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Abstract

In this thesis, we begin by reviewing the characteristics of different risk measures and we

are drawn particularly for convex risk measures. One of these is the utility-based shortfall

risk whose value we will try to determine by employing deterministic and stochastic root-

finding algorithms, which will give us the opportunity to study the latter algorithms as

well. Then we will compare them in order to see which one is better in terms of speed

and convergence. On the implementation side, we will take a step further by using parallel

programming for the stochastic case. This feature proves to be quite interesting in terms

of speed. Then we will compare and contrast the Fourier transform with the Monte Carlo

simulation, regarding the computation of the expected value, which is embedded into the

root-finding problem. Our ambition is to test whether stochastic scheme is faster than

deterministic ones and whether direct computation of the integral (i.e. Fourier transform)

is indeed faster than simulation (i.e. Monte Carlo).
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1 Introduction

In recent years, when the crisis evolved and nowadays, the notion and idea of risk became rather

important. The focus on handling, measuring and maintaining risk was one of the first priorities

among public and private shareholders. But what exactly do we mean when we mention risk?

In our context, we mean the financial risk that is the risk associated with financing, including

financial transactions. Then risk could be defined, broadly, as any event or action that may

adversely affect an organization’s ability to achieve its objectives and execute its strategies or,

alternatively, the quantifiable likelihood of loss or less-than-expected returns. We bear in mind

that because risk management in a very large field and subject we cannot define it properly and

address all contexts.[1]

Having the notion of risk defined, we go a step further and look its different aspects. Depending

on the activity, there are different kinds of risk. Since we are talking about financial transactions

it is natural to assume that every transaction carries on a risk. For example, when we are dealing

with loans (either to companies, corporations, households or governments), the risk of a borrower

not being able to repay its debt, which in financial terms is defined as going default, is known

as credit risk. In banking sector, another term of risk arises more than often: market risk. This

is the risk of a change in the value of a financial position due to changes in the value of the

underlying components on which that position depends, such as stock and bond prices, exchange

rates, commodity prices, etc[1]. Obviously we could break down the components of market risk.

Since we are talking about stock and bonds it is evident that equity or interest rate risk is

apparent. The former refers that stocks prices will change and the latter that the interest rate of

the bonds will change. Another important risk regarding the liquidity of the assets is, of course,

liquidity risk. A definition given by the Federal Reserve Bank of San Francisco [22] defines it

as the risk that a firm will not be able to meet its current and future cash flow and collateral

needs, both expected and unexpected, without materially affecting its daily operations or overall

financial condition. The list of risks does not stop here: refinancing, operational, legal, political,

reputational, volatility, settlement, profit or systemic risk, just to name the most important ones.

In order to address these risks a specific regulatory framework was developed. Particularly known

as International regulatory framework for banks, with the latest framework being known as Basel

III. The framework is a comprehensive set of reform measures, developed by the Basel Committee

on Banking Supervision, to strengthen the regulation, supervision and risk management of the

banking sector. These measures aim to improve the banking sector’s ability to absorb shocks
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arising from financial and economic stress, whatever the source, improve risk management and

governance and finally strengthen banks’ transparency and disclosures [2].

From the above if it has not been apparent by now, there is a constant effort to define, handle

and measure risk. For the third part, several measures have been introduced: Value at Risk

(V@R), Expected Shortfall Risk (ES) or utility-based shortfall risk. Our thesis falls exactly

under this scope. We briefly present these measure and we implement the utility-based shortfall

risk. The implementation is where all the interesting things appear. We employ stochastic and

deterministic root-finding algorithms and try to compare and contract its differences, if any. How

we end up with a root-finding problem is very interesting and it will be presented. In addition

to these, we also use the Fourier Transform, where we expect a significant gain, in terms of

computation time.

