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Περίληψη

Μελετάμε το κβαντικό ανάλογο του κρυπτογραφικού προβλήματος της δίκαιης ανταλλαγής.

Σε μία δίκαιη ανταλλαγή θέλουμε να εξασφαλίσουμε ότι δύο πρόσωπα είτε θα ανταλλάξουν τα

μυστικά τους, είτε κανείς από τους δύο δε θα μάθει το μυστικό του άλλου. Πιο συγκεκριμένα

τα δύο αυτά πρόσωπα, έστω η Αλίκη και ο Βασίλης (Α και Β), αλληλεπιδρούν μεταξύ τους

τρέχοντας ένα πρωτόκολλο δίκαιης ανταλλαγής. Απαιτούμε δύο βασικές ιδιότητες:

1. Ορθότητα: ΄Οταν και οι δύο παίκτες παίζουν τίμια (ακολουθούν το πρωτόκολλο) τότε

στο τέλος μαθαίνουν και οι δύο το μυστικό.

2. Πληρότητα: ΄Οταν ένας από τους δύο παίκτες (έστω η Αλίκη) αποκλίνει αυθαίρετα

από το πρωτόκολλο (δηλαδή κλέβει με οποιοδήποτε τρόπο), τότε είτε θα πρέπει και οι

δύο να μάθουν το μυστικό, είτε να μην το μάθει κανείς. Με άλλα λόγια, ακόμη κι αν

κλέβει η Αλίκη, να μη βρεθεί σε μειονεκτική θέση ο Βασίλης.

Προτείνουμε δύο διαφορετικές προσεγγίσεις για τη λύση του προβλήματος.

Στην πρώτη προσέγγιση, δίνουμε έναν παραπλήσιο ορισμό, αυτόν της ταυτόχρονης ανταλ-

λαγής. Σε ένα τέτοιο πρωτόκολλο, απαιτούμε το εξής: σε κάθε στιγμή του πρωτοκόλλου, η

πιθανότητα η Αλίκη να μαντέψει το μυστικό του Βασίλη είναι σχεδόν ίδια με την πιθανότη-

τα ο Βασίλης να μαντέψει το μυστικό της Αλίκης. Σε αυτήν την περίπτωση μπορούμε να

εξασφαλίσουμε ασφάλεια από πληροφοριοθεωρητικής σκοπιάς: κατασκευάζουμε κβαντικό

πρωτόκολλο τέτοιο ώστε ακόμα και ένας υπολογιστικά παντοδύναμος παίχτης να μην μπο-

ρεί να το παραβιάσει. Τονίζουμε ότι με τις κλασσικές μεθόδους είναι αδύνατο να επιτύχουμε

απόλυτη ασφάλεια.

Στη δεύτερη προσέγγιση χρησιμοποιούμε έναν αρκετά διαφορετικό ορισμό, αυτόν του Coin
Ripping. Εδώ, η Αλίκη θέλει να ανταλλάξει χρήματα με κάποιο προϊόν. Χρησιμοποιώντας
κάποια πρόσφατα αποτελέσματα όπως ασφαλή κβαντικά νομίσματα δημοσίου κλειδιού και

αποδείξεις μηδενικής γνώσης ασφαλείς ενάντια σε κβαντικούς αντιπάλους δημιουργούμε ένα

πρωτόκολλο τέτοιο ώστε:

1. Αν η Αλίκη κλέψει τότε το καλύτερο που μπορεί να πετύχει είναι να πάρει το προϊόν και

να αποτρέψει τον Βασίλη από το να πληρωθεί, αλλά η ίδια θα το χάσει το χαρτονόμισμά

της.

2. Αν ο Βασίλης κλέψει τότε το καλύτερο που μπορεί να πετύχει είναι να αναγκάσει την

Αλίκη να χάσει το χαρτονόμισμά της, αλλά ο ίδιος δε θα το αποκτήσει.
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Abstract

Με άλλα λόγια, δεν υπάρχει στρατηγική που να τους ευνοήσει αλλά υπάρχει στρατηγική

που μπορεί να βλάψει τον αντίπαλο. Σε αυτήν την περίπτωση μπορούμε να εξασφαλίσουμε

υπολογιστική ασφάλεια: ένας πολυωνυμικά φραγμένος κβαντικός αντίπαλος έχει αμελητέα

πιθανότητα να το παραβιάσει. Τονίζουμε ότι με τις κλασσικές μεθόδους δεν μπορούμε να

επιτύχουμε κάτι τέτοιο καθώς δεν υπάρχει σχήμα που να εξασφαλίζει την δημόσια επα-

λήθευση ενός νομίσματος (είναι απαραίτητη η χρήση κάποια έμπιστης αρχής που θα μπορεί

να επαληθεύσει τη γνησιότητα των νομισμάτων).
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Abstract
We study the Quantum analogue of Fair Exchange. In a Fair Exchange we want to
guarantee that two parties either will exchange their secrets or neither will learn each
other’s secret. More specifically, the two parties, say Alice and Bob (A and B), interact
running a Fair-Exchange protocol. We require two properties:

1. Completeness: When both parties are honest, then at the end they successfully
exchange their secrets.

2. Soundness: When a party is dishonest then, either both learn the secrets or neither
does. In other words, even if Alice is cheating, Bob will never be disadvantaged.

We suggest two different approaches to solve the problem.
In the first one we give a slightly different definition, that of Simultaneous Exchange.
In such a protocol, we require the following: in every moment of the protocol, Alice’s
probability of guessing Bob’s secret is almost the same as Bob’s probability of guessing
Alice’s secret. In this case we can guarantee information theoretic security: we create a
quantum protocol such that even a computationally unbounded adversary cannot break
it. Note that classically it is impossible to guarantee perfect security.
In the second approach we use a different definition; namely the Coin Ripping. Now Alice
wants to exchange money for some product. Using some recent results such as public
Key Quantum Money and Quantum secure Zero-Knowledge Proofs we create a protocol
such that:

1. If Alice is cheating then the best she can succeed is to take the product and prevent
Bob from being paid, but she will surely lose her coin.

2. If Bob is cheating then the best he can succeed is to make Alice lose her coin, but
he will not get the coin.

In other words, there is no strategy that they can use in their favor, but there is a strategy
that can harm the honest one. In this case we can guarantee computational security: a
polynomially bound adversary has negligible probability of breaking the protocol. Note
that classically we cannot achieve such a protocol since there is no public key Quantum
Money scheme.
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Introduction

The problem of Fair exchange is one of the most important cryptographic problems
of Modern Cryptography. Informally, suppose that Alice and Bob have secrets sA, sB
respectively and they want to run a protocol so that either both will learn each other’s
secret or none. However, the two parties do not trust each other; Alice doesn’t trust Bob
that if she first tells him the secret, he will respond; the same holds for Bob. So we need
a protocol to address this deadlock.
Already from the early 80’s Even [9] proved an impossibility result; there is no classical
protocol for fair exchange that does not use any Trusted Third Party (TTP). Since then,
much work has been done in order to reduce the intervention of the TTP. In fact, the
problem can be solved optimally using a TTP that takes both secrets and then sends
Alice sB and Bob sA. However, these kinds of protocols pose heavy work to the TTP.
The latest results try to exploit the TTP as less as possible and at the best scenario to
use it only in exceptional cases (dishonest behavior or channel corruption).
In this thesis we will address this problem using the powerful tools of Quantum Mechanics.
We will show that in the quantum world we can succeed much better results than in
the classical counterpart. We will approach the problem using two different definitions
and then give optimal protocols satisfying them. We note, that much less work has
been made quantumly. In particular, the paper of Paunković et al [16] is (to the best of
our knowledge) the only quantum protocol for contract signing (an application of fair
exchange where the parties exchange their digital signature on a common contract).

Quantum mechanics have many applications to Modern Cryptography. The real power
of quantum mechanics, lies in the fact that a measurement disturbs the system to be
measured; the system collapses. Exploiting this advantage, Bennett and Brassard [4] in
1984 created the famous unconditionally secure protocol for key exchange BB84, paving
the way for the the new era of Quantum Cryptography. Since then, much progress has
been made to create more secure protocols based on the laws of quantum mechanics. In
this work, we will use many of these results to create secure fair exchange protocols.
In particular, one of the most useful results is the work of Mochon [14] where he proved that
we can have unconditionally secure balanced weak coin flipping and the work of Chailloux
and Kerenidis [8] where they proved that we can have unconditionally secure unbalanced
weak coin flipping. Using these results we will create a protocol for simultaneous exchange
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Introduction

of a single bit.
Another interesting option for fair exchange is the work of Jakobsson [12] where he
proposes a totally different way of fair exchange; the idea of ripping a banknote. In this
scenario Alice exchanges money for a product. As before, she doesn’t trust Bob to pay
him before getting the product, neither Bob trusts her to send her the product before
getting paid. The idea is to let Alice rip the banknote (sometimes we will refer to the
banknote as coin) in two halfs and send only the one part to Bob. Bob can verify that
this part is valid and send the product, being sure that Alice can’t use the other part
as a full banknote. To avoid the need of a TTP this scheme requires at least a publicly
verifiable quantum money scheme. Informally, a money scheme is publicly verifiable if
there is no need of a TTP (or Bank) to verify the validity of the coins; the users can
verify the coins just like in the real world. A second requirement for our protocol is the
existence of quantum-secure Zero-Knowledge Proofs of Knowledge.
Recently, both problems were almost adressed. Aaronson and Christano [1] approached
the problem of publicly verifiable quantum money with good candidate protocols. One
of the main ideas of their paper is to compose digital signatures and quantum money
Mini-Schemes to create a full quantum money scheme. Furthermore, the work of Watrous
[20] proving quantum-secure Zero-Knowledge Proofs together with the work of Unruh [19]
proving quantum-secure Proofs of Knowledge completes the toolbox needed for creating
a quantum-secure ripping coins protocol.

The following chapters are organized as follows. In the first Chapter we make an
introduction to the basic quantum concepts. It consists of three sections. In the first
section we present the quantum computation principles and in the second the quantum
information principles. In the third section we analyze the distance measures of quantum
states that are necessary for our work. In the second Chapter we present the Quantum
Tools that will be used for our constructions. It consists of three sections. In the first
section we define Zero-Knowledge Proofs and Zero-Knowledge Proofs of Knowledge. In
the second section we define some cryptographic primitives and in the third section
we give the definition of a quantum money scheme and the results of [1]. In the third
Chapter we define the Ripping Quantum Coins Scheme and we give a proof that there
exists a secure protocol for ripping coins. In the fourth Chapter we define simultaneous
exchange and we give a proof that there exists a protocol with arbitrarily small error for
simultaneous exchange.
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1 Basic Quantum Principles

Let’s consider for a while the classical bit. A bit b can take the values 0,1 and these values
are usually represented by two different values of voltage in a classical circuit. When we
measure a bit, we simply read its value, and then work with it. Of course, we can copy a
single bit; we just read it and learn its value and then we can make as many copies as we
want. We define a register as an n-bit string for some n.
In the quantum world things are different; a quantum bit or qubit can take many more
values than 0,1, a measurement of a qubit doesn’t return its value and after the measure-
ment the qubit changes. Also, a copy of an unknown qubit is impossible. These are some
of the differences between the two computational models that enable us to do many more
things quantumly than classically. Quantum computers, however, do not only offer great
computational power, but also provide much more power in the information theory and
cryptography.
In this chapter we will introduce the basic Quantum Computation and Quantum Infor-
mation principles. For an extended introduction to the field see [15].

