EGNIKO METZOBIO [TOAYTEXNEIO
TMHMA HAEKTPOAOT QN MHXANIKOQN KAI MHXANIKOQN
YTIOAOTIETON

Topéag Texvoloyiag ITAnpodopiknig Kat Ymoloylotav
Epyaotiplo YoAoyloTIK®V ZUOTHHATWV

Apopoloynon IapaAAnev E¢appoyav oe [ToAvmdpnva
YUOTHUATO

AITTAOMATIKH EPTAXIA

TOL

Xapdapmog K. XaAidg

EmipAénov: Nextdplog Kolvpng
KaBnyntig EMIT

Abnva, Iobviog 2013

E®GNIKO METXZOBIO ITOAYTEXNEIO
TMHMA HAEKTPOAOT QN MHXANIKON KAI
MHXANIKQN YTTOAOTITETQN
Topéag Texvoloyiag ITAnpodopikng Ko
Yroloylotwv
Epyaotripto YITOAOYIOTIKGOV ZUOTHHATWV

Apoporoynon IHapdAAnAev E¢pappoyov oe [Todvmopnva
2UoTHUATO

AITTAOMATIKH EPTAXIA

TOL

Xapdapmog K. XaAidg

EmpAénev: Nextdplog Kolvpng
Ka®nyntng EMIT

EykpiOnke amnd tnv tpipehr) e€etaotikn emrpornn v 17n lovviov 2013.

Nektdplog Kolopng NuwkdAaog Manaocndpov AnunTplog Zovvipng
Kabnyntiig EMIIT AvaminpwTti¢ Kabnyntrig EMIT Enikovpog Kabnyntrg EMIT

ABnva, lovviog 2013.

(Xapaapmog K. XaAiog)
Aumlwpatovxog Hextpordyog Mnyavikog kat Mnxavikdg Ymohoytotwv E.MLIT.

Copyright© 2013 EBviké MetodPio ITohvteyveio.
Me empOialn mavtog Sikatdpatog. All rights reserved.

Amnayopevetal n) avtiypadr, armobrkevon kat Stavopr Tng mapovoag epyaaciog, €€’ oho-
KA} POU 1) TUAHATOG aUTHG, Yla EUITOPLKO oKoTo. Emitpémetal n avatinworn, anodnikevon
Kal SLorvopT Yot OKOTIO [KePSOOKOTILKO, EKTIAUSEVTIKNG 1) EPEVVNTIKNAG GUONG, LTTO TNV
nipobmdBeon va avapépetal 1) TNy TPoEAeLONG Kat va SIXTNPETAL TO TIapOV HRVUHA.
Epwtipata 1mov adopovv 11 Xprion tne epyaociag yia KepOOOKOTIKO OKOTIO TIPETEL VAl
amevBuvovTaL TIPOG TN LYY PAPEQ.

Ol ammtoYeLg Kat To CUHTTEPAOUATO TTOV TIEPLEXOVTOL OE AUTO TO €YYpado ekPppdlovy Tn
ovyypadéa Kot Sev TIPETEL Vo epUNVELTEL OTL AVTUTPOOWTIEVOLV TIG eTtionpeg B€aelg Tov
EBvikov MetooPiov ITolvteyxveiov.

IMepidnyn

H o1po¢r) oe molumbpnva cuoTipata, Ta omoia Tapéxouy apBovia LITOAOYIOTIKGV TTO-
pwV, €XOLV 0ONYNOEL TOUG TIPOYPAUUATIOTEG OTNV LIOBETNON HOVTEA®V TTApAAANAOL
TIPOYPAUHATIOHOV €TOL, WOTE VA HITOPEGOLY avVATTTOEOLY ATTOSOTIKEG ePpappoyEg. O ma-
PAAANAOG TIPOYPAUHATIOHOG VITOOKETOL ETMIO00T TTOL KAILXK®VEL He TNV adEnon tov
TIANB0LG TV LTTOAOYLOTIK®V TTOPWV. TTap” OA AVTA, TIEPLOPLOHOL TTOV £XOUV VA KAVOLY,
KUplwG, pe TNV lepapxia PVNG OeV EMITPETOLY OTIG TAPAANNAES EPAPHOYEG Vot ETIUTD-
XOUV TNV avapevopevn emidoon. Zav aImoTEAeCUA Ol ePAPUOYEG AUTEG Sev eival IKAVEG
va alomotoovv Toug Stabéatpoug topoug. [ia va pn peivouy avekpeTAAeLTOL XLTOL OL
TIOPOL, LTTAPXEL 1) AVAYKT YL TAUTOXPOVH EKTENEDT) YLt TTOLPATIAVE OITO Hic TTAPAAANAEG
ePpapHOYEC. X auTh TNV TEPIMTMOOT OPWG, O AVTAYWVIOHOG YA TTOPOLG ATTO SO PETIKEG
ePpapproyEG odnyel oe artpdPAETITN CUUTIEPIPOPA KAL ETIUTAEOV HelwON TIG EMMIOOOTIG TOUG.
Ymdipxel, Aotdv, n avaykn yx anodoTikr Spopordynon Tov epappoynmv Kat diavoun
TV TOPWV TOL OLOTHUATOG HVIHNG. ZT1) SUTAOUATIKT) aUTH, HEAETAHE TOUG AOYOUG Yla
TOUG o1T0ioVG Ot LTIAPXOVTEG schedulers Twv AetTovpytkwv cvoTnuaTwY 8¢ Ponbdve TNV
eKTENEOT) TTAPAAANA®V EGAPUOYWV 0T TPEXOVTA LTTOAOYLOTIKG cuoThpaTta. E€etalovpe
TOUG TIEPLOPLOHOVG TOL GUOTHHATOG UVAING TTOL 00N Yeil o€ Kakr enidoon Twv mapdAAn-
AwV ePAPHOYQOV. XTN CUVEXELX HENETAE KATTOLEG ot TIG HeBOSoug TTov éxovv mpoTtabei
o1n PipAoypadio yia avTiHeTOIION TOV TTPOPANUATWV TwV state-of-the-art schedulers
OXETIKA pe 1) SpopoAGYNon TTapEANNA®V ePapUoOY®V, KaBmG Kat VAOTIOLOUHE SIKEG HOG
TeXVIKEG dpopordynong. Téhog, e€etdlovpe To Bépa NG TOTTOBETNONG TWV VIHAT®WV TV
TIOADVIHATIK®V EGAPHOYWV GTOUG TTUPTIVEG VOGS TIOALTIVPNVOL GLUOTAHATOG. Zuvoyilo-
vtag, Tovilovpe TNV advvapia Twv THPIAANAWY ePAPHOYDV VA KAIHOAK®OOTOLV KAVO-
TIOINTIK& 0T ONHEPLVE TTOAVETEEEPYAOTIKA CUOTAHATA KAl WG CLVETIELN TN ONHAGIA
avamTuEnG TEXVIK®V SpOoHoAOYNong TApEAANA®Y EGAPUOYDV TTOL AaHPAVOLY LTT OYLV
TOUG TNV 0PYAVWOT) TOUG CUOTAUATOG HVIHNG TNG UTTOAOYLOTIKNAG TTAATPOPHAG Kot EPorp-
poCouy TeXVIKEG TIOL TIEPLOPIlOVV TIG ETTTTOOEL TOV AVTAYWVIOHOU TV TApAAANA@V
EGUAPUOYQDV YLt LOLpAlOHEVOUG TTOPOVG TOL CUCTAHATOG HVHpNG. Emonpaivoupe t on-
paoia TnG TomoféTnong Twv VIHATOV pio TTOAVVNHATIKAG EPApPHOYTG OTOVG emeéepya-
O0T£G eVOG TTOAVTIDPNVOL GLOTHHATOG Kot eEETALOVE TO WG OLAPOPETIKES ATTOPATEL,
HITOPOUV VA TTIPOGSDOTOLY SLPOPETIKA XAPAKTNPLOTIKA EKTENEDT)G.

A€€eig-kAeld1a: ToAveTe€epAOTIKA CLOTHHATA, TTOAVVNHATIKESG epappoyég, CMPs, gang
scheduling, contention-aware scheduling, OpenMP, memory bus bandwidth, tommofétnon
VNHATOV

Abstract

The proliferation of Chip Multiprocessors (CMPs) has caused a noticeable stir in the cur-
rent programming paradigm. Developers turn to parallel programming in order to take
advantage of the multiple processing units found in todays computing systems. Multi-
threaded applications distribute the computational load in many threads that use shared
memory to communicate. The shift, however, from Symmetric Multiprocessors (SMPs)
to CMPs has brought up challenges concerning contention in resources that are shared
among cores of the CMP which do not allow applications to achieve the expected per-
formance.

Computing systems, from their side have been developed to adapt to the new plat-
forms. With the advent of SMPs task schedulers have been extended to load balance the
system workload to the multiple identical cpus in order to exploit parallelism. Schedulers
are now obliged to use space-sharing in order to achieve maximum utilization of the sys-
tem resources, since applications are incapable to exploit them on their own. The hier-
archical organization of the CMPs, however, with cores sharing resources such as cache
memory, memory bus, DRAM controllers etc, require much more elaborate scheduler
implementations.

In this thesis, we explore the factors that lead to poor performance in cases where
multiple multithreaded applications are executed on a CMP. Knowing that memory con-
straints are the primary reason for which multithreaded applications fail to scale with
many cpus, we can expect that this phenomenon will be more intense when those appli-
cations will contend for resources of the memory subsystem. First, we investigate what
effect has the limited memory bandwidth in the execution of multithreaded applications
and most importantly when they are co-scheduled with other applications and extract
information that could be used from a scheduler in order to make more efficient deci-
sions. Second we study how decisions on thread affinity of multithreaded applications
can affect their execution profile. The hierarchical organization of CMPs has made thread
affinity an important aspect. Whereas in SMPs placement of threads is not important,
since the only resource they share is the memory bus, in CMPs where cores share multi-
ple resources, affinity of threads determine the amount of resources applications contend
for. Finally we compare some scheduler implementations found in previous work, as well
as, a scheduler that we implemented and the Linux scheduler.

Keywords: CMPs, multithreaded applications, CMPs, gang scheduling, contention-aware
scheduling, OpenMP, memory bus bandwidth, thread placement2

Evxaplotieg

H napovoa Sumhwpatikn epyaoio ekmoviBnke oto Epyactripto YoAoyloTikov ZvoTtn-
HaTwV TNG ZxoAng HAektpoddywv Mnyxavikev kat Mnxavikav Yitohoytotwv tov EQviko
Metoopiov TTolvtexveiov, vmd Ty enifAeyn tov KaBnynt Nextdprov Kolopn.

Katapyag, O nbeha va evxaplotiow tov kabnyntn pov K. Nextdpro Kolvpn, T600 yia
TNV EMOTMTEIN TOU KATK TNV EKTTOVNOTN TNG EPYACING OV, OCO KAL YLK TIG YVWOELS KAl TNV
EUITVELOT) TIOL POV TIpocédepe pe TN SidaoKkalio Tov, Kad' OAn T Stdpkela TG $poitnomng
pov.

Oa ndeda, WTépwg, va evxaptotion o Metadidaktopikd Epeuvnti Nikohao Ava-
otémovAo ywa T ovvexr) kabodrynon Kat vitopovr) Tov,) Poribela Tov omoiov ylo TNV
OAOKANP®OT) AUTHG TNG SUTAWHATIKAG ATAV OVEKTIUNTT).

Oa nBela, emiong, va eLXAPLOTHOW OAOVG TOUG GIAOLG Kal CUHPOLTNTEG HOU, TIOV e
AVUTTOHOVNOIX TTEPLUEVAY TNV ONOKAp®OT) TNG SUTAWUATIKHG QUTHG.

TéNog, ot Bepudtepeg evxaplotieg amevBVvovTaL GTOLG YOVEIG HOU, YLor TNV oYt TOUG,
TNV ApéPLOTN LITOOTHPLEN TOVG KAL TNV EUIIOTOOVVI TOUG o€ K&Be pov emthoyr, artd ta

TIPOTA XPOVia TNG {wng Hov péxpl ofpepa, adldkoma Kat akoUpaoTa.

Mrnépmng Xokog

Contents

1 Introduction

1.1 Problemdefinition. L L o
1.2 Scheduling - Role of the operatingsystem
1.3 Contribution L
2 Motivation
2.1 Perspectiveand challenges
2.2 Parallel Programming L L.
2.3 Run-time systems for parallel
programming languages L oL
24 Operatingsystems
2.5 Currentapproaches L
3 Preliminary evaluation and results
3.1 Multithreaded applications scalability
3.2 Performance of state-of-the-art scheduling policies
3.3 Studying effects of memory contention in scheduling
3.4 Thread placementissues
4 Proposed scheduling methodologies
4.1 Performancemetrics L o
42 Scheduling policies L
42.1 Gangscheduler (GANG).
422 Greedyscheduler (GREEDY)
4.2.3 Contention aware greedy scheduler (CGREEDY)
424 MINWAIT scheduler
4.3 Scheduling infrastructure L oL

4.3.1 Basiccomponents
4.3.2 Design and architectureof scaff
4.3.3 Underlying tools and mechanisms employed

11

12
13
14

17
17
18
21
26

5 Experimental evaluation

5.1 Evaluation platform
52 Workload profile.
5.3 Evaluation of scheduling policies

5.4 Placement significance in scheduling

6 Conclusions and future work

CONTENTS

Chapter 1

Introduction

1.1 Problem definition

Until recently computing performance was provided “for free”. Architects were able
to increase cpu frequencies every few months, improvements in microarchitecture and
design of complex memory hierarchies provided great boost in serial execution perfor-
mance. Those changes were transparent to developers who didn’t have to redesign soft-
ware. The “free lunch” however, is over. Limitations related to heat dissipation, increased
power consumption, the limited instruction level parallelism (ILP) that exists in software
and the increasing gap between processor and memory speed caused a stir in computer
architecture design from uni-processor systems with a single fat core to multicores with
multiple, usually thinner, cores integrated in a single chip.

As a result, developers cannot expect, any more, for architectural advancements to
improve performance of their software. They are forced to abandon serial programming
paradigms and use parallel programming models that will leverage chip multi-processors
(CMPs). CMPs offer tremendous opportunities for multithreaded applications which
can take advantage of simultaneous thread execution and fast inter-thread communica-
tion that leads to scaling performance.

However, the cores of a CMP are not totally independent from each other. Usually,
they share many components of the memory sub-system, such as last level caches (LLC),
memory controllers, prefetchers, the memory bus and the underlying interconnection
system. This sharing of resources limits the potential advantages of CMP’s. Concur-
rent execution of multiple applications result in contention in resources that are shared
among cpu’s of the CMP. Contention leads to under-utilization of system resources and
consecutively in performance degradation. It is obvious that in order to take full advan-
tage of the potential provided by CMP’s we need to deal with their negative aspects and
take advantage of the positive.

A significant class of solutions that address problems of resource contention in CMPs
focuses in scheduling OS level threads. Those solutions aim to schedule threads in a re-
source aware manner in order to take advantage of the benefits that multithreaded appli-

6 CHAPTER 1. INTRODUCTION

cations can gain when executing in multicores and mitigate the performance degradation
caused by contention in the memory subsystem. These solutions are attractive since they
do not need changes to hardware and minimal changes to the OS.

1.2 Scheduling - Role of the operating system

Since the dawn of multiprogramming systems the scheduler has been an integral part
of the operating systems. The scheduler, traditionally, is responsible for making decisions
about the allocation of system resources to multiple applications. Its main challenge is
to strive to provide efficiency, as well as fairness for every application. Depending on the
nature of the platform the scheduler is designed to optimize a different objective. In desk-
tops, for example, the challenge is application responsiveness, while in high performance
computing systems schedulers try to maximize overall throughput.