The aforementioned points stand from a mathematical point of view. From a computer science

perspective, we are also interested on how to make faster, better and efficient algorithms. We will

handle with the first: speed. Here lies the advantage of using stochastic root-finding algorithms

instead of the deterministic ones. All the above finally lead on using parallel programming.

Apart from the financial crisis era, we are living in the computing era, where we now have in

our hands computing devices with large amount of memory able to carry on difficult calculations

quite fast. The benefit of using parallel computing is obviously speed. We will see that we gain

quite in terms of speed while achieving the same level accuracy as before.

The goal of the thesis is to investigate and conclude whether the use of utility-based shortfall risk

by using stochastic root-finding algorithms and by employing parallel programming, achieves the

same level of accuracy but much faster than using the industry standards risk measures, such

as V@R. Having the same information but quicker, yields significant advantage for financial

institutions which leads to better risk handling.

2 Risk Measures

One critical aspect when discussing about risk is the notion of measurement of risk. That is

the need to quantify risk in many different situations. For example, an investment bank, or

a financial institution in general, would like to have an amount of capital that would be used

as a buffer in case unexpected losses would occur. Obviously, this amount is a number and is

specified by a model that is used for measuring the risk, which in this case is related to the event

of unexpected losses. Based on that number, decisions could be taken. [1, p41, Ch2] In order to
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arrive to such conclusions we need to set the theoretical framework, from which one could then

deduce the implementation according to each needs. We therefore introduce the notion of Risk

Measures. This idea will be the vehicle that would drive us through the general framework and

would later on provide us with an easy way of implementation.

2.1 Definitions and Properties

Let us define a few things in order to proceed to the formal definition. First of all we have a set

of scenarios, denoted by Ω. A financial position is a mapping from X : Ω −→ R, where X(ω) is

the discounted net worth of the position at the end of the trading period, if the scenario ω ∈ Ω is

realized. Our goal is again to try and specify the risk X by some number ρ(X), where X belongs

to a given class X of financial positions. This will be our trivial assumptions. To sum up,

• Ω :fixed set of scenarios

• X: financial position, where X(ω) is the discounted net worth of the position at the end

of the trading period if the scenario ω is realized

• ρ(X): number, specifying the risk of the financial positions

• X : Class of financial positions

Now we are now in place for our first definitions which is that of monetary measure of risk :

Definition 1. A mapping ρ: X−→R is called a monetary measure of risk if it satisfies the

following conditions for all X,Y ∈ X :

• Monotonicity : if X ≤ Y, then ρ(X) ≥ ρ(Y)

• Translation Invariance: if m ∈ R, then ρ(X +m) = ρ(X)−m

[9, p168]

The interpretation of monotonicity is that when the payoff is increased then the associated

risk is reduced. Translation invariance, emphasizes the fact that ρ(X) could also be viewed as a

capital requirement (remember our earlier example of the investment bank), that is ρ(X) is the

amount of capital to be added to the position X in order to make it acceptable from a point of a

supervising agency (the investment bank holds a buffer because an agency has also requested to

do so). Thus if amount m is added to the position, the risk is reduced by the same amount. This
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idea is used with the famous standard practice tool, Value-at-Risk (V@R), which will encounter

later.

Apart from these two basic properties, we could enhance our mapping with other as well. To

this end we provide two more definitions of risk measures, which will be used throughout our

framework, and their differences will be our main point of discussion (we will later see that V@R

and utility-based shortfall risk fall each on one of this categories).

Definition 2. A monetary measure of risk ρ : X −→ R is called convex measure of risk if it

satisfies the following:

• Convexity : ρ(λX + (1− λ)Y ) ≤ λ ρ(X) + (1- λ )Y , for all 0 ≤ λ ≤ 1.

If it satisfies the positive homogeneity then it is called coherent measure of risk. Therefore,

Definition 3. A convex measure of risk is called coherent measure of risk if it satisfies the

following:

• Positive Homogeneity: if λ ≥ 0, then ρ(λ X) = λ ρ(X).