1.1 Quantum Computation

We begin by giving the basic building block of a quantum computer the qubit and then
analyze the computation procedure and give some remarks that need attention.

1.1.1 Qubits

Consider a hydrogen atom as a qubit. The state of a hydrogen atom is in general a
combination of its ground and its excited state; see figure 1.1. If we assume that the
ground and the excited states correspond to bits 0 and 1 respectively, we can say that a
qubit can be in a linear combination (or superposition) of all the corresponding bits. We
use Dirac’s notation to represent the state of a qubit. So if |ψ〉 is the state of a qubit we

3



Chapter 1. Basic Quantum Principles

can write:

|ψ〉 = a0|0〉+ a1|1〉

The coefficients a0, a1 are in general complex numbers satisfying the requirement

+

proton

electron

(a) Ground state |0〉

+

proton

electron

(b) Excited state |1〉

Figure 1.1: States of a hydrogen atom

|a0|2 + |a1|2 = 1

We can see the state |ψ〉 as a column vector

|ψ〉 = a0

(
1

0

)
+ a1

(
0

1

)
=

(
a0

a1

)

and in the same way we can define the conjugate transpose of the state |ψ〉 as

〈ψ| =
(
a∗0 a∗1

)
where z∗ is the complex conjugate of z.
If we have two qubits |ψ〉 = a0|0〉+ a1|1〉 and |φ〉 = b0|0〉+ b1|1〉 we can define the inner
product between the two states as

〈ψ|φ〉 =
(
a∗0 a∗1

)(b0
b1

)
= a∗0 · b0 + a∗1 · b1

An intuitive way to think the state of a qubit is as a point on the unit circle as in figure 1.2.
In the case of two qubits their state is in a superposition of all the possible classical values
of two bits; namely

|ψ〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉

4



1.1. Quantum Computation

|0〉

|1〉

−|0〉

−|1〉

Figure 1.2: Qubit state on the unit cicle

Same as before, the sum of the squares of the coefficients’ norm should add up to unity

|a00|2 + |a01|2 + |a10|2 + |a11|2 = 1

Generalizing the above procedure we can see that if we have a state |ψ〉 of n qubits then
in general it can be in a superposition of all the corresponding states

|ψ〉 =

2n∑
i=1

ai|i〉 with
2n∑
i=1

|ai|2 = 1

Therefore, we see that quantum computers operate in exponentially more space than
classical computers. However, to read a qubit we have to measure it, and the measurement
of a qubit does not reveal all this information.

1.1.2 Measurement

The measurement of a qubit is completely different from the measurement of a bit. When
we measure a qubit |ψ〉 = a0|0〉+ a1|1〉 we take only one bit, 0 or 1. If o is the outcome
of the measurement then we have that

Pr[o = |0〉] = |〈ψ|0〉|2 = |a0|2 and Pr[o = |1〉] = |〈ψ|1〉|2 = |a1|2

This is the main reason we need the normalization; if the squares of the coefficients’ norms
add to unity then they can be probabilities. Another useful remark is that we can see
these probabilities as the square of the projection to the corresponding basis vector (|0〉
or |1〉).
After the measurement the state of the qubit collapses and becomes the outcome of the
measurement. So if we measured 0 then the new state becomes |0〉 and if we measured 1
the new state becomes |1〉. In the case of two bits things are the same; if we measured 00
then the new state becomes |00〉 and so on.

5



Chapter 1. Basic Quantum Principles

What if we measure just a single bit? Suppose as before the state |ψ〉 = a00|00〉+a01|01〉+
a10|10〉 + a11|11〉 and we want to measure only the first bit. Then with probability
|a00|2 + |a01|2 the outcome will be 0 and with probability |a10|2 + |a11|2 it will be 1. If
we measure 0 the new state has the form:∣∣ψ′〉 =

a00|00〉+ a01|01〉√
|a00|2 + |a01|2

and if we measure 1 the new state has the form∣∣ψ′〉 =
a10|10〉+ a11|11〉√
|a10|2 + |a11|2

This generalizes to n qubits. So despite that quantum computers operate in exponential
space, the only way to see the qubits is via a measurement, which returns only n bits of
information and even worse it destroys the state.

The measurement we just presented is called a measurement in the computational basis
({|0〉, |1〉}). This is not the only kind of measurement; in fact, we can measure in any
orthonormal basis of the system. So for example we can define

|+〉 =
1√
2
|0〉+

1√
2
|1〉

|−〉 =
1√
2
|0〉 − 1√

2
|1〉

and we can measure a qubit |ψ〉 in the basis B = {|+〉, |−〉}. B is orthonormal since

||+〉| = ||−〉| = 1 and also 〈+|−〉 = 0

So if o is the outcome, we have that

Pr[o = |+〉] = |〈ψ|+〉|2 and Pr[o = |−〉] = |〈ψ|−〉|2

and as before the state collapses to |+〉 or |−〉.
In the same way, we can measure two qubits in the basis {|++〉, |+−〉, |−+〉, |−−〉} and
so on for n qubits.

We note that we can write interchangeably

|ψ〉|φ〉 = |ψ〉 ⊗ |φ〉 = |ψφ〉

meaning the tensor product of the two states.
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1.1.3 Unitary Operators

The building blocks of quantum computations are, just like classical, the quantum gates.
As we have already seen, the quantum states can be represented as column vectors whose
norm equals to 1. The quantum gates are essentially operators or matrices with the
property that they are unitary. An operator U is unitary, if

UU † = I

where U † is the conjugate transpose of U .
Let’s note some important properties. First, unitary operators preserve the inner product
and the length of the vectors and consequently their only ability is to rotate or mirror a
vector. Second, their columns create an orthonormal basis (and so do their rows). Third,
if U is unitary, so is U † and therefore can be applied to a state. So, if we apply U to a
state |ψ〉 and then apply U † the state we take is just |ψ〉. This is an important property;
it states that quantum computations, unlike their classical counterparts, are reversible.
In particular, consider the truth table of the classical XOR gate; see Table 1.1. It is
obvious that once the gate is applied to two bits, it is impossible to go back. We have lost
information. Such gates do not exist in the quantum world. The quantum counterpart of
the XOR gate is the CNOT gate; see Figure 1.3. We see that it takes as input two qubits
and outputs two qubits. Suppose that we give the CNOT gate the qubits |0〉|0〉 = |00〉.
This state (say |ψ〉) can be also written as

|ψ〉 = 1 · |00〉+ 0 · |01〉+ 0 · |10〉+ 0 · |11〉 =


1

0

0

0


and therefore we have

CNOT|00〉 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1

0

0

0

 =


1

0

0

0

 = |00〉

Accordingly, we also have CNOT|01〉 = |01〉, CNOT|10〉 = |11〉, CNOT|11〉 = |10〉. So,
we have that

|a, b〉 CNOT−−−−→ |a, a⊗ b〉

We see that in order to compute the XOR of two qubits, we also have to keep the first
qubit. Note, also, that the CNOT gate is reversible. We just apply it once more and we
return back to the first state.
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bit 1 bit 2 result
0 0 0
0 1 1
1 0 1
1 1 0

Table 1.1: Truth table of XOR gate


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(a) Matrix

•

(b) Gate

Figure 1.3: The CNOT Operator

A crucial remark is that we can apply the gate to a superposition of states; and by
linearity we can have:

CNOT(a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉) =

a00|00〉+ a01|01〉+ a10|11〉+ a11|10〉

This way we compute the XOR of all possible inputs at once.
Another remark is in the way we compute functions. Suppose we have a classical function
f : {0, 1}n → {0, 1}m. The way it is calculated quantumly is by giving as input to the
circuit Uf daggerh the input qubits and some more qubits where the output will be
written; see Figure 1.4. So just like

|a, b〉 CNOT−−−−→ |a, a⊗ b〉

we have

|x, b〉
Uf−−→ |x, f(x)⊗ b〉

and by initializing |b〉 to |0m〉 we have

|x, b〉
Uf−−→ |x, f(x)〉

Observe that quantumly we can compute all the values of the function f by simply
creating a superposition of all the possible inputs and then apply Uf . Then we will get a
superposition of all the possible outputs of f .

One of the most useful gates in quantum computing is the Hadamard gate. The Hadamard
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Uf

|x〉 |x〉

ancilla qubits |0m〉 |f(x)〉







Figure 1.4: Quantum circuit Uf for computing f

operator has the form

H =
1√
2

(
1 1

1 −1

)

and so we have H|0〉 = |+〉, H|1〉 = |−〉, H|+〉 = |0〉, H|−〉 = |1〉. In other words HH = I.
When applied to a superposition it gives

H(a0|0〉+ a1|1〉) =
a0 + a1√

2
|0〉+

a0 − a1√
2
|1〉

Now, suppose that we have n qubits and the state of each qubit is |0〉. Then the whole
state can be written as |0n〉. We can apply the Hadamard gate to each of these qubits
(applying in parallel n Hadamard gates can be written using the tensor product as H⊗n).
This gives

H⊗n|0n〉 =
∑

i∈{0,1}n

1√
2n
|i〉 =

1√
2n

∑
i∈{0,1}n

|i〉

This is an easy way of creating a superposition of all the different values. Giving this
state to the previous circuit Uf together with the ancilla qubits initialized to the state
|0m〉 will output

Uf

 1√
2n

∑
i∈{0,1}n

|i〉 ⊗ |0m〉

 =
1√
2n

∑
i∈{0,1}n

|i〉 ⊗ |f(i)〉

9
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However, as mentioned before, we do not have access to all this information. In particular,
a measurement of this state will result one random value from the range of f .

1.1.4 Entanglement

Consider two qubits, one in the state |ψ〉 = a0|0〉 + a1|1〉 and the other in the state
|φ〉 = b0|0〉+ b1|1〉. Then the state of the two qubits can be written as

|ψφ〉 = a0b0|00〉+ a0b1|01〉+ a1b0|10〉+ a1b1|11〉

by taking the Cartesian product. Now, consider one of the famous Bell States which is
also a state of two qubits∣∣Φ+

〉
=

1√
2
|00〉+

1√
2
|11〉

By simple calculations we can prove that it is impossible to find two qubits of the form
|ψ〉 = a0|0〉+ a1|1〉 and |φ〉 = b0|0〉+ b1|1〉 that can result in this state. We say that the
two qubits of |Φ+〉 are entangled, whereas if they are not entangled we say that they are
separable.

There is a very interesting property of the entangled qubits. Suppose that Alice and
Bob share the state |Φ+〉, Alice possesses the first of the two qubits and Bob the second.
Suppose also that they are very far apart. Sometime, Alice decides to measure her qubit.
Then with probability 1/2 she will measure |0〉 and with probability 1/2 she will measure
|1〉. Immediately after her measurement if Bob decides to measure his qubit, he will
measure the same bit as Alice. In other words, if Alice measured |0〉 the state collapses to
|00〉 and it is completely determined and therefore Bob’s measurement will also give |0〉.

1.1.5 No Cloning Theorem

We now give an important theorem limiting the power of unitary operators.

Theorem 1.1. Suppose we have an unknown state |ψ〉. Then there is no unitary operator
that can copy it.

