namely χ= 1/FSv = N/Nu with values χ = 0.9; 0.8; 0.7; 0.6; 0.5; 

0.4;0.3; 0.2; 0.1 και 0  respectively. Subsequently, while maintaining a constant vertical 

load, we initially calculate the pure capacities in horizontal load and moment (Qu and Mu 

respectively) for each factor of safety FSv. As pure horizontal load capacity (or moment) we 

define the maximum horizontal load (or moment) that can be undertaken by the 

foundation’s system (imposed on the load reference point, aka the head of the caisson) 

under zero moment ( or horizontal load respectively) , as shown in Figure 3.9. We then 

perform a satisfactory number of static pushover tests for every factor of safety separately, 
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applying radial loading paths on the Q-M plane at the system. As a result, we can 

determine the section forces at the moment of failure and for their better presentation 

through failure envelopes, we normalize these results with their corresponding ultimate 

capacities (Q/Qu and M/Mu), according to the suggestions of researchers concerning the 

behavior of deeply embedded foundations [Bransby and Randolph 1999a; Gourvenec and 

Randolph 2003]. Thus, by following the above procedure of static pushover tests we can 

produce the desired failure envelopes of the soil-caisson system in Q-M plane. 

 

3.3.3. Results 

 

Figures 3.10(a), (b) and (c) illustrate the change in ultimate horizontal and moment 

capacity of caisson foundations of three distinct embedment ratios 1, 2 and 3 with respect 

to the inverse factor of safety χ, for coefficient of friction μ=1. Those capacities Mu and Qu 

are normalized by their respective ultimate pure capacities for zero vertical load and a 

specific value of embedment ratio D/B and coefficient of friction, Mu* and Qu*. Figures 

3.12(a), (b), 3.14(a), (b) and 3.16(a), (b)  illustrate the ultimate horizontal and moment 

capacities of caisson foundations of embedment ratios 1, 2 and 3 respectively, for 

coefficients of friction μ=0.5 and μ=0.3 , as we wish to examine the system’s behavior 

transitioning from a smooth interface where slippage is likely to occur (μ=0.3) to a rough 

interface of μ=1. Finally, in Figures 3.11(a) and (b) we contrast the results for different 

embedment ratios while in Figures 3.13(a), (b), 3.15(a), (b) and 3.17(a),(b) we attempt to 

illustrate the influence of the coefficient of friction on ultimate moment and horizontal 

capacities, for embedment ratios 1, 2 and 3 respectively. 

In Figures 3.19 - 3.31 we present the aforementioned failure envelopes, each for a 

given static safety factor FSv, a given coefficient of friction μ and of course a given 
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embedment ratio D/B. It should be noted that we have normalized the quantities Q and M  

by their ultimate capacities Qu and Mu respectively and then used the results to produce 

the failure envelopes in terms of Q/Qu and M/Mu. Bransby και Randolph [1999] studied the 

shape of failure envelopes for shallow foundations and noticed that the shape remains the 

same when the quantities are normalized by their ultimate capacities. However, their 

research was limited only to one embedment ratio (and a small one for that matter) , D/B = 

0.167 , constituting their result in need of confirmation.  For this reason, we choose to 

present failure envelopes where the results are normalized by their ultimate capacities, for 

each embedment ratio D/B, safety factor FSv and coefficient of friction μ. In addition, 

(assuming the accuracy of Bransby and Randolf’s observation) the benefit of this method 

lies in the fact that, to define the system’s response, we are only required to know the 

system’s ultimate capacities along with  its bearing capacity of vertical load. This particular 

benefit of the normalized failure envelopes can help us mathematically describe the 

caissons’ behavior, especially in order to model the soil-foundation system using an 

appropriate mathematical tool (“macro-element modeling”). In Figures 3.19 - 3.20 the 

normalized failure envelopes for D/B=1 and μ=1 are illustrated for every examined static 

safety factor. Then, in Figures 3.21 - 3.22 and Figures 3.23 - 3.24  we depict the failure 

envelopes for D/B=2 and μ=1 and for D/B=3 and μ=1 respectively. All in all, the shape of 

the failure envelopes can be approximated by an oblique ellipse in M-Q space, whose 

eccentricity grows accordingly to the embedment ratio D/B [Yun and Bransby 2007a]. 
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3.3.4. Analyzing the results 

 

 

3.3.4.1. Comparing Ultimate Capacities for different embedment ratios and 

coefficients of friction 

 

Figure 3.10(a) shows the normalized horizontal and moment capacities for the 

embedment ratio D/B=1 and for a coefficient of friction μ =1. As the vertical load increases, 

the ultimate lateral capacities increase until they reach a peak at χ ≈ 0.5. However, as the 

vertical loading becomes more considerable, the trend is reversed and a decrease is 

evident, with the lateral capacities approaching their χ=0 values. Finally, as the vertical load 

approaches the foundation’s vertical capacity, the lateral capacities decline sharply until 

they are nullified for χ = 1.  

Two antagonistic mechanisms are observed, the interplay between which leads to 

the parabolic shape displayed. For χ < 0.5 the interface enjoys an increase in the total 

normal force applied both on the sidewalls and the base, while the plastification around 

the caisson is still limited. Taking into account the nature of the Coulomb law, the 

interface’s shear strength and hence the foundation’s overall lateral capacity is increased. 

Above that limit value of χ, however, the plastification taking place in the soil immediately 

surrounding the caisson becomes considerable and the lateral capacity starts to decline. 

Apparently, until χ = 1, plastification governs the overall response in the last branch of the 

curve.  

 

In Figure 3.10(b) and (c) we examine the behavior of the foundation’s lateral 

capacities for embedment ratios 2 and 3. In general, embedment increases vertical, 

horizontal and moment capacity as failure mechanisms are forced deeper within the soil 



Failure Envelopes 

 

 

 

 

45 

 

mass. However, in the herein study we are more interested in emphasizing the effect of 

embedment in the shape of the normalized M-N curve. Apparently, as the embedment 

ratio increases, the maximum of the normalized lateral capacity no longer manifests itself 

for χ=0.5 but rather “moves” towards larger values of χ while at the same time the 

maximum value itself decreases. More specifically, while for D/B=1 the maximum of the 

lateral capacities is  observed for χ=0.5, for D/B=3 it is not manifested until χ=0.7 or even 

χ=0.8, its value decreasing from 2.2Mu* (2.2Qu*) for D/B=1 to 1.4Mu* (1.4Qu*) for D/B=3. 

The maximum’s shift to greater values of χ can be attributed to the fact that for larger 

embedment ratios the plastification of the soil surrounding the caisson is less considerable 

and therefore does not cause the lateral capacity to decline. As for the decrease in the 

value of the normalized lateral capacity, it can be attributed to the weakening influence of 

the caisson’s base: for a small embedment ratio the foundation’s base enhances the 

system, but as the embedment ratio increases, the base no longer affects  the system’s 

overall behavior. 

 

In Figure 3.13  we compare the system’s lateral capacities for different coefficients 

of friction and for embedment ratio D/B=1 and we can notice that for a smoother soil-

caisson interface (μ=0.5 and μ=0.3) the caisson lateral capacity is considerably smaller than 

that for a rougher interface (μ=1), since as the coefficient of friction decreases so does the 

soil’s shear strength according to Coulomb’s law thus resulting in smaller values for lateral 

capacities. 