Until several years ago, where uni-processor systems where the norm across the
whole computing spectrum, OS scheduling was performed in terms of time-multiplexing
applications. Scheduling algorithms had attracted the attention of the academic commu-
nity as well as the industry. Until the advent and subsequent near ubiquitous proliferation
of CMPs, schedulers had become so optimized that the need for further improvements
dramatically subsided. A typical example is the latest Linux task schedulers which were
considered highly efficient. O(1) scheduler used run-queues consisting of priority lists
for different priority processes and implemented interactivity heuristics to decide the
process with the highest priority. The scheduler kept one run-queue for every cpu of the
CMP and used a load balancing algorithm to fairly distribute the load among the avail-
able cpus. Completely Fair Scheduler (CFS) [16] replaced the O(1) [17] scheduler as the
scheduler of Linux. Instead of keeping priority lists in every run-queue it uses a red-black
tree to describe the “need” for cpu-time of every process in this runqueue. It considers
the process with the highest waiting time as the next process to be chosen to execute for
the next time-quantum.

When CMPs arrived schedulers were optimized for symmetric multiprocessor (SMP)
systems. SMP is a multiprocessor architecture that consists of multiple identical proces-
sors that connect to a shared memory. Each processor of an SMP is independent from
the others since they only share the interconnection network to the memory. Using this
scheduler unmodified for CMP systems gives the OS the illusion that cpus of the CMP
are isolated. This was a convenient but overly optimistic simplification that caused a great
deal of problems.

CMP architectures consist of multiple cpu cores on a single chip, usually sharing the
upper level of cache memory (e.g. L2, L3) in an hierarchical manner. The multiple pro-
cessing units found in CMPs insert one additional level of complexity in scheduling de-
cisions. In addition to multiplexing a single core in time, time-sharing it among threads,
it becomes necessary to space-share the CMP deciding on which processor a thread will
execute. The rapidly increasing number of cores provided by state-of-the-art platforms
makes the need of space-sharing even more intense, since multithreaded applications
are inherently incapable to presume upon this abundance of hardware resources. This is

1.3. CONTRIBUTION 7

a responsibility of the OS scheduler and while on older systems space-sharing was not
important, with the advent of CMP’s became a very challenging issue.

Contention in resources shared by multiple cpus of a CMP is a limiting factor in the
benefits that can be derived from the parallelism offered from multiprocessors. Depend-
ing on the mix of applications that execute concurrently on the cores of a multiprocessor
the level of contention can vary greatly. Choosing applications that make heavy use of
the memory subsystem to run concurrently leads to poor performance. Other applica-
tions blend together nicely and co-executing them is beneficial in terms of throughput.
The number of threads with which an application executes is another important factor
that causes the variable level of contention. Not only concurrent execution of parallel
applications does not always performs as expected but to make things worse, the level
of performance degradation is highly dependant from a number of factors that is diffi-
cult to predict. Unpredictable performance is evenly undesirable as reduced throughput.
For example systems that provide Quality of Service (QoS) cannot tolerate unpredictable
performance.

At the same time, research has shown that executing threads of the same application
concurrently leads to high throughput. Frequently, multithreaded applications share data
among threads, thus executing threads on cores of the CMP at the same time slot favors
this sharing and at the same time some threads can make use of data prefetched by other
threads of the same application.

However, modern OS’s lack the ability to handle threads efficiently. OS treats threads
uniformly, that is, it does not distinguish threads of different applications. As a result, it
cannot enforce policies that have threads of the same application execute concurrently
and does not exploit the benefits of such a scheduling scheme. Moreover the operating
system does not have any kind of mechanisms to assist it to keep track of the system
performance. However, that kind of mechanisms are necessary in order for the OS to
implement a scheduling scheme that will be resource aware and endeavor to make sched-
ules that will diminish the contention in the memory subsystem and avoid performance
bottlenecks.

1.3 Contribution

In order to deal with the problem of scheduling multithreaded applications in CMPs
there are some issues that must be addressed. First, any decision that a scheduler makes
must take into consideration the underlying hardware platform. It is necessary that de-
tailed information about the number and the organization of the available cpus, on one
hand, and the way the memory subsystem is organized, on the other, is communicated
to the scheduler. Second, the scheduler requires information about the execution profile
of the applications that it will handle. Such information is the ability of an application to
exploit the available system resources such as cpus and bandwidth of the memory bus, as
exposed by characteristics such as the number of cores until which the application scales
efficiently, its Last Level Cache (LLC) miss rates, memory bandwidth consumption, etc.

8 CHAPTER 1. INTRODUCTION

Apart from the knowledge concerning the system and the application characteris-
tics that is needed for the scheduler to make efficient decisions, it is important that we
investigate the effects of execution of multithreaded applications in CMPs. We must un-
derstand what are the consequences of applications sharing resources such as levels of
the cache hierarchy, the memory bus or the DRAM controller, what are the character-
istics of the applications that can be efficiently co-scheduled and which applications are
destructive to run at the same time-quantum. We must also quantify the contribution
in performance degradation of every shared resource, as well as the significance of more
technical issues such as the thread affinity. This knowledge must be incorporated in the
scheduling algorithm in order to be able to leverage the system resources.

The rest of the thesis deals with some of the aforementioned issues. We show that
multithreaded applications lack the ability to exploit all the available system resources,
since they fail to scale for large thread-counts. We demonstrate that memory constraints
is the major factor for their poor scale and that contention in resources of the mem-
ory subsystem deteriorates the situation. We explore what effect has contention for the
memory bus in scheduling, as well as that thread affinity is an important issue and that
different decisions on that matter provide different execution characteristics. We also
compare different scheduler implementations and show that implementing the previous
methods significantly improve throughput comparing to the Linux scheduler.

Chapter 2

Motivation

In the last years computer architects have made a noticeable stir from uni-processor
architectures to chip multi-processors (CMP). State-of-the-art computer architectures
focus on integrating multiple processing units on a single chip rather than optimizing
existing uni-processor systems. Until the middle of the previous decade, the exponen-
tial performance improvement of uni-processor systems was provided by advancements
on the micro-architecture level. Designers were able to increase transistor density and
the clock speeds, which alongside with micro-architectural optimizations provided great
boost in sequential performance. However, this came with increased heat dissipation
and power consumption, thus making the approach of frequency increase less tempt-
ing. Moreover, the limited instruction level parallelism (ILP) found in many applications
made it difficult to exploit those improvements. For all these reasons, designers changed
their strategy towards the integration of multiple cores within a chip as a means to extract
more performance. And while uni-processor optimizations offered “free luch” to the pro-
grammers, requiring none or few code changes, CMP architectures require radical shifts
from traditional programming approaches to novel parallel programming models. This
stir in architecture design created the need for the OSs to readjust. Schedulers had to be
upgraded significantly in order to utilize the multiple processors and load balance the
system workload among them. Moreover, since CMPs became the common paradigm
scheduler has to deal with new challenges related to contention for shared resources. This
attracted the interest of researchers who strive to employ new techniques for scheduling
in order to fully exploit the potential of CMPs.

2.1 Perspective and challenges

CMPs offer tremendous opportunities for high throughput in parallel applications.
Parallel computing promises scalable performance when executing an application in
multiple cores. At the same time, the large number of processing units allows more than
one applications to execute at the same time, reducing the off-cpu time.

Research has shown that scheduling threads of the same application concurrently

10 CHAPTER 2. MOTIVATION

is more beneficial compared to scheduling them independent from each other. There
are many reasons for this. First, threads often need to synchronize their execution using
barriers or execute a critical section protected with locks. Synchronization might take a
considerable amount of time if threads are not scheduled concurrently, e.g. when some
of them wait to acquire a lock that is held by a descheduled thread. Second, some portion
of data in multithreaded applications is usually shared among their threads, thus their
concurrent execution potentially enables its reuse. For example, in modern CMPs where
cpus share some of the levels of memory hierarchy, the data accesses of one thread might
seem useful for other threads that share it, if they execute under a common cache.

Multithreaded applications very often cannot scale efficiently at large number of
cores and therefore cannot take advantage of the abundance of resources in current
CMPs. In order to fully utilize the unexploited resources we need to co-schedule more
than one applications at the same time. This is useful to increase both application through-
put and responsiveness. However, cores in a CMP are not completely independent from
each other and they are designed to share multiple on- and off-chip resources. The most
frequently shared components are modules of the memory hierarchy such as the mem-
ory bus and interconnects, DRAM controllers and last level caches (L2 or L3). The con-
current execution of threads leads to contention for those resources, limiting the ex-
pected performance benefits. These shared resources are managed entirely by hardware
and are allocated thread-unawarely. Requests to those controllers are handled as if they
were from a single source and therefore there is not any fairness or partitioning enforced
when different threads make access to those resources. Moreover, modern memory de-
signs focus on Non-Uniform Memory Access (NUMA) organizations which divide the
total memory amount into memory nodes distributed to the physical packages of the
CMP. The access time of memory references made from a thread executing on a cpu de-
pends on which memory node the data that it wants to access are allocated. Accesses in
local nodes are apparently faster, than accesses in remote memory nodes. Methods that
manage shared resources in this thread-agnostic manner and making decisions without
taking into consideration can lead system to poor scalability and performance that is
variable and highly dependent from the workload that executes on the CMP.

There has been significant interest in designing solutions to address the problem of
resource contention. The majority of these solutions are implemented in hardware and
target mainly in performance aware cache optimizations, mostly cache-partitioning and
optimization of DRAM controller. Those solutions aim to make those resources thread-
aware, thus mitigate the contention among different threads sharing these modules.

Another class of solutions that is orthogonal to the above-mentioned approaches
concentrates in thread scheduling. Scheduling techniques have drawn attention since
the dawn of multiprogramming. Schedulers have been an integral part of the OSs, which
are responsible to share resources among applications.

When uniprocessors were the norm in computing systems, the role of schedulers was
to time-multiplex the cpu to applications. Scheduling policies were designed according
to the nature of the computing system they were intended for. Therefore in desktops they
were striving for system responsiveness, while in high performance computing systems

2.2. PARALLEL PROGRAMMING 11

there were optimized for high throughput. Scheduling was so important for the perfor-
mance of systems that a lot of research was conducted on this subject, both from the
academia and industry. This resulted in very efficient schedulers, therefore the interest
on improving schedulers was diminished until the advent of the CMPs.

The multiple cores found in CMPs inserted one additional level of complexity to the
scheduling problem. Schedulers not only have to share one cpu among multiple applica-
tions, but they additionally have to partition the available “space” of cpus, deciding which
thread will execute in every cpu during a single time-quantum. Initially, OSs running
on CMPs used schedulers designed for traditional Symmetric Multi-Processors (SMPs).
These architectures consist of multiple processors that, unlike cores of modern CMPs,
are completely independent to each other. In SMPs each core has its own cache hier-
archy and all the only shared resource is the memory bus, which means that there are
less points of contention. Apparently, SMPs use a more “flat” organization compared to
CMPs, where memory organization is hierarchical.

2.2 Parallel Programming

Writing parallel programs is notoriously error prone. Concurrent execution of threads
sharing data can lead to race conditions. In addition, careful design and implementa-
tion of software is necessary to achieve scalable performance. Writing parallel programs
which execute efficiently on a diverse set of architectures is also a difficult challenge. Plat-
form independent design in software development is a usual requirement, though in the
multicore era this is often a significant burden. Optimizing parallel applications code re-
quires good knowledge of the underlying system. However, multiprocessor architectures
can vary significantly, presenting great differences in the number of cores they provide,
their topology and the memory organization.

Parallelism is provided to programmers either as a library (Pthreads, MPI, OpenMP,
etc) or as a language (Cilk, Haskel, Fortress, etc). An important part of those implementa-
tions is the run-time system, which is responsible for implementing all parallel operations
during the application’s execution time. The primary focus of parallel programming en-
vironments is to provide programmers with high level constructs that will allow them to
express parallelism in their applications. At the same time, acknowledging the difficulty
of writing efficient parallel programs, researchers and the industry struggle to remove
some of the programming effort needed from the programmers and make it responsibil-
ity of the RTS, in an effort to make parallel programming more productive and efficient.
This has resulted in larger and more sophisticated RTSs.

12 CHAPTER 2. MOTIVATION

2.3 Run-time systems for parallel
programming languages

Parallel programing is trying to exploit the multiple processing units found in cur-
rent computing systems. Parallel application programmers decompose a large problem
in parallel tasks that can execute concurrently and thus decrease execution time. When
expressing parallelism with tasks it is considered a good programming technique to cre-
ate a number of parallel tasks (N), significantly larger than the available physical cpus (p).
This technique allows the RTS to adapt to the underlying system regardless the num-
ber of available cpus, since decomposing the problem in a large number of parallel tasks
favors load-balancing which is a necessary condition to achieve good performance. An-
other way to utilize the available resources is to parallelize loops that do not have data
dependencies among its iterations. In this case a number of threads is created (often
user-defined) and each thread is responsible for the execution of a number of iterations.

When a parallel application is executed, the main responsibility of the RTS is to
schedule the N parallel tasks to t available hardware threads. The number of available
hardware threads is usually defined by the user or the OS. Usually the RTS implements
its own scheduling policies at user space, acting as a small-scale operating system. It cre-
ates t OS threads and uses them to execute the parallel tasks in which the program is
decomposed. RTS is responsible to create and terminate tasks, manage their memory
and implement the scheduling policy with which it will assign tasks to software threads.
There are several issues concerning the mapping of the N parallel tasks to t available
threads. In cases where the computing load is uniform across the whole extent of the
program portion to be parallelized (e.g. loop iterations), the total workload is decom-
posed evenly to t tasks, each being statically assigned to a separate hardware thread.
However there are situations where the load among parallel tasks is non-uniform or the
parallelism is dynamically created, and therefore it is difficult to efficiently schedule tasks
to hardware threads. In those cases the RTS allows the programmer to define a number
of parallel tasks significantly larger than the available hardware threads, a feature which
is sometimes mentioned as parallel slack. This feature facilitates the task scheduler of the
RTS to perform load balancing techniques in order to achieve higher cpu utilization and
as a consequence higher throughput. Traditionally, parallel applications were not imple-
mented employing some parallel RTS but using low-level APIs and explicit threading.
In such cases parallelization was not expressed using tasks, and the number of software
threads was either predefined, or defined explicitly by the user at run-time or the pro-
gramer during development. The common choice in those cases was to use as many
threads as possible to gain the higher possible speedup for the parallel region.

Scheduling parallel tasks in software threads from RTSs seems to be well studied
and there is a number of parallel languages that implement the above-mentioned tech-
niques. There are problems concerning performance portability for various hardware
platforms, but there seem to be promising approaches. However the former techniques
exhibit some significant limitations.

2.4. OPERATING SYSTEMS 13

+ The RTS is not aware of the architectural characteristics of the hardware platform.
It takes decisions without taking into consideration which components hardware
threads share, for example which cores share the L2 or L3 cache, or whether the
system is NUMA.

« They assume that only one application is executing on the system. However, there
might exist other applications concurrently on the system implemented in differ-
ent languages, thus using a different RTS to manage their execution. Therefore,
any decisions the RTS makes are oblivious to how they might affect execution of
other applications.

« There is not the ability to alter the resources allocated to a RTS. Once a number
of CPUs are assigned to a RTS it remains constant during the execution of the
program. The malleability of thread numbers allocated to the RTS is an impor-
tant property to achieve a resource aware scheduling policy or enforce Quality of
Service (QoS).

24 Operating systems

Operating systems have a determinant role in application scheduling, yet the vast
majority of them were designed when serial programming was the norm. Schedulers
implemented in those designs were responsible for time-sharing the processor among
the available cpus. To increase throughput and responsiveness they deferred execution
of applications that were waiting for I/O until they were ready to execute and replaced
them with others that ready to execute increasing the utilization of the cpu. This is easy
to implement since whenever an I/O transaction takes place the OS is informed with a
system call.

