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1 Introduction 

1.1 Scope 

 

 In this thesis, the response of pile foundations under combined axial, horizontal and 

moment loading is investigated. Assuming undrained soil conditions, primary goal is 

the extraction of the total 3D (in M-Q-N space) failure Envelope or ‘’Interaction 

Diagram’’ of the foundation system. Moreover the comprehension and the 

description of all physical attributes that rule the specific cases is targeted, explaining 

the physical meaning that governs the failure envelopes. To achieve this, a new 

macroscopic approach is developed to capture the accurate pile behavior.  In 

addition, analytical expressions able to describe the capacity of each foundation type 

and their yield surface are proposed, utilizing the results of the Finite Element 

Analysis. Final aim of this thesis is the connection of all the above mentioned 

objectives and their integration in the theoretical framework of the development of 

an innovative mathematical tool known as ‘’macro-element’’ -similar to those 

already developed by researchers in the case of shallow foundations, which ‘’obeys’’ 

the plasticity theory laws that correlates the hardening of the system with the 

anticipated work (work–hardening plasticity theory). This approach is driven by the 

lack of complete tools that can effectively capture the behavior of pile foundations 

under combined loading and that would enhance the cooperation of structural and 

geotechnical engineers. In the following sections we provide a layout of the thesis as 

well as a short review of the literature regarding the analysis of deeply embedded 

foundations. 
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1.2 Layout 

 

The second chapter deals with the development of a macroscopic (in M-Q-N space) 

Mohr-Coulomb based approach of the behavior of circular piles. The analytical 

extraction of the method is outlined, its calibration method through an optimization 

procedure is described while it is verified through an engineering calculation method 

and finite element modeling. 

 In the third chapter, a single pile and two pile-groups in cohesive soil in undrained 

conditions are studied, while sliding and gapping is allowed at the soil-pile interface. 

Through the limit equilibrium approach analytical expressions for the complete 

representation of the ultimate capacities of the foundations are derived and assess 

their ability to effectively capture all major trends. Their calibration and validation is 

performed through numerous finite element analyses. The methods for the 

conduction of the numerical analyses and present the results in terms of ultimate 

capacities and failure envelopes, Furthermore the total 3-D failure envelope in M-Q-

N space of foundations is derived. Finally, insight is provided to the different types of 

failure mechanisms and to the shape of the interaction diagrams.  

 In the fourth chapter a macro-element model for pile foundations is developed. The 

extraction and incorporation of all necessary tools is described for the appropriate 

capture of the foundation behavior in elasticity and plasticity. Furthermore the 

results are compared with the data from the numerical experiments, while swipe 

tests are performed to validate the approach.  

In the last chapter, the basic conclusions derived from this thesis are summed up and 

further research recommendations are given. 
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1.3 Use of Pile Foundations 

 

 Fig 1.1 presents a rough categorization of the types of foundations that are generally 

used in order to support structural systems. Surface or shallow embedded 

foundations are distinguished by small slenderness ratios, while pile foundations are 

generally more slender elements. Caisson foundations lie somewhere in between in 

terms of slenderness or embedment; yet their limits are vague. The compressibility 

of the soil and the structural element should also be taken into consideration for a 

more realistic distinction of different foundation types. 

 
Pile foundations are typically made from steel or reinforced concrete and possibly 

timber. They are principally used to transfer the loads from a superstructure, through 

weak, compressible strata or water onto stronger, more compact, less compressible 

and stiffer soil or rock at depth, increasing the effective size of a foundation and 

resisting horizontal loads (Tomlinson & Woodward, 2007). They are used in very large 

buildings, off-shore structures, bridge piers and in situations where the soil under the 

superstructure is not suitable to prevent excessive settlement.  

Piles can be classified by their function:  

 End bearing piles are those where most of the friction is developed at the 

toe.  

 Friction piles are those where most of the pile bearing capacity is developed 

by shear stresses along the sides of the pile (Atkinson, 2007).  

There are two types of pile foundation installations: driven piles and bored piles:  

 Driven piles are normally made from pre-cast concrete which is then 

hammered into the ground once on site.  

 Bored piles are cast in situ; the soil is bored out of the ground, underreaming 

is performed and then the concrete is poured into the hole. Alternatively, 

boring of the soil and pouring of the concrete can take place simultaneously, 

in which case the piles are called continuous fight augured (CFA) piles.  
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The choice of pile used depends on the location and type of structure, the ground 

conditions, durability of the materials in the environment and cost. Most piles use 

some end bearing and some friction, in order to resist the action of loads. Driven 

piles are useful in offshore applications, are stable in soft squeezing soils and can 

densify loose soil. However, bored piles are more popular in urban areas as there is 

minimal vibration, they can be used where headroom is limited, there is no risk of 

heave and it is easy to vary their length.  

 Deeply embedded foundations have been consistently used in major offshore 

structures, where the study of their response under combined vertical, shear and 

moment loading is of great importance. 

 

1.4 Piles under lateral loading 

 

In Pile foundations the lateral loads are applied principally in two ways: 

 Horizontal static and dynamic loads in the head of the piles, e.g. due to wind, 

earthquake, forces from the superstructure, sea waves etc.  

 Horizontal loads along the length of the pile-side, e.g. in piled walls, bridge 

pier foundations, piles for soil improvement. These piles are usually vertical 

and in special circumstances inclined. 

The vertical piles undertake horizontal loads with simultaneous bending and lateral 

displacement, activating in this way not only their resistance but that of the 

surrounding soil too.  

The control of the ultimate capacity in horizontal loading must contain: 

 The ultimate capacity of the surrounding soil 

 The pile resistance as carrying member in bending due to lateral stresses  

 The maximum displacement of the pile head, i.e. acceptable from the 

superstructure. 
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The behavior of the piles in horizontal loads depends on many factors as the relative 

stiffness of the pile soil system, the stress-strain relation (pile and soil), the soil 

resistance and the fixity conditions of the pile head. 

 

The head of the pile, depending on whether the pile is single, belongs to a pile group, 

or in other special fixity conditions, might be considered free, pined, or fully fixed. 

With respect to the forms of the horizontal loads- displacement diagrams of the total 

pile, the piles might be considered as 

 Rigid in the case that they rotate around a specific pivot point, without their 

significant deformation. 

 Flexible in case that their response can be simulated by an elastic beam in 

elastic soil.  

The piles can be categorized also in respect to the ratio L/D (L=length, D=diameter). A 

short pile behaves and rotates as a rigid body under lateral loads and has a ratio 

L/D<10. When vertical loads are applied, the loads transferred to the tip of the pile 

are a percentage of the total. In the case of the long pile (L/D>10), after a certain 

length (active length lc) the rest of the pile remains inactive under lateral loading. 

Under vertical loading the forces are received by the friction of the pile walls at full 

length. 

The active Length lc is the minimum length after which the displacement at the pile 

head under a certain lateral load remains unaffected.  

 clL   : flexible 

 c
c lL

l 
2

 : stiff 

 
2

clL   : rigid 

According to Gazetas (1991) the equations that determine the active length in an 

elastic half-space, are dependent of the soil elastic modulus distribution. 

25.0
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1.5 Macroelement Modeling 

 

 Macroelement modeling provides an efficient alternative for the aforementioned 

difficulties; it simplifies drastically the consideration of soil‐structure interaction 

effects in structural analyses by dispensing from the need to model explicitly the soil 

domain. It generally exhibits a straightforward and quick calibration procedure, an 

excellent degree of qualitative insight on foundation dynamic behavior and 

sufficiently accurate quantitative performance. Moreover, it minimizes the modeling 

uncertainty and guarantees repeatability since the entire soil domain is shrunk to a 

single finite element, characterized by a well‐documented constitutive law and a 

relatively straightforward algorithmic implementation. 

As it can be understood, macroelement modeling is related to the process of 

capturing, from the global response of a complex system that is the soil and the 

foundation substructure, only those elements that contribute to the interaction with 

the superstructure. In order to do so, it is important to investigate and understand in 

depth the characteristics of soil‐foundation response. In reference to the examined 

problem of deep foundations under seismic loading, the prerequisites for 

macroelement modeling are the following: 

• Definition of type of foundations to which the model will be applicable 

• Knowledge of the bearing capacity of the foundation 

• Knowledge of the lateral response of the foundation from small levels of loading up 

to failure. 

Up to date, macroelement models have been developed only for the case of shallow 

foundations, where the effect of lateral soil pressures on the foundation can be 

neglected. Of noteworthy exception, Muir Wood and Kalasin (2004) have formulated 

a macroelement for the dynamic response of gravity retaining walls in which, issues 



Introduction 

11 
 

such as active and passive lateral earth pressure and bearing failure with significant 

overburden are successfully confronted.  

 A second option that has received more and more attention in the recent years is 

the nonlinear macro‐element (NLME) approach, where the entire soil‐foundation 

system is replaced by a single element located at the base of the super‐structure, 

described with a suitable yield surface and plastic potential function. Thus, the 

footing and the soil are considered as a single ‘macro‐element’, and a 6 DOF in the 

3D case or a 3 DOF (2D case) model is formulated, describing the resultant force 

displacement behavior of a point of the footing (e.g. the center of a surface 

foundation or the center of head in the case of a pile foundation) in the vertical, 

horizontal, and rotational directions. The basic assumption beneath this formulation 

is that the footing is considered as a rigid body. The main advantage with respect to 

the BNWF approach is that all DOF of the macroelement are coupled.  

 The first non‐linear macro‐element (NLME) was proposed by Nova and Montrasio 

(1991) for strip footings on sand under monotonic loading with an 

isotropic‐hardening elasto‐plastic law. The basic idea of this model is first to 

represent the bearing capacity of the foundation under combined loading as a 

surface in the space of the resultant vertical and horizontal force and moment acting 

on the foundation following the reasoning initiated by Butterfield (1980). Then this 

ultimate surface is identified as the yield surface in the plasticity model regardless 

the mechanisms governing its origin and is allowed to evolve according to a suitably 

chosen hardening law. The displacements of the footing are predicted by introducing 

an experimentally calibrated flow rule, which turns out to be non‐associated. This 

modelling procedure has been followed by subsequent works for different soil 

conditions (clay, loose or dense sand) and different foundation geometries (strip, 

rectangular, circular shallow foundations) leading to accurate formulations of the 

ultimate surface, the hardening rule and the flow rule (e.g. Gottardi et al., 1999; 

Houlsby and Cassidy, 2002; Cassidy et al., 2005). Di Prisco et al. (2003) extended this 

model to cyclic loading, introducing a bounding surface plasticity formulation, which 

allows one to obtain a continuous plastic response for the footing throughout the 

loading history. Paolucci (1997) initiated the use of macro‐element models to study 
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non‐linear dynamic soil‐structure interaction problems under seismic loading, 

considering an elastic‐perfectly plastic formulation of the Nova and Montrasio (1991) 

model. Le Pape and Sieffert (2001) derived a macro‐element model to the Nova and 

Montrasio (1991) model within a thermodynamically coherent framework.  

Cremer et al. (2002) introduced footing uplift in the macro‐element formulation, 

which was modeled as a distinct non‐linear mechanism with respect to soil plasticity, 

so that the global footing response was obtained through coupling between two 

distinct non‐linear mechanisms (soil plastification and footing uplift). Uplift was 

described by a geometric model and soil plastification by a kinematic and isotropic 

hardening plasticity model. This macro‐element model was developed for strip 

footings on cohesive soils under seismic loading.  

Grange et al. (2008) extended Cremer et al (2002) macro‐element model to 3D 

circular footings under monotonic static and cyclic loading and the uplift of the 

footing was treated into the plasticity model framework. Shirato et al. (2008) 

introduced the uplift of the footing in the Nova and Motrasio (1991) macro‐element 

model by adding a coupling term in the soil‐foundation stiffness matrix. Gajan and 

Kutter (2009) introduced a contact interface model which tracks the evolution of the 

soil‐footing contact area. 

Chatzigogos et al (2011) extended Cremer et al (2002) macro‐element model by 

introducing a third non‐linear mechanism, sliding between the soil and the footing, 

to the ultimate (failure) surface. Finally, Figini et al. (2012) modified the Chatzigogos 

et al. (2011) macroelement by introducing two main improvements: (i) a new 

mapping rule that better fits the loading path under seismic loading; and (ii) an 

uplift‐plasticity coupling, described through the concept of footing effective width, 

with distinction between transient and permanent reduction of the soil‐foundation 

contact area. An asset of the proposed model is that a unique set of parameters for 

dense sand conditions is introduced that fits reasonably well the results from 

independent large scale laboratory tests, both cyclic and dynamic, supporting its use 

for predictive analyses and applications. 
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Correia et al (2012) proposed a pile-head macro-element as an extension of the 

macro-element concept previously developed for structures on shallow foundations 

(Figini et al, 2012), to the case of deep foundations. 