Proof. Suppose that there is a unitary U that can copy quantum states; U(|ψ〉|0〉) = |ψ〉|ψ〉
and U(|φ〉|0〉) = |φ〉|φ〉. The inner product of the initial states is

(〈ψ| ⊗ 〈0|)(|φ〉 ⊗ |0〉) = 〈ψ|φ〉〈0|0〉 = 〈ψ|φ〉

whereas the inner product of the final states is

(〈ψ| ⊗ 〈ψ|)(|φ〉 ⊗ |φ〉) = 〈ψ|φ〉〈ψ|φ〉 = (〈ψ|φ〉)2

10
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We observe that

〈ψ|φ〉 6= (〈ψ|φ〉)2

unless |ψ〉 = |φ〉 ⇔ 〈ψ|φ〉 = 1 or 〈ψ|φ〉 = 0 in which case they are not unknown since we
can measure them without destroying them. Therefore we come to a contradiction.

1.2 Quantum Information

We will now present the basic quantum information principles. Let’s begin with a simple
example. Suppose Alice and Bob share the bipartite entangled state∣∣Φ+

〉
=

1√
2
|0〉A|0〉B +

1√
2
|1〉A|1〉B

As we have already mentioned this state is not separable and therefore the state of Alice’s
or Bob’s qubit separately cannot be expressed with the previous way. We need a more
general definition for this kind of states. We will introduce the mixed states. Note that
the states we have presented in the previous section are called pure states.

1.2.1 Mixed States

Consider the following: if Alice measures her qubit then, as we have already mentioned,
she will output |0〉 or |1〉 with probability 1/2 each. Therefore, we can say that Alice
possesses a probability distribution of two pure states; namely she possesses the mixed
state {(1/2, |0〉), (1/2, |1〉)}. In general, a mixed state can be any probability distribution
over pure states.
The density matrix or density operator is a good way to work with quantum mixed states.
Suppose that we have the mixed state {pi, |ψi〉}. We define the density matrix of a state
as:

ρ =
∑
i

pi|ψi〉〈ψi|

For example, the density matrix of the previous state is

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1| = 1

2
·

(
1

0

)(
1 0

)
+

1

2
·

(
0

1

)(
0 1

)
=

1

2
·

(
1 0

0 1

)

An important fact about mixed states is that different mixed states can have the same
density matrix. For example, the density matrix of the mixed state {(1/2, |+〉), (1/2, |−〉)}

11
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is also

ρ =
1

2
·

(
1 0

0 1

)

Let’s note some important properties.

1. The trace of a density matrix equals to 1; Tr ρ = 1

2. The trace of the square of a density matrix is less or equal to 1; Tr ρ2 ≤ 1. In
particular, if ρ is a density matrix of a pure state then Tr ρ2 = 1, and if it is a
density matrix of a mixed state Tr ρ2 < 1

3. ρ is Hermitian, meaning ρ = ρ†, it has non-negative eigenvalues and is a non-negative
operator, meaning that for any state |ψ〉 it holds that 〈ψ|ρ|ψ〉 ≥ 0.

The measurement of a mixed state can also be made in any basis. So if we measure the
state ρ =

∑n
i=1 pi|ψi〉〈ψi| in the basis {|b1〉, |b2〉, . . . , |bm〉} then the probabilities of the

outcome o are:

Pr[o = |bk〉] =
n∑
i=1

pi|〈bk|ψi〉|2 =
n∑
i=1

pi〈bk|ψi〉〈ψi|bk〉 = 〈bk|

(
n∑
i=1

pi|ψi〉〈ψi|

)
|bk〉

and therefore

Pr[o = |bk〉] = 〈bk|ρ|bk〉

Also, the evolution of a mixed state is accomplished using unitary operators. If U is a
unitary operator then the new density operator is

ρ′ =
∑
i

piU |ψi〉〈ψi|U † = U

(∑
i

pi|ψi〉〈ψi|

)
U †

and therefore

ρ′ = UρU †

1.2.2 Partial Trace and Purification

In the previous subsection we showed an informal way to define the state of Alice’s qubit
by calculating the probabilities of the measurement outcomes. The formal procedure
is called Partial Trace and we say that we trace out Bob’s state. Also the new density
operator is called reduced density operator.

12
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Suppose the general scenario where Alice and Bob share the state

|ψ〉 =
∑
ij

cij |i〉A|j〉B

Then, we can consider the density matrix ρ of this pure state and we have ρ = |ψ〉〈ψ|.
We define the reduced density matrix of Alice as

ρA = TrB ρ =
∑
j

(〈j|B ⊗ IA)ρ(IA⊗|j〉B)

and similarly for the state of Bob

ρB = TrA ρ =
∑
i

(〈i|A ⊗ IB)ρ(IB ⊗|i〉A)

where {|j〉B}, {|i〉A} are the basis vectors of Alice’s space and Bob’s space respectively.
So in the previous example

|0〉B =

(
1

0

)
, |1〉B =

(
0

1

)
and IA =

(
1 0

0 1

)

and therefore

IA⊗|0〉B =


1 0

0 0

0 1

0 0

 and IA⊗|1〉B =


0 0

1 0

0 0

0 1


and with simple calculations we have the previous result

ρA =

(
1
2 0

0 0

)
+

(
0 0

0 1
2

)
=

(
1
2 0

0 1
2

)

An important remark is that the reduced density matrix of Bob is independent from the
measurement basis of Alice. Furthermore, if the whole state is separable, then its density
matrix ρ is simply the tensor product of ρA and ρB; ρ = ρA ⊗ ρB.
Taking it one step further, the state Alice and Bob share is not necessarily a pure state;
it can be a mixed state as well.

We will now see the opposite direction. Suppose that Alice possesses the mixed state ρA.
Then we define a purification of ρA any bipartite pure state shared between Alice and
Bob where

TrB |ψ〉〈ψ| = ρA

13
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For example, one purification of ρA =

(
1
2 0

0 1
2

)
is the state 1√

2
|0〉A|0〉B + 1√

2
|1〉A|1〉B . We

note that the purification of a mixed state is not unique; there can be many different
pure states that if they be partially traced will give ρA.

1.2.3 Superoperators

Now suppose that we have a composite bipartite system on the Hilbert Space HA ⊗HB

with density matrix ρ and Alice possesses the reduced state ρA such that ρA = TrB ρ.
We apply a unitary transformation to ρ and the new state is

ρ′ = UρU †

Now, if we trace out Bob’s space we take Alice’s new density matrix

ρ′A = TrB ρ
′

We define the superoperator S as

ρ′A = S(ρA)

If HA is a Hilbert space, we define L(HA) as the set of all linear operators on HA

(have in mind the set of all density operators on HA). A superoperator essentially
is a linear map from one Hilbert Space to another HA → H ′A. Some examples of
superoperators are the unitary operator on a density matrix (L(HA)→ L(HA)), a partial
trace of a density matrix (L(HA)⊗ L(HB)) → L(HA)) or an operator that adds more
qubits to a state (L(HA) → L(HA ⊗HB)); namely S(ρ) = ρ ⊗ |0〉〈0|. Furthermore, a
superoperator S : L(HA)→ L(H ′A) can be extended to a superoperator S′ that is applied
to a larger system by taking the tensor product between this and the identity operator;
S′ = S ⊗ I : L(HA ⊗ F )→ L(H ′A ⊗ F ).

Superoperators can also be written as

S(ρA) = TrB

[
U(ρA ⊗ |0〉〈0|)U †

]
for some U, |0〉 and have the following properties:

1. They map Hermitian matrices to Hermitian matrices

2. They map positive matrices to positive matrices

3. They preserve the trace Tr ρA = Tr (S(ρA))

4. They are completely positive operators meaning that for every positive density
matrix ρ and for every Hilbert space M , it holds that (S ⊗ IM )(ρ) is also positive,
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where IM is the identity operator on M .

Properties 2,3 show that if S is applied to a density matrix, the output is also a density
matrix.

1.3 Distance Measures

In this section we will define the necessary distance measures for our work. Then we will
use them to define different kinds of indistinguishability which is a key property for the
security of cryptographic protocols.

1.3.1 Fidelity

The fidelity of two pure states |ψ〉, |φ〉 is simply defined as

F(|ψ〉, |φ〉) = |〈ψ|φ〉|2

So, if we measure the qubit |ψ〉 in the basis {|0〉, |1〉} we will take |0〉 with probability
F(|ψ〉, |0〉) and |1〉 with probability F(|ψ〉, |1〉).
The fidelity between a density matrix and a pure state is defined similarly

F(ρ, |ψ〉) = 〈ψ|ρ|ψ〉

where in the case that ρ = |ψ〉〈ψ| we take the previous expression.
Finally, an easy way to define the fidelity of two mixed states is

F(ρ, σ) = max |〈ψ|φ〉|2

where the maximum is taken over all purifications |ψ〉 of ρ and all purifications |φ〉 of σ.

1.3.2 Statistical Distance - Trace Distance

An important measure in probability theory is the statistical distance between two
distributions. If X and Y are two random variables following the probability distributions
D1 and D2 respectively then the statistical distance between D1 and D2 is defined as

∆(D1, D2) =
1

2

∑
i∈Ω

| Pr
X←D1

[X = i]− Pr
Y←D2

[Y = i]|

where Ω is the set of all the possible values X and Y can take.

The quantum analogue of the statistical distance is the trace distance between two density
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matrices. There are many ways to define it, the simplest being

D(ρ, σ) =
1

2
‖ρ− σ‖1 =

1

2

∑
i

|λi|

where ‖ · ‖1 is the trace norm and λi are the eigenvalues of the matrix ρ− σ.

1.3.3 Diamond norm

The diamond distance [3] between two superoperators S1, S2 : L(N)→ L(M) is defined
as

♦(S1, S2) = max
{

D
(
(S1 ⊗ IH)(ρ), (S2 ⊗ IH)(ρ)

)}
where the maximum is taken over all finite dimensional Hilbert spaces H and all ρ ∈
L(H ⊗N). In other words, we take N and we increase it with H. Then we apply S1⊗ IH
to all possible states ρ ∈ L(H ⊗N) and take the maximum trace norm for all ρ and H.

1.3.4 Quantum Indistinguishability

Here, we will analyze the different notions of indistinguishability. There are many
different aspects such as perfect, statistical, computational indistinguishability of classical
probability distributions or quantum states. There is also indistinguishability of quantum
algorithms.

We will denote a function f negligible on some security parameter n if for all polynomials p
there exists some n0 such that for all n > n0 it holds that

f(n) <
1

p(n)

Sometimes we will write negl(n) to denote any negligible function on n.

Perfect Indistinguishability

We begin with a very classical result from probability theory. If two distributions D1, D2

have zero statistical distance then this means that the two distributions are the same
and therefore no algorithm can distinguish between the two random variables X1, X2

following D1, D2 respectively. We say that X1 and X2 are perfectly indistinguishable.