Completely Fair Scheduler (CFS) which is the current scheduler of Linux is designed
to provide responsiveness for desktop systems by being equally fair to every application
of the system. At the same time it uses a load balancing algorithm to distribute the work-
load equally among the available cores. Moreover, CES is designed to be aware of the
system topology, especially when load balancing threads.

Contention for shared resources can arise unpredictably depending on the profile of
the workload being executed. Normally a workload consists of applications with differ-
ent memory requirements. It has been shown [1] that executing concurrently a memory-
with a cpu-bound application is beneficial, since the cpu-bound application requests a
small amount of resources from the memory subsystem, and therefore does not affect the
other one. The scheduler needs sufficient information either at compile or run time to
make contention-aware scheduling decisions which create groups of programs that exe-
cute concurrently and their execution characteristics are complementary as far as their
memory requirements is concerned. This kind of information could be acquired online
by the OS using performance counters. Performance counters can be used to measure
various statistics related to application execution, among of which are statistics regard-
ing the utilization of memory hierarchy. Similarly, applications could provide significant

14 CHAPTER 2. MOTIVATION

information to the OS concerning their execution profile, e.g. whether they will make
heavy use of the cache or the memory bus. Moreover, current OS schedulers do not
treat threads of the same application as a whole. They handle them as if they were totally
independent entities, consequently they cannot enforce policies such as gang scheduling
which has been proved to increase throughput of an application.

Unfortunately, current state-of-the-art schedulers do not use such techniques to help
them make optimal decisions about scheduling. Information provided by performance
counters is not utilized at all and the flow of information between the OS and the ap-
plications is only towards one direction. The scheduler should be upgraded to receive
feedback from applications and performance counters which, along with the knowledge
of the underlying hardware platform, would lead to more efficient scheduling and, as a
consequence, increased performance.

2.5 Current approaches

There are many approaches employing thread scheduling to deal with contention for
shared resources in CMPs. Scheduling is a promising solution since it does not require
any modification of the underlying platforms, in contrast to other methods that target at
redesigning hardware (e.g. cache partitioning, modification of DRAM controllers) [2, 3,
4,5].

Many approaches focus on techniques for scheduling workloads of multiple parallel
applications to improve overall throughput. Corbalan, Martorell and Labarta [6] imple-
mented Performance-Driven Processor Allocation (PDPA) scheduler to decide at run-
time the number of threads per application based on the online measured performance
of every application, though they do not take into consideration the contention on shared
resources. Time-sliced gang-scheduling is a time-sharing scheme which executes con-
currently in a time-quantum all threads of the same parallel application. This method
improves response time of applications and provides mutual prefetching in cache hi-
erarchy among threads using shared working sets, while reducing thrashing at the same
time. This scheduling policy provides significant benefits for multithreaded applications:

1. Executing all threads of the parallel application at the same time-quantum pre-
vents phenomena of threads halting at synchronization points (such as barriers
and critical sections) waiting for suspended threads. This provides higher through-
put for multithreaded applications such as HPC applications which typically ben-
efit from inter-thread communication and require many synchronization opera-
tions.

2. The previous feature leads to applications being more responsive which is a com-
mon demand in desktop applications.

3. When scheduling threads of a multithreaded application concurrently their ex-
ecution acts as mutual prefetching of shared data in shared caches among them.

2.5. CURRENT APPROACHES 15

This way some of the latency of accessing the main memory is hidden and through-
put for memory bounded applications is increased.

Other approaches [1, 7, 8] use hybrid methods of space-time scheduling and make
use of performance counters to determine which applications can be co-scheduled effi-
ciently together. They monitor application performance while creating groups of applica-
tions to co-schedule, trying to converge to a solution that improves a metric. Apart from
deciding the applications that will execute concurrently they also determine the con-
currency level of each of them. Those methods try to deduce, again using performance
counters, the best thread count for each application based on how well they can exploit
the resources that are allocated to them, as well as the interference that they cause to
other applications with which they co-execute. Bhadauria and McKee [1] propose time-
space sharing techniques to increase throughput and energy efficiency in multithreaded
workloads. Their implementations make scheduling decisions based on information that
results from quantifying contention in shared resources and energy consumption. They
use metrics that represent LLC misses, which is an indicator of the percentage of accesses
that result in off-chip traffic and data bus usage. Their methods, then, classify applica-
tions based on these metrics and create co-schedule groups, trying to put in the same
group applications with complementary characteristics, e.g. applications with low miss
rates with others having high miss rates. Apart from throughput, the proposed methods
target also at energy efficiency, using power meters to take energy consumption mea-
surements. Zhuralev et al. [9] showed that LLC miss rate is very indicative of the con-
tention for shared resources. They tried to measure the ratio of performance degradation
due to contention in different shared resources (LLC, interconnects, DRAM controller
and prefetchers) and showed that contribution of every contention point in performance
degradation is interdependent and all those factors work in conjunction to result in the
observed performance degradation. Although the dominant points of contention seem
to be the interconnections and the memory controllers, since LLC is the last on-chip
shared resource, LLC miss rate is an accurate indicator of the pressure put on higher level
shared resources. The techniques proposed by Knauerhase [11], Zhuralev [9], Merkel
[10] approximate contention measuring LLC miss rate online and use this information
as input for their schedulers. Their primary concern is to match applications that are
complementary in their demands from the memory subsystem. However, their exper-
iments focus on multiple single-threaded applications that execute concurrently on a
multicore system.

The aforementioned methods are designed to work over traditional OS’s that do not
implement contention-aware scheduling techniques, since it was not considered critical
until now. A different approach is to design an OS from scratch, employing principles
that are derived from the modern computer organizations. The hierarchical organization
of shared resources needs to be accounted when designing scheduling policies. Barrelfish
[12] is organized as a distributed micro-kernel system trying to adapt to multicore and
probably heterogeneous systems. Similarly, Helios [13] introduces satellite kernels to ad-
dress the challenge of heterogeneity. Fos [14] focuses on space-sharing and Tessellation
[15] argues for time-space partitioning the shared resources with each application han-

16 CHAPTER 2. MOTIVATION

dling its own partition.

In this work we evaluate some of the approaches mentioned before and try to ex-
plore our own scheduling methodology. We demonstrate that current state-of-the-art
scheduling policies are not scalable. We evaluate alternate proposed approaches that are
shown to be more scalable and efficient. We focus on workloads with multiple multi-
threaded applications and employ time-space sharing scheduling techniques, trying to
provide high throughput for the whole workload while not compromising performance
of individual applications. Multithreaded applications usually consist of large parallel re-
gions, e.g. large parallel loops with many iterations which are assigned to multiple threads
to execute them. It is highly possible that those parallel regions scale differently. Ac-
knowledging this, we consider current implementations that allocate a fixed number of
resources throughout the whole execution of the application restrictive. We believe that
a more fine-grain, dynamic allocation of resources that would take into consideration
the actual needs of every parallel region of the application can lead to higher through-
put and better resource allocation. Previous implementations strive to detect the level of
concurrency at which a parallel application is most benefited and employ hybrid time-
space sharing techniques to schedule a workload of multithreaded applications. Effective
implementations try to quantify the contention on shared resources caused from con-
current execution of applications and create groups of them to be co-scheduled. Further-
more, our experiments concluded that, apart from finding effective co-schedules that di-
minish contention, it is important how the threads of each application will be placed on
the available cores based on the architectural characteristics of the execution platform,
such as which cores share a LLC, which cores belong to different NUMA nodes, etc.

Chapter 3

Preliminary evaluation and results

In our effort to explore the problem of scheduling multithreaded applications in
modern CMPs, we conducted a series of initial experiments that highlight its multiple
aspects and different implications. We came up with some interesting results which we
present in the sections that follow.

3.1 Multithreaded applications scalability

Multithreaded applications can exhibit performance degradation not only when co-
scheduled with other applications but also when executing solo. Typical reasons for this
are the memory contention, load imbalance, synchronization overhead, intense true/-
false sharing, etc.. While CMPs provide opportunities for parallelism for a single multi-
threaded application, memory accesses can be a bottleneck for parallel execution. This
can be true even if threads of a parallel application work on private data, without incur-
ring notable interprocessor traffic. This is particularly true for memory-intensive parallel
applications with large working sets (e.g. streaming applications), which may suffer from
memory bandwidth saturation as more threads are introduced. In such cases, the appli-
cation will not probably scale as expected, however efficiently parallelized it is, and the
performance will be rather poor.

The above are a result of the memory subsystem design of modern architectures.
Each socket in the platform has a maximum bandwidth to memory which is shared by
all processing elements it encompasses (cores, hardware threads, etc.). Depending on
the architecture, even multiple sockets might share access to main memory through a
common bus. Given that even under perfect conditions (e.g. full software optimizations)
the memory subsystem cannot fulfill a single thread’s requests without having its core
stalled, we can imagine the amount of pressure put on memory bus and how quickly it
can be saturated when the number of cores increases. This is why the processor industry
strives to provide improved bus speeds or alternate memory paths on each new processor
generation (e.g. through Non-Uniform Memory Access designs), but unfortunately these
enhancements have never been enough to make the memory subsystem keep pace with

17

18 CHAPTER 3. PRELIMINARY EVALUATION AND RESULTS

NAS Benchmarks scaling

I1

©

s <

s o
m -
b

!

6
o / 0
=}
©
s
(O]
o /
U') 4
4
; .
/
5 10 15 20 25
threads

Figure 3.1: Scaling of NAS benchmarks

the increasing core counts.

As a result multithreaded applications cannot exploit the abundance of computing
resources found in current CMPs and and this forces them to execute with a smaller
number of threads. This makes space scheduling an one-way solution to address the
problem of under-utilization of resources.

Sublinear scalability of multithreaded applications poses a limit on the number of
resources they can be benefited from. In Figure 3.1 we show the speedup of some of
the NAS benchmarks on a 24-core CMP. It is obvious that almost all applications fail to
gain significant speedup when executing with more than 8 cores. While LU scales better
than others it only exhibits a speedup of below 8 when executing with 16 threads. Even
in this case it would be wise to assign less cpus to LU, and use the rest to co-execute more
applications. This can lead to better utilization of the available resources.

3.2 Performance of state-of-the-art scheduling poli-
cies

Current state-of-the-art scheduler implementations, such as the Linux CFS sched-
uler [16], are designed to distribute threads across available cpus in a balanced fashion. In
this way, they enforce some kind of space sharing among applications, yet this approach
is defective since they treat threads of the same application as separate entities and not

3.2. PERFORMANCE OF STATE-OF-THE-ART SCHEDULING POLICIES 19

Scalability of schedulers - Linux scheduler vs gang scheduling

2000

3 linux
E gang

1500

1000

Execution time (sec)

5001

1 2 3 4 5
Number of benchmark instances

Figure 3.2: Failure of linux to scale when handling many threads

as components of a larger, single entity. This results in threads of the same application
being scheduled in different time-quanta which undermines the progression of the appli-
cation. Gang scheduling acknowledges this observation and dictates that threads of the
same application must be scheduled in the same time-quantum. Therefore, threads of
the same application are benefited from all the advantages of being concurrently sched-
uled, such as avoiding large waiting periods in synchronization events (critical sections,
barriers), better exploitation of data locality under shared-cache configurations, etc.
The Linux scheduler aims at distributing all threads of the workload across the avail-
able cpus in a balanced way, thus there are not any cpus left idle at any time-quantum.
Gang scheduling, obviously, does not achieve this level of utilization of cpus. However,
scheduling all threads of one application at the same time achieves better performance.
The fact that Linux scheduler does not schedule threads of the same multithreaded
application at the same time-quantum, causes their performance to degredate. This phe-
nomenon becomes more intense when the total number of threads of the applications
executing on the system exceed the number of the available cpus. When that happens
threads of the same application are scheduled in different time-quanta. At the same time
the contention in shared resources among different applications is increased and the

20 CHAPTER 3. PRELIMINARY EVALUATION AND RESULTS

Comparison of workload execution times with linux and gang

3500

3 linux
E gang

3000+

2500+

2000+

1500

Execution time (sec)

1000

500

Figure 3.3: Comparison of executing a workload with Linux and a gang scheduler

conjuction of these lead to poor performance. Figure 3.2 shows that the Linux scheduler
fails to scale when the number of software threads is increased, comparing with gang
scheduling techniques. Gang scheduling avoids the impact of scheduling threads of one
application to different time-quanta, which also reduces the contention for shared re-
sources, resulting in higher throughput

Figure 3.3 presents the execution time of every program of our workload when ex-
ecuting using the Linux scheduler and a gang scheduler. Gang scheduling chooses all
threads of an application (gang of threads) to execute them in the same time-quantum.
This implementation of gang scheduler does not enforce space-sharing and as a re-
sult the gangs being created consist of one application (one program executes every
time-quantum). Not many applications of the workload benefit significantly from gang
scheduling. It is obvious, however, that the defective scheduling of Linux for multi-
threaded applications can result in poor throughput for some applications. Using gang
scheduling for this workload, we achieved a speedup at the completion time of the work-
load of three times without decelerating significantly any application of the workload.

Even if gang scheduling is proved to provide higher throughput for multithreaded
applications, this policy leaves many cpus unutilized because applications do not scale

3.3. STUDYING EFFECTS OF MEMORY CONTENTION IN SCHEDULING?21

perfectly and are unable to exploit all the cores of a CMP. We therefore need to employ
gang scheduling techniques that also enforce space-sharing policies, in order to fully uti-
lize the available resources. Space-sharing, however, introduces contention for shared
resources among co-scheduled applications. There are many points of contention in the
memory subsystem, with the memory bus being one of the most prominent. Competi-
tion for it, can cause significant performance degradation, especially for memory-bound
applications.

3.3 Studying effects of memory contention in schedul-
ing

We use STREAM [18], a pseudo-benchmark that is designed to make streaming
memory accesses without any cache reuse, in order to stretch the memory bus of a mul-
ticore system and measure its maximum sustainable bandwidth. We experimented in a
24-core Core-based CMP system in order to determine the effects in performance of
applications that have different memory intensity. Apart from exploring the effects im-
posed from memory limitations to the execution of applications individually, we also
conducted experiments to observe what implications does scheduling applications with
different needs in memory bandwidth have in their performance. We created five differ-
ent variants of STREAM, each having a different memory intensity level ranging from
maximum to small. The maximum case (referred as stream-100) is the original version of
STREAM, used to calculate the maximum sustainable memory bandwidth of our mul-
ticore system. STREAM implements a computational kernel (Code 3.1) that accesses
three one-dimensional arrays, with double-precision floating point elements, which do
not fit in the LLC. The access pattern is such that they do not make any reuse of data,
thus all memory requests result in off-chip requests to DRAM.

void tuned _STREAM_Triad (STREAM_TYPE scalar)
{
ssize_t j,k;
#pragma omp parallel for shared(val)
for (j=0; j<STREAM_ARRAY_SIZE; j++) {
alj] = b[jl+scalar*c[j];
}

Code 3.1: STREAM computational kernel

The small case (stream-20) is a cpu-bound variant. It has been derived from the orig-
inal version by inserting the appropriate amount of register-to-register arithmetic oper-
ations (Code 3.2) so that the program consumes 20% of the maximum memory band-

22 CHAPTER 3. PRELIMINARY EVALUATION AND RESULTS

width. The three intermediate cases (stream-40, stream-60, stream-80) have been pro-
duced in the same way, each consuming 40%, 60% and 80%, respectively, of the maximum
bandwidth. To insert the number of arithmetic operations that will decrease the memory
bandwidth consumed by stream, which is computed as the amount of data transferred
divided by the amount of time for the transfer, we inserted a second loop that performs
those operations, adjusting the number of iterations of the loop to achieve the desired
percentage of used bandwidth.

void tuned STREAM_Triad (STREAM_TYPE scalar)

{
ssize_t j,k;
#pragma omp parallel for shared(val)
for (j=0; j<STREAM_ARRAY_SIZE; j++) {
alj] = bljl+scalarc[j];
for (k=0; k<ARITHMETIC OPS; k++) {
val = val + scalar;
}
}
}

Code 3.2: STREAM computational kernel with arithmetic operations

For each variant we measured its standalone performance and the way their perfor-
mance scales with the number of threads used to execute it. To gain some insight on the
effects of memory bandwidth consumed by applications when co-scheduled, we also ex-
ecuted concurrently the versions of STREAM in pairs and triples and watched the way
each version of STREAM is slowed-down.