Figures





Figure 1.1 A rough categorization of different foundation types 
based on their slenderness or embedment ratio D/B. From the 

left to the right we can distinguish (a) piles, (b) deeply 
embedded foundations and (c) shallow foundations. (after 

Gerolymos & Gazetas, 2006)

Εs

Εs
Εs

(α) (β) (γ)

Figure 1.2 Different distributions of the Elastic Modulus with 
the depth. 
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2 Macroscopic (in M-N space) Mohr-Coulomb based approach of the 

behavior of circular piles 

The need for a realistic pile behavior and the absence of an accurate pile model 

aroused the interest in developing a new approach that would be able to overcome 

the lack in the existing bibliography and Finite Element Modeling.  

Until now the pile simulation in FEM was succeeded in two ways: 

 The representation of the pile as a soil volume, whose response is governed

by a fully elastic model.

 The composure of the pile as a combination of one dimensional elastic or

inelastic beam elements and elastic elements that provide the geometrical

volume.

The drawback of the first model is the total ignorance of the pile failure, while in the 

second no installation effects can be taken into account and the pile-soil interaction 

is modelled at the center rather than the circumference. Moreover, in both cases the 

satisfying simulation of the properties and the behavior of the pile material is not 

succeeded. 

The aim of the new approach is to: 

 include the pile material behavior into the soil-foundation system

 incorporate the effect of the external load combination to the alteration of

the pile material properties

 simulate in a uniform approach the elastoplastic pile response

 the realistic representation of the pile-soil interaction
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2.1 Soil Constitutive Models 

2.1.1 Tresca Failure Criterion 

In general, the yield function f depends on various parameters such as stresses, 

strains and history of loading. The strains from the parameters in the yield function 

may be excluded since, for the classical perfectly plastic models, they are uniquely 

related to the stress level. Therefore, the general form may be given by the equation: 

) c( ijf f                    (2.1) 

Furthermore, in isotropic materials the function f  must be unchanged with respect

to any transformation of coordinates. This isotropic condition calls for the use of 
invariants of stresses. Thus the form of f can be represented by: 

invariants(f of ) cj f                    (2.2) 

Since the hydrostatic pressure has little or no effect on the plastic deformation and 
yielding of a material in undrained conditions the equation takes the form: 

invariants(f of ) cijs f                   (2.3) 

Among various invariants of deviatoric stress tensor ijs only two are independent 

and other invariants can be expressed in terms of these two. The invariants 2J  and

3J  are independent and express the yield criterion in the form: 

2, 3 c( )J Jf f                   (2.4) 

The Tresca criterion (or the maximum shear stress criterion) implies that yielding 
occurs when the maximum shear stress reaches a critical level. For the special case

1 2 3    , the Tresca yield condition can be written as:  

1 3
1

( )
2

k                (2.5) 

Where 1 , 3 are maximum and minimum principal stresses respectively and k  is
the yield stress of the material determined from pure shear test. More generally the 
previous equation can be written as: 

     
2 22 2 2

1 3 2 3 3 14 4 4 0k k k                   
                       (2.6) 
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Or in terms of stress invariants 2J  and 3J :         

3 2 2 2 4 6
2 3 2 24 27 36 96 64 0cf f J J k J k J k                                          (2.7) 

The three-dimensional view of the Tresca yield criterion in principal stress is shown in 
Fig 2.1 where Eq. 2.6 represents a cylindrical surface whose generator is parallel to 

the hydrostatic 1 2 3    and whose cross sectional shape on the π-plane is a 
regular hexagon. 

In simple tension test with 1 2 3    the yield stress is equal to: 

2y k                                                                                                                                (2.8) 

 

2.1.2 Mohr-Coulomb Model 

 

Realizing that soil strength depends on the hydrostatic pressure, a general yield 

function of Eq. 2.1 may be written as: 

 1 2 3( , , ) cf I J J f                                                                                                             (2.9) 

The Coulomb criterion is the first criterion that take into consideration the 

hydrostatic pressure: 

tan 0c                                                                                                           (2.10) 

Where c and   denote the cohesion and the angle of internal friction respectively. 

For the special case of frictionless materials for which   =0, Eq. 2.10 reduces to the 

maximum shear stress criterion of Tresca c  .We consider a state of principal 

stress ( 1 , 2 , 3 ) which satisfies the Coulomb criterion of Eq.2.10. If the 

condition of stress state is 1 2 3   , the Coulomb criterion can be written as: 

1 3 1 3)sin
1 1

( ) ( cos
2 2

c                                                                       (2.11) 

Each principal stress can be represented in terms of 1I , 2J , θ(lode angle); 

1 2 1
2 1

cos
33

J I                                                                                            (2.12a) 
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2 2 1
2 2 1

cos( )
3 33

J I                                                                              (2.12b) 

2 1
2 2 1

3 cos( )
3 33

J I                                                                              (2.12c) 

Therefore substitution of Eq. 2.12a and Eq. 2.12c and into Eq. 2.11 leads to the stress 

invariant form of the Coulomb criterion that is  

2
1

1 2
sin [(1 sin )cos (1 sin )cos( )] cos 0

3 3 3

J
I c                 (2.13) 

Or  

1 2
1

sin [3(1 sin )sin 3(3 sin )cos ] 3 cos 0
2

I J c                  (2.14) 

As shown by Shield (1995), the Coulomb’s criterion is a hexagonal pyramid in the 

principal stress space (Fig 2.2). To obtain a better approximation when tensile stress 

occurs, it is sometimes necessary to combine the Coulomb criterion with a maximum 

tensile strength cut-off 

1 0f                                                                                                                            (2.15) 

where 1f  is a tensile strength obtained from an experiment. This modified Coulomb 

Criterion with a tension cut-off is defined by three material constants such as c  ,  

and 1f . Note that the uniaxial tensile strength as predicted by the Coulomb criterion 

should be thought of as a fictitious tensile strength which is not the same as the true 

uniaxial tensile strength of a material from experiment. The main advantages and 

limitations of the Coulomb criterion with a tension cut-off are summarized in detail 

in the book by Chen (1982). 

 Even though the Coulomb criterion, as mentioned above, is generally simple in 

graphical form, the Coulomb surface exhibits corners or singularities in a three-

dimensional generalization. The resulting general yield or failure function with 

singularities gives rise to some difficulties in numerical analysis. In addition to these 
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limitations,  the  Coulomb  criterion  neglects  the  influence  of  intermediate  principal 

shear stress on shear strength. Nevertheless, for the most part, this criterion has  in 

the  past  been  used  for  necessity  and  simplicity  to  obtain  reasonable  solutions  to 

important and practical problems in geotechnical engineering. 

2.2 Analytical Solution 

When the pile  is subjected to moment and axial  load  in full plasticity, on a random 

section there is the stress distribution of Fig. 2.3 

According  to  the Tresca  failure  theory  in  this case,  the maximum  stress capacity  is 

equal with: 

2y cc   , (2.16) 

while the tensile stress of the section cannot exceed the tensile capacity  t . 

Applying for the bending stresses the Newton’s law Equilibrium 0F 


,

M Mc c t tA A  ,  (2.17) 

where 

2

4
2Mc

N
c

D



  (2.18a)

The maximum compressive stress that can be expended by the bending stress 

2

4
Mt t

N

D
 


  (2.18b)

The maximum tensile stress that can be expended by the bending stress 
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where x  is the compression zone, D the pile diameter, cA  and tA  the area of the 

section that it is under compression and tension respectively. 

Finally the ultimate bending imposing moment is given by the following equation: 
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dy  the momentarm of  the infinitesimal area. 

For the variables input in the finite-element platform, due to the fact that the Finite-

Element Method forms the stress distribution in a hyperbolic shape (Fig.2.4) the 

following correction factor that represents the difference between the rectangular 

and the hyperbolic stress distribution is inserted in the Eq.2.18a and 2.18.b: 

0

0

0

0
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tanh(3 )
x

x

x

x





,                                                                                                (2.22) 
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where 0x  the compressive zone length and x  the coordinate of the stress 

distribution. 

 

Changing them to: 

2
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c

D
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                                                                                                   (2.23a) 
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4
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D
 


                                                                                                 (2.23b) 

 

2.3 Optimization 

 

Reinforced Concrete Piles of 3 different diameters (0.8m,1m,1.5m) with varying steel 

bar section Area (1%,1.5%,2%) and a length of 16 m are chosen. Modulus of elasticity 

is picked 30∙106 KN/m2 and the Poisson’s ratio v=0.2. Their failure Envelopes in M-N 

space and their Moment-Curvature diagrams are extracted through USC-RC, a fiber 

analysis calculation tool for reinforced concrete members. 

The data are imported to Matlab and the variablesc , t from the previously derived 

equations are optimized to fit to the failure envelope of the pile.  This nonlinear 

optimization problem is addressed with the use of two different solvers: 

The use of a hybrid algorithm, incorporating a genetic algorithm and a constrained 

minimizing function of Matlab. A genetic algorithm (GA) is a method for solving both 

constrained and unconstrained optimization problems based on a natural selection 

process that mimics biological evolution. The algorithm repeatedly modifies a 

population of individual solutions. At each step, the genetic algorithm randomly 

selects individuals from the current population and uses them as parents to produce 

the children for the next generation. Over successive generations, the population 

"evolves" toward an optimal solution.   In fact, the former is utilized in order to locate 

the global minimum and in a second step, the latter captures the optimum solution, 
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as visualized in Figure 2.5 for an equivalent 3-dimensional problem. Choosing the 

most efficient goal function and the right parameters of the genetic algorithm’s 

structure (initial population, generations, mutation, migration and crossover) is of 

great importance in order to efficiently solve the problem. Various structure 

characteristics were utilized, before concluding to a 40-individual initial population, 

1000-generation-limited, constraint dependent-mutation, forward-migration, 

scattered-crossover approach that could effectively solve the problem. We ensured 

the good fit by accepting a solution to the optimization problem that provides a goal 

function value below an acceptable limit. 

The use of Generalized Pattern Search solver, which uses a pattern search method 

that implements a minimal and maximal positive basis pattern. A similar procedure 

as above is followed, giving a start point to the solver and adopting a GPS Positive 

basis 2N method. Good fitting was ensured by accepting a solution below an 

acceptable limit. 

Two different optimization procedures are performed. The first aiming at the 

calibration of the approach to the total failure Envelope and the latter from full 

tensile to the half compressive strength of the pile, point where all stiff soils have 

reached their ultimate capacity. 

 

2.4 Verification 

The proposed values for c , t are inserted in the failure equations of the pile and 

through the engineering calculation platform Mathcad and Plaxis 3D the approach is  

verified. 

2.4.1 The Finite Element Model 

The Finite-Element Platform Plaxis 3D is used. The pile is represented as a soil 

volume with a Mohr- Coulomb Model ruling its response that has the above 

mentioned properties and the corresponding failure parameters. The cohesion is set 

equal with c , the angle of friction is equal with zero and tension cut-off is activated 

with a strength factor equal with t . A total displacement fixity is placed at the pile 
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bottom, while a stress distribution is applied on the pile head simulating the load 

Fig.2.6. The Moment is derived out of the horizontal load multiplied by the length of 

the pile.  The M-N Failure Envelope of the pile is calculated and through a mesh 

sensitivity analysis (Fig.2.7) the appropriate pile discretization is elected. As 

expected, the pile failure Envelope for the variable values without the stress shape 

correction factor cannot represent the pile behavior satisfactorily. Finally a pile 

consistent of 7659 elements is chosen for the further analysis. 

2.4.2 Results 

The Failure Envelopes of the piles are compared with the ones extracted through 

calculations and through FEM. Each time, the appropriate variable values, derived 

out of an optimization procedure matching the total failure envelope, are inserted 

into the equations (Fig 2.8-2.10). Moreover the Moment-Curvature Diagram derived 

from FEM fits satisfactorily with the one extracted from the fiber analysis (Fig 2.11). 

Taking into consideration the soil capacity, a more focused calibration of the 

approach is conducted (Fig 2.12-2.14), as mentioned above. More specifically, 

assuming that a very stiff clay has an undrained strength Su=200 KPa, its maximum 

compressive capacity is equal with: 

2

4
u u u

D
Q S Dl AS   ,              (2.24) 

where it is assumed that A=10. In addition, according to the American Petroleum 

Institute (API) the maximum compressive resistance of sand is equal to: 

2

114.8 12000
4

u
D

Q Dl                             (2.25) 

As it is illustrated, the approach reproduces the pile behavior brilliantly. Thus the 

development of a very useful tool is succeded. The methodology of the calibration of 

the approach can be summed up in the following steps: 

 Extraction of the failure envelope of the circular pile.