The quantum analogue is very similar. If two mixed states {pi, |ψi〉}, {p′i, |ψ′i〉} have same
density matrices then they are perfectly indistinguishable; no quantum algorithm can
distinguish between the two states.
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Measure of similarity - Fidelity

Let’s analyze for a while the use of fidelity. Fidelity, doesn’t measure indistinguishability;
it measures how indistinguishable two states can become. Suppose that Alice sends to
Bob some qubits that are entangled with some qubits of Alice and the whole state is
ρ = |ψ〉〈ψ|. As we have already said, Bob’s state is ρB = TrA ρ. Now, Alice wants to
change the whole state ρ to some other σ = |φ〉〈φ| but she doesn’t possess the whole state;
she possesses only one part of the qubits and therefore she is allowed to apply operations
only to those qubits. We define similarly σB = TrA σ. How close can she bring ρ and σ?
The answer depends on F(ρB, σB). In particular, if she sends her remaining qubits to
Bob then the best probability that Bob will accept that the whole state is σ (and not ρ)
is F(ρB, σB). This is completely related to the definition of fidelity; at worst, Alice will
create the purification of ρB that has the maximum inner product with |φ〉.
For example she can transform the state |ψ〉 = 1√

2
|0〉A|0〉B + 1√

2
|1〉A|1〉B to |φ〉 =

1√
2
|1〉A|0〉B + 1√

2
|0〉A|1〉B by applying the NOT gate to her qubit. In other words, the

fidelity of the reduced matrices is equal to 1 so the probability that Bob will accept that
the state is |φ〉 (despite that initially it was |ψ〉) is 1.

Indistinguishability of variables - states

A measure of indistinguishability between two random variables uses the statistical
distance.

Proposition 1.1. Suppose two random variables X1, X2. Then for all classical algorithms
V it holds that:∣∣ Pr

x←X1

[V (x) = 1]− Pr
x←X2

[V (x) = 1]
∣∣ ≤ ∆(X1, X2)

Definition 1.1 (Statistical Indistinguishability). Suppose two random variables X1, X2.
If ∆(X1, X2) = negl(n) (for some security parameter n) then X1, X2 are statistically
indistinguishable.

The previous definition gives only one aspect of indistinguishability. Another aspect is the
computational indistinguishability with a weaker definition. Two random variables can
be computationally indistinguishable even if their statistical distance is non-negligible.

Definition 1.2 (Computational Indistinguishability). Suppose two random variables
X1, X2. If∣∣ Pr

x←X1

[V (x) = 1]− Pr
x←X2

[V (x) = 1]
∣∣ = negl(n)

for all classical polynomial time algorithms V (for some security parameter n) then X1, X2

are computationally indistinguishable.
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One example of computational indistinguishability is the DDH assumption; the random
variables 〈gx, gy, gxy〉 and 〈gx, gy, gz〉 in a cyclic group G with generator g have great
statistical distance but it is conjectured that they are computationally indistinguishable.

The previous definitions can be extended to the quantum world by replacing the statistical
distance with the trace distance.

Proposition 1.2. Suppose two mixed states ρ1, ρ2. Then for all quantum algorithms Q
it holds that:∣∣〈1|Q(ρ1)|1〉 − 〈1|Q(ρ2)|1〉

∣∣ ≤ D(ρ1, ρ2)

Definition 1.3 (Weak Quantum Statistical Indistinguishability). Suppose two mixed
states ρ1, ρ2. If D(ρ1, ρ2) = negl(n) then ρ1, ρ2 are weakly quantum statistically indistin-
guishable.

Definition 1.4 (Weak Quantum Computational Indistinguishability). Suppose two mixed
states ρ1, ρ2. If∣∣〈1|Q(ρ1)|1〉 − 〈1|Q(ρ2)|1〉

∣∣ = negl(n)

for all quantum polynomial time algorithms Q then ρ1, ρ2 are weakly quantum computa-
tionally indistinguishable.

The previous definition is a weak definition of quantum indistinguishability. The strong
definition gives to the distinguisher Q some extra state that may help it distinguish the
states.

Definition 1.5 (Strong Quantum Computational Indistinguishability [20]). Suppose two
mixed states ρ1, ρ2. The two states are strongly quantum computationally indistinguishable
if for all quantum polynomial time algorithms Q and for all auxiliary states σ it holds
that: ∣∣〈1|Q(ρ1 ⊗ σ)|1〉 − 〈1|Q(ρ2 ⊗ σ)|1〉

∣∣ = negl(n)

for security parameter n.

Indistinguishability of Quantum Operations

Next, we extend the previous notion to the case of superoperators. As before we can have
weak and strong indistinguishability.

Definition 1.6 (Weak Computational Indistinguishability of Superoperators). Suppose
two superoperators S1, S2 : L(N)→ L(M). S1, S2 are weakly quantum computationally
indistinguishable if for all quantum polynomial time algorithms Q and for all states
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ρ ∈ L(N) it holds that∣∣〈1|Q(S1(ρ))|1〉 − 〈1|Q(S2(ρ))|1〉
∣∣ = negl(n)

for security parameter n.

Allowing as before some auxiliary space gives the strong indistinguishability of superoper-
ators.

Definition 1.7 (Strong Computational Indistinguishability of Superoperators). Suppose
two superoperators S1, S2 : L(N)→ L(M). S1, S2 are strongly quantum computationally
indistinguishable if for all quantum polynomial time algorithms Q for all spaces H and
for all states ρ ∈ L(N ⊗H) it holds that∣∣〈1|Q(S1 ⊗ IH(ρ))|1〉 − 〈1|Q(S2 ⊗ IH(ρ))|1〉

∣∣ = negl(n)

for security parameter n.

The analogue of Proposition 1.2 is the following:

Proposition 1.3. Suppose two superoperators S1, S2 : L(N) → L(M). Then for all
quantum algorithms Q it holds that:∣∣〈1|Q(S1 ⊗ IH(ρ))|1〉 − 〈1|Q(S2 ⊗ IH(ρ))|1〉

∣∣ ≤ ♦(ρ1, ρ2)

and therefore using the diamond distance we can define the strong statistical indistin-
guishability between superoperators.

Definition 1.8 (Strong Statistical Indistinguishability of Superoperators). Suppose
two superoperators S1, S2 : L(N) → L(M). S1, S2 are strongly quantum statistically
indistinguishable if

♦(ρ1, ρ2) = negl(n)

for security parameter n.
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2 Quantum Tools

In this chapter we will see the quantum tools that are needed for the construction of our
protocols. In particular we will define Zero-Knowledge Proofs, Proofs of Knowledge, some
useful cryptographic primitives such as Bit Commitment and Coin Flipping and finally
private and public key Quantum Money.

2.1 Zero-Knowledge Proofs

For a thorough introduction to Zero-Knowledge Proofs see [10]. Informally, a Zero-
Knowledge Proof is a protocol between a Prover and a Verifier (P and V), where P proves
to V only the validity of a statement and nothing more; at the end of the protocol V is
convinced that the statement is true but he knows nothing more than this. Essentially,
the information he gets is exactly one bit.

2.1.1 Classical Zero-Knowledge Proofs

Consider an NP problem such as SAT; we are given a boolean formula f and have to
decide if there exists some assignment to the variables that makes the formula satisfiable.
The problem is in NP because if we are given a satisfying assignment we can easily verify
that it indeed satisfies it. Now consider that P knows the satisfying assignment and wants
to prove to V that the formula is satisfiable without revealing the assignment. Even more,
we want V to learn nothing more than this. We call this a Zero-Knowledge Proof.
How can we define that V will learn nothing more than the validity of the statement? An
informal definition is the following; whatever V can compute after his interaction with P ,
can also be computed by V without this interaction. Posed in another way, what V can
compute using his data and the interaction can also be computed using only the data.
Before giving the formal definition we note that every NP problem L can be expressed by
a relation RL. If an instance x is in L then there is a witness or certificate w such that
(x,w) ∈ RL. So P knows the witness w and wants to prove to V that x ∈ L.
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Definition 2.1 (Classical Statistical (Computational) Zero-Knowledge Proofs). Let L
be a language in NP and x an instance. Suppose also an interactive protocol between P
and V denoted by 〈P,V〉. At the end of the interaction V outputs out

〈P,V〉
V (x, s) where

x is the input for P and (x, s) is the input for V. We say that 〈P,V〉 is a statistical
(computational) Zero-Knowledge Proof if it has the following three properties:

• Completeness; If both P and V are honest and x ∈ L then

Pr[out
〈P,V〉
V (x, s) = accept] = 1

• Soundness; If x /∈ L then for every P∗

Pr[out
〈P*,V〉
V (x, s) = accept] = negl(n)

• Zero-Knowledge; For every classical polynomial time algorithm V∗ there exists a
classical polynomial algorithm S (the simulator) such that out

〈P,V*〉
V∗ (x, s) and S(x, s)

are statistically (computationally) indistinguishable.

for a security parameter n.

The Soundness property guarantees that a dishonest Prover cannot convince the Verifier.
The Zero-Knowledge property guarantees that a dishonest Verifier cannot gain anything
from the interaction.

There exist Classical Zero-Knowledge Proofs for every problem in NP. More specifically

Theorem 2.1 (Classical Zero-Knowledge Proofs for every NP problem [11]). Under the
assumption that there exist classically secure one way functions, all languages in NP have
Classical Computational Zero-Knowledge Proofs.

2.1.2 Quantum Zero-Knowledge Proofs

In the quantum world things are somewhat the same. Here P and V are Quantum
Polynomial time algorithms that interact classically as before. We can consider weak and
strong Zero-knowledge Proofs; we will give the definitions for both but for our purpose it
is enough to consider only weak Zero-Knowledge Proofs.

Definition 2.2 (Quantum Statistical (Computational) Weak (Strong) Zero-Knowledge
Proofs). Let L be a language in NP and x an instance. Suppose also an interactive
protocol between P and V denoted by 〈P,V〉. At the end of the interaction V outputs
out
〈P,V〉
V (x, ρ) = Ψ

〈P,V〉
V (|x〉〈x| ⊗ ρ) where x is the input for P and (x, ρ) is the input for

V (ρ is in general a mixed state and Ψ
〈P,V〉
V is a superoperator). We say that 〈P,V〉 is
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V P

x, ρ x

Ψ
〈P,V〉
V (|x〉〈x| ⊗ ρ)

(a) Zero-Knowledge Protocol

V

x, ρ

Φ(|x〉〈x| ⊗ ρ)

(b) Verifier Simulator

Figure 2.1: Quantum Zero-Knowledge Proofs; we want the superoperators Ψ
〈P,V*〉
V∗ and Φ

to be indistinguishable.

a quantum statistical (computational) weak (strong) Zero-Knowledge Proof if it has the
following three properties:

• Completeness; If both P and V are honest and x ∈ L then∣∣∣〈1| out
〈P,V〉
V (x, ρ)|1〉

∣∣∣ = 1

• Soundness; If x /∈ L then for every P∗∣∣∣〈1| out
〈P*,V〉
V (x, ρ)|1〉

∣∣∣ = negl(n)

• Zero-Knowledge; For every quantum polynomial time V∗ there exists a quantum
polynomial time superoperator Φ (the simulator) such that Ψ

〈P,V*〉
V∗ and Φ are

statistically (computationally) weakly (strongly) indistinguishable.

for a security parameter n.