The property of convexity is used to explain and match the economic definition of diversifica-

tion. Consider an investor who can invest a fraction of his wealth first to an option, leading to

a position of X and the remaining of his wealth (1-λ) to the second option, leading to a position

Y. At the end the investor will have λ X +(1-λ)Y . In the finance context, this means that the

investor has lower risk because he has diversified the systematic risk of his/her investments. So,

convexity gives a precise meaning to the idea, that diversification should not increase the risk.

(In the portfolio management context this is proved by the use of variances and correlations.

The more uncorrelated our investments are, the lower the risk. Therefore by diversifying our

portfolio, we decrease our (systematic) risk).

The positive homogeneity property means that the measure of risk is normalized, for example

ρ(0) = 0 . Under this condition the convexity is equivalent with sub-additivity condition:

• Sub-additivity : ρ (X + Y ) ≤ ρ(X) + ρ(Y )

Through sub-additivity we could aggregate all risk together and be sure that the overall risk

will be lower than having each risk separately or in the worst case equal (in economic terms is

similar with the diversification benefit). To sum up, with have the following definitions:

Lemma 1. A mapping ρ : X −→ R is called:
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1. Monetary measure of risk, if it satisfies

a. Monotonicity: if X ≤ Y , then ρ(X) ≥ ρ(Y )

b. Translation Invariance: if m ∈ R, then ρ(X +m) = ρ(X)−m

2. Convex measure of risk, if it satisfies

a. Monetary measure of risk conditions

b. Convexity : ρ(λ X + (1-λ )Y) ≤ λ ρ (X) + (1- λ )Y , for all 0 ≤ λ ≤ 1.

3. Coherent measure of risk, if it satisfies

a. Convex measure of risks conditions

b. Positive Homogeneity: if λ ≥ 0, then ρ(λ X) ≥ λ

[9, p169]

Proof 1. We will prove the following: Positive Homogeneity and Sub-Additivity lead us to

Convexity.

We set M = λX and K = (1− λ)Y for 0 ≤ λ ≤ 1. We then have,

ρ(M +K) ≤ ρ(M) + ρ(K) ≤ ρ(λX) + ρ((1− λ)Y )
[1]⇒ (1)

ρ(M +K) ≤ λρ(X) + (1− λ)ρ(Y ),
[2]⇒ (2)

ρ(M +K) = ρ(λ(X) + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), (3)

where the last inequality is the convexity property, (1) follows from sub-additivity property and

(2) follows from positive homogeneity.

Based on the above definitions several risk measures have been introduced, each with different

properties and different usage, such as Value at risk, average value at risk, utility-based shortfall

risk. We present them, in the next subsection.

2.2 Value at Risk

In order to introduce the definition of value at risk, we have to first specify what is a quantile

distribution, or a λ-quantile. Then specifying the risk of a financial position X will consist in

determining a quantile of the distribution of X under a given probability measure P.

Definition 4. Like before we assume a probability space (Ω, F ,P). A λ-quantile of a random

variable X is any real number q with the property:

• P[ X ≤ q ] ≥ λ and P [ X <q] ≤ λ
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Definition 5. We fix some level λ ∈ (0,1). For a financial position X, we define the Value at

Risk as follows:

• V@Rλ(X):= inf { c ∈ R, P[ X +c <0] ≤ λ }

In financial context, V@Rλ(X) is the smallest amount of capital which, if added to the

position X and invested in the risk-free asset, keeps the probability of a loss under a certain level

λ. Typical values for λ are 0.05 and 0.01. Stated differently, V@R could be defined as the loss

level that will not be exceeded with a certain confidence level during a certain period of time.

For example, if a bank’s 10-day 99% V@R is 3 million USD, there is considered to be only a 1%

chance that losses will exceed 3 million USD in 10 days.