 Using the equations 2.17,2.20 through an optimization algorithm the

appropriate variable values are derived.
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 The variable values are inserted in the soil model in the Finite Element model 

together with the other material properties. (poisson’s ratio, modulus of 

elasticity) 

 The verification can be performed in two ways: a) conducting the failure 

envelopes through Finite Element Modelling b) compering the Moment-

Curvature Diagrams.



Figures





Figure 2.1 The Tresca criterion is represented by a hexagon that runs 
along the hydrostatic axis in the σ1-σ2-σ3 space. The yield surface is 

compared with that proposed by Von Mises. 

Figure 2.2 The Coulomb’s failure criterion is represented by a irregular 
hexagon pyramid in the principal stress space.
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Figure 2.5 Visualization of the optimization procedure in an equivalent 3-
dimensional problem. 

Figure 2.4 Stress distribution on a random pile section in full plasticity
in Finite Element Modelling

Figure 2.3 Stress Distribution on a random Pile Section under Moment and 
Axial Load in full Plasticity
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C=15262 F.E.=212562

Figure 2.6 3D Visualizaton of the FE pile model a) showing the bottom fixity and the stress 
distribution b) under lateral loading c) the plastic hinge developed at the bottom of the 

pile is visible through the incremental deviatoric strain Δγ.

(a)  (b)  (c) 

Figure 2.7 Pile Sensitivity Analysis. As expected the variable values without the stress 
shape correction factor cannot represent the pile behavior satisfactorily
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Figure 2.8 Comparison between the data derived from the numerical experiments (points), 
the failure Envelope that is extracted from the fiber analysis and the proposed fit from the 

macroscopic approach for As=1% and  a) D= 0.8 m, b) D=1 mc) D=1.5 m.
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Figure 2.9 Comparison between the data derived from the numerical experiments 
(points), the failure Envelope that is extracted from the fiber analysis and the proposed fit 

from the macroscopic approach for As=1.5% and  a) D= 0.8 m, b) D=1 mc) D=1.5 m.
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Figure 2.10 Comparison between the data derived from the numerical experiments 
(points), the failure Envelope that is extracted from the fiber analysis and the proposed fit 

from the macroscopic approach for As=2% and  a) D= 0.8 m, b) D=1 m c) D=1.5 m.
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Figure 2.11 Comparison between the Moment-Curvature Diagram from the numerical 
experiments and the one derived from the fiber analysis for As=1.5%, D=1 m
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Figure 2.12 Comparison between the data derived from proposed fit focused from full 
tensile to the where all stiff soils have reached their compressive ultimate capacity.

(points), and the failure Envelope that is extracted from the fiber analysis for As=1% and  
a) D= 0.8 m, b) D=1 m, c) D=1.5 m.
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Figure 2.13 Comparison between the data derived from proposed fit focused from full 
tensile to the where all stiff soils have reached their compressive ultimate capacity.

(points), and the failure Envelope that is extracted from the fiber analysis for As=1.5% and 
a) D= 0.8 m, b) D=1 m, c) D=1.5 m.

(a) (b)

D= 0.8 m  
D=     1 m  
D=  1.5 m

Moment(KNm) Moment(KNm)

Moment(KNm)

Moment(KNm) Moment(KNm)

37



Figure 2.14 Comparison between the data derived from proposed fit focused from full 
tensile to the where all stiff soils have reached their compressive ultimate capacity.

(points), and the failure Envelope that is extracted from the fiber analysis for As=2% and 
a) D= 0.8 m, b) D=1 m, c) D=1.5 m.
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3 Failure Envelopes 

 

Introduction 

The term “failure envelope” defines the locus of the points that represent failure of 

the foundation in M-Q-N space. The relationship between two of the above – in 

other words a cross-section of the failure envelope – is conventionally termed an 

“interaction curve”. Figures 3.1 (a) and (b) depict typical failure envelopes of surface 

foundations on sand [Nova and Montrasio 1991; Gottardi and Butterfield 1995; 

Chatzigogos, Figini, Pecker, Salençon 2011] and clay respectively [Cremer, Pecker, 

Davenne 2001]). As part of this thesis, we aim to produce failure envelopes in the 

case of pile foundations in clay under undrained conditions with constant Su with 

the depth. The cases of a single pile, a 1x2 and a 2x2 Pile Group are  investigated, 

while gapping and slipping are also taken into consideration. 

 

3.1 Flexibe Pile in cohesive soil 

3.1.1 Limit Equilibrium Approach 

 

The case of a free‐head flexible pile embedded in clay with constant undrained shear 

strength Su is studied (Fig.3.2). In this case the soil resistance is 

 
y uP AS D ,                                                                                                                          (3.1) 

 where 2
'v

u

z
J

S D


    ,    (Matlock 1970)                                                  (3.2) 

for       
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And 2A   otherwise. 
 
From static equilibrium:                                                                                                      
 



Failure Envelopes 

 

42 
 

yP f Q                                                                                                                               (3.3) 

2
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f
Qf M MP f                                                                                                       (3.4) 

From (3.3): 

Q

Py
f                                                                                                                                  (3.5) 

and by applying (3.5) in (3.4) 
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By setting: 
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equation (3.6) becomes:  
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y y

QM

M Q
                                                                                                                      (3.7) 

By taking into consideration all possible N-Q‐M combinations at the pile head the 

failure envelope for a flexible pile embedded in clay with constant undrained shear 

strength:  
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cN , tN  the ultimate compressive and tensile capacity respectively. 
 

Assuming an associated flow rule (in which the plastic potential function g coincides 

with the yield function f) the plastic displacement upl and the plastic rotation φpl give: 

 
 

2

2
pl

y

y

pl
QM

f
Q

u


                                                                                                                 (3.12) 

 
confirming that the incremental plastic displacement vectors at the point of failure 

are normal to the yield locus. 

 

3.1.2 Finite Element Verification 

 

The proposed failure envelopes are checked against three‐dimensional numerical 

analysis for flexible pile and pile-groups embedded by using the finite element code 

Plaxis 3D. 

 

3.1.2.1 Static pushover tests   

 

Considering that the foundation supports a 1-DoF oscillator, one expects that radial 

loading paths on the M-Q plane are applied in the system. Through a series of force-

controlled analyses the failure envelope is ultimately determined. Prior to that, the 

foundation has undergone vertical loading N to a fraction χ = N/Nu of its ultimate 

capacity. [Cremer, Pecker, Davenne 2001; Gouvernec 2004; Gajan, Kutter, Phalen, 

Hutchinson, Martin 2005]. 

 

3.1.2.2 Description of the method 

 

The steps followed in our numerical experiments represent the actual conditions in 

the field. The soil undergoes geostatic loading and then a part of the soil is replaced 
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by the foundation, on which a vertical load N is applied increasingly till a specified 

value of χ = Ν/Νu is reached. Afterwards, the vertical load is kept constant and a 

combination of horizontal force and moment is applied at the head of the pile till the 

complete failure of the system. Apparently, this implies the state in which no further 

lateral loading can be undertaken. The above procedure is repeated for various 

factors of safety against vertical loading and for various radial loading paths. Our aim 

is to extract the ultimate capacities under pure moment Mu and pure horizontal 

force Qu, and then sweep the M-Q plane so that a cross-section of the failure 

envelope is revealed. Repeating this procedure from the Ultimate Axial Compression 

Capacity to the ultimate Axial Tension Capacity the total 3D Failure Envelope in M-Q-

N space is designed. 

 

3.1.3  Finite Element Modelling 

 

A 16 m long pile with 1 m diameter is embedded in the soil. The distance from the 

pile tip to the bottom of the model is 8 m (1/2 L). Figure (3.2) depicts the finite 

element discretization of the problem. Approximately 43000 elements were used for 

each analysis. The soil is modeled with 10‐node tetrahedral elements while the pile 

is modeled as a soil volume calibrated with the previously macroscopic hardening 

Soil model approach to simulate the behavior of a circular concrete pile with 

As=1.5% . A sensitivity analysis for the lateral boundaries is carried out to ensure the 

accuracy of the model, placing them finally at the distance of 0.6L. 

The selected Soil is Clay with constant with the depth Undrained Shear Strength 

Su=50 KPa, specific weight γ=20 KN/m3 and Es=25000 KN/m and its behavior is 

described by the Mohr-Coulomb Model. The poisson’s ratio is v=0.45 while the angle 

of friction is φ=0 to simulate undrained water conditions. The pile has an elasticity 

Modulus of Ec=30*106 KN/m, a poisson’s ratio v=0.2 and a specific weight practically 

zero (γ=0.01 KN/m2) to ensure that the derived ultimate loads are the total ones, 

while cohesion is chosen to be c=15262 KPa, the angle of friction φ=0 and tension 

cut-off strength equal to 7534 KPa in order to capture the correct pile behavior. An 
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Interface is used between the pile and the soil enabling gapping and slippage with a 

friction coefficient R=1.  

    
 

3.1.4 Results 

 

Figure 3.3 displays the failure envelopes of the foundation for 6 different safety 

factors FSv in respect to the maximum axial compressive (+) and tensile capacity (-). 

The results from the finite element analysis fit marvelously with those extracted from 

the finite equilibrium approach, confirming the equations proposed by Gerolimos et 

al and extending them by taking into consideration the influence of the vertical load. 

This influence can clearly be captivated in Fig 3.4, where the maximum capacities 

magnify by the increase of the the axial load. This is rationalized through the 

alternation of the maximum plastic Moment of the pile, in respect to the axial load, 

as shown in Fig.3.5.  In this specific case the proportional behavior of the ultimate 

capacities and the vertical load is justified, as the maximum soil resistance is reached 

before the peak Moment Capacity of the reinforced concrete pile. Thus the ultimate 

pure horizontal and moment capacities (Fig.3.6) behave in the same way, as it is also 

explained by the limit equilibrium approach. This variation is even more visible at the 

3D Failure Envelope in M-Q-N space. (Fig.3.7-10). In order to calibrate the analytical 

expressions 3.8, 3.9 derived by the limit Equilibrium analysis the following values are 

set for the Eq.3.2: λ1=10, λ2=2, which are dimensionless quantities and the factor for 

the earth pressure distribution J=1.1, value that is between the ones proposed by 

Matlock (0.25) and Reese (2.83). The alternation of the plastic Moment is inserted by 

the Equation: 

 3 2
plM aN bN cN d                                                                                      (3.13) 

a formula derived through the Matlab curve fitting tool, where a, b, c, d 

dimensionless constants dependent to the failure envelope of the specific circular 

pile. 
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It must be noted that the results are normalized either to the “pure” capacities 

(Qy/My) or to the “pure” capacities (Qy*/My*) of the foundation for safety factor 

FSv=∞. As shown in Fig.3.11 the interaction diagram follows the same pattern 

regardless the vertical load, thus the determination and the analytical representation 

of the pile response is facilitated, especially in the case of captivating the soil-

foundation response with the use of a mathematical tool (Macro-Element 

Modelling), as it will be formulated in the following chapters of this thesis. 

 

Shape of the failure Envelope 

As already mentioned the failure envelopes have a constant shape. In the 1st 

quadrant, the moment-horizontal load relation is almost linear, while in the 4th   an 

overstrength sector is located. The partial presentation of the curves is based on the 

symmetry that it is displayed. (1st with 3rd, 2nd with 4th quadrant, Fig.3.12)  

The shape of the interaction diagram in the 1st quadrant implies that all the external 

loads contribute in the same way in the failure mechanism, as the effect of the 

horizontal load and the moment are in the same direction and thus contribute 

adversely to the soil-foundation system. 

In the 4th quadrant the shape differentiates. As the moment is applied in the 

opposite direction, provides an overstrength sector to the horizontal load capacity 

(Q/Qu ≥ 1). In any case the soil-foundation capacity cannot exceed the pile’s plastic 

moment capacity. Thus, when the contribution of the moment to the system is more 

intense than that of the opposite vertical load, the system reaches its maximum 

resistance equal with Mu. 

 

Failure Mechanisms 

The failure of the pile-soil system is dependent of the influence and the allocation of 

the external loads, which vary the failure mechanism at each case. 

When the pile is under pure Moment a plastic hinge is developed on its top 

(Fig.3.13), while the surrounding soil plasticizes, and gapping occurs on the top 
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section of the pile (Fig.3.14). The Axial load has no additional major influence rather 

than the variation of the moment Mpl in the failure, but the plastification of the 

interface, especially at the tip of the pile is notable in small safety factors. 

Under combined moment and vertical load the plastification around the pile is much 

more significant and the plastic hinge depth increases, especially with the increase of 

the Horizontal load. As the horizontal displacements are larger, the detached pile 

area magnifies. The change of direction of the Moment does not vary the ultimate 

failure state, but provides the system with the previously mentioned overstrength. 