There exist Quantum Zero-Knowledge Proofs for every problem in NP. More specifically

Theorem 2.2 (Quantum Zero-Knowledge Proofs for every NP problem [20, 2]). Under
the assumption that there exist quantum secure one way functions, all languages in NP

have Quantum Computational Strong Zero-Knowledge Proofs.
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2.1.3 Classical Zero-Knowledge Proofs of Knowledge

Next, we extend the previous definitions to the case of Zero-Knowledge Proofs of Knowl-
edge. In a ZK Proof of Knowledge P wants to prove to V that he knows (he possesses)
some secret value and not that some instance belongs to a language. So P does not
want to prove that there exists some secret witness (or certificate) for this instance. For
example, P may want to prove that he knows the discrete logarithm of some element y in
a cyclic group. In this case, P doesn’t want to prove that y belongs to some language (for
example the language of the elements that have discrete logarithm; the discrete logarithm
always exists even if nobody has computed it).
But how can we define the knowledge of some secret? Of course, looking at the code of P
and searching for the memory address to find the discrete logarithm is not the best way
to define it. One way would be to say that whatever P can compute using its input can
also be computed using its input and the discrete logarithm and then show that these two
outputs are indistinguishable. This looks like the definition of Zero-Knowledge. Another
way, which is the one we will use, is the following. We can run the code of P in any way
we want (repeat it, create breakpoints and rewind to a previous breakpoint) and extract
from it the discrete logarithm.
If we show that a protocol has this property (the validity property) then we can assure
the verifier that if he is convinced of P ’s statement ‘I know the discrete logarithm’, then
P indeed knows it, or if he doesn’t he can easily learn it.

Definition 2.3 (Classical ZK Proofs of Knowledge). Suppose a language L in NP and
R the NP-relation for L. Let 〈P,V〉 be a pair of interactive classical algorithms. P has
input (x,w) and V has input (x, z). Let out

〈P,V〉
V (x,w, z) be the ouput of V after the

interaction. We say that 〈P,V〉 is a classical statistical (computational) Zero-Knowledge
Proof of Knowledge if it has the following three properties:

• Completeness; If P and V are honest and x ∈ L and (x,w) ∈ R for some witness
w then for all z

Pr[out
〈P,V〉
V (x,w, z) = 1] = 1

• Validity; For all classical polynomial time algorithms P∗ there exists a PPT K (the
knowledge extractor) such that if

Pr[out
〈P*,V〉
V (x,w, z) = 1] = non-negl

then also

Pr[K(x,w) = w′ : R(x,w′) = 1] = non-negl

• Zero-Knowledge; For all PPT algorithms V∗ there exists a PPT S (the simulator)
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such that for all x,w with (x,w) ∈ R and for all z, the random variables S(x, z)

and out
〈P,V*〉
V∗ (x,w, z) are statistically (computationally) indistinguishable.

Note that the validity property is a stronger condition than soundness. If an instance
doesn’t belong to a language then

Pr[K(x,w, z) = w′ : R(x,w′) = 1] = negl

and in fact zero, so it implies the soundness property.

Theorem 2.3. Under the assumption that there exist secure commitment schemes there
exist classically secure Zero-Knowledge Proofs of Knowledge.

2.1.4 Quantum Zero-Knowledge Proofs of Knowledge

We now give the quantum analogue of ZK PoK.

Definition 2.4 (Quantum Zero-Knowledge Proofs of Knowledge). Suppose a language
L in NP and R the NP-relation for L. Let 〈P,V〉 be a pair of interactive quantum
algorithms. P has input (x, ρ) and V has input (x, σ) where x is a classical string and
ρ, σ are quantum mixed states. At the end of the interaction V outputs out〈P,V〉V (x, ρ, σ) =

Ψ
〈P,V〉
V (|x〉〈x| ⊗ σ) where Ψ

〈P,V〉
V is a superoperator. We say that 〈P,V〉 is a quantum

statistical (computational) Zero-Knowledge Proof of Knowledge if it has the following
three properties:

• Completeness; If both P and V are honest and x ∈ L and (x,w) ∈ R for some
witness w then for all σ

Pr[out
〈P,V〉
V (x, |w〉〈w|, σ) = 1] = 1

• Validity; For all quantum polynomial time algorithms P∗ and for all x, ρ, σ there
exists a quantum polynomial time algorithm K (the knowledge extractor) such that
if ∣∣∣〈1| out

〈P*,V〉
V (x, ρ, σ)|1〉

∣∣∣ = non-negl

then also

Pr[K(x, ρ, σ) = w′ : R(x,w′) = 1] = non-negl

• Zero-Knowledge; For all quantum polynomial time algorithms V∗ there exists a
quantum polynomial time SV∗ (the simulator) such that the superoperators Ψ

〈P,V〉
V∗

and SV∗ are statistically (computationally) indistinguishable.
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Notice the sequence of the quantifiers in the definition of the zero-knowledge property.
What we say is

∀V∗ ∃S s.t. . . .

We can interchange these quantifiers to give a stronger definition

∃S ∀V∗ s.t. . . .

In fact, Unruh recently proved quantum security of ZKPoK in the model with the
quantifiers swapped. This is one of the most important theorems for our construction.

Theorem 2.4 (Quantum Secure Zero-Knowledge Proofs of Knowledge [19, 20]). Under
the assumption that there exist quantum secure one way functions, there also exist
computational Zero-Knowledge Proofs of Knowledge for any language in NP secure
against quantum attacks.

Note that it is not enough to prove the security of a classical protocol against quantum
attacks by just proving the security of the primitives it uses. Zero-Knowledge Proofs is
an example:

1. Classically secure Commitment Schemes imply Classically secure ZKPoK.

2. Quantumly secure Commitment Schemes imply Quantumly secure ZKPoK but this
is not trivially implied from the previous.

The classical proofs of security include the creation of breakpoints and rewinding to a
previous step if the simulator (and/or the the extractor) does not succeed. Quantumly,
the measurement disturbs the system and therefore the rewinding is not a simple task.

2.1.5 Relativized Quantum Zero-Knowledge Proofs

We can guarantee security of QZKPoK relative to a permutation oracle.

Theorem 2.5 (Relativized Quantum One-Way Permutations [5]). Relative to a random
permutation oracle, there exists an one-way permutation secure against quantum attacks.

What comes from the above theorem is that if we have a random permutation oracle
Q, then there exists an one-way permutation that can be efficiently computed but even
a quantum algorithm needs exponentially many queries to Q in order to reverse the
permutation.
Now combining theorems 2.4 and 2.5 we have:
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Proposition 2.1 (Relativized QZKPoK). Relative to a random permutation oracle, there
exist computational Zero-Knowledge Proofs of Knowledge for any language in NP secure
against quantum attacks.

2.2 Cryptographic Primitives

Next, we introduce some basic Cryptographic Primitives; namely strong/weak Coin
Flipping, Bit Commitment and Oblivious Transfer. We will show the connections and
implications between them and their information theoretic bounds.

2.2.1 Oblivious Transfer

In an OT protocol Alice possesses one secret string s and wants to interact with Bob in
such a way that Bob’s probability of learning s is 1/2 and Alice’s probability of learning
if Bob learnt s is also 1/2 (she is oblivious of whether he learnt it). There are many
different versions of OT. The most common one is the 1 out of 2 OT. In this version
Alice possesses two secrets (they can be strings or single bits) and interacts with Bob in
such a way that Bob can choose which one he wants to learn but Alice’s probability of
learning Bob’s choice remains 1/2. This can be shown to be equivalent with the 1 out
of 2 random OT where the secret bits of Alice and the secret choice of Bob are chosen
randomly. Another version is the k out of n OT. Here, Bob chooses to learn k of the
secrets but Alice’s probability to learn Bob’s choices remains

(
n
k

)−1. Here we will give
the formal definition of the 1 out of 2 OT (OT1

2).

Definition 2.5 (Quantum OT1
2). A quantum OT1

2 with bias ε is a protocol between Alice
and Bob where:

• Alice has secret input s0, s1 ∈ {0, 1} and Bob has secret input b ∈ {0, 1}.

• At the end of the protocol Alice outputs oA ∈ {0, 1, abort} and Bob outputs oB1 ∈
{0, 1, abort} and oB2 ∈ {0, 1, abort}.

• If any output gives abort then the protocol aborts.

• If both are honest then

– They never abort

– oB1 = sb

– Pr[oA = b] = 1/2

– Pr[oB2 = sb] = 1/2

• If Alice is dishonest then

Pr[oA = b and oB1 6= abort] ≤ 1

2
+ εA
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• If Bob is dishonest then

Pr[(oB1 , o
B
2 ) = (s0, s1) and oA 6= abort] ≤ 1

2
+ εB

• ε = max{εA, εB}

If ε can be arbitrarily close to zero then the protocol is information theoretically secure.

Unfortunately, it has been shown that there does not exist protocol with negligible bias.
In fact, Chailloux et al. [7] showed that ε ≥ 0.0586 and proposed a protocol with ε ≤ 1/4.
It is still an open problem of what are the optimal bounds for Oblivious Transfer.

2.2.2 Bit Commitment

Suppose that Bob has a lottery and Alice wants to bet on some numbers. Today, when
Alice wants to gamble in a lottery, she ticks some numbers in a piece of paper, then she
sends it to Bob in order to be bound to her choices and then she trusts that Bob will
randomly choose the winning numbers. Of course, this is not the best for Alice, since
Bob may announce different numbers in order to prevent her from winning. The answer
to this problem, can be given by using a cryptographic primitive called Bit Commitment.
Informally, Alice commits to the numbers she wants to bet on but without Bob learning
these numbers ahead of time. Then Bob randomly chooses some numbers, and Alice
reveals the numbers she was committed to, having Bob sure that she can’t reveal some
different numbers from those she was committed to. This protocol can be proven that is
equivalent to a simpler one, where Alice commits only to one bit.

Definition 2.6 (Bit Commitment). A quantum Bit Commitment with bias ε denoted by
BC(ε) is a protocol between Alice and Bob consisting of two Phases;

• Commit Phase; where Alice interacts with Bob in order to commit to some bit b

• Reveal Phase; where Alice interacts with Bob in order to reveal b. If Bob accepts
the revealed value then we say that Alice successfully reveals the bit b.

A secure Bit Commitment protocol satisfies three properties:

• Completeness; If both Alice and Bob are honest then Alice successfully reveals the
committed bit b.

• Binding property; If Alice is cheating then

1

2
(Pr[Alice successfully reveals 0] + Pr[Alice successfully reveals 1]) ≤ 1

2
+ εA
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• Hiding property; If Bob is cheating then

Pr[Bob guesses b after the Commit Phase] ≤ 1

2
+ εB

Define ε = max{εA, εB}. A BC(ε) protocol is secure if ε can be arbitrarily close to zero.

Bit Commitment is a weaker primitive that Oblivious transfer. In other words, if we have
a secure OT we can create a secure BC. However, as we have already seen, there does
not exist a secure OT protocol. Trying to build an imperfect BC from an imperfect OT

does not preserve the security parameters. In other words if the optimal bounds for OT

are, say, b this doesn’t imply that the optimal bounds of BC are also b.
The optimal bias for Quantum Bit Commitment has been recently found [6] to be 0.239.
A natural way to prove lower bounds for a stronger primitive is by using it to create a
weaker one. Then, by using the lower bound for the weaker one we come up with a lower
bound for the stronger one. Of course, this is not always trivial.

2.2.3 Coin Flipping

Consider the following scenario: Alice and Bob want to flip a coin (or play some gamble
game in general) by telephone. How can they succeed this? Of course, Alice doesn’t trust
Bob that he will fairly flip a coin and send her the result, neither Bob trusts Alice. It
has been shown very early that this can be accomplished if we make some computational
assumptions. However, in the information theory setting things change. Let us first give
the formal definition of Coin Flipping and then give the results.

Definition 2.7 (Strong Coin Flipping). A Strong Coin Flipping Protocol with bias ε
denoted by SCF(ε) is a protocol between Alice and Bob where:

• At the end of the protocol Alice outputs oA ∈ {0, 1, abort}, Bob outputs oB ∈
{0, 1, abort} and the protocol outputs o ∈ {0, 1, abort}.