 

In Figures 3.15 and 3.17 we observe the foundation’s lateral capacities for different 

coefficients of friction and for embedment ratios D/B=2 and D/B=3 respectively. In this 

case, it is evident that by decreasing the coefficient of friction the lateral capacity curves- 

with respect to the inverse factor of safety χ- tend to coincide, leading us to deduce that as 

the embedment ratio increases, friction is no longer a determining factor. However, in 
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these figures it is also evident that, when dealing with a smoother soil-foundation interface 

(i.e. μ=0.5-0.3), for values of the inverse safety factor χ>0.7 (where for a rough interface 

the plastification is prevalent thus causing the lateral capacity to decline), the lateral 

capacity continues to ascend until χ ≈ 1, when it is abruptly nullified. To better understand 

this particular behavior, we employ snapshots of plastic strain magnitude contours both at 

the moment of failure and at the moment before imposing the lateral load, for safety 

factors FSv=2 and FSv=1.11 and for a rough (μ=1) and a smoother (μ=0.5) interface (Figure 

3.18). It is evident that as the coefficient of friction decreases, the shear strains caused by 

the vertical load are minimized and the lateral capacity reaches its maximum for χ≈1 as 

there is no significant plastification to cause the decline of the curve, except for the 

plastification of the base which is irrelevant for embedment ratio greater than 2. 

Furthermore, since for a smoother interface the vertical load no longer  greatly affects the 

surrounding soil, the mechanisms that govern the lateral and vertical behavior of the 

foundation become independent, thus causing the abrupt nullification of the lateral 

capacity for inverse safety factor χ=1. 

 

 

3.3.4.2. Comparing Failure Envelopes for different embedment ratios and coefficients 

of friction 

 

Bransby and Randolph observed that the shape of shallow foundations’ normalized 

failure envelopes remains the same regardless of the static safety factor FSv and the 

embedment ratio D/B, as did Gerolymos and Souliotis [2012] and Gerolymos and 

Karapiperis [2012] for deeply embedded foundations in cohesive soil for bonded and non-

linear interface respectively. However, in this study, as can be depicted in Figures 3.20, 

3.22 and 3.24 (where all the failure envelopes are illustrated at the same time for 

embedment ratios D/B=1, 2 and 3 respectively) it is obvious that we cannot disregard the 
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impact of the static safety factor FSv. For embedment ratios less than D/B=3, the failure 

envelopes develop a rather distinct variability with FSv, specifically in the branch of 

overstrength. That is to be expected, as it is in agreement with our results concerning the 

foundation’s ultimate lateral capacities that we analyzed above. For larger embedment 

ratios such as D/B=3 we can observe that failure envelopes coincide for different vertical 

safety factors. Furthermore, in  Figure 3.25 we examine the failure envelopes for three 

different embedment ratios (D/B=1, 2, 3) and the same static safety factor (FSv =2.5) and 

observe that as the embedment ratio increases the failure envelopes expand (or according 

to Yun and Bransby [2007] become increasingly eccentric) along the major axis of the 

oblique ellipse (a.k.a. for positive horizontal load and negative moment). It is worth 

mentioning that this expansion is more noticeable for the transition from embedment ratio 

D/B=1 to D/B=2 and weakens when transitioning from D/B=2 to D/B=3.  

 

In Figures 3.26 through 3.31 we attempt to examine the failure envelopes of deeply 

embedded foundations under different coefficients of friction, for embedment ratios 

D/B=1, 2 and 3. More specifically, in  Figures 3.26, 3.27  we depict the failure envelopes for 

embedment ratio D/B=1 and for static safety factors FSv=2 and FSv=1.11 respectively. The 

reason we chose to examine these particular safety factors lies in the fact that when 

observing the failure envelopes for a coefficient of friction equal to 1 (μ=1), we notice that  

 for FSv=2 the foundation’s enhanced horizontal capacity reaches a minimum, 

thus constituting it worthwhile examining.  

 for FSv=1.11 the vertical load approaches the foundation’s ultimate load-

bearing capacity, while at the same time the system’s enhanced horizontal 

capacity is reaching close to a maximum. 

Therefore, we conduct numerical analyses for D/B=1, for the aforementioned safety factors 

and for 2 coefficients of friction: μ=0.5 and μ=0.3, transitioning from conditions where 

slippage is considerably limited (μ=1) to a smoother soil-caisson interface where slippage is 
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likely to occur at the very early stages of loading. From Figures 3.26, 3.27 we can remark a 

significant increase in the branch of over-strength as the coefficient of friction is reduced 

and slippage is permitted. 

 

In Figures 3.28 and 3.29 the failure envelopes for a foundation with an embedment 

ratio of D/B=2 are illustrated, for the coefficients of friction μ=1, μ=0.5 and μ=0.3. It is 

worth noting that as the embedment ratio increases from D/B=1 to D/B=2 the failure 

envelopes tend to coincide for different coefficients of friction. Therefore, for embedment 

ratio D/B=3 we choose to examine and contrast only the failure envelopes of the two 

extreme cases of μ=1  (limited slippage) and μ=0.3 (smoother surface), as depicted in 

Figures 3.30 and 3.31. Considering the results, we reach the conclusion that as the 

embedment ratio increases the dependency of the failure envelope on the coefficient of 

friction weakens. It is also worth indicating that this weakening is more noticeable for the 

transition from D/B=1 to D/B=2 than from D/B=2 to D/B=3. In fact, we could claim that for 

an embedment ratio greater than 2 friction no longer influences the foundation’s failure 

envelopes. 

 

3.3.4.3. Load-displacement curves  

 

In Figures 3.33 we illustrate load- horizontal displacement curves (Q-u) as well as 

moment- rotation curves (M-θ) at the centre of the foundation’s head, in respect to the 

embedment ratio D/B. More specifically, Figures 3.33 correspond to the safety factor 

FSv=10 and concern three different point of the failure envelope as depicted in Figure 3.32. 

The influence of the embedment ratio is evident both in terms of ultimate capacity and in 

terms of stiffness , therefore we do not need to further analyze the results. 
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3.3.4.4. The advantage of normalizing Failure Envelopes with their ultimate 

capacities. 

 

Figures 3.34 through 3.36  depict the foundation’s dimensionless failure envelopes 

for coefficient of friction μ=1 and different embedment ratios and safety factors. In 

contrast to the aforementioned failure envelopes, we choose to normalize quantities M 

and Q with the geometrical characteristics of the foundation (width B and embedment 

depth D) , as well as with the soil’s unit weight γ and the constant kp= tan2(45+φ/2). More 

specifically, the moment axis is normalized by the quantity kpγDB3  and the horizontal load 

axis is normalized by the quantity kpγDB2 . It is evident for every embedment ratio that the 

safety factor FSv affects the failure envelopes’ shape; in fact the opposite trend observed 

for envelopes normalized by their ultimate capacities is noticed here: for D/B=1 as the 

safety factor decreases from FSv=10 to FSv=2 (where the maximum ultimate capacity is 

achieved) the failure envelopes expand and then from FSv=2 to FSv=1.11 they shrink back. 

Accordingly, the same trend can be observed for embedment ratios D/B=2 and D/=3 

,where the maximum expansion is achieved for FSv=1.43 and FSv=1.25 respectively. 

Furthermore, comparing failure envelopes for the same safety factor FSv, one can notice a 

striking rotation as the embedment ratio increases. This rotation is obvious in Figures 3.37 , 

for several safety factors and embedment ratios 1,2 and 3.  

 

All in all, based on the aforementioned observations, we can conclude that 

normalizing failure envelopes by their geometrical characteristics deprives us from certain 

advantages: failure envelopes experience a significant rotation in respect to the 

embedment ratio and additionally, the expansive behavior is not as clear as it was for 

envelopes normalized by their ultimate capacities. Therefore, it is significantly more 
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convenient for us to mathematically express the response of deeply embedded 

foundations utilizing envelopes that are normalized  by their ultimate capacities and that is 

why we choose in the herein thesis to only present failure envelopes in this form. 