Finally, when the moment overcomes the lateral force, the plastic hinge is located on 

the top of the pile, with almost zero horizontal displacements, a response similar to 

that of the pile under pure Moment. 

The alteration of the plastic hinge depth is illustrated in Fig.3.15. The ratio of the 

plastic horizontal displacement to the plastic rotation is compared with the depth of 

the plastic hinge for Fsv=∞ and for Fsv=1.25. As expected there is matching, 

confirming the normality of the plastic displacements increment, validity of the 

assumed associated plastic flow rule and that the flow rule is independent from the 

moment M that acts on the pile and depends only on the lateral force Q. 

 

3.2 1x2 Pile-Group in cohesive soil 

3.2.1 Limit Equilibrium Approach 

 

The case of a fixed‐head 1x2 Pile-Group embedded in clay with constant undrained 

shear strength Su is studied. 

 

The Pile Group reaches its ultimate capacity in two possible states: when the 

moment has a major contribution on the pile-group failure, i.e. when one plastic 

hinge at each pile is developed in combination with the axial failure of one of the two 

piles (Fig.3.16(a)) or when the pile-group resistance is excited by the applied vertical 

load i.e. two plastic hinges develop at each pile.(Fig.3.16(b)) 
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Static Equilibrium for 1x2 pile-group 

From static equilibrium:                                                                                                      
 

1 1 2 2yQ P f Py f                                                                                                       (3.14) 
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As the vertical load is equally distributed to the piles from (3.13): 
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and by applying (3.16) in (3.15) 
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                                                 (3.17) 

 
 where 
 

ys ytN N                                                              for 0N   

 
ys ycN N                                                              otherwise  

 
ycN , ytN  the ultimate compressive and tensile capacity of the single pile 

respectively. 
 
By setting: 
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equation (3.17) becomes:  
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
                                                                                    (3.18)                 

 

Static Equilibrium for pure vertical load 

 
From static equilibrium:                                                                                                      
 

1 1 2 2yQ P f Py f                                                                                                        (3.19) 

1 2 12N N N N                                                                                                        (3.20) 

From (3.16): 
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                                                                                                                       (3.21) 
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2
pl y y

Q Q f f
f f P f P f

l
M N l                                  (3.22) 

 
and by applying (3.20), (3.21) in (3.22) 
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By setting: 
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Q 
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1 0
*y

Q

Q
                                                                                                                          (3.23) 

 
By taking into consideration all possible N-Q‐M combinations at the pile head the 
failure envelope for a flexible pile embedded in clay with constant undrained shear 
strength: 
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2

1
y

N
M Nys l

M

   
  

01
*y

Q
f

Q
                  for             1

*y

Q
Q

              (3.25) 
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N
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M

  
  


                 (3.26) 

1 0
y

N
f

N
   (3.27) 

 where: 

( )( ( ) 1)
2 2

c t
y t

N N
N N sign N           (3.28) 

cN , tN  the ultimate compressive and tensile capacity of the pile‐group respectively. 

Static  Equilibrium  under  axial, Horizontal  Load  and Moment  Combination  in  Vertical 

Direction 

From static equilibrium:         

2 yQ P f (3.28) 

2
2 2pl y

f
P fM M Qf   (3.29) 
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From (3.28): 

2 yQ P f                                                                                                                             (3.30) 

and by applying (3.16), in (3.15): 

2

4
2 pl

Q

Py
M M                                                                                                                  

2

1 0
2 8

M Q

Mpl MplPy
                                                                                                     (3.31) 

By setting: 

2
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2

1 0
M Q

My Qy

 
   
 

                                                                                                       (3.32) 

By taking into consideration all possible N-Q‐M combinations at the pile head the 
failure envelope for a flexible pile embedded in clay with constant undrained shear 
strength:  
 

2sgn( )( ) sgn( ) 1 0
y y

Q
Q M

M
f

Q M
                               for   1

y
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     (3.34) 

1 0
y

N
f

N
                                                                                                                 (3.35) 

 
 where: 
 

( )( ( ) 1)
2 2

c t
y t

N N
N N sign N                                                                          (3.36) 

 

cN , tN  the ultimate compressive and tensile capacity of the Pile-group respectively. 
 
Assuming an associated flow rule (in which the plastic potential function g coincides 
with the yield function f) the plastic displacement upl and the plastic rotation φpl give: 
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2
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2pl
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pl
QM

f
Q

u


   

confirming that the incremental plastic displacement vectors at the point of failure 
are normal to the yield locus. 
 

3.2.2 Finite Element Verification 

 

The problem studied is a 1x2 Pile-group that is subject to combined vertical load N, 

horizontal load Q and overturning moment. The problem is analyzed with the use of 

the advanced Finite Element code Plaxis 3D. Figure 3.17 shows the Finite Element 

Model. The size of the finite element mesh is LxLx1.5L carefully weighing the effect of 

boundaries on the pile-group’s ultimate response and the computational time. The 

piles have a diameter D=1 m and the distance between the pile centers is 3 meters. A 

4.5x1.5 m plate is used as pile-cap, while a sensitivity analysis is performed to ensure 

the fixed pile/pile-cap connection, setting its elastic modulus equal to E=300 106 KPa 

and its thickness of 1 meter. The piles have the aforementioned properties, i.e. an 

elastic modulus of E=30 106, a specific weight γ=0.1kN/m3, poisson’s ratio v=0.2 and 

its behavior is governed by the Mohr-Coulomb model with c = 15262 KPa, φ=0 and 

tension cut-off strength equal to 7534 KPa. Interfaces are placed between the piles 

and the soil enabling  gapping and slippage with a friction coefficient R=1.  The soil is 

Clay with γ=20kN/m3 constant with the depth Su=50 KPa and Es=25000kPa, obeying 

the Mohr-Coulomb model too and the Possion’s ratio is v=0.45 to simulate undrained 

conditions. The final model consists of 43000 elements with a finer discretization 

around the pile-group. 

The steps followed in the numerical experiments are similar to the single pile 

investigation. The total failure Envelopes of the soil-foundation system are extracted 

by applying various horizontal load – moment combinations for seven different safety 

factors from ultimate axial tensile to ultimate compressive capacity for  direction X, 

where the full pile-group function is activated and Y where the system behaves as a 

sum of two independent piles. (Fig.3.18)  
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3.2.3 Results 

X Direction 

As demonstrated in Fig.3.19 the proposed analytical expressions fit satisfactorily the 

failure envelopes extracted from the finite element modelling. There is a normalized 

partial presentation of the interaction diagrams, exactly as in the case of the single 

pile, due to the symmetry that is displayed.  For their calibration the following values 

are set for the Eq.3.2: λ1=10, λ2=2, which are dimensionless quantities and the factor 

for the earth pressure distribution J=1, value that is between the ones proposed by 

Matlock (0.25) and Reese (2.83). The alternation of the plastic Moment is inserted by 

the already mentioned Equation 3.13, and the interaction between the piles is taken 

into account by introducing the appropriate Py-Multiplayers proposed by Reese et al 

that reduce the ultimate soil reaction per unit length Py. In this case fm1=0.93 and 

fm2=0.73 for the leading and trailing pile respectively. 

In contrary to the failure envelopes of the single pile, the ones derived for the pile-

group do not have a constant pattern, but it differentiates in respect to the applied 

axial load. 

When the pile-group is under moment and axial loading the system reaches its full 

resistance when 1 plastic hinge is developed at each pile – pile-cap connection and 

one pile reaches its ultimate compressive or tensile axial capacity, depending on 

which will be reached first. Thus when the pile-group is subjected to compressive or 

tensile axial load, the pile fails in compression or tension respectively, while when no 

axial load is applied, the pile reaches its tensile capacity. 

 Under the combined moment, axial and horizontal loading the pile-group has the 

exact same behavior at the failure state, with the depth of the plastic hinge 

magnifying with the increase of the lateral load, up to the point that a second plastic 

hinge is developed at the pile-pile-cap connection (Eq.25) and the failure mechanism 

is modified. Until then, either the horizontal load and the moment are in the same 

direction and thus contribute adversely to the soil-foundation system or as the 

moment is applied in the opposite direction, provides an overstrength sector to the 
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horizontal load capacity (Q/Qy ≥ 1). The pivot point is located always at the head of a 

pile. 

At the state that two plastic hinges are developed on each pile the lateral load 

reaches its ultimate value Qmax while the moment has no contribution in the failure 

as it is surmounted by the opposite lateral load and the axial soil reaction at the tip 

of the piles, while the foundation is barely rotated. Thus the lateral capacity remains 

constant regardless the value of the opposite moment until the moment reaches its 

maximum value Mu, where it overcomes the converse horizontal load and the 

ultimate state consists of the occurrence of the axial failure of one pile in 

combination with a plastic hinge at each pile-pile-cap connection. 

Fig.3.20 and Fig.3.21 present an overview of the different failure mechanisms for 

different factors of safety, displaying the plastic hinge development and the axial 

strain of the piles, clarifying that regardless the change of the interaction diagram 

shape, the behavior of the pile-group remains similar. 

Finally, the effect of the axial load to the plastic moment of the piles can clearly be 

identified in the increase of Qmax with the growth of the vertical force (Fig.3.22(a)). 

On the contrary the maximum moment is located for safety factor Fsv=∞, as the 

influence of the axial load has an adverse impact on it (Fig3.22(b)). A more 

comprehensive view can be captured from the 3-D failure surface of the foundation. 

(Fig.3.23-26) 

 

Y Direction 

The Interaction Diagrams for the 1x2 Pile-Group loaded in combined moment, axial 

and vertical load in Y-Direction are presented in Fig 3.23. The matching between the 

derived expressions from the finite equilibrium approach and the numerical 

experiments is satisfactory. For their calibration the following values are set for the 

Eq.3.2: λ1=10, λ2=2, which are dimensionless quantities and the factor for the earth 

pressure distribution J=1.1, value that is between the ones proposed by Matlock 

(0.25) and Reese (2.83) and equal to the value for the single pile. The alternation of 

the plastic Moment is inserted by the Equation 3.13, and the interaction between the 
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piles is taken into account by introducing the appropriate Py-Multiplayers proposed 

by Reese et al that reduce the ultimate soil reaction per unit length Py. In this case 

fm1= fm2=0.93, as both piles behave as leading piles. 

The shape of failure envelopes is equal with that of the single pile, while the pattern 

remains constant regardless the axial load (Fig.3.24). The value Mu is equal with 2 

times the ultimate moment capacity of the single pile, while the pure lateral 

resistance is remotely lower than 2 times due to the interaction between the two 

piles (Fig.3.25).  

The failure mechanisms of the pile-group are similar to those of the single pile. When 

the pile-group is under pure Moment a plastic hinge is developed on its top 

(Fig.3.26), while the surrounding soil plasticizes notably around the foundation, and 

gapping occurs on the top section of the piles (Fig.3.27). The Axial load has no 

additional major influence rather than the variation of the moment Mpl in the 

failure, but the plastification of the interface, especially at the tip of the pile is 

notable in small safety factors.  

Under combined moment and vertical load the plastification around the pile is much 

more significant and the plastic hinge depth magnifies, in respect to the increase of 

the Horizontal load. As the horizontal displacements are larger, the detached pile 

area magnifies. The change of direction of the Moment does not vary the ultimate 

failure state, but provides the lateral resistance with overstrength. 

Finally, when the moment surmounts the lateral force the plastic hinge is located on 

the top of the piles, as in the case of the pile-group under pure Moment. 

 

Comparison 

The overstrength of the pile-group when its full group function is activated is 

displayed in Fig.3.31. The difference in the Moment capacity is based on the ability 

of the foundation to enhance the moment not only through the plastic resistance of 

the pile material but also by the absorbance of the load as axial force too. This 

behavior is independent of the axial load applied. Moreover the maximum lateral 
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resistance is provided for a wider range of moment-horizontal loads combinations, 

while the slightly lower maximum value is related to the different failure mechanism 

of the pile-group under that load combination and  the higher interaction level of the 

piles. 

 

3.3 2x2 Pile-Group in cohesive soil 

3.3.1 Limit Equilibrium Approach  

 

X Direction 

The Pile Group reaches its ultimate capacity in two possible states: when the 

moment has a major contribution on the pile-group failure, i.e. when one plastic 

hinge at each pile is developed in combination with the axial failure of two of the 

four piles (Fig.3.32(a)) or when the pile-group resistance is excited by the applied 

vertical load i.e. two plastic hinges develop at each pile.(Fig.3.32(b)) 

 

Static Equilibrium for 2x2 pile-group 

From static equilibrium:                                                                                                      
 

1 1 2 2 3 3 4 4 1 1 3 32 2y y y y y yQ P f P f P f P f P f P f                                   (3.37) 

 

1 3
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M M f f N l l                   (3.38) 

As the vertical load is equally distributed to the piles from (3.37): 
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and by applying (3.39) in (3.38) 
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                                            (3.40) 

ys ytN N                                                              for 0N   

 
ys ycN N                                                              otherwise  

 
ycN , ytN  the ultimate compressive and tensile capacity of the single pile 

respectively. 
 