However, as simple as it may be to calculate value at risk, it has two drawbacks. First of all, it

fails to capture the diversification benefit, so it may penalize diversification instead of encouraging

it. From a mathematical point of view, this is explained due to the fact that V@R is not a convex

risk measure (no sub-additivity). Second, it does not take into account the amount of the loss, if

one occurs, just the probability. This will be better explained by the following example as taken

from Dunkel and Weber’s paper [13].

Suppose we have two portfolios modeled by random variables X1, X2, where

X1 =

 +1 with probability 99%

−1 with probability 1%

and

X2 =

 +1 with probability 99%

−1010 with probability 1%

A value Xi ≥ 0 corresponds to the event ’no loss’, whereas Xi <0 means ’loss’, i = 1, 2.

Setting λ=0.01 we find that

V@R(X1) = V@R(X2) = -1 ≤ 0

Therefore according to Value at Risk both portfolios are equally acceptable (a position is

acceptable if its risk measure is negative). But as we see there is a huge difference in terms of

the amount of loss. For the first portfolio this loss is only -1 whereas for the second portfolio

is −1010. Clearly the first portfolio is more preferable. Of course this example is trivial and

is easy to locate which portfolio to choose but in real life this distinction becomes harder. So,

risk allocation on V@R may lead to the portfolio with the smallest loss probability, even if the
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loss associated with it is extremely large. More generally stated the following problem holds for

V@R: once we know the seperate V@R’s of different branches (variables), how do I estimate the

global risk if V@R is not subadditive (sum of the variables)? The next measures try to address

this inefficiency [14]

2.3 Expected Shortfall Risk (ES)

We begin by providing the definition of the Expected Shortfall risk.

Definition 6. If XεX is the payoff of a portfolio at some future time and 0 < α < 1, we then

define the expected shortfall as:

ESα =
1

α

∫ α

0

V@Rγ(X)dγ (4)

where V@Rγ is the Value at Risk defined in the previous section.

Apart from expected shortfall, sometimes is also called as average value at risk (AV@R) or con-

ditional value at risk (CV@R). Despite the debate over which term is more appropriate what

expected shortfall does, is to average over the worst case scenarios (which also justifies the use

of the integral in the definition). So the ”expected shortfall at q% level” is the expected return

on the portfolio in the worst % of the cases. Alternatively, we could say that ES is the expected

loss of portfolio value given that a loss is occurring at or below the q-quantile.

Expected Shortfall evaluates the value (or risk) of an investment in a conservative way, focusing

on the less profitable outcomes. For high values of q it ignores the most profitable but unlikely

possibilities, for small values of q it focuses on the worst losses. On the other hand, even for

lower values of q, expected shortfall does not consider only the single most catastrophic outcome.

A value of q often used in practice is 5%.

The motivation behind Expected Shortfall was the concern to better handle random variables

with discontinuous distributions. Examples include not-traded loans portfolio (purely discrete

distributions) or portfolios containing derivatives (mixture of continuous and discrete distribu-

tions). Risk measures like V@R, have problems because of their sensitivity in the confidence

interval α. On the contrary, the value of the ES will not change a lot, since it is not affected

much by a small change in the confidence interval [14]. Moreover, the Expected shortfall risk is

aware of the shape of the conditional distribution of p% worst events while V@R is not aware at

all.
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The big difference between ES and V@R, is of course that that the former measure is coherent

and the latter is not, although ES is derived or constructed from V@R.

Probability

of Event

Ending value

Portfolio

Profit q Expected Shortfall

10% 0 −100 10% −100

30% 80 −20 20% −60

40% 100 0 40% −40

20% 150 50 100% −6

From this table let us calculate the expected shortfall for a few values of q:

To see how these values were calculated, consider the calculation of ES for q = 10%, the expecta-

tion in the worst 10% of cases. These cases belong to (are a subset of) row 1 in the profit table,

which have a profit of −100 (total loss of the 100 invested). The expected profit for these cases

is 100.

Now consider the calculation of ES for q = 20%, the expectation in the worst 20 out of 100 cases.