• If oA = oB then o = oA

• If oA 6= oB then o = abort

• If both are honest then Pr[o = 0] = Pr[o = 1] = 1/2

• If Alice is dishonest then max{Pr[o = 0],Pr[o = 1]} ≤ 1/2 + εA

• If Bob is dishonest then max{Pr[o = 0],Pr[o = 1]} ≤ 1/2 + εB

• ε = max{εA, εB}
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Kitaev in ’03 proved that there does not exist any SCF protocol with bias less that
1/
√

2− 1/2. In ’09 Chailloux and Kerenidis [8] proved that this is also an upper bound
by giving a protocol with bias arbitrarily close to 1/

√
2− 1/2. In their construction they

used a weaker version of Coin Flipping; namely the Weak Coin Flipping. In a weak coin
flipping, it is enough to prevent the parties only from one of the two outcomes. Informally,
we can consider that o = 0 implies that Alice wins and o = 1 implies that Bob wins. Now,
we don’t mind if a party wants to lose, but we only mind to prevent a party from winning
with probability greater than 1/2.

Definition 2.8 (Balanced Weak Coin Flipping). A balanced weak coin flipping protocol
with bias ε denoted by WCF(1

2 , ε) is a protocol between Alice and Bob where at the end of
the protocol:

• Alice outputs oA ∈ {0, 1}, Bob outputs oB ∈ {0, 1} and the protocol outputs o ∈
{0, 1, abort}

• If oA = oB then o = oA otherwise o = abort

• If both parties are honest then Pr[o = 0] = Pr[o = 1] = 1
2

• If Alice is dishonest then Pr[o = 0] ≤ 1
2 + εA

• If Bob is dishonest then Pr[o = 1] ≤ 1
2 + εB

• ε = max{εA, εB}

If o = 0 we say that Alice wins and if o = 1 we say that Bob wins. If ε can be arbitrarily
close to zero then the protocol is secure.

It can be seen that in this last definition Alice can cheat in favour of Bob with probability
1 (and same for Bob). In ’07 Mochon [14] created a WCF(1

2 , ε) with bias ε arbitrarily
close to zero.

Theorem 2.6 (Secure Balanced Weak Coin [14]). There exists a secure Weak Coin
Flipping Protocol.

By letting Alice win with probability z and Bob with probability 1 − z we have the
unbalanced version of Weak Coin Flipping.

Definition 2.9 (Unbalanced Weak Coin Flipping). An unbalanced weak coin flipping
protocol with parameter z and bias ε (WCF(z, ε)) is a protocol between Alice and Bob
where at the end of the protocol:

• Alice outputs oA ∈ {0, 1}, Bob outputs oB ∈ {0, 1} and the protocol outputs o ∈
{0, 1, abort}
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• If oA = oB then o = oA otherwise o = abort

• If both parties are honest then Pr[o = 0] = z and Pr[o = 1] = 1− z

• If Alice is dishonest then Pr[o = 0] ≤ z + εA

• If Bob is dishonest then Pr[o = 1] ≤ 1− z + εB

• ε = max{εA, εB}

If o = 0 we say that Alice wins and if o = 1 we say that Bob wins.

We now give one of the most useful results for our constructions:

Proposition 2.2 (Secure Unbalanced Weak Coin [8]). Let P be a WCF(1
2 , ε) protocol

with N rounds. Then for all z ∈ [0, 1] and for all k ∈ N there exists a WCF(x, ε0) protocol
Q such that:

• Q uses k ·N rounds.

• |x− z| ≤ 2−k.

• ε0 ≤ 2ε.

Corollary 2.1. For every parameter z there exists an unbalanced weak coin flipping
protocol WCF(z, ε) having bias ε arbitrarily close to zero.

2.3 Quantum Money

In this section we will introduce the basic notions of public key Quantum Money; for an
extended analysis see [1]. The construction of Aaronson and Christiano uses a simpler
scheme named Quantum Money Mini-Schemes as well as a digital signatures scheme.

The key advantage of a public key money scheme over a private key money scheme, lies
on the verification algorithm. In particular, in a public key money scheme we have one
crucial property; a coin (or banknote) can be verified by anyone without any help from a
Trusted Third party (TTP). In other words, in a public key money scheme, the banknotes
have almost the same properties as today’s banknotes; no-one can counterfeit them but
anyone can verify their validity.
Quantum mechanics seem very appealing for the creation of a money scheme: No-Cloning
Theorem guarantees that we can’t copy an unknown quantum state, which is a good
beginning step for creating money. The second step is to prevent the copy of a state even
if there exists a public algorithm for verifying it.

Definition 2.10 (Quantum Money Scheme). A quantum money scheme S consists of
three public algorithms:
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1. KeyGen(0n) = (kpb, kpr); a classical algorithm which takes as input a security
parameter n and outputs a public and a private key.

2. Bank(0n, kpr) = (s, ρ); a quantum algorithm which takes as input the security
parameter and the private key and outputs a valid banknote $ = (s, ρ) where s is a
classical string and ρ is a mixed quantum state.

3. Ver(kpb, (s, ρ)) = {accept, reject} which takes a public key and a possible coin (s, ρ)

and either accepts or rejects the coin.

We say that S is secure if it has two properties:

1. Completeness; Pr[Ver(kpb,Bank(0n, kpr)) = accept] = 1.

2. Soundness; Let C(kpb, $1, . . . , $q) = ($̂1, . . . , $̂q′) be a quantum algorithm (the coun-
terfeiter) that takes the public key and q valid banknotes and outputs q′ possibly
entangled banknotes. Let also Count(kpb, $̂1, . . . , $̂q′) be a quantum algorithm,
which uses Ver, takes as input q′ possible banknotes and outputs the number
of them that are accepted by Ver. Then for every polynomial C it holds that
Pr[Count(kpb,C(kpb, $1, . . . , $q)) > q] = negl(n).

The Completeness property states that a valid coin will always be accepted. The Soundness
property states that there is no counterfeiter that can create more money than what he
already has with non-negligible probability. Note that the verification algorithm is public
in this definition; anybody can verify a coin. Note, also, that classically it is trivial to
show that there is no way to construct such a scheme.

In the construction of a full quantum scheme Aaronson and Christiano used a secure
digital signature scheme.

Definition 2.11. A digital signature scheme consists of the following three probabilistic
algorithms:

1. KeyGen(0n) = (kpb, kpr); a classical algorithm which takes as input a security
parameter n and outputs a public and a private key.

2. Sign(kpr,m) = s; a classical algorithm which takes as input the private key and a
message and outputs the signature of the message.

3. Ver(kpb,m, s) = {accept, reject}; a classical algorithm which takes as input the
public key, a message and its potential signature and either accepts or rejects.

The scheme is quantum secure against existential forgery under non-adaptive chosen
message attacks if it has the following properties:
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1. Completeness; Pr[Ver(kpb,m,Sign(kpr,m)) = accept] = 1

2. Soundness; Let C be a quantum algorithm that takes as input the public key kpb,
gives to a signing oracle some messages m1, . . . ,mq, then the oracle returns their
signatures and at the end C outputs a pair (m, s) where for all i ∈ [q], m 6= mi.
Then for every C it holds that Pr[Ver(kpb,m, s) = accept] = negl(n).

Theorem 2.7 (Secure Digital Signatures [17]). If there exists a quantum one-way function
then there also exists a quantum secure against chosen message attacks digital signature
scheme.

Theorem 2.8 (Relativized Digital Signatures [1]). Relative to an oracle there exists a
quantum secure-against-chosen-message-attacks digital signature scheme.

2.3.1 Quantum Money Mini-Schemes

Informally, a mini-scheme is a scheme with two algorithms; one for producing a banknote
(as before a banknote is a serial together with a quantum state) and one for validating a
banknote. There is no notion of public or private keys. The goal of a counterfeiter is to
create one more state that corresponds to the known serial.

Definition 2.12 (Quantum Money Mini-Schemes). A quantum money mini-scheme
consists of the following two public algorithms:

1. Bank(0n) = (s, ρ); a quantum probabilistic algorithm which takes as input a security
parameter n and outputs a coin $ = (s, ρ)

2. Ver(s, ρ) = {accept, reject}; a quantum algorithm which takes as input a pair (s, ρ)

and either accepts or rejects.

The scheme is secure if it satisfies the following two properties

1. Completeness; Pr[Ver(Bank(0n)) = accept] = 1

2. Soundness; Let C(s, ρ) = (ρ1, ρ2) be a quantum algorithm that takes as input
a valid coin (s, ρ) and produces two possibly entangled states (ρ1, ρ2). Let also
Ver2(s, (ρ1, ρ2)) = (Ver(s, ρ1)∧Ver(s, ρ2)) = {accept, reject} be an algorithm that
takes a serial number and two possibly entangled states and accepts if and only
if both Ver(s, ρ1) and Ver(s, ρ2) accept. Then for all polynomial C it holds that
Pr[Ver2(s,C(s, ρ)) = accept] = negl(n).

If the algorithm Bank first generates a random string r and then produces the coin
$ = (sr, ρr) then we say that the Mini-Scheme is secret based. Note that a party can in
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general create many valid pairs. However, given a valid coin (s, ρ) no party can create
two states that correspond to s. In the case of non-secret based Mini-Schemes even the
Bank cannot create two states for the same s.

Proposition 2.3 (From secret-based Mini-Schemes to One-Way functions [1]). If there
exists a secure secret-based Mini-Scheme, then there also exists an one-way function secure
against quantum attacks.

Using quantum secure digital signatures and secure quantum money mini-scheme we can
create a public key quantum money scheme.

Theorem 2.9 (Standard Construction [1]). If there exists a quantum secure against
chosen message attacks digital signature scheme and a secure quantum money mini-
scheme then there also exists a public key Quantum Money Scheme.

Corollary 2.2. If there exists a secure secret-based Mini-Scheme, then there also exists
a Quantum Money Scheme.

Proposition 2.4 (Relativized version [1]). If there exists a quantum secure against
chosen message attacks digital signature scheme relative to some oracle and a secure
quantum money mini-scheme relative to some other oracle then there also exists a public
key Quantum Money Scheme relative to some third oracle.

Corollary 2.3. If there exists a secure secret-based Mini-Scheme relative to some oracle,
then there also exists a public key Quantum Money Scheme relative to some other oracle.

Aaronson and Christiano created a mini-scheme that is secure relative to some oracle.
Moreover, they created a candidate for the non-relativized definition without formal
proof of its security. They also proved some very interesting theorems such as that if a
counterfeiter can break a mini-scheme with non-negligible probability then he can also
break it with probability almost 1. Therefore, by proving that a scheme cannot be broken
with probability close to 1, then it automatically comes that it is secure.

In the next chapter we will present the Ripping Money scheme. For our work it will
be sufficient to consider the mini-schemes as black boxes with either relativized or
non-relativized security.

34



3 Ripping Quantum Money

3.1 Introduction

Suppose Bob is a trader and Alice is a customer and wants to buy something from Bob.
Alice doesn’t trust Bob to send the money and wait for the product and Bob doesn’t
trust Alice to send the product and wait for the money. In some way, we want the two
parties to simultaneously exchange the money for the product. In ’96 Jakobsson [12]
proposed the idea of letting Alice rip her coin; instead of Alice sending the coin, she rips
it into two parts and sends the one part to Bob. Bob can verify that this half coin is
valid but cannot use it as a full coin. Therefore, he can send the product to Alice. Alice,
on the other hand, cannot use her coin any more, because she has already lost one part
of it. When Alice receives the product, she can send the other half of the coin to Bob.