By setting: 
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equation (3.17) becomes:  
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Static Equilibrium for 2x2 pile-group under pure vertical load 

 
From static equilibrium:                                                                                                      
 

1 1 2 2 3 3 4 4 1 1 3 32 2y y y y y yQ P f P f P f P f P f P f                                   (3.42) 

1 2 3 4 14N N N N N N                                                                                     (3.43) 

From (3.42): 
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and by applying (3.44), (3.43) in (3.45): 
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By setting: 
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By taking into consideration all possible N-Q‐M combinations at the pile head the 
failure envelope for a flexible pile embedded in clay with constant undrained shear 
strength: 
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                                                                                                                 (3.50) 

 
 
 where: 
 

( )( ( ) 1)
2 2

c t
y t

N N
N N sign N                                                                          (3.51) 

 

cN , tN  the ultimate compressive and tensile capacity of the Pile-group respectively. 
 

Static Equilibrium for 2x2 pile-group under combined load in diagonal direction 

 

The Pile Group reaches its ultimate capacity in three possible states: when the pivot 

point is in the center of the pile-cap and the moment has a major contribution on the 

pile-group failure, i.e. when one plastic hinge at each pile is developed in 

combination with the axial failure of the outer piles (Fig.3.32(a)), when the pivot 

point is at the head of an outer pile and the moment has a major contribution on the 

pile-group failure, i.e. when one plastic hinge at each pile is developed in 

combination with the axial failure of the other three piles or when(Fig.3.32(b)) the 

pile-group resistance is excited by the applied vertical load i.e. two plastic hinges 

develop at each pile(Fig.3.32(c)) . 

Failure type (a) 

From static equilibrium:                                                                                                      
 

1 1 2 2 3 3 4 4 1 1 2 2 4 42y y y y y y yQ P f P f P f P f P f P f P f                             (3.52) 
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From (3.52): 
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and by applying (3.54) in (3.53): 
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ys ytN N                                                              for 0N   

 

ys ycN N                                                              otherwise  

 

ycN , ytN  the ultimate compressive and tensile capacity of the single pile 

respectively. 
 
By setting: 
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equation (3.55) becomes:  
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Failure type (b) 

From static equilibrium:                                  
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From (3.57): 
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and by applying (3.59) in (3.58): 
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ys ytN N                                                              for 0N   

 

ys ycN N                                                              otherwise  

 

ycN , ytN  the ultimate compressive and tensile capacity of the single pile 

respectively. 
 
By setting: 
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equation (3.60) becomes:  
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Failure type (c)  
 
From static equilibrium:                                                                                                      
 

1 1 2 2 3 3 4 4 1 1 2 2 4 42y y y y y y yQ P f P f P f P f P f P f P f                     (3.62) 

1 2 3 4 14N N N N N N                                                                                     (3.63) 

From (3.62): 
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and by applying (3.63), (3.64) in (3.65) 
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By taking into consideration all possible N-Q‐M combinations at the pile head the 
failure envelope for a flexible pile embedded in clay with constant undrained shear 
strength: 
 
 
 
 
 
When the pivot point is at the center: 
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When the pivot point is at the outer pile: 
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cN , tN  the ultimate compressive and tensile capacity of the pile-group respectively. 

 

3.3.2 Finite Element Verification 

 

The problem studied is a 2x2 Pile-group subjected to combined vertical load N, 

horizontal load Q and overturning moment. The problem is analyzed as previously 

with the use of the advanced Finite Element code Plaxis 3D. Figure 3.33 shows the 

Finite Element Model. The size of the finite element mesh is LxLx1.5L taking into 

consideration the effect of boundaries on the pile-group’s ultimate response and the 

computational time. The piles have a diameter D=1 m and the distance between all 

the pile centers is 3 meters. A 5x5 m plate is chosen as pile-cap, while a sensitivity 

analysis is performed to ensure the fixed pile/pile-cap connection, setting its elastic 

modulus equal to E=300 106 KPa and its thickness of 1 meter. The piles have the 

aforementioned properties, i.e. an elastic modulus of E=30 106, a specific weight 

γ=0.1kN/m3, poisson’s ratio v=0.2 and its behavior is governed by the Mohr-Coulomb 

model with c = 15262 KPa, φ=0 and tension cut-off strength equal with 7534 KPa. 

Interfaces are placed between the piles and the soil enabling gapping and slippage 

with a friction coefficient R=1.  The soil is Clay with γ=20kN/m3 constant with the 

depth Su=50 KPa and Es=25000 KPa, obeying the Mohr-Coulomb model too and the 
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Possion’s ratio is v=0.45 to simulate undrained conditions. The final model consists of 

63000 elements with a finer discretization around the pile-group. 

The steps followed in the numerical experiments are similar to the previous 

investigation. The total failure Envelopes of the soil-foundation system are extracted 

by applying various horizontal load – moment combinations in the normal (θ=0o) and 

diagonal direction (θ=45o)  for seven different safety factors from ultimate axial 

tensile to ultimate compressive capacity. (Fig.3.34)  

 

3.3.3 Results 

 

X Direction 

As displayed in Fig.3.35 the proposed fit and the results from the numerical 

experiments match excellently. .  For the calibration of the analytical expressions the 

following values are set for the Eq.3.2: λ1=10, λ2=2, which are dimensionless 

quantities and the factor for the earth pressure distribution J=1.1, value that is 

between the ones proposed by Matlock (0.25) and Reese (2.83). The alternation of 

the plastic Moment is inserted by the already mentioned Equation 3.13, and the 

interaction between the piles is taken into account by introducing the appropriate 

Py-Multiplayers proposed by Reese et al that reduce the ultimate soil reaction per 

unit length Py. In this case fm1=0.866 and fm2=0.62 for the two leading piles and the 

two trailing piles respectively. 

As the 2x2 pile-group is practically composed by two 1x2 pile-groups and its behavior 

is similar to the 1x2 pile-group in the x direction the shape of the failure envelopes is 

the same. This can clearly be depicted in the 3-dimensional failure surface of the 2x2 

pile-group (Fig.3.36-39), which is identical in terms of normalized values. Thus there 

is no constant shape of the interaction diagram, but it changes in respect to the axial 

load. Moreover in terms of pure capacities, the lateral resistance magnifies by the 

increase of the axial load, due to the increase of the plastic moment resistance, while 

the axial load has a negative effect in the moment capacity (Fig.40). 
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The failure mechanisms have the same resemblance and are divided in three parts 

(Fig.3.41-42). One part where one plastic hinge is developed at each pile and either 

the leading or the trailing piles reach their ultimate capacities (a). The place of the 

plastic hinge from the top of the piles for pure moment load is shifted deeper under 

the increase of the horizontal load. In this case the pivot point is always located at 

the head of a pile. The other part is when the lateral load overcomes the 

contribution of the moment at the system and two plastic hinges are developed at 

each pile, while the foundation’s rotation is practically zero (b). Finally, when the 

moment surmounts the opposite vertical load, the system reaches the failure state 

under the same mechanism of the first part, with the plastic hinge being located at 

the pile-pile-cap connection (c). 

 

Diagonal direction 

The results from the finite element model and the proposed analytical fit are 

presented in Fig.3.43. For the soil reaction the following values are inserted in the 

analytical equations: λ1=10, λ2=2, which are dimensionless quantities and the factor 

for the earth pressure distribution J=1.1. In addition, in order to include the 

interaction between the piles in the system behavior the Py-Multiplayers proposed 

by Reese are: fm1=0.866 for the trailing pile, fm2=0.77 for the two middle piles and 

fm3=0.57 for the trailing pile. 

As it is displayed, the shape of the failure envelopes are similar with those of the 1x2 

and the 2x2 pile-group although the failure mechanism is differs. That is a very 

interesting conclusion in the research of the generalized pile-group failure 

expressions. For big safety factors, i.e. for small axial loads, under combined moment 

and lateral load, the pivot point is located in the center of the pile-group (Fig 

.3.44(a)). Thus the system reaches its ultimate capacity when one plastic hinge is 

developed at each pile and one of the outer piles reaches its ultimate compressive or 

tensile axial capacity, depending on which will be reached first. Thus when the pile-

group is subjected to compressive or tensile axial load, the pile fails in compression 

or tension respectively, while when no axial load is applied, the pile reaches its 
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tensile capacity. When the axial load has a major contribution in the system’s 

behavior the pivot point is relocated at one of the outer piles (Fig .3.44(b)). The 

system reaches its ultimate capacity, when one plastic hinge is developed at each pile 

and the two central piles and the one outer pile fail axially. In both cases when the 

lateral load increases and the moment nullifies or is applied in the opposite direction 

the system reaches its maximum horizontal capacity by developing 2 plastic hinges at 

each pile. Finally the system cannot exceed its maximum moment capacity Mu, even 

when the horizontal load is applied in the opposite direction. 

 

Comparison 

In Fig.3.48 the maximum capacities of the pile-group under loads in X- and diagonal 

direction are compared. In every case the ultimate lateral reaction is practically the 

same. The difference in the response under the different loads is visible through the 

moment capacities. For big safety factors the pile-group loaded in x direction has 

greater resistance, but as the axial failure is closer the pile-group under diagonal 

loading has greater capacity loading. This is also explained and from the analytical 

expressions, as in x-direction the pile-group displays its maximum moment resistance 

when no axial load is applied, while in the diagonal direction the longer distance of 

the piles from the pivot point leads to longer moment arm i.e. increased moment 

resistance. 





Figures





Figure 3.2 flexible pile embedded in cohesive soil with constant Su 
distribution with depth 

Figure 3.1 a) Rugby-balls shaped yield surface for surface 
foundations in cohesionless soil and b) yield surface for surface 

foundations on cohesive soil. 

(a) 

(b) 
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Figure 3.2 Finite Element Model for flexible pile in clay  
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Figure 3.3(a) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of flexible piles  for 6 

different factors, given in normalized values. 
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Analytical Expression FEM

Fsv = -2 Fsv = -1.052

Figure 3.3(b) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of flexible piles  for 6 
different factors, given in normalized values. The foundation may experience gapping and 

slippage according to a Coulomb friction law with a coefficient of R = 1. 
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Figure 3.4 Illustration of the effect of the factor of safety against vertical bearing capacity 
failure to the magnitude of the normalized interaction curves 
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Analytical Expression FEM
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Figure 3.6 The dimensionless (α) pure horizontal capacities (b) moment capacities derived 
from the FE analyses (data points) are compared to the proposed analytical expression (lines). 
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Figure 3.5 Illustration of the alteration of the pile’s plastic moment in respect to the axial 
load
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Figure 3.7 Failure Surface (in 3-Dimensional M-Q-N space) of flexible Pile in cohesive soil

Figure 3.8 Perspective of M-N Failure Surface (in 3-Dimensional M-Q-N space) of flexible 
Pile in cohesive soil
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Figure 3.9 Perspective of Q-N Failure Surface (in 3-Dimensional M-Q-N space) of flexible 
Pile in cohesive soil

Figure 3.10 Perspective of Q-M Failure Surface (in 3-Dimensional M-Q-N space) of flexible 
Pile in cohesive soil
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Figure 3.11 Illustration of the effect of the factor of safety against vertical bearing 
capacity failure to the shape of the normalized interaction curves 
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Figure 3.12 Representation of the symmetry displayed in the interaction diagram. 
(1st with 3rd, 2nd with 4th quadrant)
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Figure 3.13 Illustration of the plastic strain magnitude contours developed at 
characteristic points along the yield surface for 5 distinct factors of safety against vertical 

loading 
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Figure 3.14 Illustration of the Mohr-Coulomb and Tension cut-off points developed at 
characteristic points along the yield surface for 5 distinct factors of safety against vertical 

loading 
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Figure 3.15 Illustration of the plastic hinge depth f in respect to the load combination angle θ
Comparison of the ratio of the plastic horizontal displacements to the plastic rotation with 

the depth of the plastic hinge for Fsv=∞ ,Fsv=1.25 and the analytical expression.
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Figure 3.16(a) Pile-group embedded in cohesive soil with constant Su distribution with depth, 
where one plastic hinge at each pile is developed (b) Pile-group embedded in cohesive soil 

with constant Su distribution with depth, where two plastic hinges at each pile are developed 
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Figure 3.17 Finite Element Model for 1x2 Pile-group in clay  