 

3.3.4.5. The “shape” of Failure Envelopes 

 

All the failure envelopes produced through the numerical analyses we conducted 

appear to have the shape of an oblique ellipse, regardless of their static safety factor FSv , 

the foundation’s embedment ratio or the soil’s coefficient of friction. More specifically, in 

the first quadrant the relationship between the horizontal load Q and the moment M 

appears to be linear, while in the fourth quadrant we can observe a branch of over-

strength. It is worth noting at this point that in this study we present one half of the failure 

envelopes, due to the symmetry that describes them (the first quadrant is symmetrical to 

the third quadrant and the fourth quadrant to the second one, as shown in Figure 3.38). 

The linear relationship between the horizontal load and the moment that is 

observed in the first quadrant of a failure envelope suggests that the two quantities tend to 

“draw” resistance from similar mechanisms. In the part of the failure envelopes that is 

located in the first quadrant (as well as the third one due to the aforementioned 

symmetry) the ratios Q/Qu  and M/Mu are both less than or equal to 1 (Q/Qu ≤1 and 

M/Mu ≤1), since the horizontal load and the overturning moment act in the same 

direction, mobilizing similar mechanisms. Therefore, in this part, the simultaneous 

presence of the two “same-signed” effects of action deteriorates the foundation’s 

response. As a result, the maximum horizontal load that can be undertaken by the 
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foundation (as well as the maximum moment) concurs with the system’s ultimate capacity 

(for the points Q/Qu =1 and M/Mu=0 and Q/Qu =0 and M/Mu=1). 

In the fourth quadrant however, this linear relationship is negated. In conflict with 

the failure envelopes of surface foundation (where the symmetry in the system’s response 

is striking), in deeply embedded foundations we observe a branch of over-strength. More 

specifically, the branch of over-strength is the locus of points of a failure envelope where 

we have Q/Qu ≥ 1 and/or M/Mu ≥ 1 (i.e. in the fourth and second quadrant of the plane), 

as the overturning moment becomes counterbalancing to the horizontal force and the 

system exhibits an enhanced capacity derived from its embedment. However, as we have 

already specified, the quadrant where the branch of over-strength can be located depends 

on the position of the load reference point.  

At this point, it would be useful to define two more distinctive quantities, the 

maximum horizontal load Qmax and the maximum moment Mmax assumed by the 

foundation. Those two quantities differ from their respective ultimate capacities Qu and Mu 

that we mentioned above, in that they occur under the simultaneous presence of the other 

section force and in that there is also an obvious difference in magnitude.  

To achieve a more thorough understanding of this specific behavior of deeply 

embedded foundations (demonstrated through the branch of over-strength and in conflict 

with the symmetry observed in surface foundations), we should first analyze and 

comprehend the mechanisms that are developed due to lateral loading, both in surface 

foundations and caissons. 
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3.3.4.6. Soil Deformation Mechanisms 

The lateral loading of a foundation can be the result either of a seismic excitation 

(dynamic loading) or of environmental loadings (cyclic loading), especially in the case of 

offshore structures. For a typical surface foundation we can detect the mechanisms that 

are mobilized in order to undertake the lateral loading, which in this case are (a) the soil’s 

non-linear response and (b) the geometrical non-linearity of the surface foundation’s  basis 

(slippage). On the other hand, in Figure 3.39 a deeply embedded foundation (caisson) of 

square plan shape is illustrated, under lateral loading. Furthermore, the distribution of 

stresses is schematically illustrated along the soil-caisson interface. Although in surface 

foundations only the base is mobilized to assume the lateral loading, developing normal 

and shear stresses, that is not the case for deeply embedded foundations, since it is the 

lateral surfaces that determine the caisson’s response. 

The following stress distributions are developed along the soil-caisson interfaces : 

(a) σx normal stresses at the transverse planes (lying perpendicular to the lateral loading 

plane), (b) τxy shear stresses at the planes lying parallel to the loading plane, (c) τxz and τyz 

shear stresses at the planes lying perpendicular and parallel , respectively, to the loading 

plane (d) σz normal stresses at the base of the foundation. It is worth noting that for 

caisson foundations the shear stresses that are developed at the caisson’s circumference 

have a predominant role the system’s response, providing a considerable resistance to 

loading.  

It is therefore obvious that the response of surface foundations to lateral loading is 

governed by far less mechanisms compared to those that govern deeply embedded 

foundations’ response and are in fact only a part of caissons’ behavior.  
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Figure 3.1  The three “active” degrees of freedom at the load reference point of the caisson: 

a)vertical displacement v b) horizontal displacement u and c) rotation θ. The sign convention is 

according to Butterfield, Houlsby και Gottardi [1997]. 

 

 

Figure 3.2.a  Rugby-ball shaped yield surface for surface foundations in cohesionless soil 
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Figure 3.2.b  Yield surface for surface foundations on cohesive soil. 
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(b) 
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Figure 3.3  Failure envelopes for surface foundations for three different loading planes : Q-N loading 

plane , M-N loading plane, Q-M loading plane. Figure (a) concerns cohesive soils [Chatzigogos, 

Figini, Pecker and Salençon 2011] while figures (b) and (c) concern cohesionless soils [Nova and 

Montrasio 1991]. In all cases symmetry is observed. 
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Figure 3.4  Load-displacement reference point for surface foundations ( centre of foundation’s base) 

 

 

Figure 3.5  Failure envelopes of deeply embedded foundations in the Q-M plane, where the load-

displacement reference point is the centre of the foundation base. 
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Figure 3.6  Failure envelopes of deeply embedded foundations in the Q-M plane, where the load-

displacement reference point is the centre of the foundation head. 
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Figure 3.7  Rough presentation of the soil-caisson system’s deformation  for loading imposed upon 

(a) the caisson’s base  and (b) the caisson’s head. 

 

 

Figure 3.8  Portrayal of radial loading paths in the loading plane Q-M, as they were defined by 
Cremer, Pecker και Davenne [2001]. 
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Figure 3.9  Load-displacement curve-the maximum horizontal load that can be undertaken by the 
caisson 
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Figure 3.10  The normalized ultimate horizontal and moment capacities derived from the FE 
analyses for μ=1 and  (a) D/B=1  (b) D/B=2  (c) D/B=2 
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Figure 3.11  Comparison of the normalized ultimate (α)  moment and (b) horizontal capacities  for 

μ=1 and  D/B=1, 2 and 3. 
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Figure 3.12 The normalized ultimate horizontal and moment capacities derived from the FE analyses 
for D/B=1  and  (a) μ=0.5  (b) μ=0.3 

 

 

 

 

Figure 3.13  Comparison of the normalized ultimate (α)  moment and (b) horizontal capacities  for 

D/B=1 and  μ=1, 0.5 and 0.3. 
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Figure 3.14 The normalized ultimate horizontal and moment capacities derived from the FE analyses 
for D/B=2  and  (a) μ=0.5  (b) μ=0.3 
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Figure 3.15  Comparison of the normalized ultimate  (α) moment and (b) horizontal capacities  for 

D/B=2 and  μ=1, 0.5 and 0.3. 
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Figure 3.16 The normalized ultimate horizontal and moment capacities derived from the FE analyses 
for D/B=3  and  (a) μ=0.5  (b) μ=0.3 
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Figure 3.17  Comparison of the normalized ultimate (α) moment and (b) horizontal capacities  for 

D/B=3 and  μ=1, 0.5 and 0.3. 