The previous “protocol” doesn’t guarantee that Bob will send the product or Alice will
send the second half but it encourages this behavior. Alice has already lost her coin, so
she has no reason to keep the second half. Also, Bob hasn’t got the full coin so he has
no reason not to send his product. In other words, the parties can harm each other but
cannot use this strategy for their own advantage.

Before giving a formal definition, let’s make an important remark. We can split such a
scheme into two basic phases (see fig. 3.1). In the first phase; the Binding Phase (BP ),
Alice basically is bound to some coin (she rips the coin and she sends the first half). So
in this phase, Alice loses her coin and lets Bob verify that she has lost it and he partially
has it. In the second phase; the Exchange Phase (EP ), Alice sends the remaining parts
of the coin to Bob; in other words she sends the second half. Note that we have omitted
an intermediate phase when Bob sends the good to Alice. This is inevitable since we
cannot have any security property in this phase; except perhaps the fact that Alice has
to verify that the product is the expected one.

A crucial drawback that is possible in this setting, is that Bob can use this half coin to
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Figure 3.1: Jakobsson’s Coin Ripping Idea.

buy something else, and so on, and this could lead to a chain where all players buy things
with only a half coin. Fortunately, in the quantum setting we can succeed a scheme that
prevents this behavior.

Definition 3.1 (Ripping Quantum Money Scheme). A ripping quantum money scheme
R consists of the following three probabilistic algorithms:

1. KeyGen(0n) = (kpr, kpb); a classical algorithm which takes a security parameter n
and outputs a private and a public key.

2. Bank(0n, kpr) = $; a quantum probabilistic algorithm which takes a security param-
eter n and a private key and outputs a valid coin $ = (s, ρ) where s is a classical
string and ρ is a quantum state.

3. Ver(kpb, (s, ρ)) = {accept, reject}; a quantum algorithm which takes a public key
and a possible coin (s, ρ) and either accepts or rejects the coin.

Suppose two parties Alice and Bob where Alice possesses qA valid coins ($Alice1 , . . . , $AliceqA
);

same for Bob ($Bob1 , . . . , $BobqB
). The scheme, also, consists of a two-phase protocol

QAlice,Bob between Alice and Bob:

• Binding Phase (BPAlice,Bob) where Alice proves to Bob that she is bound to some
coin.

• Exchange Phase (EPAlice,Bob) where Bob gets the coin from Alice.

Let outAliceB , outAliceE be the output of Alice after BPAlice,Bob and after EPAlice,Bob respec-
tively; same for Bob. We say that R is secure if it satisfies the following two properties:
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1. Completeness; If both parties are honest then Pr[outBobB = accept] = 1 and

Pr[outBobE = $Bob1 ⊗ · · · ⊗ $BobqB
⊗ $Alicei ] = 1

2. Soundness; Let Count be defined as in definition 2.10. Consider the following
scenario. Suppose that Alice has already begun to run Qpi,Alice with q

′
A honest parties

(p1, . . . , pq′A) where i ∈ [q′A] but has not begun EPpi,Alice with any of them. During
these interactions she begins QAlice,Bob. Then for all strategies of Alice it holds that

Pr[Count(kpb, outAliceB ) ≥ qA and outBobB = accept] = negl(n)

Informally, a negligible soundness error implies that Alice cannot send half of her coin
without losing the whole coin even if she is interacting with other honest parties. In other
words, she may have any polynomial number of half coins but cannot use any of them as
part of any of her coins. Therefore, a successful Binding Phase implies that Alice has lost
her coin with high probability.

Next, we show that the previous definition is a tighter definition for Quantum Money
schemes.

Proposition 3.1. If there exists a Quantum-Secure Money Ripping Scheme, then there
also exists a Quantum-Secure Money Scheme.

Proof. In fact a Ripping Quantum Money Scheme satisfies the properties of a Quantum
Money Scheme. Suppose that Alice has a polynomial quantum circuit C that can break
the Money Scheme:

Pr[Count(kpb,C(kpb, $
Alice
1 , . . . , $AliceqA

)) > qA] ≥ a

for some non-negligible a. Then Alice can use the following strategy to break the Money
Ripping Scheme:

1. She plays the BPAlice,Bob fairly and she is bound to the coin $Alicei for some i ∈ [qA].
She doesn’t output anything. Then

2. She outputs outAliceB = C(kpb, $
Alice
1 , . . . , $Alicei−1 , $Alicei+1 , . . . , $AliceqA

)

In the first step we have

Pr[outBobB = accept] = 1

In the second step we have:

Pr[Count(kpb,C(kpb, $
Alice
1 , . . . , $Alicei−1 , $Alicei+1 , . . . , $AliceqA

)) > qA − 1] ≥ a
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Since these two events are independent we have that:

Pr[Count(kpb, outAliceB ) ≥ qA and outBobB = accept] ≥ a

and therefore the Soundness Property of the Ripping Money is violated.

3.2 Ripping Quantum Money Construction

We now present one of the most important theorems of the thesis:

Theorem 3.1. Suppose

• M is a secure Quantum Mini-Scheme with

M = (BankM,VerM)

• D is a Digital Signature secure against quantum chosen message attacks with

D = (KeyGenD,SignD,VerD)

• Px
ka
pb,k

b
pb

is a Quantum Secure Zero-Knowledge Proof of Knowledge for the NP

relation R where (x,w) ∈ R ⇔ ∃ w1, w2 s.t. w = w1||w2 and VerD(ka
pb, x, w1) =

accept and VerD(kb
pb, w1, w2) = accept for all signature keys ka

pb, k
b
pb.

Then, usingM, D and P we can create a Ripping Quantum Money Scheme R.

Proof. First, let’s define the three algoritms KeyGenR,BankR,VerR:

• KeyGenR(0n) = KeyGenD(0n) which produces the keys kBank
pr , kBank

pb .

• BankR(0n, kpr) uses BankM(0n) which produces (s, ρ) and SignD(kpr, s) which
produces σ. The output is a valid coin of the form ((s, σ), ρ).

• VerR(kpb, ((s, σ), ρ)) = accept iff VerD(kpb, s, σ) = accept and VerM(s, ρ) =

accept

Now, let’s define the protocol QAlice,Bob. Suppose Alice has keys kAlice
pr , kAlice

pb and before
the begining of the protocol she possesses the coins ($Alice1 , . . . , $AliceqA

) and wants to run
QAlice,Bob for the coin $Alicei = ((si, σi), ρi) for some i ∈ [qA]. Bob possesses the coins
($Bob1 , . . . , $BobqB

).

• Binding Phase (BPAlice,Bob):
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3.2. Ripping Quantum Money Construction

1. Alice sends to Bob (si, ρi).
2. Bob runs VerM(si, ρi).
3. Alice (the prover) and Bob (the verifier) run Psi

kBank
pb ,kAlice

pb

(proof that Alice

knows the Bank’s signature on si (σi) and her own signature on σi).
4. Bob outputs

outBobB = accept iff VerM(si, ρi) = accept and Ψ
〈Alice,Bob〉
Bob (|si〉〈si|) = accept

where Ψ
〈Alice,Bob〉
Bob is the superoperator of Bob that results from the ZK protocol.

Alice doesn’t output anything.

• Exchange Phase (EPAlice,Bob):

1. Alice sends to Bob σi.
2. Bob outputs

outBobE = $Bob1 ⊗ · · · ⊗ $BobqB
⊗ $Alicei

Alice doesn’t output anything.

Note that in the third step of the Binding phase Alice proves that she knows both σi and
SignD(kAlice

pr , σi). The reason for this type of ZK proof is to prevent Alice from proving
that she knows σi by just forwarding messages between the owner of the coin and Bob
(some kind of man-in-the-middle attack). For a graphic illustration of the protocol see
fig. 3.2.

Next, suppose that Alice has already begun to run Qpi,Alice with q
′
A parties (p1, . . . , pq′A)

where i ∈ [q′A] but has not begun the exchange phase with any of them. During these
interactions she begins QAlice,Bob. Suppose, also, that there is a cheating strategy for
Alice s.t.:

Pr[Count(kpb, outAliceB ) ≥ qA and outBobB = accept] ≥ a

for some non-negligible a. For simplicity we represent by F the fact

Count(kpb, outAliceB ) ≥ qA and outBobB = accept

and by NEW the fact ‘Alice created a new coin’. Then:

Pr[F ] = Pr[NEW ] · Pr[F |NEW ] + Pr[¬NEW ] · Pr[F |¬NEW ]

= Pr[NEW ] + Pr[¬NEW ] · Pr[F |¬NEW ] ≥ a

The first of the two addends corresponds to the case where the Zero-Knowledge property
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(of the ZKP) is violated and the second one to the case where the Validity property (of
the ZKP) is violated. Therefore, by assuming that one of them is non-negligible we come
to a contradiction about the security of the ZK protocol.

In the case where Pr[NEW ] is non-negligible, using the standard construction theorem of
[1] we have that Alice has used both her valid coins ($Alice1 , . . . , $AliceqA

) and the information
she got from the interactions with (p1, . . . , pq′A). Also note that in this case it is preferable
for Alice to complete all BPpi,Alice before beginning BPAlice,Bob, since her interaction
with Bob doesn’t provide her with any information about some coin. So the things that
Alice has in her hands to create a new coin are at worst:

1. Her qA coins ($Alice1 , . . . , $AliceqA
).

2. The q′A pairs (s′i, ρ
′
i) for i ∈ [q′A].

All of them create a big mixed quantum state τ which constitutes the auxiliary state of
Alice. Also suppose a global Ψ to be the superoperator applied on τ and it’s output is
the output of Alice after interacting with all pi. Then

outA = Ψ(τ)

and

Pr[Count(kpb, outA) > qA] = non-negl(n)

Let S be a simulator for Alice and Φ be it’s operator. The states (s′i, ρ
′
i) for i ∈ [q′A] are

of no use for S since they are perfectly indistinguishable from any other q′A coins that are
drawn randomly from BankM. Furthermore, it holds that no quantum polynomial time
algorithm can use the qA valid coins to create more with non-negligible probability and
therefore no such simulator S can:

outS = Φ(τ)

and

Pr[Count(kpb, outS) > qA] = negl(n)

Therefore for every Φ it holds that Ψ and Φ are distinguishable. But Ψ consists of
sub-operators that correspond to each execution of the q′A ZK proofs and so it holds that
there exists at least one execution where what Alice computes is (with non-negligible
probability) distinguishable from whatever a quantum algorithm could compute using
only τ .
In the case where Pr[¬NEW ] ·Pr[F |¬NEW ] is non-negligible it holds that Pr[F |¬NEW ]

is also non-negligible. Here, Alice first sends a valid pair (s, ρ) to Bob and then
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she proves (with non-negligible probability) that she knows some w = w1||w2 s.t.
VerD(kBank

pb , s, w1) = accept and VerD(kAlice
pb , x, w2) = accept. Here, the validity property

of the Zero-Knowledge Proof is violated since Alice can prove that she knows w but
she cannot use any polynomial extractor to learn w (and hence w1) with non-negligible
probability.