Figure 3.18 Load directions of the 1x2 Pile-group
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Figure 3.19(a) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 1x2 Pile-group for 7 

different factors, given in normalized values. 
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Figure 3.19(b) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 1x2 Pile-group for 7 

different factors, given in normalized values. 
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Figure 3.20 Illustration of the plastic hinges  through the plastic strain magnitude contours 
in the piles the for 3 distinct factors of safety against vertical loading for the three different 

failure mechanisms
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Figure 3.21 Illustration of the vertical displacements magnitude of the piles for 3 distinct 
factors of safety against vertical loading for the three different failure mechanisms
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Analytical Expression FEM
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Figure 3.22 The dimensionless (α) pure horizontal capacities (b) moment capacities of the 1x2 
pile-group derived from the FE analyses (data points) are compared to the proposed analytical 
expression (lines). 
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Figure 3.23 Failure Surface (in 3-Dimensional M-Q-N space) of 1x2 Pile-group in cohesive 
soil

Figure 3.24 Perspective of M-N Failure Surface (in 3-Dimensional M-Q-N space) of 1x2  
Pile-group in cohesive soil
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Figure 3.25 Perspective of Q-N Failure Surface (in 3-Dimensional M-Q-N space) of 1x2 Pile-
group in cohesive soil

Figure 3.26 Perspective of Q-M Failure Surface (in 3-Dimensional M-Q-N space) of 1x2 
Pile-group in cohesive soil
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Figure 3.27 (a)Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 1x2 pile-group in Y 

direction for 7 different factors, given in normalized values. 
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Analytical Expression FEM

Figure 3.27 (b)Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 1x2 pile-group in Y 

direction for 7 different factors, given in normalized values. 
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Figure 3.28 Illustration of the effect of the factor of safety against vertical bearing capacity 
failure to the magnitude of the normalized interaction curves for 1x2 Pile-group under load 

in Y direction

Figure 3.29 Comparison of the 1x2 Pilegroup under load in Y direction with the response of 
the sum of two single flexible piles normalized to the capacity of the single flexible pile
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Figure 3.30 Illustration of the plastic strain magnitude contours developed at 
characteristic points along the yield surface for 5 distinct factors of safety against vertical 

loading 
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Figure 3.31 Illustration of the Mohr-Coulomb and Tension cut-off points developed at 
characteristic points along the yield surface for 5 distinct factors of safety against vertical 

loading 
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Figure 3.31 Comparison of the behavior of the 1x2 Pile-Group under loading in X and Y 
direction for three different factors of safety
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Figure 3.32(a)  2x2 Pile-group embedded in cohesive soil with constant Su distribution 
with depth under diagonal combined loading:(a) failure type A

Figure 3.32(b)  2x2 Pile-group embedded in cohesive soil with constant Su distribution 
with depth under diagonal combined loading:(b) failure Type B
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Figure 3.32(c)  2x2 Pile-group embedded in cohesive soil with constant Su distribution with 
depth under diagonal combined loading: (c) failure Type C
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Figure 3.33 Finite Element Model for 1x2 Pile-group in clay  
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Figure 3.34 Load directions of the 2x2 Pile-group: (a) in x direction (b) diagonal (θ=45o)
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Figure 3.35(a) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 2x2 pile-group in X 

direction for 7 different factors, given in normalized values. 
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Figure 3.35(b) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 2x2 pile-group in X 

direction for 7 different factors, given in normalized values. 
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Figure 3.35(c) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 2x2 pile-group in X 

direction for 7 different factors, given in normalized values. 
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Figure 3.36 Failure Surface (in 3-Dimensional M-Q-N space) of 2x2 Pile-group in cohesive 
soil
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Figure 3.37 Perspective of M-N Failure Surface (in 3-Dimensional M-Q-N space) of 2x2  

Pile-group in cohesive soil
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Figure 3.38 Perspective of Q-N Failure Surface (in 3-Dimensional M-Q-N space) of 1x2 Pile-

group in cohesive soil
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Figure 3.40 The dimensionless (α) pure horizontal capacities (b) moment capacities of the 
2x2 pile-group derived from the FE analyses (data points) are compared to the proposed 

analytical expression (lines). 
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Figure 3.39 Perspective of Q-M Failure Surface (in 3-Dimensional M-Q-N space) of 1x2 
Pile-group in cohesive soil

102



M/My

Q/Qy

(a)

(b)

(c)

Figure 3.41 Illustration of the plastic strain magnitude contours for 3 distinct factors of 
safety against vertical loading for the three different failure mechanisms
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Figure 3.42 Illustration of the plastic hinges of the piles for 3 distinct factors of safety 
against vertical loading for the three different failure mechanisms
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Figure 3.43(a) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 2x2 pile-group in 

diagonal direction for 7 different factors, given in normalized values. 
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Fsv= -5 Fsv = -2

Figure 3.43(b) Comparison between the data derived from the numerical experiments 
(points) and the analytical expression proposed for the yield surfaces of 2x2 pile-group in 
diagonal direction for 7 different factors, given in normalized values. 
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(a) (b) 

Figure 3.44 Illustration of the position of the pivot point at: (a) the head of the central 
piles for large factors of safety Fsv, (b) at the head of an outer pile for small factors of 
safety Fsv.

Figure 3.45 The dimensionless (α) pure horizontal capacities (b) moment capacities of the 2x2 
pile-group under combined loading in diagonal direction derived from the FE analyses (data 

points) are compared to the proposed analytical expression (lines). 
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(c)

Figure 3.46 Illustration of the plastic hinges of the piles for 3 distinct factors of safety 
against vertical loading for the three different failure mechanisms
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Figure 3.47 Illustration of the the plastic strain magnitude contours for 3 distinct factors of 
safety against vertical loading for the three different failure mechanisms
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Figure 3.48(a) Comparison between the 2x2 pile-group capacity under combined loading in 
x- and diagonal direction for the same factor of safety
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Figure 3.48(b) Comparison between the 2x2 pile-group capacity under combined loading in 
x- and diagonal direction for the same factor of safety
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4 Macroelement Modeling 

 

4.1 Introduction 

 

Many applications in civil engineering incorporate the uniform approach of the 

interaction effects observed in the structures, their foundations and the surrounding 

soil, which can display intense non-linear behavior, affecting the superstructure and 

its design. Due to the complicated, demanding, time consuming process for capturing 

the non- linear behavior of the soil  and structure material and the geometrical non-

linearities at the interface between the soil and the foundation (e.g. sliding, gapping, 

uplifting) geotechnical engineers have developed simplified mathematical models to 

encounter these kind of problems. These models can easily be installed in the 

software used by the structural engineers, in target of representing all these non-

linearities at the level of the foundation, facilitating the precise dimensioning of the 

superstructure and the foundation. One basic category is the replacement of the 

surrounding soil with Winkler type springs (Fig.4.1). In this method, the whole soil is 

substituted with uncoupled horizontal, vertical and rotational springs, which obey 

appropriate behavior rules (e.g. elastoplastic behavior). The assumption of the 

uncoupled springs has the advantage of the simple mathematical processing of the 

results, like the numerical integration of the local spring response with the aim of 

reproducing the general foundation behavior.  The drawback of this model is the 

difficulty in the calibration of the spring parameters, which sometimes is 

insurmountable and at the same time this simplified assumption is unrealistic, as in 

all geotechnical problems the coupling of the various degrees of freedom is 

necessary. In the past, research has been conducted from various engineers for the 

representation of the foundation behavior in terms of Winkler modeling. [Housner 

1963; Chopra 1984; Chen and Lai 2003; Houlsby, Cassidy, Einav 2005; Einav, Cassidy 

2005; Gerolymos and Gazetas 2006; Allotey, El Naggar 2007].   
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 A new category of mathematical modeling for the uniform reproduction of the soil-

foundation interaction effects is developing the past years, which is based on the 

simulation of the total foundation system through macro-element modeling (Fig.4.2). 

In this case, the total soil-foundation system is replaced by a single element of 6 (3-D 

approach) or 3 (2-D approach) degrees of freedom, able to represent satisfactorily 

the systems behavior in terms of ‘’force-displacement’’ in respect to a specific point 

of reference. [Chatzigogos, Figini, Pecker and Salençon 2011]. Extensive research has 

been performed in the specific model category for shallow foundations, which is 

related with the involvement of the plasticity theory. Roscoe και Schofield [1956, 

1957] where the first who connected the study of foundations through a macro-

element formulation with the plasticity theory. Nova και Montrasio [1991] through a 

series of experimental results managed to calibrate an elasto-plastic model of 

shallow foundation under the isotropic hardening law for the total soil-foundation 

system. This model was modified by Paolucci (1997) and extended by Pedretti (1997) 

for a more precise representation of the system behavior under cyclic loading. 

Crémer [2001] and Crémer et al. [2001] presented a more sophisticated macro-

element model, by introducing two coupled response mechanisms:(a) the anelastic 

soil-foundation response and (b) the uplifting between the foundation and the soil 

under intense loading, providing the possibility of the independent activation of 

these two mechanisms depending the conditions of each examined problem. 

In addition Le Pape and Sieffert [2001] used the model of Nova and Montrasio in 

scope of studying geotechnical earthquake engineering problems, basic their model 

to thermodynamic principals. Grange, Kotronis and Mazars [2008] developed an 

appropriate model for the representation of the circular shallow foundations 

behavior under 3 dimensional load. Finally Gerolymos and Souliotis [2012] have been 

one of the first macro-element approaches regarding caisson foundations.  

It is clear that most research is focused on the shallow foundations, while almost 

none is done in the case for deeply embeeded and pile foundations. In this diploma 

thesis, one of the main goals is the compilation of an appropriate uniform 

mathematical tool through macro-element modeling, able to combine the 

mathematical expressions and the physical findings, in order to reproduce the 
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behavior of pile foundations without the need of new time-consuming 3-D finite 

element analysis. In the next sections the mathematical backround, the expressions 

and the laws combining all the tools for the macro-element model are presented, 

while its function is tested in comparison to the data derived from the numerical 

experiments. 

 

4.2 Definition of the problem 

 

 The term Macro-element modeling originates from the scope of the macroscopic 

observation of the total foundation, providing the necessary information in terms of 

force-displacement and including all the mathematical and physical information in a 

single element. After determining all the theoretical aspects of the response of pile 

foundations, the quantification of the behavior through appropriate analytical 

expressions takes place, in target of incorporating them in the uniform mathematical 

tool presented in this chapter. Thus the connection between all those results and 

expressions through the correct laws and equations is performed and the 

examination of the validity of the model through the comparison with the results 

from the finite-element analysis. 

Recent research has shown that the use of the laws and equations provided by the 

plasticity theory (work-hardening plasticity theory) can be immediate applicable in 

the elastoplastic foundation models for cohesive soils in undrained conditions 

[Martin and Houlsby 2000], while the soil-foundation system is replaced by a single 

element at under combined vertical, horizontal and moment load. It has been 

demonstrated that this approach provides better results in comparison to Winkler based 

model, as it is capable of representing fully realistically and easily the coupling between 

the various degrees of freedom, a point where the Winkler springs lack. Furthermore 

geotechnical engineers are already familiar with the physics that the work-hardening 

plasticity theory provides, because it has been utilized for the development of various 

constitutive soil material models (e.g. Cam-Clay constitutive model). It can 

macroscopically be claimed actually, that the application of the plasticity theory in the 
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pile foundation problems is the same with that used in the above mentioned 

constitutive laws, by simply replacing the appropriate parameters. The stresses and 

strains of the soil elements are substituted by the generalized loads (in 3-dimensional 

M-Q-N space) and the consequent displacements ((θ – u – v) respectively. Thus in the 

next sections the 4 main components [Martin and Houlsby 2000] of the process for 

developing the uniform mathematical tool are analyzed: (a) the definition of the elastic 

response of the foundation, through the appropriate elastic stiffness matrices for the 

active degrees of freedom, (b) the definition of the failure envelopes of the pile 

foundations (yield surfaces) in the generalized 3-dimensional M-Q-N space, which 

provide the limit between the elastic and the anelastic response of the system, (c) the 

definition of the appropriate plastic flow rule of the foundation’s displacements, which 

provide the necessary information for the magnitude and the relation that have to each 

other the increments at the point of reference on the top of the foundation, at the time 

of the system’s yielding, (d) the definition of the appropriate hardening law), which 

defines in which way and how much the plastic displacements influence the shape and 

the magnitude of the yield surfaces. During the development of the above mentioned 

components emphasis is given to the mathematical depiction of the process, while the 

physical perspective is already provided in the previous chapters of this thesis. In Fig.4.3 

a flowchart of the steps followed for the development of the macro-element formulation 

is provided, together with the influence of each of them to the response of the pile 

foundation in terms of ‘force-displacement’.  

In this thesis a macro-element model is developed able to simulate the behavior of a 

single flexible-pile foundation in cohesive soil and its expansion for a 1x2 pile-group. 