 

 

Figure 3.18  Comparison of snapshots of plastic strain magnitude contours both at the moment of 
failure and at the moment after imposing the vertical load, for safety factors FSv=2 and FSv=1.11 and 
for a rough (μ=1) and a smooth (μ=0.5) interface 
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(c) 
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Figure 3.19 Failure Envelopes of deeply embedded foundations for coefficient of friction μ=1 , 

embedment ratio D/B=1 and factors of safety (a) FSv=10 (b) FSv=5 (c) FSv=3.33 (d) FSv=2.5 (e) FSv=5 

(f) FSv=1.67 (g) FSv=1.43 (h) FSv=1.25 and (i) FSv=1.11 
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Figure 3.20 Comparison of failure envelopes of deeply embedded foundations for coefficient of 

friction μ=1 , embedment ratio D/B=1 and every examined factor of safety 
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(e) 
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Figure 3.21 Failure Envelopes of deeply embedded foundations for coefficient of friction μ=1 , 

embedment ratio D/B=1 and factors of safety (a) FSv=10 (b) FSv=3.33  (c) FSv=5 (d FSv=1.43 (e) 

FSv=1.25 and (f) FSv=1.11 
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Figure 3.22 Comparison of failure envelopes of deeply embedded foundations for coefficient of 

friction μ=1 , embedment ratio D/B=2 and every examined factor of safety 
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(h) 
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Figure 3.23 Failure Envelopes of deeply embedded foundations for coefficient of friction μ=1, 

embedment ratio D/B=3 and factors of safety (a) FSv=10 (b) FSv=5 (c) FSv=3.33 (d) FSv=2.5 (e) FSv=5 

(f) FSv=1.67 (g) FSv=1.43 (h) FSv=1.25 and (i) FSv=1.11 
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Figure 3.24 Comparison of failure envelopes of deeply embedded foundations for coefficient of 

friction μ=1 , embedment ratio D/B=3 and every examined factor of safety 
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Figure 3.25 Failure envelopes for three different embedment ratios (D/B=1, 2, 3) and the same static 
safety factor (FSv =2.5) . We observe that as the embedment ratio increases the failure envelopes 
expand. 

 

Figure 3.26 Failure envelopes for embedment ratio D/B=1,  static safety factor FSv =2 and different 

coefficients of friction μ=1, 0.5, 0.3  
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Figure 3.27 Failure envelopes for embedment ratio D/B=1,  static safety factor FSv =1.11 and 

different coefficients of friction μ=1, 0.5, 0.3  

 

Figure 3.28 Failure envelopes for embedment ratio D/B=2,  static safety factor FSv =2 and different 

coefficients of friction μ=1, 0.5, 0.3  
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Figure 3.29 Failure envelopes for embedment ratio D/B=2,  static safety factor FSv =1.11 and 

different coefficients of friction μ=1, 0.5, 0.3  

 

 

 

 

 

 

 

Figure 3.30 Failure envelopes for embedment ratio D/B=3,  static safety factor FSv =2 and different 

coefficients of friction μ=1, 0.3  
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Figure 3.31 Failure envelopes for embedment ratio D/B=3,  static safety factor FSv =1.11 and 

different coefficients of friction μ=1, 0.3  

 

 

 

Figure 3.32 Points that are chosen from a failure envelope to produce the load-displacement curves 

which are presented in the next figures. 
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Point 2 
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Point 3 
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Figure 3.33 Moment-rotation and horizontal load-displacement curves for points 1, 2 and 3, for 

embedment ratios D/B=1,2,3 , coefficient of friction μ=1 and safety factor FSv=10. 

 

 

 

 

 

 

 

 

 

 

Figure 3.34  Dimensionless failure envelopes for D/B=1 , μ=1 and safety factors FSv=10, FSv=5, 

FSv=3.33, FSv=2.5, FSv=2, FSv=1.67, FSv=1.43, FSv=1.25 and FSv=1.11 
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Figure 3.35  Dimensionless failure envelopes for D/B=2 , μ=1 and safety factors FSv=10,  FSv=3.33,  

FSv=2, FSv=1.43, FSv=1.25 and FSv=1.11 
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Figure 3.36  Dimensionless failure envelopes for D/B=3 , μ=1 and safety factors FSv=10, FSv=5,  

FSv=3.33, FSv=2.5,  FSv=2, FSv=1.67, FSv=1.43, FSv=1.25 and FSv=1.11 
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(e) 
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Figure 3.37 Comparison of dimensionless failure envelopes for embedment ratios D/B=1,2 and 3, 

μ=1 and safety factors (a) FSv=10 , (b) FSv=3.33, (c)  FSv=2, (d) FSv=1.43, (e) FSv=1.25 and (f) FSv=1.1 
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Figure 3.38 Symmetry of the first to the third quadrant and the fourth quadrant to the second one in 
failure envelopes for different embedment ratios 
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Figure 3.39 A typical caisson foundation of square plan. The distributions of stresses are 

schematically illustrated along the soil-caisson interface  
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CHAPTER 4 

SOIL DEFORMATION MECHANISMS 

 

 

4.1  Theoretical Background 

 

The three dimensional analyses that were performed for the purposes of this thesis, 

were aimed both at the production of deeply embedded foundations’ failure envelopes as 

well as the study of the different soil deformation mechanisms mobilized during the 

system’s failure. Along a failure envelope, different soil deformation mechanisms are 

mobilized at every point as many researchers have already indicated [Salençon and Pecker 

1995; Bransby and Randolph 1998; Ukritchon et al. 1998], suggesting the immediate 

dependency of the manifested mechanisms on the ratio of the imposed loads M/Q (i.e. the 

lever arm considered during the static pushover tests, whether that is the height of a 

bridge’s pier or the height of a sDoF oscillator). 

Bransby and Yun [2009] performed rigid plasticity upper-bound analyses in order to 

classify the soil failure conditions under combined foundation loading (vertical load N, 

horizontal load Q  and overturning moment M). Those analyses were performed according 

to the methods proposed by Bransby and Randolph [1998] through postulated simple but 

kinematically variable soil deformation mechanisms, which were based on those observed 
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during the finite element calculations. Their study focused on skirted foundations, Figure 

4.1.a, thus taking into account certain additional soil deformation mechanisms that are not 

available in the case of solid deeply embedded foundations (caissons) since deformation 

can be observed in-between the skirts. 

In  Figure 4.1.b the aforementioned soil deformation mechanisms are illustrated, as 

indicated in Bransby and Yun’s study. These mechanisms can be classified into the 

following categories, based on the terminology that was introduced in the particular study : 

(a) “forward scoop” , (b) “scoop-slide”, (c) “internal Hansen”, (d) “reverse scoop” and (e) 

“internal double scoop”. It should be noted that the mechanisms pertaining solely to 

skirted foundations are (c) and (e), which are comprised of a number of elaborate soil 

deformation mechanisms, and are therefore not examined in the herein study. In brief, the 

calculation of the section forces at failure through upper-bound plasticity analyses, consists 

of two steps. Initially, to find a single point on the failure envelope two load components 

were selected (e.g. Q=0, N=0). Upper-bound work calculations were then carried out 

numerically in a spreadsheet with each available deformation mechanism to find the 

lowest value of the unknown load (here the overturning moment M). For each mechanism, 

the kinematic variables (e.g. the length L; Fig. 3) were changed to give the lowest collapse 

load. The lowest value found represented the best estimate (lowest upper-bound solution) 

of the combined N–Q–M failure condition. This process was then repeated for different 

values of Q and N to describe key sections of the failure envelope. This process was carried 

out for different soil and foundation conditions to examine how these affected the 

foundation capacity and optimal failure mechanisms and to compare the results with those 

from the sideswipe tests, as shown in Figure 4.2. 
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4.2 Classification of failure envelopes’ characteristic points 

 

Figures 4.3, 4.5 and 4.7 illustrate the plastic strain magnitude contours at the point 

of failure at characteristic points for caisson foundations of the three embedment ratios 

considered herein, for a coefficient of friction μ=1 and for the characteristic factor of safety 

against vertical loading FSv = 2. Furthermore, in Figures 4.4, 4.6 and 4.8 we compare the 

plastic strain magnitude contours at characteristic points at the point of failure for three 

different safety factors (FSv = 10,2 and 5) and each figure concerns a different embedment 

ratio: D/B=1, 2 or 3 respectively. Finally, in Figure 4.9 we compare the plastic strain 

magnitude contours at the point of failure for FSv=2 and every embedment ratio.  