3.3. STUDYING EFFECTS OF MEMORY CONTENTION IN SCHEDULING?23

Speedup of STREAM vresions

10,

®

o

speedup

& 4
7
2 / *+— stream-100|

+—+ stream-80
»— stream-60
o o stream-40
o0 stream-20

0O 2 4 6 8 10 12 14 16 18 20 22 24
threads

Y

Figure 3.4: Scaling of STREAM versions

Bandwidth usage of stream versions for execution with various threads

N N
/ 2

6000 /
=—= stream-100

4000 /
o
/ :

2000

/ +—+ stream-80

o

¢

2

speedup

o = stream-60

4 o o stream-40

00 stream-20
n n

o 4 6 8 10 12 14 16 18 20 22 24

threads

0

Figure 3.5: Bandwidth of STREAM versions for different threadcounts

Slowdown of stream versions comparing to standalone execution

N
=)

Slowdown
&

g
o

o
n

Slowdown
- = N
o n o

o
wn

0.0

N
o

Slowdown
o
n

i

stream-100
stream-80
stream-60
stream-40
stream-20

& & & & & & & 6 6 6
%8g C6g C6g %6g % 0 22 C6q C6q C6q, 90
27 ‘60 ‘20 2 ‘20 2 2 "6p) =) 2

Figure 3.6: Slowdown of pairs and triples of STREAM versions

3.3. STUDYING EFFECTS OF MEMORY CONTENTION IN SCHEDULING?25

In Figure 3.4, we can see how the memory bandwidth usage of an application affects
its performance. The figure depicts the speedup of the versions of STREAM that we
created comparing to its serial execution. Applications that use less memory bandwidth
scale better when the number of cores is increased.

This conclusion can be derived from Figure 3.5 as well. The stream-20 version is not
significantly bound from bandwidth usage, resulting in linear scaling. This figure, also
reveals the upper bound of memory bandwidth provided by the memory bus of our sys-
tem. This is consumed by the stream-100 version when executing with 8 threads. This
threadcount was used to create the rest of STREAM versions. Considering the band-
width consumed by the default STREAM version (stream-100) when executing with
eight threads, the versions of STREAM we created consume a percentage of this band-
width when executing with eight threads. For example, stream-60 utilizes the 60% of the
maximum bandwidth when executing with eight threads. We chose this threadcount to
characterize the STREAM versions (rather than 24 threads which indicates the maxi-
mum memory usage of the version) because we wanted to use those versions and create
groups (pairs and triples) to co-execute. In our 24-core system this was the appropriate
value in order to not oversubscribe the system when executing triples of applications.

Figure 3.6 presents the results of co-scheduling applications of various levels of mem-
ory bandwidth usage and how their throughput is affected depending on the applications
being executed with. Observing the most memory consuming pair and triple we see that
co-scheduling two or three memory bound applications is not worse than executing
them sequentially. Moreover, the level of performance degradation of one application
is not depending only on the sum of the memory bandwidth usage of the rest of the
applications running concurrently. The number of the co-scheduled applications is im-
portant. For example, stream-100 when executed in a pair with stream-80 it presents
a slowdown of two times. However, when it is executed in a triple with stream-60 and
stream-20 (which have a total memory bandwidth consumption of 80% of the total band-
width) it is delayed 2.4 times. stream-20 when executing with stream-100 is delayed 1.50
times, whereas when executed with stream-40 and stream-20 it receives a slowdown of
1.93. stream-20 receives larger slowdown when executing with two other instances of
stream-20 comparing to when executing with one instance of stream-100. We can con-
clude that the number of co-runners of an application is more important than the total
bandwidth they use.

26 CHAPTER 3. PRELIMINARY EVALUATION AND RESULTS

3.4 'Thread placement issues

Apart from employing gang-scheduling based policies and deciding the co-runners
of an application, we found that the policy with which a scheduler decides where (i.e.
on which cores) the application threads should run is important. In traditional flat or-
ganized multiprocessors, cores share components of the memory subsystem uniformly.
As a result, decisions concerning affinity of applications are unnecessary for the sched-
uler. CMPs, in the contrary, are organized hierarchically and as a result placement can
be considered as an additional level of scheduling decisions. We explore two different
placement policies, packed and spreaded. Packed placement tries to allocate to an appli-
cation cores that are as close as possible to each other, therefore sharing many resources.
Spreaded placement maps application threads as distant as possible from each other,
which implies minimal resource sharing.

Each placement introduces different performance characteristics for every applica-
tion of the workload being executed. Spreaded placement maps the threads of an appli-
cation with the trend of different physical packages first. This means that threads fetch
their data in different LLC, and as a result the multithreaded application utilizes larger
effective LLC. This also, enables an application to use a larger ratio of the sustainable
memory bandwidth. Consequently, the application suffers less from restricted memory
resources and achieves higher throughput. On the contrary, packed placement policy
places threads of an application as “closely” as possible hoping that they will be bene-
fited by shared data fetched in shared caches. At the same time, this prevents sharing
resources, such as LLC, with other applications in an effort to provide isolation to ap-
plications. The less sharing of resources among applications occur, the less likely will an
application’s performance suffer from contention.

Figure 3.7 below shows a typical CMP which consists of four physical packages, each
having four cores. Each core has its own L1 cache, two cores of a physical package share
a L2 cache and all cores of one package share a L3 cache. All packages connect to the
memory bus with the Front-Side Bus (FSB).

Figure 3.8 depicts the spreaded placement for five threads. First, threads are placed
on cores of different physical packages. When all packages have been filled with a thread,
the fifth thread is placed round-robin to the first package again, but on a core that does
not share the same L2 cache as the first thread. This placement tries to create the least
possible contention for shared resources, such as L2 and L3 caches. For a multithreaded
application, spreading its threads in this way provides larger effective LLC space to it.

Unlike spreaded, packed placement (Figure 3.9) maps threads trying to initially fill
cores of one physical package before using other packages. In this way, it can provide
performance isolation for multithreaded applications since different applications are al-
located cores that do not share many resources.

Figure 3.10 presents the execution of a workload of multithreaded applications when
executing on their own in our CMP machine when placing their threads packed or
spreaded. It shows that spreaded placement provides higher throughput for multithreaded
applications. Larger effective cache along with the optimal utilization of the available

3.4.

THREAD PLACEMENT ISSUES

Package 0

Thread Thread Thread Thread - Thread Core Core Core
0 1 2 3 3 4 3
2
L1 L1 L1 L1 6_‘@ L1 L1 L1 L1
i} 11} i} i} 1l i} 1l i}
L2 cache] | L2 cache | [L2 cache] | L2 cache |

V2

Package 2

Package 0

L4
[L2 cache] [L2 cache [L2 cache] [L2 cache |
iji iji i iji - iji i iji i[i
nl ==l ==l == R
Core Core Core Core é Core 0 Core Core Core
0 1 2 3 a 1 2 3
Figure 3.7: Typical organization of a CMP machine
Core Core - Core Core Core
2 3 3 1 2 8
] LT K]]
1 1 1 1l 1l
| L2 cache | | L2 cache | | L2 cache L2 cache |
o o o o

*&

| |
¢

Package 2

~

~

| L2 cache

L2 cache

L2 cache

L2 cache |

T
o

i
o

T
)

Core

Core

Core

Package 3

T
o

T
]

1]

Core
1

Core

Core

Figure 3.8: Spreaded placement of threads on a CMP machine

27

memory bandwidth benefits execution, significantly, for most of the programs of our
workload.

In Figure 3.11, we see the results of executing our workload with a scheduler that
implements gang-scheduling with space sharing. This scheduler uses a bin-packing al-
gorithm to decide which programs will co-schedule in a time-quantum. After decid-
ing co-schedules, the scheduler decides for every application the mapping of its threads
to cores. Figure 3.11 depicts, for the two placements, the slowdown for every applica-
tion when executed with this scheduler, comparing to the standalone execution with
the corresponding placement. Packed placement provides isolation for the programs of

28 CHAPTER 3. PRELIMINARY EVALUATION AND RESULTS

% % Cgre Cczare Cgre
S)
§ EL% :I :I :I
[L2 cache] L2 cache | [L2 cache] [L2 cache |
T T T T
{ { { {

[L2 cache] | L2 cache | [L2 cache] [L2 cache |
« i iji i i - iji i i iji
$ ==l == ==]
2 £
S Core Core Core Core S Core 0 Core Core Core
o 0 1 2 3 o 1 2 3

Figure 3.9: Packed placement of threads on a CMP machine

the workload when executing in a environment with contention (e.g. when co-scheduled
with other applications). Almost all applications of the workload display larger slowdown
when executed with spreaded placement.

Figure 3.12 describes the significance of the utilization of memory bandwidth for
multithreaded applications. We used the original STREAM benchmark and executed
it with various numbers of threads for both packed and spreaded placement policies.
Each physical package utilizes a proportion of the total available memory bandwidth.
As aresult, spreaded placement has an advantage over packed, since threads fetch data
using larger bandwidth. For example, execution with spreaded placement scales almost
linearly from one to four threads. When threads are incremented, the additional thread
is placed in a different physical package, thus using more effective bandwidth. On the
contrary, packed placement maps additional threads to the same physical package and
share the same amount of memory bandwidth.

This is depicted in the figure for memory bandwidth usage for the packed placement
for the first six threads where the bandwidth usage is stable, because of the saturation
of the memory bandwidth. The limited bandwidth usage is reflected to the execution
time of STREAM which is stably high and only starts to decrease when executing with
more than six threads when the seventh thread is placed to a new physical package. On
the other side, spreaded placement uses linearly increasing bandwidth for the first four
threads, which is reflected to its execution time.

3.4. THREAD PLACEMENT ISSUES

Placement - Impact on throughput

600000,

3 packed
B spreaded

500000

400000

300000

Time (msec)

200000

100000

4 < s s % £
6¢ u 4 r % sy M Yo, Vi s, Ao, o
or %, , 2z em, Sk,

We,.

benchmarks

Figure 3.10: Execution with spreaded placement

29

30

Slowdown

CHAPTER 3. PRELIMINARY EVALUATION AND RESULTS

Placement - Isolation of applications

18, =3 packed
Bl spreaded
16
14
12
10
8
6
4
2|
0 b K @ % s Yoy e ge"’ve, Sy f%%o/,jc%fleq. %%s{—y

We,.

benchmarks

Figure 3.11: Execution with packed placement

3.4. THREAD PLACEMENT ISSUES 31

STREAM scaling - Execution time

70 T T T T T T T
e—e stream-100-packed
60 S +—+ stream-100-spreaded||
G50 \ 1
70 ™
= \“\]
30 \“\\ 1
\ \»\
N N~ S S e S
20 ——— Fi— Fi— ——
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
threads
9000 STREAM scaling - Bandwidth consumption
8000 o i > _—]
g 7000]
s
E]
E 6000 / //
2
8 5000 = 4
E /v/
£ 4000 o 1
E 2000 / e—e stream-100-packed
P +—+ stream-100-spreaded
2000 | .

n n n n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
threads

Figure 3.12: Speedup and bandwidth usage of STREAM with packed and
spreaded placement

Chapter 4

Proposed scheduling methodologies

This section describes our approach on scheduling of multithreaded applications.
Fist, describes the methodologies that we used in order to develop our schedulers, along
with scheduling algorithms that we implemented. Second, it presents the metrics we
used to evaluate the efficiency of our schedulers and finally describes the infrastructure
we used to implement our schedulers.

4.1 Performance metrics

We define some metrics which will help us compare schedulers and evaluate their
characteristics. Our goal is to provide high throughput for the whole workload without
compromising the performance of any program of the workload. Moreover we want
our schedulers to be fair towards all programs of the workload. Finally we examine the
responsiveness of the programs, as we do not desire to let programs waiting for cpu
resources for a long time.

We define the total execution time of a program i as t(i). This time breaks down into
three portions:

t(Z) = Lalone (Z) + twaiting(i) + tinterference (Z) (4'1)

¢ talone(?) is the time for which a program would execute if it ran alone on the
system, with the same configuration as in the co-scheduled case (threadcount,
placement).

o twaiting(?) is the total time program i was waiting for the scheduler to execute
it. twaiting (i) = sumf’ T; where T} represents a period of time between two
consecutive time-quanta in which ¢ was scheduled to run.

o tinter ference(%) is the additional time a program executes due to interference in-
troduced from co-scheduling it with other applications.

We define the fairness of a program as

f(Z) = talone(i)/t(i) (42)

32

4.2. SCHEDULING POLICIES 33

This is actually the performance degradation that a program ¢ suffers due to co-executing
it with other programs, and as a result of the policy enforced by the scheduler. Global
fairness is a metric of the overall fairness achieved by a scheduler, and is given by the
following formula:

F=o0(f(i)) for all programs i (4.3)

where o(f(7)) represents the standard deviation of individual application fairness values.
This metric indicates how equally the scheduler treats every program of the workload.
We also measure responsiveness R for program i as

R; = average(Ti,j) for all quanta j (4.4)

which is the average period of time application ¢ was in FROZEN state. Similarly, to esti-
mate the responsiveness that a scheduler provides to the workload we use

max(R;) for every program ¢ (4.5)

which is the maximum period of time the scheduler left an application waiting, during
the execution of the workload.

4.2 Scheduling policies

We explored two classes of schedulers. Uniform schedulers use for every application
a fixed thread-count throughout the execution. Adaptive schedulers execute programs
that require different number of threads for different phases of their execution. Before
an application enters a new phase of execution it informs the scheduler about the new
number of threads it requires. Adaptive schedulers make a new scheduling decision ev-
ery constant period of time called round, based on the updated required thread-counts
of the applications. Round is the number of time-quanta in which all programs of the
workload have executed once.

Schedulers implement time-sharing or hybrid time-space sharing techniques. They
treat threads of an application as a whole, so any decisions they make concern the appli-
cation (and as a result every thread of the application). Every scheduler creates gangs of
programs and then performs a time-scheduling policy. Gang is a group of programs of
the workload that will be scheduled to execute concurrently sharing the available cores
of the CMP.

Programs of the workload do not have the same execution time. Programs that take
longer time to execute will suffer less from contention than programs that finish their
execution early, since, as some programs finish their execution the level of contention
drops for the programs still running. However, we want the system to be in conditions of
full workload throughout the whole execution so that our evaluation will be fair towards
all programs of the workload. Thus, we re-execute programs that finish until all programs
of the workload will have finished at least once.