 

4.3 Elastic Response 

 

In order to capture the appropriate elastic response of pile foundations the suitable 

elastic stiffness matrices are formed. More specifically, for the representation of the 

foundation’s behavior at small strains the correct stiffness expressions are selected 

from the bibliography for the horizontal and vertical degrees of freedom. These 

matrices associate the loads with the subsequent displacements and depend mainly 
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from the geometry of the foundation, its material properties and the elastic 

parameters of the soil. 

In this thesis the monotonic load of the foundation under static condition is studied. 

Thus the elastic stiffness matrix at the top of the pile is formulated: 

0 0
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el h hr

rh r

K

K K K

K K



 
 
 
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                                                                                                  (4.1) 

 where: 

 Kv the elastic stiffness for the vertical direction  

 Kh the elastic stiffness for the horizontal direction 

 Kr the elastic stiffness against rotation 

 Khr=Krh the elastic interaction stiffness between the rotational and horizontal 

load  

The above mentioned parameters are according to Gazetas - Milonakis equal 

to:  
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Ep : Modulus of elasticity of the pile 

sE :  Modulus of elasticity of the soil 

pA : Area of the section of the pile 

Ip :  Moment of inertia of the pile 

 h :  Depth of the tip of the pile 
 v :   Soil’s Poisson’s ratio  

D :  Diameter of the pile 

sG : Soil’s shear modulus of elasticity 
 

The function of the above mentioned elastic stiffness matrix is displayed in Fig.4.4, 

where only the head of the foundation is taken into account with the total properties 

of the soil-foundation system, while the rest of the pile and the surrounding soil are 

neglected. 

4.4 Yield surfaces 

The yield surfaces of pile foundations that are inserted in the model define the limit 

between the elastic and anelastic behavior of the soil-foundation system. Their shape 

and analytical expression are determined in a previous chapter of this thesis: 
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cN , tN  the ultimate compressive and tensile capacity respectively. 
 

According to the above mentioned analytical expressions the estimation of the 

loading state of the pile foundation takes place. Knowing the geometry of the pile 

and the properties of the pile material and the soil (e.g. the undrained shear strength 

Su, the elasticity modulus) the total yield surfaces can be calculated and compared 

with the applied Load-Moment combination. Thus it is easily determined if the 

specific system behaves elastically or if the maximum capacity is reached. 

Finally, after deriving the ultimate capacity of the foundation, the increments of the 

plastic displacements at the failure state are determined. In other words, the total 

representation of the post-elastic behavior of the pile is strived through the 

prediction of the developing plastic failure displacements through the adoption of an 

appropriate plastic flow rule. 

 

4.5 Plastic flow rule 

 

As it was previously proven by Gerolymos et al, and confirmed through the numerical 

experiments in this thesis, for the most accurate simulation of the pile foundation 

behavior in cohesive soil the election of an associated plastic flow rule with the 

connected consequence of the normality of the strains to the failure envelopes of 

the foundation is proposed. The use of the specific flow rule is convenient too, as 
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there is no need for the extraction of a new equation that would represent the 

plastic potential at the failure of the foundation, but the use of the same expressions 

is adequate. Thus the associate plastic flow rule is expressed in the following form: 
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                                                                                         (4.9) 

 
The above mentioned equations connect the alteration of the yield equation f in 

respect to the M, Q, N loads with the relative plastic displacements at the failure 

state. λ is a non-negative multiplication factor, which represents the magnitude of 

the plastic displacements at the failure, in respect to the M/Q/N ratio, under the 

basic presupposition that an elastoplastic load step remains on the yield surface 

[Cassidy, Martin, Houlsby 2004]. More specifically for the prediction of the development 

of plastic displacements the calculation of the partial derivatives of the yield function f is 

needed. 

 

4.6 Hardening law 

 

In a mathematical model, as the one developed in this thesis, that is based on the 

plasticity theory, the macroscopic foundation behavior in F-δ terms is determined 

exactly in the same way as in the soil material constitutive models, through a stress-

strain relation: the load is applied increasingly and the mathematical model 

calculates numerically the up-to-date tangent stiffness matrices of the system at 

each step, producing the equivalent displacements. As in the classic plasticity theory, 

the change of a load vector of the foundation system in the yield surface leads to the 

development of elastic displacements exclusively. A load route that intersect the 

above mentioned yield surface (and remains on it) produces plastic displacements, 



Chapter 4 

 

123 
 

the incremental components of which are determined from the plastic flow rule that 

is adapted and the appropriate hardening law. E.g. Cassidy et al. [2004] developed a 

mathematical model based on plasticity theory for the study of the response of 

spudcan foundations used in offshore engineering. As displayed in Fig. 4.5. their 

project was based at the hardening law that depends exclusively at the vertical 

displacement of the soil-foundation system (singe- surface strain- hardening 

plasticity model), affecting the development of the yield surface in respect to the 

magnitude of the vertical load, as due to the special geometry of the specific 

foundation type, the embedment level depends principally to the vertical load 

applied and the consequent plastic vertical plunge. Thus the increase of the vertical 

load, magnifies the embedment extent, but also the system is closer to the maximum 

failure capacity in 3-dimensional M-Q-N space. 

In the macro-element model developed here, a hardening law dependent to the 

produced work of the system is adopted (work-hardening plasticity theory). F is the 

vector of the load and δ the vector of the developed displacement. Thus the 

produced work W is equal: 

W F   ,                                                                                                                        (4.10) 

 where: 
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As it is displayed in Fig.4.6. the pile foundation response is studied per F  steps, 

calculating the up to date tangent stiffness matrix of the system and by inverting it 

the increments of the displacement vectors are determined. Moreover three 

hardening parameters are inserted, able to describe every aspect of the studied 

foundation system: (a) parameter a, (b) parameter n and (c) parameter couple b and 

g. 
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Hardening parameters 

 

(a) Monotonic load parameters. 

The hardening parameter n controls the transition rate between the elastic part 

of the response to the yield state. A large value of the parameter n (e.g.10) 

depicts carefully a bilinear diagram ‘’force-displacement’’, while small values 

provide a smoother transition between the two areas, while plastic 

displacements occur even in low load levels. In Fig. 4.7 the role of the n 

parameter is depicted according to Gerolymos and Gazetas (2006). 

Moreover the parameter a defines the magnitude of the observed hardening and 

is equal with the ratio of the soil-foundation system after the yielding to the 

elastic one. In Fig 4.8 the influence of parameter a in monotonic curves is 

presented. In the mathematical tool developed in this chapter, the most 

significant role has parameter n, while parameter a does not have a great effect 

on the results (a=1%o). 

(b) load-reload parameters 

The parameter couple b and g controls the shape of the load-reload curves 

(general shape of the loops under 6) cyclic loading). Gerolymos and Gazetas 

(2006) distinguish four basic shapes of loops depending on the b and g relation 

(Fig.4.9): i) when b-g=0.5,the stiffness at the opposite loading is equal with the 

stiffness of the principal loading, satisfying Masing criterion,(ii) when b=1 and 

g=0, where the loop degenerates into the monotonic curve(nonlinear elastic 

behavior, suitable for the representation of geometrical nonlinearities, but 

inappropriate for the elastic response of soil material), (iii) when b=0 and g=1 

where the loop has a wider shape and the unload-reload stiffness much larger 

than the principal one and (iv) when b=0.9 and g=0.1, where the  system 

response is similar to a nonlinear anelastic behavior. In this thesis b=g=0.5 is 

selected, due to the precision provided to the results. 
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4.7 Compilation of the uniform mathematical tool 

 

Within the framework of deformation theory of classical elastoplasticity, the incremental 

total generalized displacement, du (displacements and rotations) is decomposed into 

the elastic and plastic components due and dup by a simple superposition:  

du= due + dup                                                                                                                   (4.11) 

 

The plastic strain increment is obtained from the flow rule: 

 
p g

du
F





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                                                                                                            (4.12) 

 

In which F is the force vector in M‐Q‐N (moment, shear and axial forces) space. 

Equation (2.2) implies normality to the plastic potential function g. L is a positive 

scalar of proportionality designated as the loading index. Substituting Eq. (4.12) into 

Eq. (4.11) and applying elasticity theory, the following generalized displacement 

generalized force relationship is obtained: 
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                                                                                        (4.13) 

 

in which Ke is the elastic matrix. For a perfectly plastic material, the yield surface is 

fixed in stress space, and therefore plastic deformation occurs only when the stress 

path moves on the yield surface. Thus, the loading condition at failure is postulated 

by the following consistency equation:  

0 0
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f

df dF
F
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                      (4.14) 

 

Combining Eqs (4.13) and (4.14), and after some algebra, the generalized 

displacement‐generalized force relationship is reformulated into: 

 

epdF K du                                                                                                                  (4.15) 
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in which Kep is the elasto‐plastic matrix, given by: 

 

 
1

ep e T e T e
g f g fK K I K K

     
  

                                                        

(4.16) 

 

in which Φf and Φg account for the failure surface and plastic flow rule, 

respectively: 
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Due to the associated plastic flow rule: 

 

f g                                                                                                                          (4.18) 

 

Hardening and hysteretic behavior is introduced by inserting the matrices H1, H2 

and hardening parameter a into Eq. (4.16): 
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The terms in matrix H1 and H2 are functions of the dimensionless hardening 

parameters n, b, g which are of the Bouc‐Wen type (Gerolymos and Gazetas, 2005), 

Finally B is the abbreviation of the right‐hand side term inside the parentheses of Eq. 

(4.16): 
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For the expansion of the model in order to simulate a 1x2 pile-group the above 

mentioned matrices are extended to contain the properties of two piles and X is 

introduced to incorporate the interaction between the degrees of freedom of the 

piles and the transference of the loads and displacements to the pile-cap and vice 

versa. 
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 where x the distance of each pile from the center of the pile-cap. 

 

4.8 Results 

 

In Fig. 4.10 to 4.14 the results of the developed model are presented, in scope of 

simulating the soil-pile and soil-pile-group system with one unique macro-element. 

More precisely the monotonic f-δ curves on the top of the foundation are displayed, 

as they were calculated through the mathematical tool and the derived data from 

the numerical experiments for various safety factors and load combinations. 

In all cases, there is remarkable matching between the two methods in terms of 

horizontal load- horizontal displacement, vertical load-vertical displacement and 

moment-rotation. The precision of the mathematical tool appears not only in the 
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small strain region (elastic behavior), were the behavior of the system is ruled by the 

elastic stiffness matrix, but also in the failure area, where the response is governed 

by the associated plastic flow rule and the proportional yield surfaces of the 

foundation. In addition in the transition zone between the two above mentioned 

regions, where the system behavior is ruled by both the hardening law and the 

tangent stiffness matrices the fitting is more than satisfactory. This leads to the 

conclusion that every single component of the mathematical tool was carefully 

extracted, calibrated and designed in order to achieve the excellent capture of the 

foundation behavior. Thus the model is ready to be used through the appropriate 

changes in other types of soil too. 

Another way to verify the correct simulation of the foundation and the usability of 

the method is by performing swipe tests, i.e. by introducing to the model instead of a 

combination of loads a combination of displacements until the systems failure. 

Fig.15-17 show the excellent function of the model.  

The model is extended by connecting two single piles by the appropriate kinematic 

constraints. Again, the matching between the prediction of the macroelement and 

the curves derived by the numerical experiments is more than satisfactory, as it is 

displayed in Fig. 4.18-20. The results are admirable, as the model is able to simulate 

the load distribution in the foundation system, i.e. the coupling between the 

moment and the axial force, the moment and the lateral force, the alteration of the 

plastic moment resistance of the pile material either by the axial load or the 

component of the moment that is distributed to the foundation as moment. In 

Fig.4.21 and Fig.22 the above mentioned mechanisms, verifying the appropriate 

function of the mathematical model, but also capturing the physical failure 

mechanism of the pile-group.



Figures





Figure 4.1 The concept of using uncoupled Winkler springs: (a) structure grounded on a 
random layered soil, (b) uncoupled application of moment and horizontal force, 

determination of the stiffness coefficients and (c) substitution of the soil with the calculated 
springs

(a)

(b)

(c)

Given u≡0

Given φ≡0
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(a)

(b)

Diagrams              and

Figure 4.2 The concept of simulating the foundation system with a macro-element: (a)
conventional bridge pier grounded on a foundation (b) lateral loading of the foundation 
and extraction of the force displacement, moment-rotation curves (c) substitution of the 
soil and the foundation with a unique macro-element, able to reproduce the foundation 

system behavior, using as tools the above mentioned diagrams 
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Figure 4.2 The concept of simulating the foundation system with a macro-element: (a)
conventional bridge pier grounded on a foundation (b) lateral loading of the foundation 
and extraction of the force displacement, moment-rotation curves (c) substitution of the 
soil and the foundation with a unique macro-element, able to reproduce the foundation 

system behavior, using as tools the above mentioned diagrams 

Macro-element

Figure 4.3 The four components- steps for the development of a macro-element and their 
influence in the force-displacements diagrams. 