The failure points along the yield surface in these figures were picked to match 

either a limit value of a load component M or Q or a characteristic location of the pivot 

point in respect to the depth of embedment D. These points include: 

(a) Ultimate moment capacity: Q = 0, M = Mu  

(b) Ultimate horizontal load capacity: Q = Qu, M = 0  

(c) Point of “negative” horizontal load and “negative” moment : Q > 0, M < 0, zp=D 

(d) Maximum horizontal capacity: Q = Qmax, M < 0 , , zp= ∞ 

(e) Maximum moment capacity: Q > 0, M = Mmax, , zp=0 

We can observe that every mobilized soil deformation mechanism of the embedded 

foundation does not depend on the embedment ratio D/B or on the static safety factor FSv; 

it only depends on the location of the considered point on the failure envelope. It follows 

that the individual points of the failure envelopes can be classified into the following 

categories :  
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i) Point (a) of ultimate moment capacity corresponds to the “forward scoop” 

category. 

ii) Point (b) of ultimate horizontal capacity corresponds to a “scoop-slide” 

mechanism. 

iii) Point (c) of positive horizontal load and negative moment , Q>0 and M<0, 

corresponds to an even deeper “scoop-slide” mechanism.  

iv) Point (d) of maximum horizontal capacity Qmax corresponds to a pure sliding 

mechanism. This particular mechanism has not been identified neither is it 

clearly depicted in Figure 4.1.b , although it can be considered similar to 

mechanism (c) of the specific figure. As we have already indicated, mechanism 

(c) is not applicable in the case of solid embedded foundations, as it involves soil 

deformation between the skirts of the foundation, thus pertaining only to 

skirted foundations. Nevertheless, if we ignore the deformed soil between the 

skirts, at the point of maximum horizontal capacity , the soil ,both in front of the 

caisson and behind it, is deformed in a way similar to the one manifested in 

skirted foundations. 

v) Point (e) of maximum moment capacity Mmax corresponds to the “reverse 

scoop” category, with a prevailing rotational trend. In this case, the response of 

the system is fundamentally different from the response manifested for 

maximum horizontal capacity Qmax, since the foundation’s rotational component 

is now significantly enhanced in comparison to the displacement component. 

The differentiation between the mechanisms that shallow and deep embedded 

foundations exhibit at maximum horizontal capacity is of particular importance. In the 

former, the small depth of embedment allows for a plastic strain localization (shear band) 

to be developed while both the caisson and the soil lying above the failure zone move as a 

“rigid” body. In the case of a deeply embedded foundation, however, it seems that the 

critical type of failure is not localized but rather diffusive. This means that plastification is 
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not limited to a small shear band but is diffused to the soil surrounding the caisson. A 

smaller diffusive mechanism is also deployed at the point where deeply embedded 

foundations exhibit their maximum moment capacity. Driven by the similar characteristics 

of the d)-e) region of the envelope - lack of a specific pivot point - we make the assumption 

that deeply embedded foundations actually exhibit the above behavior in the whole d)–e) 

region of their yield surface. 

 The five distinct types of soil resisting mechanisms that are deployed by embedded 

foundations subject to combined M-Q loading are presented in Figure 4.10. The above 

considerations allow us to map the yield surface according to Figure 4.11.  

The aforementioned mechanisms are manifested for about the same load angle 

(where as load angle we define the ratio of the moment M to the shear force Q at failure) 

regardless of the embedment ratio or the factor of safety against vertical loading. The 

above is validated by Figures 4.12, 4.14, 4.16 where the pivot points are schematically 

illustrated through contours of resultant displacement at the point of failure for caisson 

foundations of embedment ratios D/B=1,2 and 3 respectively, for a coefficient of friction 

μ=1 and for the characteristic factor of safety against vertical loading FSv = 2. Furthermore, 

in Figures 4.13, 4.15 and 4.17 we compare the pivot points at the point of failure for three 

different safety factors (FSv = 10,2 and 5) and each figure concerns a different embedment 

ratio: D/B=1, 2 or 3 respectively. Finally, in Figure 4.18  we compare the pivot points at the 

point of failure for FSv=2 and every embedment ratio. Evidently, for ultimate moment 

capacity (point a)), the foundation rotates around a point located approximately at the 

middle of the caisson’s height. Moving along the yield surface in a clockwise fashion, for 

absolutely smaller load angles, the depth of the pivot point increases, reaching the depth 

of embedment D at point c). At this point, the caisson moves as an inverted pendulum. 

After that point, the depth of the pivot point increases dramatically approaching infinity at 

point d) (pure sliding). This is actually the deepest “scoop-slide” mechanism that can be 
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developed. In a very short region, the depth of the pivot point is nullified and a pendulum 

mechanism is revealed. In the final section, the pivot point is lowered again reaching its 

starting value, this time for negative ultimate moment capacity. Observing Figure 4.18  we 

conclude that the pivot path is fairly insensitive to the embedment ratio. However, if we 

carefully notice Figures 4.13, 4.15 and 4.17 , even though the depth of the pivot point 

remains the same despite the change in vertical load, we can detect a shift of the pivot 

point in the horizontal direction: as the safety factor decreases from FSv=10 to FSv=1.11 for 

points a), b) and c) the position of the pivot point shifts to the left. To explain this behavior 

we can examine the accumulation of plastic shear strains  (Figures 4.4, 4.6 and 4.8). 

Evidently, as the vertical load increases the symmetry in the mobilized failure mechanisms 

vanishes. The response of the system is instead described by excessive accumulation of 

plastic shear strains in the direction of the prevalent loading ,(in this case to the right of the 

caisson) and the soil is significantly deformed, something that can explain the shift of the 

pivot point to the left, where the soil is not as deformed. 
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(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (a) The skirted foundation examined by Bransby and Yun [2009],  submitted to lateral 

loading (b) The 5 distinct soil mechanisms that can be developed by skirted foundations as 

recognized by Bransby and Yun *2009+: (a) “forward scoop”, (b) “scoop-slide”, (c) “internal 
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Hansen”, (d) “reverse scoop” and (e) “internal double scoop”. Of these, (c) and (e) cannot be 

deployed by embedded foundations, where there is no internal soil to be mobilized. 

 

Figure 4.2 Effective sweep of the failure envelope through upper bound plasticity analyses 

based on the above soil deformation patterns. [Bransby and Yun, 2009] 
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Figure 4.3 Illustration of the plastic strain magnitude contours developed at characteristic 

points along the yield surface for FSv=2, μ=1, D/B=1. 
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Figure 4.4 Comparison of the plastic strain magnitude contours developed at characteristic 

points along the yield surface for FSv=10,2 and 1.11,  μ=1, D/B=1. 

 

 

 

 

Figure 4.5 Illustration of the plastic strain magnitude contours developed at characteristic points 

along the yield surface for FSv=2, μ=1, D/B=2. 
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Figure 4.6 Comparison of the plastic strain magnitude contours developed at characteristic points 

along the yield surface for FSv=10,2 and 1.11,  μ=1, D/B=2. 
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Figure 4.7 Illustration of the plastic strain magnitude contours developed at characteristic points 

along the yield surface for FSv=2, μ=1, D/B=3. 
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Figure 4.8 Comparison of the plastic strain magnitude contours developed at characteristic points 

along the yield surface for FSv=10,2 and 1.11,  μ=1, D/B=3. 