34 CHAPTER 4. PROPOSED SCHEDULING METHODOLOGIES

| (D D @D @))
. || |G Ger) G (G) Gz) (o)
: @@ JC JC JC)
s | C O C O
- | D D @D @))
- || ¢ |Gv) G Gwe) Con)) Gwr) G
s (@@ C JC JC JC)
el (= COCOC O
(o D @D @)C)
(

)
—

>
o
©
N
)
)
>
o
©
N
)

9 [App 2][App 2][App 2] App 2

Figure 4.1: Placement of threads with GANG scheduler

4.2.1 Gang scheduler (GANG)

This is a uniform scheduler which does not co-schedule applications at the same
time-quantum. Gang scheduling is the scheduling policy that executes all threads of the
same multithreaded application at the same time-quantum. This policy is orthogonal to
whether or not a scheduler will employ space sharing. When both gang scheduling and
space sharing is enforced a number of applications is chosen to execute on the same
time-quantum and their threads will execute simultaneously. The applications chosen
to execute on the same time-quantum form a gang. The scheduler is responsible to cre-
ate gangs. GANG scheduler does not enforce space sharing. As a result, GANG creates
gangs that contain one application. Uniform means that applications execute with con-
stant thread-count during their execution. The scheduler keeps a list of the programs that
belong to the workload and time-multiplexes them on the available cpus of the CMP in
a round robin manner. This scheduler provides isolated execution for every application,
since it schedules one application at a time. In this way the available system cores are not
fully utilized. A direct consequence of this is that the time needed for a whole scheduling
round to complete (i.e. all applications to get a time-quantum of execution) is large, and
therefore the time an application is swapped out is big.

Figure 4.1 depicts a scenario of four multithreaded applications scheduled with GANG

4.2. SCHEDULING POLICIES 35

in a system with six cores. Threads of one application are selected to execute at every
time-quantum in a round-robin fashion. In this case the length of one round is fixed
(four time-quanta).

36 CHAPTER 4. PROPOSED SCHEDULING METHODOLOGIES

Quantum Application / Thread

o [a2 J[a2 | Aoz [a2 | a2][a2 |

P | | D D S @
2 e J(ee J) JC_JC)
s |oez] (L2] (Laov2] (w2 | (w2] ([ave2 |
1o | ¢ | O D O D

s (e Jwee) JC)0 JC)

- |G o)) o) (e ()

= | 7 |] [aer) (e] (T) [aeeo] (Lo
o (Lees Jlee JC JC)0 JC)

o | a2 | [Aoz | [A2 | [A2 | Aoz | [App2 |

Round 2

Figure 4.2: Placement of threads with GREEDY scheduler

4.2.2 Greedy scheduler (GREEDY)

This is a scheduler that tries to utilize the available cores at the maximum degree.
It implements a bin-packing scheme to greedily place applications into gangs, so that
the percentage of unutilized cpus in one round is minimized. In this case, as well, the
applications execute with a uniform thread count.

Figure 4.2 depicts the choices that GREEDY scheduler will made when executing
with the previous scenario with the four applications in a six-core system. GREEDY en-
forces space-sharing using a bin packing policy that tries to create gangs utilizing as many
as possible cores. Space sharing results in smaller rounds (three time-quanta), which re-
sults in applications being scheduled more often.

When execution begins, GREEDY creates a descending sorted list of the programs
based on their requested thread count. Afterwards, it creates gangs using the algorithm 4.1.
In order to create the first gang, the algorithm chooses the application with the highest
thread count from the top of the list, removes it from the list and adds it to the gang.
Next, it traverses the list and chooses the first program with the highest thread count
that fits in the remaining cores of the gang being created, until either there are no other
available cores in the gang, or there is not a program in the remaining list that fits in the
gang. The same procedure is repeated until every program of the workload is added in a

4.2. SCHEDULING POLICIES 37

gang.

List <Prog> ©progs; //initially populated with all
//programs of the workload
List <Gang> gangs; //initially empty

sort (progs); //sort programs based on their
//threadcounts
foreach (Prog p: progs):
progs.remove(p);

flag = false;

//find suitable gang in the 'gangs list
//to add the program to

foreach (Gang g: gangs):

if (g.cores + p.cores <= total_cores):

//program fits in this gang. Add it.

g.add(p);
flag = true;
break;

//flag will be false when there was not found
//a gang in which the program fitted .
if (not flag):

//create a new gang to add program

g = Gang.new ()

g.add(p);

Code 4.1: Algorithm creating gangs in GREEDY scheduler

GREEDY provides high utilization level of the CMP’s cores, however its decisions
are contention-oblivious, since the only factor used to make its decisions is the level of
parallelism of each application.

4.2.3 Contention aware greedy scheduler (CGREEDY)

This is a scheduler that tries to enforce a contention-aware policy in the selection of
applications to schedule. It uses LLC misses collected from previous profiling, and aims
to match applications with complementary cache behaviour, i.e. those having high miss
rates with others with few misses. The insight that led to the selection of LLC miss rate
as an indicator of the contention an application causes is that, because LLC is the last on-
chip shared resource, misses on that level reflect the contention caused in every off-chip
subsystem beyond that, e.g. the memory bus and the DRAM controller. Moreover, a miss

38 CHAPTER 4. PROPOSED SCHEDULING METHODOLOGIES

in that level incurs several cycles of penalty (typically, a few hundreds), and therefore
can notably hurt performance. Matching an application that produces high miss rates
with one that does not, limits the contention in shared resources and the performance
degradation this phenomenon would cause.

CGREEDY sorts applications based on their LLC miss rate. Based on this sorted list,
it creates gangs with the algorithm 4.2. It selects the application with the highest miss
rate and removes it from the list. Next, it traverses the list from bottom to top (from the
application with the lowest miss rate towards the applications with higher miss rates) and
chooses the first application which fits in the gang being created (the sum of its needed
cores added to cores required by the highest miss rate application fit the available cores
of the system). The algorithm is repeated until the sorted list is empty and all gangs have
been shaped.

List <Prog> ©progs; //initially populated with all
//programs of the workload
List <Gang> gangs; //initially empty

progs.sort(); //sort programs based
//on their LLC misses

while (not progs.empty()):
//add program of the list with the highest
//LLC miss rate to a gang
p = progs. first ();
progs.remove(p);
Gang g = Gang.new ();
g.add(p);
g.cores = p.cores;

//search if there is a suitable program in the list
//beginning from those with the lowest LLC misses
foreach_reverse (Prog q: progs):

if (q.cores + p.cores <= total_cores):

progs.remove(q);

g.add(q);

break;

Code 4.2: Algorithm creating gangs in CGREEDY scheduler

4.2.4 MINWAIT scheduler

MINWAIT scheduler is inspired by the CFS Linux scheduler, in the sense that it
strives to minimize the waiting time of applications. It tracks the current waiting time
of every application, which is the time elapsed since the last time an application was

4.3. SCHEDULING INFRASTRUCTURE 39

scheduled to run on the CMP. The scheduler keeps one gang to execute programs which
is recreated at every time-quantum. Whenever a time-quantum is expired, the scheduler
sorts the applications in descending order, according to their current waiting time. After
that, MINWAIT chooses programs from the top of the sorted list until the cores of the
gang are filled or there is not any other program that can fit in the remaining cores.

List <Prog> progs; //list of programs.
Gang g; //initially empty.

sort(progs); //sort programs based on the
//time they are waiting

//start creating gang from programs
//with higher waiting time
foreach (Prog p: progs):
if (gang.cores + p.cores <= total_cores):
progs.remove(p);
gang.add(p);

//continue until no other program fits in the gang
if (gang.cores_allocated == total_cores)
break;

Code 4.3: Algorithm creating gang in MINWAIT scheduler

MINWAIT scheduler tries to make maximum utilization of the available cpus. With
GREEDY scheduler it is possible to create gangs that will leave some cores unutilized
in some time-quanta while there are applications that could fit in the remaing cores.
To overcome that MINWAIT does not use the concept of rounds, it creates one gang
every time-quantum. As a result, an application is not restricted to execute one time per
round. If there are available cores the same application may be scheduled in subsequent
time-quanta.

4.3 Scheduling infrastructure

4.3.1 Basic components

All scheduler implementations are based on the scaff infrastructure. Scaff is a run-
time system that orchestrates the execution of a workload of multithreaded programs.
Scaff operates at user-level, on top of Linux-based systems. Its primary role is to provide
a communication mechanism between a scheduler implementation and the programs
being executed. The operation of scaff is relied on the collaboration of two subsystems,
the executor and the scheduler. The executor is responsible for handling events regarding
the execution, such as creation or termination of programs and handling the commu-

40 CHAPTER 4. PROPOSED SCHEDULING METHODOLOGIES

rebalance
qexpired

Figure 4.3: Run-time system architecture

nication between the scheduler and programs. The main responsibility of the scheduler
is to make decisions on how the available resources should be shared among programs.
Moreover, the executor provides an interface to assist schedulers manage the workload.
Managing the workload means choosing which programs will execute in the current
time-quantum, changing affinity of programs, and allocating resources to them.

The executor awaits for various kinds of events to come up and, for each event, it
triggers the appropriate function of the scheduler. The scheduler, in turn, decides on
the scheduling of the workload. The events that the executor is responsible for include
creation and termination of programs, notifications that originate from programs and
concern requests to the scheduler, as well as responses from the scheduler to those re-
quests. The scheduler implements a policy based on which it takes decisions about when
a program will execute, on which cores and whether some programs will co-execute. In
some cases, it gets feedback from applications concerning their resource needs and de-
cides the amount of resources that will be allocated to every program of the workload.

In the following sections we describe in detail the operation and the internals of each
component.

4.3. SCHEDULING INFRASTRUCTURE 41

Executor

The executor keeps information about the programs of the workload, certain kinds
of events during execution and the current scheduler implementation that is used to
execute the programs. Each program can be in four states:

1. WAITING: waiting for its time to come to be executed.
2. NEW: ready to be picked up

3. RUNNING: executing

4. FINISHED: program has finished its execution

Programs of the workload are given as an argument to the executor, along with the
time that their execution must start. Until this time comes, they are in WAITING state.
In NEW state are all programs that are about to execute for the first time. A list (pnew_1)
of these programs is given to the scheduler, so that it will add them to the set of programs
that handles. Programs that are handled by the scheduler are in RUNNING state. A pro-
gram is in FINISHED state, either when it has finished its execution, or it got stopped.
The executor adds all programs in FINISHED state to a list (pfinished_1) that s, again,
given to the scheduler. Whenever a program changes to FINISHED, the scheduler re-
moves it from the set of programs it handles and informs the executor so it will clean-up
every structure concerning this program.

The executor keeps for every program of the workload information about its cpuset,
the number of cores that the program has requested and a shared memory area, that is
used for communication between the program and the scheduler. The cpuset (See 4.3.3)
of a program is used to decide in which cores and memory nodes it is allowed to execute
and allocate memory pages from, respectively. While a program is in RUNNING state, it
can be either FROZEN (that is, stopped for this time-quantum) of THAWED (that is, running
for this time-quantum).

The executor handles two kinds of events:

. EVNT_NEWPROG
. EVNT_QEXPIRED

EVNT_NEWPROG is an event associated with the start of the execution of a program.
EVNT_QEXPIRED indicates the expiration of a time-quantum of scheduling. Each event is
associated with a timestamp, at which it must be processed by the executor. The executor
uses a priority heap to keep events. During execution, the scheduler checks for events
that their time has come to be processed, and depending from the type of the event, calls
the appropriate scheduler hook.

42 CHAPTER 4. PROPOSED SCHEDULING METHODOLOGIES

Scheduler

Scaff uses a scheduler to be able to manage the execution of programs. The scheduler
is implementing a scheduling policy and is responsible for allocating resources among
programs. It takes into consideration resource demands from programs and information
provided by the executor about the executing system, and makes decision concerning
“when” (if it implements a time-sharing policy) and “where” (if it implements a space-
sharing scheduling policy) will a program execute.

A scheduler must implement the following functions:

+ void *init(void): This function is called at the beginning of execution by the
executor in order to initialize the scheduler. Whatever init returns is stored by
the executor, and passed to subsequent invocations of the scheduler.

+ void rebalance(void *sched_data):rebalance is called either when one or
more programs are ready to be executed (NEW state) or, one or more programs
have been terminated (FINISHED state). A struct describing a program in NEW
state is kept in pnew_1. The scheduler must remove it from this list, and begin its
execution. Respectively, when a program is in FINISHED state a struct describing
itis kept in pfinished_1, from which the scheduler must remove and deallocate
it.

+ void qexpired(void #*sched_data, struct timeval *now): this function
is called whenever a time-quantum has finished. The scheduler must, itself, add
EVNT_QEXPIRED event in the priority heap, if it wants to implement time-sharing.

+ int prog_changed(void *sched_data, aff_prog_t *prog, int nr_threads):
Whenever there is a change in a program e.g. when a program enters a new phase
of execution for which its needs for resources is changed, prog_changed is called.
Its purpose is to inform the scheduler that a program’s requirements for resources
have changed, so that it will reconsider its scheduling decisions. prog_changed
must return 1 if rebalance should be subsequently called.

4.3.2 Design and architecture of scaff

The design of scaff aims to assist a scheduler implementation that will, effectively,
interact with the workload of programs it is handling during execution time. It provides
both the means of communication between the two ends, as well as the necessary mech-
anisms that a scheduler implementation can use to control the execution of programs.

Scheduler-applications communication

As far as the communication is concerned, scaff keeps a per program portion of
shared memory to transfer data between itself and the programs. The most significant
piece of information that is kept is the number of cores a program requires in order to
execute and the number of cores that a scheduler, ultimately, allocated. Another piece

4.3. SCHEDULING INFRASTRUCTURE 43

of information is the number of available cores of the system. Moreover, there is the
need for programs to trigger the executor to serve their requests, as well as the need for
synchronous communication. To implement this, scaff uses two pipes. Whenever a pro-
gram wants to make a request to the executor, it sends from the write-end of the pipe an
identifier. This identifier informs the executor that this specific application has made a
request. This pipe is unique and is kept in scaft’s structure describing the execution. Scaff
polls the reading end of this pipe, waiting for requests from programs. Every program has
a pipe stored in the structure describing it, that is used as a barrier where programs syn-
chronize with the executor while waiting the last to satisfy their requests for resources.
Programs read from the read-end of the pipe waiting for scaff to write some arbitrary
value to the write-end, after the scheduler has processed the request of the program.

Initialization and execution control

When execution begins, there is a phase of initialization scaff must carry out. First, it
initializes all the data structures to keep track of the execution. These are the lists pnew_1
and pfinished_1 that are used to keep new and finished programs, respectively, the
priority heap where it keeps events during execution and a hash table which maps the
structures that describe programs with their process id’s (pids).

The workload that must be executed is given as a command line argument in a con-
figuration file. Scaff parses this configuration file and begins execution of every program
of the workload. For every program, it allocates and initializes a structure (aff _prog_t)
that will be used to describe it throughout the execution. This structure contains a cpuset_t
field that is used as a handler for the program’s cpuset. Scaff uses cpuset_create() to
create a new cgroup to the cpuset virtual filesystem instance. cgroup which is a util-
ity of Linux kernel that allows to cluster a bunch of processes and assign them specific
characteristics, they are described in detail in subsection 4.3.3. During execution this
cpuset_t handler will be used to modify program’s affinity. The aff _prog_t also con-
tains a pointer to the shared memory that the program will use to communicate with
the executor. Scaff initializes this portion of shared memory and sets some of the fields.
These fields are the pipe that a program will use to notify executor about a new request,
the number of cpus available in the current execution system, the cores allocated initially
to the application and a pointer to the application’s aff _prog_t structure that will be
used as an identifier, when the program will make a request to the executor, so that the
last will distinguish requests from different programs.

After initializing the new program’s aff _prog_t structure, the executor will fork ()
a new process. The new process will in turn use exec1 () to begin the program’s execu-
tion on a new shell. The executor will wait for the program to freeze itself, and then it
attaches it to its new cpuset which, at this moment, contains all the cpus of the system.
Finally it pushes on the heap an EVNT_NEWPROG event. The new program will remain in
FROZEN state until it is time for this EVNT_NEWPROG to be handled. The scheduler will
then take over responsibility for its execution.