Elastic behavior of 
foundation system

Yield surfaces in M-Q-N 
space

Definition of plastic 
flow rule

Definition of work 
hardening law

(M)

(θ)

(b)

(c)
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Kv

Figure 4.4 Depiction of the elastic stiffness components on the head of the pile foundation, 
where the rest of the foundation and the surrounding soil are neglected (as far as the 

elastic part of the response is concerned). 

Figure 4.5 Hardening law adapted by Cassidy et al. [2004] for the analytical expression of 
the response of spudcan foundations. The magnitude of the system’s hardening depends 

on the level of the plastic vertical displacement. (strain- hardening plasticity model). 
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Displacement
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a

d Loading 
Step i

Loading 
Step i+1

Figure 4.6 The iterative development procedure of the mathematical tool: in step I the 
tangent stiffness matrix Kt is calculalted and the subsequent displacement Δδ is derived 

until the next loading step i+1. The shorter that is the step ΔF between two load steps, the 
preciser the procedure.

Figure 4.7 Illustration of the influence of the hardening parameter n in the shape of the 
monotonic ‘’F-δ’’ curves, for two values of the parameter a: (i) a = 0 and (ii) a = 0.1. 
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Figure 4.8 Illustration of the influence of the hardening parameter a in the shape of the 
monotonic ‘’F-δ’’ curves, for two values of the parameter n: (i) n = 0.5 and (ii) n = 2. 

Figure 4.9 Representation of the influence of the hardening parameters b and g, in the 
shape of the loops of embedded foundations (under cyclic loading). Four characteristic 

value couples can be identified [Gerolymos and Gazetas 2006]. In the present thesis, the 
values b = g = 0.5 are adopted, that satisfy the Masing criterion.
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Figure 4.10 Diagrams of (a) Force displacement for pure shear load for Fsv=∞, (b) Moment –
rotation for pure moment for Fsv=∞, (c) Moment – rotation for pure moment for Fsv=5. With 

black lines are the curves extracted from the numerical experiments and with gray the 
prediction of the macro-element model
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Figure 4.11 Diagrams of (a) Force displacement for combined shear force – moment (θ=-36ο) 
for Fsv=∞, (b) Moment – rotation for combined vertical force – moment (θ=-36ο) for Fsv=∞, (c) 
Force displacement for combined shear force – moment (θ=52ο) for Fsv=∞. With black lines are 
the curves extracted from the numerical experiments and with gray the prediction of the macro-

element model
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Figure 4.12 Diagrams of (a) Force displacement for combined shear force – moment (θ=-70ο) 
for Fsv=∞, (b) Moment – rotation for combined shear force – moment (θ=52ο) for Fsv=∞, (c) 

Force pure vertical load for Fsv=2. With black lines are the curves extracted from the numerical 
experiments and with gray the prediction of the macro-element model
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Figure 4.13 Diagrams of (a) Force displacement for combined shear force – moment (θ=70ο) for 
Fsv=2, (b) Moment – rotation for combined vertical force – moment (θ=36ο) for Fsv=2, (c) Force 

pure vertical load for Fsv=-2. With black lines are the curves extracted from the numerical 
experiments and with gray the prediction of the macro-element model
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Figure 4.14 Diagrams of (a) Force displacement for combined shear force – moment (θ=52ο) for 
Fsv=-2, (b) Moment – rotation for combined shear force – moment (θ=-36ο) for Fsv=-2, (c) Force 
displacement for combined vertical force – moment (θ=-36ο) for Fsv=-2. With black lines are the 

curves extracted from the numerical experiments and with gray the prediction of the macro-
element model
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Figure 4.15 Comparison between swipe tests carried out with the macro-element model 
and the interaction curves deduced from the analytical expressions for Fsv=∞

M

Q

Figure 4.16 Comparison between swipe tests carried out with the macro-element model 
and the interaction curves deduced from the analytical expressions for Fsv=1.25
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Figure 4.17 Comparison between swipe tests carried out with the macro-element model 
and the interaction curves deduced from the analytical expressions for Fsv=-2
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displacement (m)

Figure 4.18 Diagram of force displacement for pure shear load for Fsv=∞, . With black line is 
the curve extracted from the numerical experiments and with gray the prediction of the macro-

element model
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Figure 4.19 Diagrams of (a) Force displacement for combined shear force – moment (θ=30ο) for 
Fsv=∞, (b) Moment – rotation for pure moment for Fsv=-5, (c) Force displacement for combined 
shear force – moment (θ=75ο) for Fsv=-1.25. With black lines are the curves extracted from the 

numerical experiments and with gray the prediction of the macro-element model
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Figure 4.20 Diagram of force displacement for pure moment for Fsv=2, . With black line is 
the curve extracted from the numerical experiments and with gray the prediction of the 

macro-element model

Figure 4.21 Diagram of axial force – vertical displacement for pure moment for Fsv=∞. 
The stress is caused by the axial component of the moment. The black line represents the 

axial failure of the pile under tension, while the gray line displays the axial force applied to 
the compressed pile.
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Figure 4.22 Diagram of the alteration of the plastc moment resistance of the pile material 
due to the axial component of thepure moment for Fsv=∞. With black and gray  line is 

presented the moment resistance of the pile under tension and compression respectively.
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5 Conclusions and recommendations 

 

5.1 Conclusions 

 

This thesis dealt with the response of pile foundations resting on an undrained clay 

profile with an increasing undrained shear strength with the depth subjected to 

combined axial and lateral static monotonic loading.  

Our first aim was to develop a new approach able to simulate in finite element 

modeling the pile behavior accurately. Taking into consideration the drawbacks and 

weaknesses of the existing methods a new tool is designed capable of capturing the 

pile material properties and response in elasticity, in plasticity and incorporating the 

effects of random loading. 

Our second aim was to provide insight to the failure envelopes of a single flexible pile 

and a 1x2 and 2x2 pile-group under combined M-Q-N loading, including the effects 

of soil-pile nonlinearities. Following the work of Gerolymos et al in the case of single 

pile, we determine analytical expressions that represent these failure envelopes, able 

to experience both sliding and gapping.  

Our third aim was to develop a uniform mathematical tool, known as macroelement 

modeling capable of representing the total behavior of a pile from elasticity to total 

plasticity, extending to simulate a 1x2 pile-group response too. 

The important conclusions that were drawn from this thesis are presented below: 

 A new macroscopic approach was developed under the Mohr-Coulomb i.e. 

Tresca failure criterion for simulating circular piles behavior. Its verification 

was focused in various concrete pile diameters (0.8m, 1m, 1.5m) with 

different reinforcements (1%, 1.5%, 2%), analytically and in finite element 

modelling. The results where more than satisfactory, as the approach is able 

to simulate the pile behavior in elastoplasticity, in terms of moment-

curvature and to include the interaction between the external loads and the 



Conclusions & recommendations 

 

150 
 

pile material properties, as well as the soil-pile interaction. The calibration of 

the approach can be easily be conducted through the following steps: 

1. Extraction of the failure envelope of the studied circular pile. 

2. Using the derived mathematical expressions and an optimization tool 

the calibration of the parameters of the model can be performed. 

3. The variables are inserted in the finite element model in the 

appropriate soil model together with the other elastic pile parameters 

4. Verification of the approach can be done by extracting the failure 

envelopes in the finite element program and comparing the moment- 

curvature diagrams. 

 

  The failure envelopes of a single flexible pile in cohesive soil are derived. The 

pile is modeled by the previously derived approach. Various moment- lateral 

load combinations are applied under different safety factors against axial 

failure and the interaction diagrams are created. The total 3- dimensional in 

M-Q-N space yield surface of the pile is designed. It is being confirmed that 

the shape of the envelopes is constant regardless the axial load, while the e 

equations proposed by Gerolimos et al are extended by introducing the 

alteration of the pile plastic moment  due to the change of the axial load. 

Finally the normality of the plastic displacements increment is ascertained, 

confirming the associated plastic flow rule. 

 

 The interaction diagrams in both directions of a 1x2 pile group in cohesive soil 

are derived. In the direction where the full pile-group function is activated 

shape of the curves is not constant, but varies in respect to the axial load. 

Analytical expressions are proposed able to describe the pile-group behavior, 

while the failure mechanisms are examined and classified in two basic 

categories: the system’s ultimate capacity is reached by the development of 

one plastic hinge at each pile and the axial failure of one of the two or by the 

development of two plastic hinges at each pile. The first mechanism concerns 

the failure under combined axial, moment and lateral load where the 
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moment has major contribution, with the pivot point located at the head of 

the compressive pile, while the second is activated when the system reaches 

its ultimate lateral capacity, while the pile-group is practically not rotated. In 

the vertical direction the pile-group functions as the sum of two single piles 

influenced by the interaction of the piles due to their distance. The shape of 

the failure envelopes remains constant as in the case of the flexible pile and 

the failure mechanisms are equal, while the normality of the plastic 

displacements increment is also analytically verified. Finally the moment – 

lateral load capacities for the same safety factors in the two direction are 

compared, displaying the overstrength provided when the full pile-group 

function is activated. 

 

 The behavior of a 2x2 pile group in normal and diagonal direction was 

investigated. In the normal direction the pile-group behaves as the 1x2, 

having the same failure mechanisms and similar failure envelopes. These 

results were expected due to the geometrical resemblance of the two pile-

groups. Moreover the relevant analytical expressions where derived. 

Interesting is the fact that the failure envelopes under diagonal combined 

loading have similar shape with the ones derived for the 1x2 and 2x2 pile– 

group, in spite of the alteration of the failure mechanisms. A conclusion very 

contributive in the research of capturing a generalized relation for the 

extraction of the failure envelopes of random pile-groups. For big safety 

factors where the moment has major contribution, the pile-group rotates in 

respect to the two central piles and the system reaches its ultimate capacity 

by the development of one plastic hinge at each piles and the axial failure of 

one outer pile. In contrary close to axial failure the pivot point is located at 

the outer compressed pile and the group resistance is depleted by one plastic 

hinge development at each pile and the axial failure of two. In both cases 

when the system reaches its ultimate lateral capacity two plastic hinges 

develop at each pile.  The capacities for the same safety factor for the two 

different loading directions are compared. In both cases the lateral resistance 
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is practically the same. It is notable that for big safety factors the pile-group in 

x direction provides larger moment resistance, while as the axial load 

increases the pile-group under diagonal loading shows more strength. 

 

 A macro-element model was developed able to simulate the soil-pile 

foundation behavior from elasticity to full plasticity. This model incorporates 

4 components: a) elasticity, b) failure envelopes, c) associative plastic flow 

rule and d) hardening law. The elastic stiffness matrices were formed using 

the existing bibliography, while the previously extracted failure envelopes 

were inserted in the mathematical tool. An associative plastic flow rule was 

chosen, as its validity is analytically confirmed, while a hardening law 

provides the system the non-linear behavior. The results were compared with 

those from the numerical experiments both by applying a combination of 

loads until the systems failure or by introducing prescribed displacements on 

the top of the pile (swipe tests) until the system reaches its maximum 

capacity. The matching verified the correct and accurate development of the 

modp el, as it has the ability to capture the pile – soil foundation in elasticity, 

plasticity and in the transition zone between the two. Furthermore this model 

was extended by incorporating two flexible piles with the appropriate 

kinematic constraints and simulating the behavior of a 1x2 pile-group 

comparing it with the failure envelopes derived previously. The mathematical 

model can simulate it satisfactorily. 

 

 

 

 

 

 



Chapter 5 

 

153 
 

5.2 Recommendations for future research 

 

In this last section, some suggestions for future work on the extensive subject of 

macro-element modeling of pile foundations is provided: 

 

 The development of the macroscopic circular pile approach for different pile 

material (e.g. steel). Moreover the incorporation of the approach in other 

constitutive models, extending its use to a wider range of problems. 

 

 The examining of pile-groups with different number of piles and geometry, in 

order to capture a generalized behavior of this type of foundations. 

Furthermore the influence of the interface nonlinearities can be investigating 

in the response and failure state of the system. 

 

 In addition, this work should be extended to the study of dynamic problems 

and especially seismic excitations, justifying the initial adoption of an 

undrained shear strength profile. Thus numerical experiments regarding the 

dynamic response of pile foundations can be held, incorporating the results in 

the extracted macroelement model and extending its function to the capture 

of the total foundation behavior. 

 

 Finally a different soil profile can be utilized (e.g. sand), investigating the 

behavior of the pile macroscopic approach, the pile foundation response and 

modifying the developed macroelement model in order to simulate the 

different conditions. 
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