 

  

 

 

 

Point a Point b 

Point e 

Point c 

Point d 



Figures

 

 

 

 

113 

 

 

 

Figure 4.9  Comparison of the plastic strain magnitude contours developed at characteristic points 

along the yield surface for FSv=2 , μ=1 and D/B=1, 2 and 3. 
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Figure 4.10  The five distinct types of soil resisting mechanisms that are deployed by embedded 

foundations subject to combined M-Q loading. The “diffusive mechanism” may only be developed by 

deeply embedded foundations exhibiting their maximum horizontal capacity, while the “sliding 

mechanism” may only be developed by shallow embedded foundations exhibiting their maximum 

horizontal capacity as well. 
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Figure 4.11  Map of the yield surface of embedded foundations accounting for mechanism types 

and individual mechanisms observed. 
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Figure 4.12 Illustration of the caisson’s pivot point along the yield surface through contours of 

resultant displacement for FSv=2, μ=1, D/B=1. 
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Figure 4.13 Comparison of the caisson’s pivot points along the yield surface through contours of 

resultant displacement FSv=10,2 and 1.11, μ=1, D/B=1. 

 

 

Figure 4.14 Illustration of the caisson’s pivot point along the yield surface through contours of 

resultant displacement for FSv=2, μ=1, D/B=2. 
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Figure 4.15 Comparison of the caisson’s pivot points along the yield surface through contours of 

resultant displacement for FSv=10,2 and 1.11, μ=1, D/B=2. 
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Figure 4.16 Illustration of the caisson’s pivot point along the yield surface through contours of 

resultant displacement for FSv=2, μ=1, D/B=3 
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Figure 4.17 Comparison of the caisson’s pivot points along the yield surface through contours of 

resultant displacement for FSv=10,2 and 1.11, μ=1, D/B=3. 
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Figure 4.18 Comparison of the caisson’s pivot points along the yield surface through contours of 

resultant displacement for FSv=2, μ=1 and D/B=1,2 and 3.
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CHAPTER 5 

ANALYTICAL EXPRESSIONS AND VALIDATION 

 

 

5.1  Introduction 

 

One of the goals of the herein study is the production of appropriate analytical 

expressions that will describe the response of deeply embedded foundations. In the last 

chapter, an attempt was made to thoroughly explain the mechanisms that govern caissons’ 

behavior, without being concerned about their quantification. However, at this point of the 

study, it is essential to introduce mathematical expressions that can be utilized for the soil-

foundation system’s mathematical simulation through macro-element modeling, which will 

be able to reproduce the response of deeply embedded foundations under any loading 

conditions. Two of the main advantages of this process are : (a) the minimization of 

calculation time, avoiding the particularly time-consuming three-dimensional finite 

element analyses and (b) the immediate profit from a single mathematical tool, whose 

credibility lies in its ability to accurately reproduce the behavior of the herein studied 

foundations both at very small strain (quasi elastic behavior) and at failure. Additionally, 

approaching the problem from a modeling point of view can establish a better 

communication between geotechnical and structural engineers. Provided geotechnical 

engineers manage to express the response of deeply embedded foundations in terms of 
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“force-displacement”, structural engineers will be able to acquire a much more realistic 

foundation behavior during non-linear incremental structural analyses [Martin and Houlsby 

2000]. An essential prerequisite for the appropriate utilization of the aforementioned 

advantages is the mathematical expression of  the qualities manifested during the 

response of deeply embedded foundations (e.g. state parameters of the foundation 

system), while at the same time those expressions must be consistent with the physics of 

the particular problem as these have been identified in the herein thesis. 

 

5.2  Ultimate Capacity 

 

In Figures 5.1, 5.2 we witness the change of ultimate horizontal capacity (Qu) and 

ultimate moment capacity (Mu), normalized by their pure capacities for zero vertical load  

Qu* and Mu*,  in respect to the inverse safety factor χ for the three examined embedment 

ratios. It is worth noting that the two capacities demonstrate similar behavior, thus 

allowing us to reach the same conclusions. As we have already observed in chapter 3 both 

lateral capacities are influenced by the inverse factor of safety χ, the coefficient of friction 

μ and the embedment ratio D/B. 

After the appropriate processing of the data that derived from the three-

dimensional finite element analyses, the following analytical expressions were formed to fit 

these numerical results and calculate the ultimate capacities of deeply embedded 

foundations: 

 𝑄𝑢

𝑄𝑢
∗

= (𝑎𝑄𝜒
2 + 𝛽𝑄𝜒 + 1)𝛿𝑄  (1 − 𝜒)휀𝑄  (5.1) 
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 𝑀𝑢

𝑀𝑢
∗

= (𝑎𝑀𝜒2 + 𝛽𝑀𝜒 + 1)𝛿𝑀  (1 − 𝜒)휀𝑀  (5.2) 

where 𝑎𝑄, 𝛽𝑄, 𝛿𝑄  , 휀𝑄  and  𝑎𝑀 , 𝛽𝑀, 𝛿𝑀  , 휀𝑀  are all dependent on the coefficient of friction μ 

and the embedment ratio D/B. However, a clear trend is not evident for these quantities in 

the results of numerical analyses, as far as μ and D/B  are concerned. Producing analytical 

expressions for these variables in order to take account of the effect of slippage and 

embedment would be possible but it would defy the purposes of this thesis, since these 

expressions would be very elaborate and difficult to use. Instead, we provide charts that 

demonstrate the change of these parameters in respect to the embedment ratio D/B and 

the coefficient of friction μ (Figures 5.3, 5.4).  

Furthermore, it is evident that in order to utilize these expressions, one needs the 

values of the pure ultimate lateral capacities under zero vertical load,  Qu* and Mu* 

respectively. Providing analytical expressions for these quantities would not be prudent for 

the case of cohesionless soils, since we do not have enough data to produce useful 

expressions. More specifically, we run numerical analyses for three embedment ratios D/B 

(1, 2 and 3) but for only one width (B=10m). However, in the case of cohesionless soils, 

where the scale effect is of great importance, it is not possible to generalize results that 

have derived from a foundation of specific geometrical characteristics. To determine the 

exact expression of the capacities under zero vertical load we would need data from 

numerical analyses concerning at least two more different geometries.  

It should be noted that for the same reasons mentioned above, we do not attempt 

to provide an analytical expression for the ultimate vertical load that can be undertaken by 

the foundation, Nu.  
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In Figures 5.5 and 5.6  the numerical data are compared to the analytical expression 

for different coefficients of friction and embedment ratios both for the horizontal load and 

the moment  capacity, and the fit proves to be very satisfactory in every case. 

 

5.3 Yield equation for the soil-caisson system 

 

5.3.1. Literature 

 

Scientific research concerning different types of embedded foundations have 

shown that the shape of the  yield surface of the soil-foundation system can be described 

by an oblique ellipse in the M-Q space [Bransby and Randolph 1999a; Martin and Houlsby 

2001; Yun and Bransby 2007]. For instance, Yun and Bransby [2007], have proposed the 

following equation representing the yield locus of lightly embedded foundations (D/B ≤ 1) : 

 
(

𝐻

𝐻𝑚𝑎𝑥
)2 + (

𝑀∗

𝑀0
)2 = 1  (5.3) 

where:  

 H,  Hmax  are the applied and the maximum horizontal force for the 

foundation respectively  

 M*, M0 are the applied moment and the pure moment capacity of the 

foundation  
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Through an optimization technique, Gerolymos and Souliotis [2012]  have 

concluded that the following form of equation most accurately represents the failure 

envelope of a  foundation embedded in cohesive soil with bonded interface: 

 
𝑓 = (

𝑄

𝑄𝑢
)2 + (

𝑀

𝑀𝑢
)2 + 𝑛3  

𝑄

𝑄𝑢
  

𝑀

𝑀𝑢
 − 1 = 0 (5.4) 

where 𝑛3  is a function of the embedment ratio capturing the expansion of the curve and is 

given by: 

 
𝑛3 = 1.84 − 0.21(

𝐷

𝐵
)−1.98 (5.5) 

Respectively, Gerolymos and Karapiperis [2012] proposed the following equation 

for embedded foundations in cohesive soil considering the non-linearity of the interface: 

 
𝑓 = (

𝑄

𝑄𝑢
)𝑛1 + (

𝑀

𝑀𝑢
)𝑛2 + 𝑛3  

𝑄

𝑄𝑢
  

𝑀

𝑀𝑢
 − 1 = 0 (5.6) 

where parameters 𝑛1, 𝑛2 control the yield locus’s rotation (introduced by the detachment 

of the caisson from the soil) and 𝑛3 controls the yield locus’s expansion, both in respect to 

the embedment ratio D/B. 