After parsing the configuration file, scaff initializes the scheduler that will be used,

44 CHAPTER 4. PROPOSED SCHEDULING METHODOLOGIES

which is given as a command line argument, as well, and installs signal handlers. Sig-
nals that matter to scaff are SIGCHLD and SIGTERM. The first one corresponds to normal
termination of a program, and will cause a call to the scheduler, which will handle its
internal structures and, probably, make a new scheduling decision. The second signal
indicates an unexpected termination of a program (with a SIGKILL for example) and is
handled as an error, that causes execution to abort.

Additionally, there is the initialization that has to be performed by each program,
separately, before its execution begins. We do not want to make great changes to the
source of workload programs, so scaff provides a pre-load dynamic library with which
is linked every program of the workload. This library provides functionality that takes
care of the initialization, just before the program’s execution begins and cleanup after
the program finishes its execution. The preload library interacts with shared memory’s
fields and takes care of communication between the program and the executor. As for
the initialization, it opens a file descriptor for the shared memory area that has already
been created by the executor. Every program has a distinct integer value as an id. Shared
memory objects use a name of the form /somename to be identified. The same semantics
are used to distinguish different cgroups of a Cgroups’ instance, such as the freezer and
cpusets that we also use in our implementation. Freezer is a cgroup used to start and stop
processes without signals, and is described in detail in subsection 4.3.3. So every program
is associated with a name of the form /AFF_ID, where ID is the id of the program. In this
way we can separate among different programs’ freezer, cpusets and shared memory
objects. Using this name, the preload library takes care of the creation of a new freezer
cgroup and attaching the program to it.

Setting the number of threads of applications

After the initialization phase, the library sets the program to FROZEN state. The pro-
gram will remain in this state, until its time will come to go to RUNNING state. Then,
the scheduler undertakes the responsibility to decide when it will “freeze” or “thaw” it.
The preload library also provides a C function (affhook_region_notify()) as an in-
terface, which applications can use to make requests to the executor. Providing this func-
tion relieves the application from having to deal with executor’s implementation specific
functions and data. Applications use this function whenever they want to request a new
thread count, for their next phase of execution. affhook_region_notify() writes in
shared memory the thread count and then sends through the write-end of the executor’s
pipe the application’s handle (a pointer to aff_prog_t structure). The executor identi-
fies which application has made the request and handles it. After the request is served,
the executor sends an arbitrary value to the write-end of the application’s pipe. The ap-
plication that is blocked, waiting to receive from the read-end, is now unblocked. The
function reads the number of thread the executor allocated for this phase of execution
and sets the thread number with a call to the runtime of OpenMP.

4.3. SCHEDULING INFRASTRUCTURE 45

Executor’s cotrol flow

Scaft’s duties during execution reduce to handling execution events, programs noti-
fications and signals. As mentioned, signals that scaff handles are STGCHLD and SIGSTOP.
SIGCHLD indicates a program of the workload has finished its execution. SIGSTOP means
a program has been forced to stop (due to an error during its execution, or it was sent a
SIGKILL, etc.) and it is considered erroneous behavior. Execution finishes, when no pro-
grams have been left, in any state of execution. Until then, handles events and programs
notifications iteratively.

The executor pops events from the priority heap until it becomes empty. Every event
is associated with a timestamp that indicates when it must be handled by the executor.
The executor tests the event with the highest priority and compares the current times-
tamp with this event’s timestamp and if its time to be processed has come the executor
pops it from the heap and handles it. Handling events requires different actions to be
taken, depending on the kind of the event. When the executor handles an EVNT_NEWPROG
event, the program it refers to is added to the pnew_1. On the other hand, when the ex-
ecutor handles an EVNT_QEXPIRED event, a time-quantum has expired, and therefore if
the scheduler has implemented the gexpired () function, this function is called. When
no other events are to be handled for the time being, if programs have been added to
pnew_1 then the rebalance() function of the scheduler is called. This procedure re-
turns the amount of time until the next event in the heap must be handled. Until then,
the executor waits for program notifications.

Scaffuses the select () system call to check if there is a program notification. select ()
receives as an argument three sets of file descriptors: readfds will be watched to see if
characters become available for reading, writefds will be watched to see if writing to
one of them will not block and exceptfds will be watched for exceptions. Moreover,
select () receives a struct timeval. When the time indicated by this struct elapses
without a change occurring to any of the file descriptors, select () returns with return
value 0. When a number of file descriptors become ready for the I/O operation corre-
sponding to the set they belong to, select () returns with return value this number,
having updated the struct timeval to the time left from the initial timeout. In our
case, select () is called with the read-end of the executor pipe in the readfds set, and
the struct timeval that the handling of events returned. In other words, the executor
is polling for program notifications, until the next event in the heap must be handled.
When a program notification has arrived, the executor reads from the read-end of its
pipe the handle of the program that sent the notification.

As mentioned, this handle is a pointer to the aff _prog_t structure of the program.
Before sending the handle, the program has already set in the shared memory area the
number of threads it requests. If implemented, the prog_changed () function is called,
so that the scheduler takes into account the program’s request. When the initial amount
of time passed to select () has elapsed, the executor checks if there are any other pro-
grams left (in any state) and if not, execution stops. Otherwise, the procedure goes back
to handling events.

46 CHAPTER 4. PROPOSED SCHEDULING METHODOLOGIES

4.3.3 Underlying tools and mechanisms employed

Implementing a scheduler requires several tools, in order to be able to manage ex-
ecution of programs. When it comes to scheduling on multicore systems, apart from
deciding when will a program execute, it is also necessary to make a decision about how
will the scheduler distribute the available cpus among programs. We can achieve these
goals using cpusets and freezer, a couple of tools provided by linux. Cpusets is a system
that allows the scheduler to bind a program on a set of cpus and restrict its execution in
this set, while freezer is used to start and stop execution of running programs. Both of
these are part of a feature provided by Linux called Control Groups (Cgroups).

Cgroups

Cgroups are a feature of Linux kernel which allows aggregating or partitioning tasks
(processes) in hierarchical organized groups. We can affect the way tasks execute by
configuring the control group they belong to. There are several concepts associated with
Cgroups:

+ A cgroup is a group of tasks associated with common execution characteristics.

+ A subsystem is a module which uses the grouping of tasks provided by Cgroups,
so it can handle different sets of tasks in certain manner. It is usually a resource
allocator which schedules, or sets per cgroup limits on the use of system resources.
However, it can be any module operating in a group of processes.

+ An hierarchy is a set of cgroups arranged in a tree and a set of subsystems associ-
ated with it. Every task in the system may be in exactly one cgroup in the hierarchy.
However, there can be more than one hierarchies, at the same time, in the system.
Each one of these is a partition of the tasks in the system. Different subsystems can
be associated with different hierarchies and determine execution characteristics
for sets of tasks. It is useful to be able to keep different hierarchies, so we can use
each to control different aspects of execution.

Cgroups are exported as a virtual filesystem and can be easily handled from userspace.
User level code can create, handle and destroy cgroups by name in an instance of the
cgroup virtual filesystem. This filesystem includes files that contain information about
this cgroup instance and the subsystems associated with it. Besides, userspace code can
define behaviour of a cgroup by changing values of those files. For example, when using
cpusets, every cgroup of the cpuset filesystem contains the files cpus and tasks. If we
want a task to be executed in cpus 0 and 1 we can write its pid in tasks and values 0,1 in
cpus.

Cgroups facilitate applications management. Every cgroup instance is associated with
a set of subsystems that provide certain execution characteristics. A task is executing with
the constraints enforced by the cgroup of the hierarchy it belongs. Those constraints are
inherited by all descendants of that task. So all children (tasks created using fork () for
example) belong to the same cgroup with their father, until they are placed in another

4.3. SCHEDULING INFRASTRUCTURE 47

cgroup of the hierarchy. This is especially useful when we want to schedule multithreaded
applications. Since gang scheduling threads of the same application has proven to be ben-
eficial for its execution, we can schedule all threads of this application at the same time,
without having to take special action for every thread separately. Since all threads of the
application inherit the same cgroup, we can ,for example, start or stop it (using freezer)
by just starting or stopping the cgroup the application belongs to.

Freezer subsystem

In order to enforce a time scheduling policy we have to choose which programs of
the workload will be running and which will be waiting for the next time quantum. The
freezer subsystem is the Linux facility that helps us achieve this.

We have seen that Cgroups provide a grouping of all the tasks of the system. Those
groups are hierarchically organized and different subsystems can determine common
execution characteristics for tasks belonging to the same group. When using the Freezer,
we can “freeze” or “thaw” groups, meaning that we can have tasks of the group running
or waiting, respectively. At first, every task of the system belongs to the root cgroup.
We can then create different cgroups and organize them, putting those that should run
concurrently at the same cgroup.

The Freezer is used like every other subsystem, by writing values in files of the virtual
filesystem. The most interesting files for us are tasks and freezer.state, which are
present in every cgroup of the hierarchy. tasks contain the pids of all processes that are
member of this particular cgroup. freezer. state contains a string describing the state
of the cgroup. There is no freezer.state file in the root cgroup. Since all processes of
the system belong, initially, to that cgroup, we cannot have the whole system FROZEN.
When freezer is used every cgroup can be in one of the following states:

» THAWED: Every task of the cgroup is allowed to execute.
+ FROZEN: Every task of the cgroup is waiting.

+ FREEZING: The cgroup is being FROZEN.

Therefore, to manipulate tasks, someone has to write either THAWED or WAITING
to the freezer.state file and every task belonging to this cgroup will be handled ac-
cordingly by freezer.

Using signals SIGSTOP and SIGCONT is usually not sufficient[cb] when we want to
handle processes from userspace. Those signals can b[cc]e caught by the processes we
want to handle, or their parent who might be waiting or ptracing them. If a process that
we want to handle is designed to watch for SIGSTOP or SIGCONT, it could be broken by
attempting to stop it or resume it using signals. This is because, if we send for a example
a SIGSTOP signal to a process designed to catch this signal, this process won’t be able to
distinguish whether the signal is meant to send the process in FROZEN state, or is regarded
with some other process-interior function.

48 CHAPTER 4. PROPOSED SCHEDULING METHODOLOGIES

Sometimes freezing a task might be unsuccessful. In those cases, writing FROZEN to
freezer.state will return EBUSY and the cgroup will remain in FREEZING state until
one of the following occurs:

» Someone writes THAWED in freezer.state
» Someone re-tries to write FROZEN in freezer.state

+ The task that caused the cgroup to block is removed from this cgroup.

In our implementation we create one freezer cgroup for every program of the work-
load. All descendants of those processes belong to the same cgroup as their father. In
this way we can freeze or thaw at once all threads belonging to the same multithreaded
applications, behaviour that is mostly desired.

Cpusets

Cpusets is a mechanism provided by Linux to constrain the execution of tasks to a set
of cpus and memory nodes. Cpusets extend the existing mechanisms of Linux kernel that
specify in which cpus a process is allowed to execute (sched_setaffinity) and from
which memory nodes it is allowed to allocate memory pages (mbind, set_mempolicy).
Calls to those mechanisms are now filtered through cpusets. For example, a call to sched_setaffinity
will only add to the affinity mask of the process the cpus that are set in the cpuset of that
process. In a similar fashion, calls to mbind and set_mempolicy will be filtered to mem-
ory nodes allowed by the task’s cpuset.

Cpusets form a hierarchy in which every cpuset is allowed to include a subset of
cpus of its direct ancestor. This hierarchy becomes visible to user-level through a virtual
filesystem. User-level code can create cpusets in this filesystem and attach processes to
them. After system boot, one cpuset is created that contains all resources of the system
(cpus, memory nodes) and all the processes are attached to this cpuset.

Cpusets can be created and destroyed using mkdir and rmdir system calls or shell
commands. Attributes of each cpuset are determined, as with every Cgroup, by writing
values in certain files of the filesystem. The most important files for Cpusets are:

« cpus contains a list of cpus currently belonging to this cpuset

+ mems contains a list of memory nodes currently belonging to this cpuset

+ tasks contains a list of task pid’s attached to this cpuset

+ cpu_exclusive defines if this cpu placement is exclusive for this cpuset

» mem_exclusive definesif this memory nodes placement is exclusive for this cpuset

When created, tasks inherit the cpuset attachment of their father. Later, tasks can
be moved in any cpuset, given that the permissions of that cpuset directory allow it. We
create one cpuset for every process of the workload. When executing parallel regions the
threads that are being created inherit the application’s cpuset, so that their execution is
restricted to the proper set of cpus.

Chapter 5

Experimental evaluation

5.1 Evaluation platform

Table 5.1 describes the characteristics of the platform on which we conducted our
experiments. It is a CMP with four sockets, six cores each. Every core has its own private
L1 cache, two cores of a socket share a L2 cache and all cores of the socket share the
L3 cache. All sockets are connected with the main memory through a FSB. In Figure 5.1
there is a graphical representation of the system organization.

Platform
of packages 4
Cores/Socket 6
Threads/Core 1
CPU frequency 2.66 GHz
Chipset FSB
interface 1066MT/s
L1 Cache L1D,L1I:
32KB
L2 Cache 3 MB, shared
per 2 cores
L3 Cache 16 MB,
shared
RAM 28 GB

Table 5.1: Platform Characteristics

We executed our experiments on a Debian GNU/Linux, with version 3.7.10 kernel.
All benchmarks, the infrastructure and tools we implemented were compiled with gcc
4.4.8 (which implements version 3.0 of the OpenMP standard) with O2 optimizations
and used glibc 2.11.3.

49

50 CHAPTER 5. EXPERIMENTAL EVALUATION

o -
8 E
I
@]
=
o~ (a2}
go E"
<
[%} ¥
& &

Figure 5.1: Dunnington organization

5.2 Workload profile

We chose a mix of benchmarks parallelized with OpenMP [21] from NAS [19] and
polybench [20] suites. The benchmarks consist of multiple parallel-for loops, and among
them there are some programs that are memory bound, consuming many computing
cycles for memory operations, and others that are cpu intensive. Initially we performed
a series of experiments to determine the execution profile of the benchmarks and to
discover the way each program scales. This information gave us a view about the ability
of a program to take advantage of the available cores of the system. We determined the
ideal thread-count for every application as the thread-count for which the application
achieves the 80% of its maximum speedup. We used these thread-counts for most of our
experiments.

Benchmarks Dataset Ideal speedup LLC miss rate

size threadcount (misses/1K instructions)
BT A 4 3.26 2.5
LU A 12 7.00 0.6
CG B 8 5.6 3.0
FT B 6 3.8 1.3
1S C 2 1.4 44.8
atax LARGE 8 3.1 30.6
mvt LARGE 12 3.0 20.8
gemver LARGE 8 3.3 335
syr2k LARGE 22 10.0 0.2
fdtd-apml LARGE 12 4.0 0.3
jacobi-2d-imper | LARGE 12 7.0 0.8
cholesky LARGE 20 10.1 0.5

Table 5.2: Workload characteristics

Figuer 5.2 shows that our workload consists of applications with various execution

5.2. WORKLOAD PROFILE 51
Workload speedup normalized to serial execution

= IS

@ atax

o mvt - -
> gemver

<

8 syr2k

[a—a Fdtd-apml
¥v—v jacobi-2d-imper <
e—e cholesky
— .

12

10r

o
= //>*
o N
U 6 =
(]
4 / -
w0
é>
" S :
> % &
> il
e
0
1 5 10 15 20 25

threads

Figure 5.2: Speedup of benchmarks of our workload

profiles. None of them scales perfectly, which is an indication of why space-sharing
among applications is important, since none of them is able to fully leverage all the cores
of the system. We also needed to acquire information about the cache behaviour of each
program. We were interested mostly in the last level cache (LLC) misses, since LLC is a
significant point of contention when executing on CMPs, and a miss in that level usually
costs tens of cycles.

Figure 5.3 shows the LLC miss rate (misses per 1K instructions) of every application
of our workload when executing with the thread-count we selected for it. Applications
present varying LLC usage profile, similarly to their varying performance scaling with
the number of cores. For example, IS, atax, mvt and gemver, that suffer large miss rates,
scale quite poorly as Figure 5.2 shows, while cholesky, jacobi-2d-imper and fdtd-apml
with few misses per 1K instructions, perform much better than any other application in
the workload.