Alice Bob

si, σi, ρi

si, ρi

Psi
kBank
pb ,kAlice

pb

Verify

σi

si, σi, ρi

si , ρi

σi

BPAlice,Bob

EPAlice,Bob

Figure 3.2: Quantum Coin Ripping Protocol. In the Binding Phase, Alice sends to Bob
the quantum state ρi and the corresponding serial si. Then they run a Zero-Knowledge
protocol where Alice proves to Bob that she knows both her signature and the Bank’s
signature on si. In the Exchange Phase, Alice sends to Bob Bank’s signature on si.

Corollary 3.1 (Relativized Ripping Quantum Money). Suppose thatM is a quantum
secure mini-scheme relative to an oracle OM, D is a quantum secure digital signature
relative to an oracle OD and P is a quantum secure Zero-Knowledge Proof of Knowledge
relative to an oracle OP (defined as above). Then there exists a secure Ripping Quantum
Money scheme relative to some oracle.

Proof. Comes from combining theorems 3.1, 2.8 and proposition 2.1.
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4 Simultaneous exchange

Suppose Alice and Bob have two secret bits sA, sB. They want to exchange their
secrets in such a way that in every moment neither of them has better probability of
knowing it than the other party. This could be succeeded perfectly if the two parties
shared a simultaneous channel; they will send and receive the secret bits simultaneously.
Unfortunately, simultaneous channels do not exist so they have to follow some protocol
in which they gradually reveal their secrets.

4.1 Introduction

The problem of Fair Exchange is one of the most crucial cryptographic primitives of
modern cryptography. Informally, when Alice wants to fairly exchange a secret with
Bob, she wants Bob to learn her secret only if she learns his secret. Bob also wants the
same thing. So in some sense they want to exchange their secrets simultaneously. Fair
exchange has been studied extensively since the early 80’s and much progress has been
made since then. The first approaches used the rather weird assumption that both parties
had the same computational power. In this type of protocols, the parties gradually reveal
some information of their secret in turns and so any party would need approximately the
same computational time to retrieve the secret if the other aborted. Another approach
tried to bound the probabilities of each party to learn the other’s secret and make these
probabilities very close to one another. The impossibility result of Even [9] stating that
no completely fair exchange can be achieved without the use of a third party gave rise to
a whole new era where researchers tried to create protocols using the third party, as less
as possible.
Simultaneous exchange of one single secret bit was first studied by Luby et al. in ’83 [13].
In their protocol they make use of the Quadratic Residuosity Assumption. Of course, in
the quantum setting, many assumptions like this are not longer valid; Shor’s factoring
algorithm [18] can be used to decide if a given number is a quadratic residue. Therefore,
it has been an open problem whether simultaneous exchange is possible and to what
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extent in the information theoretic setting. In this work we extend the protocol of [13] to
the quantum setting.

Before giving the formal definitions we need, we must explain what we mean with a
secret bit. The assumption we make is that there must be some procedure with which
the parties verify that the secret is indeed the correct one. The most convenient way to
think about it, is by using some completely secure digital signature or bit commitment
scheme. Then, when the party learns the secret they can recognize it and verify that it
is indeed the correct bit. Another way of thinking it, is by assuming that the parties
decide their secret by the time the send it. Therefore, the secret of a party is the bit they
sent. We note that we do not attempt to address this problem; what we care about is
the probabilities of each party guessing the secret and not the procedure of verifying the
secret. We want them to exchange their secrets at the same time on average.

Definition 4.1 (Simultaneous exchange). A simultaneous exchange protocol with error ε
and n rounds is a protocol between Alice and Bob where:

• Alice has a secret bit sA ∈R {0, 1} and Bob has a secret bit sB ∈R {0, 1}.

• At every round i ∈ [n] Alice outputs oiA ∈ {0, 1, Abort} and Bob outputs oiB ∈
{0, 1, Abort}.

• If a party aborts then the protocol aborts.

• If both are honest then Pr[onA = sB] = Pr[onB = sA] = 1

• If a party is dishonest then for all rounds i ∈ [n] it holds that∣∣Pr[oiA = sB]− Pr[oiB = sA]
∣∣ ≤ ε

Note that ε is at most 1
2 since we can create a trivial protocol where Alice sends her bit

and then Bob responds. At the beginning of the protocol both parties have 1
2 to guess the

secret. Immediately after Bob receives Alice’s bit, his probability becomes 1 but Alice’s
probability remains 1

2 . Ideally, we would like a protocol where the difference between the
two probabilities be inversely proportional to the number of rounds. So, by increasing
the number of rounds, the difference goes to zero.

4.2 A simultaneous exchange with error 1/4

We begin by a first attempt to decrease the probability difference. The error of a
simultaneous exchange can be reduced to almost 1

4 using a balanced quantum weak coin
protocol as a subprotocol.

Theorem 4.1. There exists a quantum simultaneous exchange protocol with error 1
4 + ε.
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Proof. The protocol consists of the following steps; see fig. 4.1:

1. Alice and Bob flip a balanced quantum weak coin with bias 2ε (WCF(1
2 , 2ε)).

2. If Alice wins then she sends nothing to Bob. Otherwise she sends her secret sA.

3. Bob responds with his secret sB.

4. If Alice had won the weak coin she sends her secret sA. Otherwise, this step is
omitted.

First let’s focus on the round after the weak coin (say the kth round):
Both honest fig. 4.1(a)
Bob has probability 1

2 to win the weak coin (in which case he knows the bit with certainty)
plus 1

2 to lose and so he has to flip a coin (fig. 1(a)):

Pr[okB = sA] = Pr[Alice loses] · Pr[okB = sA|Alice loses]

+ Pr[Alice wins] · Pr[okB = sA|Alice wins]

=
1

2
· 1 +

1

2
· 1

2
=

3

4

Dishonest Alice fig. 4.1(b)
Bob has probability 1

2 − 2ε to win the coin flipping plus (1
2 + 2ε)1

2 to lose and so he has
to flip a coin (fig. 1(b)):

Pr[okB = sA] =
1

2
− 2ε+ (

1

2
+ 2ε) · 1

2
=

3

4
− ε

Dishonest Bob fig. 4.1(c)
Bob has probability 1

2 + 2ε to win the coin flipping plus (1
2 − 2ε)1

2 to lose and so he has
to flip a coin (fig. 1(c)):

Pr[okB = sA] =
1

2
+ 2ε+ (

1

2
− 2ε) · 1

2
=

3

4
+ ε

In all three cases when Bob responds with his secret bit, Alice’s probability of guessing it
becomes 1. When Alice sends her secret bit, Bob’s probability becomes 1.

What we also need to show is that during the rounds of the weak coin neither of the
parties can increase his probability of guessing the other’s secret. First, during the weak
coin, neither of the parties uses his secret and therefore neither can gain information
about the other’s secret. Second, during the weak coin, neither party can increase his
probability of winning without the other party aborting, since the weak coin flipping
wouldn’t be secure.
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(c) Bob dishonest

Figure 4.1: A protocol with error 1
4 + ε. The numbers below each party correspond to

the probabilities of guessing the other’s bit in each round.

4.3 A simultaneous exchange with arbitrarily small error

Before analyzing our optimal protocol let’s first focus on the protocol of Micali et ’al [13].
Intuitively, suppose that Alice and Bob share a two-sided wheel. The wheel is placed
in such way that each party can see only their own side. According to the secret she
has, Alice paints the 1

2 + ε of her surface with red and the 1
2 − ε with green or vice-versa

depending on whether she chose her secret to be 0 or 1 respectively. Same for Bob on the
opposite side of the wheel (see figure 4.2(a)). Then, they cover the wheel and they turn
it in such a way that if the wheel is uncovered, each party will see the way the other side
was painted. Then, they follow the procedure below iteratively:

1. Alice spins the wheel and stops it at random.

2. Alice opens just a point of the surface in front of her and sees the color of that
point.

3. Bob spins the wheel and stops it at random.

4. Bob opens just a point of the surface in front of him and sees the color of that
point.

Notice that in every step

Pr[Alice guesses Bob’s secret] ≤ Pr[Bob guesses Alice’s secret] + ε

Now consider the following scenario. Instead of painting some portion of the surface red
and some green, they paint only a small portion (say 2ε) of the surface with red or green
(for 0 or 1 respectively) and they leave the rest surface white (see figure 4.2(b)). Now, if
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4.3. A simultaneous exchange with arbitrarily small error

a party was lucky and opened a point in this small portion of the surface he can be sure
that he correctly guessed the secret bit. If, on the other hand, she opened a point on the
white surface, she has to flip a coin. More formally, if we name C the fact ‘Alice opened
a colored point’ then

Pr[oA = sB] = Pr[C]·Pr[oA = sB|C]+Pr[¬C]·Pr[oA = sB|¬C] = 2ε+(1−2ε)
1

2
=

1

2
+ε

Taking it one step further, suppose that in every step these small portions are increased
in such a way that:

1. Pr[Alice guesses Bob’s secret] = 1
2 + ε

2. Pr[Bob guesses Alice’s secret] = 1
2 + 2ε

3. Pr[Alice guesses Bob’s secret] = 1
2 + 3ε

4. · · ·

ε

(a) Monte-Carlo version

2ε

(b) Las-Vegas version

Figure 4.2: Simultaneous exchange with error ε

Then this strategy can bring the two probabilities as close as we want by decreasing ε as
much as we want.
Looking at these two different approaches we see how they relate to the probabilistic
algorithms; the first approach corresponds to the Monte-Carlo algorithms, whereas our
approach corresponds to the Las-Vegas algorithms. We continue by giving one of the
main theorems of this thesis which is based mainly on the previous idea.

Theorem 4.2. There exists a quantum simultaneous exchange protocol with error ε+ ε′.

Proof. The protocol consists of the following 6 steps that are repeated until both parties
learn the secrets. In the begining i = 1.

1. WCF (1− 2iε, ε′)
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2. If Alice loses then she sends sA. Otherwise she sends a random bit.

3. i← i+ 1

4. WCF (2iε, ε′)

5. If Bob loses then he sends sB. Otherwise he sends a random bit.

6. i← i+ 1

We analyze the probabilities of each player to guess the others secret in each step.
We will just give the probabilities for the case where both parties are honest. The analysis
in the dishonest cases comes as before.
At the end of the 2nd step, Bob’s probability of guessing sA is:

Pr[oB = sA] = 2iε+ (1− 2iε) · 1

2
=

1

2
+ iε

whereas Alice’s probability of guessing sB is:

Pr[oA = sB] = 2(i− 1)ε+ (1− 2(i− 1)ε) · 1

2
=

1

2
+ (i− 1)ε

and therefore the difference between the two probabilities is ε.
The proof that within the WCF the probabilities remain the same comes like before
using also Proposition 2. If one of the parties is cheating then he slightly increases his
probability of guessing the bit or hiding his own bit (see fig. 4.3).
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(c) Bob dishonest

Figure 4.3: A protocol with error ε+ ε′. The numbers below each party correspond to
the probabilities of guessing the other’s bit in each round.

By taking the bias ε′ of the weak coin arbitrarily close to zero, we can take a protocol
with error arbitrarily close to ε.
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4.3. A simultaneous exchange with arbitrarily small error

A question that arises from the definition given for simultaneous exchange is whether the
existence of imperfect simultaneous exchange (such as the above) implies weak or strong
coin flipping (perfect or imperfect).
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