The following expressions were deduced for the above parameters: 

 
𝑛1 = 2 − 0.25(

𝐷

𝐵
)−2.06 (5.7) 
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𝑛2 = 2 + 0.1(

𝐷

𝐵
)−1.135  (5.8) 

 
𝑛3 = 1.891 − 0.386(

𝐷

𝐵
)−2.361  (5.9) 

 

5.3.2. Proposed analytical expression 

 

As previously stated in the herein thesis, for cohesionless soils the effect of the 

coefficient of friction μ and the safety factor FSv cannot be disregarded as it has been for 

cohesive soils in the aforementioned studies. Therefore, we suggest that the shape of the 

envelope is affected by the embedment ratio D/B, the safety factor FSv and the coefficient 

of friction μ. In order to capture the effect of those parameters on the yield surface, 

expression 5.6 was given as input in an optimization procedure: 

 
𝑓 = (

𝑄

𝑄𝑢
)𝑛1 + (

𝑀

𝑀𝑢
)𝑛2 + 𝑛3  

𝑄

𝑄𝑢
  

𝑀

𝑀𝑢
 − 1 = 0 (5.6) 

 

The highly nonlinear nature of the parameters 𝑛1, 𝑛2 and 𝑛3  with respect to μ, FSV 

and D/B left no option but to train appropriate neural networks, as will be displayed in the 

next section. 
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5.3.3. Neural Networks 

 

        5.3.3.1. Theoretical basis  

 

A neural network is a mathematical model inspired by biological neural networks 

and is generally used to recognize patterns in data. Such a network consists of at least 

three layers: (a) the input layer that receives input data in the form of a matrix and passes 

the information to the network for processing, (b) the hidden layer which is a layer of 

neurons that receives information from the input layer and processes it in a hidden way to 

the posterior hidden layer or to the out layer, and (c) the output layer that receives 

processed information and produces the response of the system.  

Each layer has a weight matrix, w, a bias vector, b, and an output vector, y. Each 

element of the input vector, x, is connected to each neuron input through the weight 

matrix, w. The neuron output, o, is a scalar number; it is a nonlinear function (known as the 

transfer or “activation” function) of the sum of the outputs of all neurons in the most 

anterior layer (the neuron input net): 

 
𝑜𝑗  𝑛𝑒𝑡𝑗  = 𝑓   𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝑖

  (5.10) 

The effectiveness of a neural network to simulate highly non−linear problems is 

partially attributed to the transfer function used for processing the output of a neuron. 

There are several types of transfer functions, the appropriate choice of which 

depends strongly on the nature of the problem and the type of employed neural network. 



Chapter 5

 

 

 

 

130 

 

In our case, the powerful hyperbolic tangent was utilized as a transfer function together 

with a back-propagation learning rule.  

Supplying the neural network with sufficient input data, the former is trained by 

repeatedly applying as much as 75% of the input data and calculating errors with respect to 

the difference between the target and the output vectors. The weight and bias of each 

neuron in the network is then updated with the learning rule after each training cycle / 

“epoch”. This procedure is repeated until the network error falls beneath an error goal, or 

a maximum number of epochs have occurred.  

After the training, the neural network is validated and tested for the remaining 25% 

of the data. In this step, the network’s ability to capture the existing patterns and 

generalize for new input data is confirmed. Besides the above validation, the efficiency of 

the network is about to be tested as part of the whole model. 

 

        5.3.3.2. Representation of parameters n1, n2, n3 

 

The highly nonlinear nature of the hardening parameters n1, n2 and  n3 renders it 

extremely difficult to deduce analytical expressions that can accurately fit the numerical 

data. Hence, we are led to train three separate neural networks for each variable. Using 

Matlab’s neural networking tool, we supply a sufficiently large number of data and test the 

network’s ability to capture the basic hardening trends as well as generalize. The basic 

architecture of the multilayer neural network developed is shown in Figure 5.7. The input 

data involve the embedment ratio D/B, the factor of safety against vertical loading FSv and 

the coefficient of friction μ, while the output is of course one of the parameters for each 

network. The “hidden” layer of the network consists of three neurons and the output layer 
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of one neuron, while the hyperbolic tangent function is used as the “activation” function 

for all neurons: 

 

𝑛𝑘 = tanh   𝑤2𝑗 𝑡𝑎𝑛ℎ

3

𝑗

  𝑤1𝑖 ,𝑗𝑥𝑖 + 𝑏1𝑗

3

𝑖

 + 𝑏2  (5.11) 

where k=1,2 or 3, w1ij and b1j are the weights and biases of the hidden layer (i representing 

the number of the input parameters and j the number of neurons) and w2j and b2 are the 

weights and biases of the output layer. 

 In Figure 5.8, the weights and the biases of the hidden layer (w1ij and b1j)  as well 

as the weights and the biases of the output layer (w2j and b2) are provided for every 

variable separately. In Figure 5.9  we attempt to compare the results from the neural 

networks to the results from the optimization of the data that derived from the three 

dimensional finite element analyses for a) parameter n1 b) parameter n2  and  c) parameter 

n3. Evidently, the neural network approach is fairly satisfactory with the greatest deviation 

from the analytical results being 4% for parameter n2, which implies that the network 

managed to recognize the majority of the patterns lying behind the values of the parameters. 

After determining these parameters we attempt to validate our results by 

comparing the failure envelopes produced by the proposed analytical fit to the ones that 

derived from the finite element analyses. In Figures 5.10  through 5.14 we contrast the 

data  derived from the numerical experiments (points) and the analytical expression 

proposed for the yield surfaces of caisson foundations for different factors of safety, 

coefficients of friction and embedment ratios. Evidently, the fit proves to be satisfactory in 

every case.  
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

Figure 5.1 Comparison of the normalized ultimate (α)  moment and (b) horizontal capacities  for 

μ=1 and  D/B=1, 2 and 3. 
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Figure 5.3  Charts of parameters aM, βM,  δM and  εM (variables employed for the analytical 

expression of the caisson’s moment capacity) in respect to the embedment ratio D/B for different 

coefficients of friction μ=1, 0.5, 0.3. 
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Figure 5.4  Charts of parameters aQ, βQ,  δQ and  εQ  (variables employed for the analytical 

expression of the caisson’s horizontal capacity) in respect to the embedment ratio D/B for different 

coefficients of friction μ=1, 0.5, 0.3 
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Figure 5.5  The normalized ultimate moment and horizontal capacities derived from the FE analyses 

(data points) are compared to the proposed analytical expression (lines) for μ=1 and α) D/B=1  b) 

D/B=2 and c) D/B=3. 
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Figure 5.6  The normalized ultimate moment and horizontal capacities derived from the FE analyses 

(data points) are compared to the proposed analytical expression (lines) for μ=0.5 and α) D/B=1  b) 

D/B=2 and c) D/B=3 

c) 
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Figure 5.7  Schematic representation of the neural network incorporated in the model. 