52

CHAPTER 5. EXPERIMENTAL EVALUATION

Last Level Cache (LLC) misses of workload

45

IS
S

w
«

“
c

N
[

LLC misses (misses / 1K instructions)

-
o

) s
b % I R4 % %, My, 9y Srs, T, g, h

* C e TR Ty O, Ty
),

We,.

benchmarks

Figure 5.3: Miss rate of benchmarks of our workload

5.3. EVALUATION OF SCHEDULING POLICIES 53

Benchmarks | speedup LLC miss rate

(misses/1K instructions)
IS 1.4 44.8
gemver 3.3 33.5
atax 3.1 30.6
mvt 3.0 20.8
CG 5.6 3.0
BT 3.26 2.5
FT 3.8 1.3
jacobi-2d-imper 7.0 0.8
LU 7.00 0.6
cholesky 10.1 0.5
fdtd-apml 4.0 0.3
syr2k 10.0 0.2

Table 5.3: Applications sorted by LLC misses

Actually, the LLC misses of an application significantly determine the way it scales.
As we can see in Table 5.3, if we sort the list of the applications of the workload based
on which scales better and then sort it based on their LLC misses we will take two lists
which are very similar, indicating the significance of LLC misses to performance.

5.3 Evaluation of scheduling policies

In order to be able to evaluate the implemented scheduling policies, we defined some
metrics to quantify their efficiency. We measure throughput, which is our main objective,
as the overall execution time of the workload, which is the time until the last program of
the workload is finished. Execution time of a benchmark i can be decomposed in three
parts:

t(Z) - talone(i) + twaiting (Z) + tinterference(i) (51)

A scheduler implementation tries to minimize t.qiting, tinter ference Or both.

Another desired feature of the scheduling policies we implement is fairness. We want
the schedulers to treat all applications uniformly, meaning that we want to improve or
deteriorate their throughput at a nearly equal factor. To derive this metric we measure
the ratio of the standalone execution time of an application (f4;0n¢) divided by its execu-
tion time when executed with a scheduler, with the same thread count. The standalone
execution of an application provides its optimal throughput since there is no interfer-
ence from other applications or the scheduler and the only restrictions are posed by
the platform on which it is executed. Furthermore, a strong requirement from sched-
ulers designed for desktops is to provide responsiveness for the system. We measure the

54 CHAPTER 5. EXPERIMENTAL EVALUATION

Total execution time of schedulers

3500000

3000000

2500000

2000000

1500000

time (msec)

1000000

500000

9r % 93, %5 i,
O 2 2 Z 2
€0 se% o ~

scheduler

Figure 5.4: Total execution time of the workload with each scheduler

responsiveness achieved by a scheduler as the maximum average waiting time of the ap-
plications of the workload. We also measure the utilization of the available cpus achieved
by each scheduler to use it as a tool in our effort to interpret the experimental results.

Figure 5.4 depicts the execution time of our workload when executing with each
one of the four implemented scheduling algorithms, as well as when no scheduling pol-
icy is implemented and all decisions are left to the Linux scheduler. It is obvious that the
Linux scheduler fails to handle a workload with multiple multithreaded applications effi-
ciently. Even the GANG policy, which is the worst performing amongst our implemented
schedulers, outperforms the Linux scheduler by a factor of three. We achieve a six-fold
improvement of throughput with MINWAIT scheduler. We observe that CGREEDY
scheduler does not outperform GREEDY scheduler even though it enforces a contention
aware policy. This may be due to the fact that CGREEDY creates gangs with two pro-
grams at maximum, while there is not such a restriction in GREEDY.

MINWAIT scheduler does not use rounds. It chooses which programs it will ex-
ecute, creating one gang every time-quantum. The more an application is left waiting,
the more its priority is increasing, eliminating the possibility of starvation phenomena.
It is possible for an application to be selected to execute in subsequent time-quanta if

5.3. EVALUATION OF SCHEDULING POLICIES 55

Running time of benchmarks

450000

[gang
3 greedy
400000¢ I cgreedy|]
H minwait
350000f 1
300000f 1
o)
@ 250000}
S
-
Q
£ 200000f
=
150000r
100000f
50000} J
0 ok el
oK@ eﬁ\“ s\la 7.‘5 \“\pe “O\esw

benchmark

Figure 5.5: Running time of applications

there are not other applications with higher priority that can be scheduled (because the
cores they request are not available). On one hand, this lowers the average waiting time
of applications, as can be seen from Figure 5.7, and on the other, it leads to an interesting
side-effect, applications requesting small thread-counts usually fit in the gang being cre-
ated and are scheduled more often than others. This results in the scheduler not being fair
as can be seen in Figure 5.9, since it favours applications with lower thread-counts. How-
ever, favouring these applications results in, overally, better performance. This observa-
tion repeats in Figure 5.6 from which we can see that BT and IS which execute with four
and two threads, respectively, benefit greatly when executing with MINWAIT scheduler,
as well as in Figure 5.8, where we can see that BT and IS present significantly lower aver-
age waiting time. Some of the benchmarks e.g. atax, mvt are significantly slowed-down,
however, most of the applications seem to retain their throughput or even improve it,
compared to GREEDY scheduler.

The way MINWAIT creates the gang to execute in every time quantum achieves
high cpu usage (Figure 5.10) and as we saw reduces significantly the waiting of appli-
cations. However, at the same time it creates gangs that consist of many applications
(Figure 5.12PX) which results in high contention for shared resources among bench-

56 CHAPTER 5. EXPERIMENTAL EVALUATION

Total execution time of benchmarks

1000000

[gang

[greedy
I cgreedy
HE minwait

Jhl“l .

<
2@ e“"“e s\!‘l s 20 A et “o\es\‘\’

800000r

)
(=2}
o
o
o
(=]
o

time (msec

400000

200000¢

benchmark

Figure 5.6: Total execution time of applications

marks. As a result, while MINWAIT reduces dramatically the waiting time of applica-
tions it increases its running time, which is the total time an application was THAWED
(tatone + tinter ference)- In Figure 5.5 we can see that the MINWAIT can increase the
running time of an application up to 14 times (e.g. atax) comparing to GANG scheduler
(which achieves the lowest running time for the applications). The reason that MIN-
WAIT achieves the better total execution time is the significat reduction of the waiting
time for every application of the workload. GREEDY scheduler creates gangs using a
greedy bin packing algorithm in an effort to achieve maximum utilization of the cpus.
GREEDY does not pack as many applications in a gang as MINWAIT does. This results
in higher waiting time for the applications of the workload but, GREEDY does not create
as much contention as MINWAIT does. This is reflected in the running time of applica-
tions in Figure 5.5. GREEDY achieves much better execution time for the applications.
CGREEDY similarly with GREEDY scheduler does not cause high contention among
applications. Moreover, it creates gangs using information about the memory profile of
applications and creates gangs with applications that have complementary cache usage
characteristics. This results in CGREEDY achieving better running time for applications
comparing to GREEDY. In Figure 5.5 we can see that CGREEDY improves running time

5.3. EVALUATION OF SCHEDULING POLICIES 57

Maximum average waiting time of applications

12000

10000

8000

6000

4000

average waiting time (msec)

2000

9r o, 93, Y
(S e 23 i
S0y, O, o 9

scheduler

Figure 5.7: Maximum average waiting time of schedulers

of almost every application. For some applications this improvement is up to 96% for
atax and 68% for gemver.

GANG scheduler creates gangs with one application per gang, which results in rounds
being long (many gangs per round), and thus programs waiting a long time until their
turn to be executed comes (Figure 5.8. On the other hand, the fact GANG does not use
space-sharing results in contention for shared resoures such as cache memory and mem-
ory bus bandwidth being dramatically reduced. This is depicted in Figure 5.5 in which
we can see that with GANG every program of the workload achieves the lowest running
time.

GANG scheduler provides the better isolated execution environment for the ap-
plications. As a result this scheduler provides higher fairness for the applications (see
Figure 5.9). GANG scheduler treats applications uniformly. Since all applications exe-
cute alone at their time-quantum #;,ser ference i minized, thus any degradation in per-
formance (due to an application being executed with the rest of the workload) is equal
among applications.

The rest of the schedulers, enforce space-sharing schemes, which in conjunction with
the varying contention that occurs among applications based on the schedulers decisions

58 CHAPTER 5. EXPERIMENTAL EVALUATION

Average waiting time of benchmarks

12000—

[gang
[greedy
I cgreedy
HE minwait
10000f q

o)

[J]

w0

€ 8000}

(0]

€

=

(@)}

£ 6000f

=

@©

2

(0]

(@]

e 4000r

(0]

>

<

2000f
0 o
g™ B s 20 A et “o\es\‘\’

benchmark

Figure 5.8: Average waiting of benchmarks of every scheduler

results in varying degradation of performance among them. As a result, fairness of sched-
ulers that enforce space-share is expected to be lower than fairness of GANG scheduler
(since fairness is defined as the standard deviation of the fairness of applications lower
values indicate higher fairness).

CGREEDY scheduler creates gangs with maximum two applications, thus limited
contention is inserted in comparison with GREEDY scheduler. At the same time, CGREEDY
is designed to be contention-aware while GREEDY scheduler is not which also leads to
lower degradation in applications throughput. This is why GREEDY scheduler presents
lower fairness than cgreedy.

MINWAIT scheduler presents the lowest fairness of all. This is a result of the side
effect of the scheduling algorithm which favours applications that request small thread-
counts. Throughput of those applications is affected less and this leads in greatly varying
fairness for the applications and consequently very low fairness for MINWAIT sched-
uler. In general, there is a tradeoff between GANG and schedulers that enforce space-
sharing. GANG provides an isolated execution environment, reducing to minimum the
level of contention among applications, leaving, however, many of the system resources
unutilized. On the other hand, the other schedulers that use space-sharing endeavor to

5.3. EVALUATION OF SCHEDULING POLICIES 59

Fairness of schedulers

4.0

3.0

N
n

fairness

N
=)

1.0

0.0

r <, 9, %S
g 2 2 i
S0y, O, o 9

scheduler

Figure 5.9: Fairness achieved by schedulers

maximize the utilization of system resources. However, when executing applications at
the same time-quantum they suffer from contention. It seems that exploiting system re-
sources at a maximum level, outweighs the contention introduced due to space-sharing,
because the waiting time of applications is minimized. The fact that CGREEDY which
employs space-sharing but not as aggressively as GREEDY and MINWAIT, decreases
the running time of applications and in some cases (CG, atax, fdtd-apml) as we can see
in Figure 5.6 decreases the total execution time, implies that exploiting system resources
as much as possible is not panacea, and contention-aware policies can be employed to
further improve throughput.

We created snapshots of the workload execution with the four schedulers, in order
to depict the way that schedulers create gangs and in which way this affects their per-
formance. The horizontal axis represents the time-quantum of the execution and the
vertical axis the cpus of the system.

The cpu usage achieved by each scheduler is related to the number of applications it
manages to pack in each gang. GANG scheduler that creates gangs with only one appli-
cation presents significantly low cpu usage (Figure 5.11aX). CGREEDY scheduler which
creates gangs with up to two applications achieves higher cpu usage than GANG but

60 CHAPTER 5. EXPERIMENTAL EVALUATION

CPU usage achieved by schedulers

1.0

0.8

0.6

usage %o

0.4

0.2

0.0

97 G, 9s,
S 4 e
o), O, o, 9

scheduler

Figure 5.10: CPU usage of schedulers

lower than GREEDY. It creates gangs based on LLC misses and cpus needed from each
application (Figure 5.120). GREEDY which does not put restrictions on the number of
applications per gang achieves higher utilization. Gangs created by GREEDY are fixed in
every round (IS - syr2k, cholesky - BT, jacobi - fdtd-apml, mvt - LU, gemver - atax - CG,
ft). MINWAIT scheduler achieves the highest cpu usage. This is a result of the gang to
be executed is created in every time-quantum as we can see in Figure 5.12X. Whenever
the gang is created the scheduling algorithm chooses the programs that were waiting for
a long time, but also traverses the whole list of programs trying to find any application
fitting in the remaining cores even if it was recently scheduled to execute. On the other
hand, the rest of schedulers that enforce space-sharing create gangs in the beginning of
a round and as a result there are time-quanta that there are unutilized cores that could
be used by other applications and yet they do not because those applications are sched-
uled to execute in a different time-quantum of this round. The cpu usage statistics of the
algorithms are depicted, at Figure 5.10, which clearly describes the previous conclusions.

5.3. EVALUATION OF SCHEDULING POLICIES 61

N btA I atax_parallel 3 fdtd-apml_parallel E u.A
I cg.B I cholesky_parallel 3 syr2k_parallel H ft.B
E mvt_parallel 3 jacobi-2d-imper_parallel B gemver_parallel =3 is.C

(oX)
EEl syr2k_parallel [bt.A = mvt_parallel Il atax_parallel
m is.C B jacobi-2d-imper_parallel — IuA N B
I cholesky_parallel 3 fdtd-apml_parallel B gemver_parallel — ft.B

(BX)
Figure 5.11: Snapshots of GANG (5.11aX) and GREEDY (5.11BK) execution

62 CHAPTER 5. EXPERIMENTAL EVALUATION

- isC == fdtd-apml = mvt =t
sk . atax = jacobi-2d-imper - A
. gemver = uA g8 = cholesky

EEE btA I atax_parallel 3 cholesky_parallel Il syr2k_parallel
Il 9B B jacobi-2d-imper_parallel [fdtd-apml_parallel HEl uA
HE mvt_parallel /3 is.C I gemver_parallel — ftB

(B¥)
Figure 5.12: Snapshots of CGREEDY (5.120) and MINWAIT (5.12BK) execution

5.3. EVALUATION OF SCHEDULING POLICIES 63

In order to better understand the way that the schedulers we implemented work,
we used a subset of the benchmarks of the workload we used for the initial experiments
to create two different workloads. One consists of multiple instances of cpu-intensive
applications which produce few LLC misses and scale well. These are syr2k, jacobi-2d-
imper, lu and cholesky. Similarly we created a workload that consist of is, mvt, atax and
gemver which have many LLC misses and scale poorly. In both workloads we use three
instances of every benchmark in order to have the same number of applications with the
original workload.

Total execution time of schedulers

1400000

1200000

1000000

800000

600000

time (msec)

400000

200000

e Or, Yap, " i
S (S ‘o My, . e
£/ S, Cr

scheduler

Figure 5.13: Total execution time of cpu-intensive workload

64 CHAPTER 5. EXPERIMENTAL EVALUATION

Total running time of applications

40000 T T
[gang
[greedy
B cgreedy
35000 H minwait ||
30000(
25000
—
O
(0]
]
ézoooo—
()
S
=
15000+
10000+
50001
0 A8 A 3 \\} \\} \V} X X X
5\4(1 5\,(1 5\4(7, \ \ \ 4 pe) d»““pe 4 pe 0\e5¥" o\es‘” O\eﬁw
28 2 2 o o o
.\ac_o\J‘ '\a‘-do\ 1c0P
benchmarks

Figure 5.14: Total running time of applications

5.3. EVALUATION OF SCHEDULING POLICIES 65

Average waiting time of applications

12000

[gang

[greedy
B cgreedy
Hl minwait

10000

8000

6000

time (msec)

4000

2000

0
o2 Ny iy A A A o0 00’ S0 | e e qes
o2 2™ a0 o o o
¢! 1o¢ 1ol

benchmarks

Figure 5.15: Average waiting time of applications of the cpu-intensive workload

CHAPTER 5. EXPERIMENTAL EVALUATION

Maximum average waiting time of applications

12000

10000

8000

6000

4000

average waiting time (msec)

2001

97 [9, £y
Seg, yr@s% Ny i, o

scheduler

Figure 5.16: Maximum average waiting time of cpu-intensive workload

5.3. EVALUATION OF SCHEDULING POLICIES 67

Fairness of schedulers

fairness
w

m,

Pong iy,
23

9re, O
) &
%Y €

scheduler

Figure 5.17: Fairness of schedulers with cpu-intensive workload

68 CHAPTER 5. EXPERIMENTAL EVALUATION

. syr2k = A = A = uA
B jacobi-2d-imper m cholesky 3 syr2k . cholesky
BN jacobi-2d-imper = jacobi-2d-imper E cholesky 0 syr2k

[IEER B cholesky B jacobi-2d-imp B jacobi-2d-imp:
. syrok B cholesky = A - A
. syr2k =3 cholesky - A = j

(BX)

Figure 5.18: Snapshots of GANG (5.11aK) and GREEDY (5.11pK) for execution
cpu-intensive workload

5.3. EVALUATION OF SCHEDULING POLICIES 69

W jacobi-2d-imper = uA = cholesky m syr2k
- A B jacobi-2d-imper =1 cholesky - syr2k
BN jacobi-2d-imper = uA W cholesky 3 syr2k

- syr2k
B jacobi-2d-imper
B jacobi-2d-imper

(BX)

Figure 5.19: Snapshots of CGREEDY (5.120) and MINWAIT (5.12pK) for exe-
cution of cpu-intensive workload

70 CHAPTER 5. EXPERIMENTAL EVALUATION

Applications that consist the memory-bound workload do not scale well and as a
result they use relatively low thread-counts. This, favours the schedulers that enforce
space-sharing and packing as many applications as possible in a gang. The interesting
result shown in Figure 5.20, is the good performance of the Linux scheduler. It is only
outperformed by the MINWAIT scheduler. This is partially because of the fact that the
total number of threads of this workload is significantly smaller than this of other sched-
ulers. We have seen (Figure 3.2) that Linux does not scale well when the number of
threads it handles is much larger than the available cores.

We can see that MINWAIT scheduler performs better than the Linux scheduler.
MINWAIT leverages the fact that the number of threads of every application is small
and achieves to make full utilization of the available cpus, similar to the utilization of
the Linux scheduler. At the same time, MINWAIT uses gang scheduling which benefits
the execution comparing to the thrashing of threads to different time-quanta that Linux
scheduler causes.

Total execution time of schedulers

1000000

800000

600000

time (msec)

400000

200000

g,

O 9
ey, oy

< ;
Ore, I,

Wy,

), %

scheduler
Figure 5.20: Total execution time of memory-bound workload

The benchmarks of this workload make heavy use of the memory subsystem. The
poor scaling is inherent to their execution. Thus any contention aware scheduling policy
is difficult to benefit their execution. This is can be seen in Figure 5.21 where CGREEDY

5.3. EVALUATION OF SCHEDULING POLICIES 71

scheduler fails to reduce significantly the running time of applications. Since, all applica-
tions encounter high LLC miss rates there are not good pairs to create gangs. GREEDY
scheduler does not achieve to utilize the available cores as much, as MINWAIT does.
This is reflected in the larger average waiting time (Figure 5.22), and this is why GREEDY
scheduler fails to perform as well, as MINWAIT.

Total running time of applications

160000

[gang

[greedy
B cgreedy
El minwait ||

1400001

1200001

1000001

800001

time (msec)

600001

40000

200001

\9 9

\9

S \S © e PR el o'

benchmarks

o o gem\.e(qe‘““ el o “\qe‘

Figure 5.21: Total running time of applications

CHAPTER 5. EXPERIMENTAL EVALUATION

Maximum average waiting time of applications

12000

10000

8000

6000

4000

average waiting time (msec)

2001

9 ¥ 93, '77'
re@% %s% Ny i, o

scheduler

Figure 5.22: Maximum average waiting time of memory-bound workload

5.3. EVALUATION OF SCHEDULING POLICIES 73

258
3

(BX)

Figure 5.23: Snapshots of GANG (5.11aX) and GREEDY (5.11pK) for execution
of memory-bound workload

CHAPTER 5. EXPERIMENTAL EVALUATION

74

1

ExE
&5 &
oo

Egt
i

1

5 E
R
EEN-)

8
g
uEs

1o

(BX)
Figure 5.24: Snapshots of CGREEDY (5.120) and MINWAIT (5.12pK) for exe-

cution of memory-bound workload

5.4. PLACEMENT SIGNIFICANCE IN SCHEDULING 75

5.4 Placement significance in scheduling

Our preliminary experiments demonstrate clearly that the placement of threads of
multithreaded applications is a factor that significantly affects the execution characteris-
tics. We defined two different placements packed and spreaded which place threads on
the-same-package-first and on different-packages-first respectively and lead to different
execution profiles. Packed placement provide isolation for applications, that is they are
affected less from executing with other applications concurrently. On the other hand,
spreaded placement provides applications with bigger effective LLC and memory band-
width, which leads to higher throughput for every application and the workload overall.

We used those placements to experiment when executing the whole workload us-
ing a scheduler. We conducted two experiments for every scheduler. One is assigning
cores to applications in packed manner and the other in spreaded manner. Figure 5.25
depicts that spreaded placement provides higher throughput for the whole workload
for all schedulers. Throughput of gang scheduler doubles when executing with spreaded
placement comparing to packed placement.

Total execution time of schedulers

3500000

[spreaded
I packed

3000000

2500000

2000000

1500000

time (msec)

1000000

500000F

gr@e

C 9 7y
9r L2 ",
o, e, o, o 23

scheduler

Figure 5.25: Total execution time of schedulers for packed and spreaded place-
ment

76 CHAPTER 5. EXPERIMENTAL EVALUATION

The same results were taken for the other workloads. In Figure 5.26 we observe
the results for the cpu-intensive workload. The difference of throughput between the
two placements is minimal for this workload. Since, this workload is consisted of cpu-
intensive applications which do not make heavy use of the LLC or the memory bus band-
wdith, larger effective LLC or bandwidth cannot benefit them, thus spreaded placement
does not improve their throughput.

Total execution time of schedulers

1400000
[spreaded
B packed

1200000

1000000

800000

600000

time (msec)

400000

200000+

9re
g, 0,

9, m,, Y,
N //"Ve,-t 7y

¢
9rs,
o

scheduler

Figure 5.26: Total execution time of schedulers for packed and spreaded place-
ment - cpu-intensive workload

Figure 5.27 shows results corresponding to the memory-bound workload. For this
workload, we see that spreaded placement is important for throughput. The improve-
ment is not as big as for the original workload. This is due to the fact, that the usage of
the memory subsystem from the applications of the workload is very intensive and the
margin for improvement is little.

At the same time, observing Figures 5.28, 5.29, 5.30 and 5.31 packed, placement pro-
vides higher isolation for most of the benchmarks of our workload with all schedulers.
Fairness is defined as the total execution time of the application normalized to the stan-
dalone execution time. Both times are measured with the same placement, so even if
packed placement leads to lower throughput when executing standalone, execution with

5.4. PLACEMENT SIGNIFICANCE IN SCHEDULING 77

Total execution time of schedulers

1200000
I spreaded
B packed

1000000

800000

600000+

time (msec)

400000r

200000F

9 9,
"8gy, "9

g,

:!7 :7 /

¢ /)

® My .
S0y h"’/t

scheduler

Figure 5.27: Total execution time of schedulers for packed and spreaded place-
ment - memory-bounded workload

78 CHAPTER 5. EXPERIMENTAL EVALUATION

a scheduler degrades the performance of an application less than spreaded placement.

MINWAIT scheduler, when executed with spreaded placement, provides higher
throughput for most of the benchmarks, comparing to packed placement, except from
the applications with high miss rates such as is, atax, mvt and gemver. Packed placement
on the other side provides isolation for every benchmark of the workload. Especially atax
and mvt, which suffer from LLC misses, benefit from packed placement.

MINWAIT and CGREEDY, provide higher isolation that GREEDY, with packed
placement. This configuration could be used in cases where we want to enforce QoS poli-
cies. When applications are scheduled with packed affinity are not significantly affected
from applications with which they are co-scheduled. In platforms organized in NUMA
nodes, where each physical package has its own memory bus, applications packed into
different physical packages, will not contend neither for LLC, or memory bus bandwidth.
In those systems, packed placement will provide isolation and moreover will not suffer
from limited resources, and as a result will not suffer from reduced throughput, as in our
platform.

GANG scheduler does not present difference between packed and spreaded place-
ment, as far as fairness is concerned, which is expected. Since there is no space-sharing,
there is no contention among applications, so packed placement cannot contribute in
applications’ isolation.

Execution time - MINWAIT scheduler Fairness - MINWAIT scheduler

§
Eoxd
©
019
200000
019
nnnnn
I 009 I I
3 U o I o :»I T, o <AI o o W 5 * FI— o S, iy, o,
S, o,

benchmarks benchmarks

(o) (BX)

Figure 5.28: Total execution time and fairness of applications - MINWAIT sched-
uler

5.4. PLACEMENT SIGNIFICANCE IN SCHEDULING 79

Execution time - GREEDY scheduler Fairness - GREEDY scheduler

800000f

600000f

time (msec)
fairess

400000)

0.05
200000f
3 /l B I CR 'n| %, x,. % I c/,l ° « h % b, g O, oy g B
T Sy Ry Ty, By, o O T L L
o, 5
e,

benchmarks

benchmarks

(aX) (BX)

Figure 5.29: Total execution time and fairness of applications - GREEDY sched-

uler

Execution time - CGREEDY scheduler Fairness - CGREEDY scheduler

1 o,
1000000}
0.15f
800000)
9
4 @
@ 2
£ 9
£ 600000f £0.10)
o =
£ &
400000f
0.05f
200000} ‘ I I
o /,I ® % % a,I v s,,. T, o o % I I o o, iy, o e
e T ey, e Ty e My e,
e,

benchmarks benchmarks

(o) (BX)

Figure 5.30: Total execution time and fairness of applications - CGREEDY sched-

uler

80 CHAPTER 5. EXPERIMENTAL EVALUATION

Execution time - GANG scheduler Fairness - GANG scheduler

nnnnnn

(
fairness

w4 % S, Ve, g, By,
or o,
oo,

benchmarks benchmarks

(aX) (BX)

o e e e Mt g
o P,

Figure 5.31: Total execution time and fairness of applications - GANG scheduler

Chapter 6

Conclusions and future work

Scheduling of multithreaded applications is an emerging issue in current platforms.
Scheduling techniques that do not take into consideration the nature of multithreaded
applications are not efficient. Real multithreaded applications, on their side, fail to scale
well and exploit the abundance of the available resources, found in current comput-
ing systems. In this thesis we have explored many of the aforementioned issues regard-
ing the scheduling of multithreaded applications on multicore systems. We have found
that gang scheduling is necessary so that multithreaded applications achieve acceptable
throughput. Moreover, space-sharing can be employed to utilize efficiently the avail-
able cores, since multithreaded applications fail to scale well for large threadcounts.
Even space-sharing, though, will not be efficient unless scheduling algorithms incor-
porate contention aware techniques. We found that the limited memory bandwidth is
a constraining factor that must be taken into account from scheduling algorithms. The
scheduling methodologies we devised, based on gang scheduling and greedy packing of
applications on available cores, were able to outperfom the Linux scheduler by a large
factor. Finally, thread placement determines the level of contention for shared resources
among applications. Different configurations, lead to different execution characteristics.
Spreaded placement can be used to provide high throughput to multithreaded appli-
cations, while packed placement reduce the affection among applications and could be
employed to enforce QoS techniques.

As an expansion of this work, we could study ways to allow us incorporate the results
of contention for memory resources such as the memory bus bandwidth, in a scheduler
implementation. If we can realiably measure the memory bandwidth consumption of
applications, and exploit the results we exported from the experiments we conducted
with STREAM, we could predict the slowdown of an application when co-scheduled
with others. Moreover, we could expand our research in NUMA machines, which mem-
ory subsystem is organized differently and produce corresponding results. Those results
would be significant since the current computer designs are NUMA.

81

Bibliography

1]

M. Bhadauria, S. A. McKee. 2010. An Approach to Resource-Aware Co-scheduling
for CMPs. In ICS '10: Proceedings of the 24th ACM International Conference on
Supercomputing.

Moinuddin K. Qureshi, Yale N. Patt. 2006. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture. 423-432

Yuejian Xie, Gabriel H. Loh. 2009. PIPP: Promotion/Insertion Pseudo-Partitioning
of Multi-Core Shared Caches. In ISCA ’09: Proceedings of the 36th Intl. Symp. on
Computer Architecture. 174-183

G. H. Loh. 2008. 3d-stacked-memory architectures for multi-core processors. In
ISCA "08: Proceedings of the 35th Annual International Symposium on Computer
Architecture. IEEE Computer Society, Washington, DC, USA, 453-464.

Suh, G. E., Devadas, S., and Rudolph, L. 2002. A new memory monitoring scheme
for memory- aware scheduling and partitioning. In HPCA "02: Proceedings of the
8th International Sympo- sium on High-Performance Computer Architecture. 117.

J. Corbalan, X. Martorell, J. Labarta. 2000. Performance-driven processor alloca-
tion. In OSDI "00: Proceedings of the 4th conference on Symposium on Operating
System Design & Implementation - Volume 4.

J. Corbalan, X. Martorell, J. Labarta. 2001. Improving Gang Scheduling through Job
Performance Analysis and Malleability. In ICS "01: Proceedings of the 15th inter-
national conference on Supercomputing.

L. Tang,]. Mars, M. L. Soffa. 2010. Contentiousness vs. Sensitivity: Improving Con-
tention Aware Runtime Systems on Multicore Architectures. In EXADAPT ’11:
Proceedings of the 1st International Workshop on Adaptive Self-Tuning Comput-
ing Systems for the Exaflop Era

S. Zhuralev, S. Blagodurov, A. Fedorova. 2010. Addressing Shared Resource Con-
tention in Multicore Processors via Scheduling. In ASPLOS XV: Proceedings of the

82

BIBLIOGRAPHY 83

[14]

[15]

[16]
[17]
(18]
[19]
[20]

[21]

fifteenth edition of ASPLOS on Architectural support for programming languages
and operating systems.

A. Merkel,]. Stoess, F. Belossa. 2010. Resource-conscious Scheduling for Energy
Efficiency on Multicore Processors. In EuroSys '10: Proceedings of the 5th European
conference on Computer systems.

Knauerhase, R., Brett, P, Hohlt, B., Li, T., and Hahn, S. 2008. Using OS observations
to improve performance in multicore systems. IEEE Micro 28, 3, 54—66.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schupbach, and Akhilesh Singhania.
The multikernel: a new os architecture for scalable multicore systems. In Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP
‘09, pages 29-44, New York, NY, USA, 2009. ACM.

Edmund B. Nightingale, Orion Hodson, Ross Mcllroy, Chris Hawblitzel, and Galen
Hunt. Helios: heterogeneous multiprocessing with satellite kernels. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP "09,
pages 221-234, New York, NY, USA, 2009. ACM.

David Wentzlaff and Anant Agarwal. Factored operating systems (fos): the case
for a scalable operating system for multicores. SIGOPS Oper. Syst. Rev., 43:76—85,
April 2009.

Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanovi¢, and John Kubi-
atowicz. Tessellation: space-time partitioning in a manycore client os. In Proceed-
ings of the First USENIX conference on Hot topics in parallelism, HotPar’09, pages
10-10, Berkeley, CA, USA, 2009. USENIX Association.

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://www.cs.virginia.edu/stream/
http://www.nas.nasa.gov/publications/npb.html
http://www.cse.ohio-state.edu/ pouchet/software/polybench/

http://openmp.org/wp/