 

Parameter n1 

Hidden Layer Output Layer 

w1i,j 
b1j w2j b2 

  i=1 i=2 i=3 

j=1 5.844 0.060 -0.105 -0.064 j=1 1.917 -0.305 

j=2 -0.710 0.142 -0.266 0.024 j=2 3.572 
  

j=3 0.358 -5.176 0.669 5.012 j=3 1.023 

 

a) 
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Parameter n2 

Hidden Layer Output Layer 

w1i,j 
b1j w2j b2 

  i=1 i=2 i=3 

j=1 2.053 5.570 9.210 2.998 j=1 -0.981 -0.179 

j=2 43.883 15.482 50.120 10.219 j=2 0.248 
  

j=3 8.964 -29.112 -9.321 -13.381 j=3 -0.608 

 

Parameter n3 

Hidden Layer Output Layer 

w1i,j 
b1j w2j b2 

  i=1 i=2 i=3 

j=1 -23.599 -5.272 0.572 -15.732 j=1 102.407 1.859 

j=2 15.032 0.141 -1.515 4.299 j=2 102.431 
  

j=3 1.149 0.154 2.316 2.419 j=3 -1.912 

 

Figure 5.8  The weights and biases of the hidden layer (w1ij and b1j – i representing the number of 
the input parameters and j the number of neurons)   as well as the weights and the biases of the 
output layer (w2j and b2) are presented for a) parameter n1 b) parameter n2 and c) parameter n3  

b) 

c) 
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Parameter n1 

 

 

Parameter n2 
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Figure 5.9  Comparison of the results from the neural networks to the results from the optimization 
of the data that derived from the three dimensional finite element analyses for a) parameter n1 b) 
parameter n2  and  c) parameter n3 
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Figure 5.10  Comparison between the data derived from the numerical experiments (points) and the 
analytical expression proposed for the yield surfaces of caisson foundations of a factor of safety 
FSv=10, coefficient of friction μ=1 and embedment ratio a) D/B = 1, b) D/B = 2 and c) D/B = 3 
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Figure 5.11 Comparison between the data derived from the numerical experiments (points) and the 

analytical expression proposed for the yield surfaces of caisson foundations of a factor of safety 

FSv=2, coefficient of friction μ=1 and embedment ratio a) D/B = 1, b) D/B = 2 and c) D/B =3. 

b) 

c) 
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Figure 5.12 Comparison between the data derived from the numerical experiments (points) and the 

analytical expression proposed for the yield surfaces of caisson foundations of a factor of safety 

FSv=1.11, coefficient of friction μ=1 and embedment ratio a) D/B = 1, b) D/B = 2 and c) D/B =3. 
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Figure 5.13  Comparison between the data derived from the numerical experiments (points) and the 

analytical expression proposed for the yield surfaces of caisson foundations of a factor of safety 

FSv=2, coefficient of friction μ=0.3 and embedment ratio a) D/B = 1, b) D/B = 2 and c) D/B =3. 

b) 

c) 
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Figure 5.14 Comparison between the data derived from the numerical experiments (points) and the 

analytical expression proposed for the yield surfaces of caisson foundations of a factor of safety 

FSv=1.11, coefficient of friction μ=0.3 and embedment ratio a) D/B = 1, b) D/B = 2 and c) D/B =3. 
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CHAPTER 6 

CONCLUSIONS  

 

 

6.1 Conclusions 

 

This thesis dealt with the behavior of caisson foundations embedded in 

cohesionless soil and subjected to combined axial and lateral loading. After developing 

appropriate Finite Element models for the soil-foundation system, numerous experiments 

were carried out that served the purpose of our work.  

Our first aim was to produce the failure envelopes of caisson foundations under 

combined M-Q-N loading, examining different coefficients of friction, embedment ratios 

and factors of safety against vertical loading. Furthermore, an effort was made to 

thoroughly examine the soil deformation mechanisms that are manifested along a failure 

envelope. Finally, following the work of Gerolymos et al in the case of cohesive soil, we 

determine analytical expressions that represent these failure envelopes. 

The important conclusions that were drawn from this thesis are presented below:  

 

 As part of our approach to the failure envelopes of embedded foundations, 

we first determine the ultimate horizontal and moment capacities of caisson 
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foundations as functions of the following parameters: 1) the embedment ratio D/B 

(for values 1, 2 and 3), 2) the factor of safety against vertical bearing capacity FSv = 

1.11, 1.25,1.43, 1.67, 2, 2.5, 3.33, 5 and 10 and 3)  the coefficient of friction μ, for  

values 0.3, 0.5 and 1. The limit values of μ are carefully chosen to correspond to a 

very smooth and a rough interface. For smaller embedment ratios the influence of 

the vertical load as well as the coefficient of friction are evident: both the moment 

and the horizontal capacity increase until they reach their maximum for χ~0.5 and 

then decline and are nullified for χ=1. Additionally, for a smoother interface the 

values of the capacities are remarkably smaller. However, as the embedment ratio 

increases, the vertical load and the friction cease to have a significant impact on the 

shape of the normalized M-N curve. We also observe that for larger embedment 

ratios (D/B>2) and especially for a smooth interface (μ<0.5) the foundation’s lateral 

capacity declines abruptly for value of χ=1. 

 

 Afterwards, the yield surfaces in the M-Q plane are determined through 

force-controlled tests. For an embedment ratio D/B=1 the failure envelopes 

demonstrate a distinct variability in the branch of over strength with respect to 

the safety factor FSv and the coefficient of friction μ has a considerable effect on 

the shape of the yield locus. However, for greater embedment ratios this distinct 

variability is no longer observed, with the failure envelopes coinciding for D/B=3 

and different factors of safety and coefficients of friction.  Furthermore, as the 

embedment ratio increases the failure envelopes exhibit a significant expansion, 

with a rate that appears to decline for foundations of embedment ratio greater 

than D/B=2. It is also worth noting that in these failure envelopes quantities M and 

Q were normalized by their ultimate capacities, since the dimensionless failure 

envelopes demonstrate a significant rotation with respect to the embedment ratio 

that constitutes them difficult to compare. 
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  Prior to the analytical representation of the yield surface, we delve into a 

thorough examination and categorization of the characteristic points of failure and 

of the soil deformation mechanisms that develop along the failure envelope. We 

classify the characteristic points into five different categories : scoop (Mu), scoop-

slide (Qu), inverted pendulum (zp= D), pure sliding (Qmax, zp=∞) and pendulum 

(Mmax, zp=0). We are then able to map the yield locus on the M-Q plane; apart 

from the already referenced scoop, scoop-slide, pure sliding and reverse scoop 

mechanisms, another mechanism is suggested governing the region between 

maximum horizontal and maximum moment capacity in deeply embedded 

caissons. This mechanism accounts for a generalized (“diffusive”) soil failure 

around the caisson, with no plastic strain localization (shear band) being 

developed except for the base of the caisson. In this narrow region of special 

interest, the depth of the caisson pivot point rapidly changes from z = 0 to z = ∞.  

 

 After successfully mapping the yield locus on the M-Q plane, we deal with 

the analytical representation of both the ultimate capacities. We produce 

analytical expressions for the normalized ultimate lateral capacities. The 

expressions derived from fitting the finite element analyses results are functions 

of the safety factor FSv and of parameters that are dependent on the coefficient of 

friction μ and the embedment ratio D/B. The complexity of those parameters did 

not allow us to produce a simple expression for them. Then, we compared the 

analytical fit to the data from the finite element analyses and validated our results. 

 

 Finally, we provide an analytical fit for the failure envelopes; we use the 

yield equation introduced by Gerolymos et al as input in an optimization 

procedure, but the highly non-linear behavior of the variables n1, n2 and n3 of the 
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yield equation made it extremely difficult to produce analytical expressions for 

them and led us to train three neural networks, whose weights and biases we 

provide. Then, we compared the analytical fit to the data that had derived from 

the finite element analyses, thus validating our results. 
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