These cases are as follows: 10 cases from row one, and 10 cases from row two (note that 10 + 10

equals the desired 20 cases). For row 1 there is a profit of 100, while for row 2 a profit of 20.

Using the expected value formula we get:

10

100
∗ (−100) +

10

100
∗ (−20)

20

100

= −60

Similarly we calculate for any value of q. We select as many rows starting from the top as

are necessary to give a cumulative probability of q and then calculate an expectation over those

cases. In general the last row selected may not be fully used (for example in calculating ES for

q = 20% we used only 10 of the 30 cases per 100 provided by row 2).

From the above example, it is evident the differences between V@R and Expected Shortfall. The

latter does not only ”cut off” at the worst point but rather tries to find out, past that point, how

worse could things go (by averaging the values).

2.4 Utility-based Shortfall Risk

It is time to present the class of utility-based shortfall risk measures in the spirit of [9] and [13].

We remind that we have a probability space (Ω, F ,P) already in place from chapter 2. Let l
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denote a convex loss function and λ be a point in the interior of the range of l. We define the

acceptance set by

A := { X ∈ L∞ : E[ l(-X)] ≤ λ }

And the corresponding shortfall risk measure by

SRl,λ := inf { m ∈ R : X +m ∈ A}

As a reminder we provide the definition of a loss function:

Definition 7. A function l: R → R is called loss function if it is increasing and not identically

constant [9].

The most important proposition is the following, which transforms the computation of a

risk measure into a root-finding problem and justifies the use of stochastic and deterministic

root-finding algorithms.

Proposition 1. Let SRl,λ be the utility-based shortfall risk associated with the convex loss func-

tion l and threshold level λ. Suppose that X ∈ L∞. Then the following statements are equivalent:

• SRl,λ = s∗

• E[l(−X − s∗)] = λ

Proof:

We follow a similar reasoning to [9]. We have:

SRl,λ := inf { m ∈ R : X +m ∈ A}= inf{m ∈ R : E[l(−X −m)] ≤ λ} = ρ(X).

We thus want to prove that ρ(X) = m is the unique solution of E[l(−X −m)] = λ. First note

that, A is a convex set because it satisfies from construction the properties (a) and (b) from

proposition 4.5 on page 160 of [9]. This implies that ρ is convex measure of risk.

Next, for a sequence X1 > X2 > ... > Xn ∈ X , which converges to X ∈ X then by monotonicity

ρ(X1) < ρ(X2) < ... < ρ(Xn) so Xn ↘ X implies ρ(Xn) ↗ ρ(X) = m. If we combine the

fact that X ∈ L∞ and that l is continuous then by applying dominated convergence we get that

E[l(−X − ρ(X))] = E[l(−X −m))] = λ. Because l is strictly increasing to a neighbourhood very

close to λ the solution is unique.
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3 Root-finding Problems

3.1 Introduction

In the previous chapter we presented what risk measures are all about and introduced three of

them. In this chapter we will introduce and explain the root-finding problems, which as we will

witness later, play a significant role in the computation of risk measures.

There are many cases where someone would like to know the roof of a function. This information

is quite valuable. For example, we could be looking for a maximum or minimum of a function

which could have different real life interpretations: minimizing cost, minimizing friction, maxi-

mizing output produced. For well know functions this would be fairly easy not to mention quick

procedure. Let’s take for example the function f(x) = x2 -x. In order to find its roots we equate

f(x) with zero and therefore have the following:

f(x)=0 ⇒ x2 -x=0 ⇒ x(x-1)=0 ⇒

Roots: x1=0 and x2=1

But there are other times where the function is too complicated and solution cannot be given

analytically. In this case, numerical methods should be employed and try to approximate the

solution. Generally, we have a known function f: Rn → Rn, a predefined target γ ∈ Rn and an

unknown root x∗ ∈ Rn, whose value we are interested in finding. Therefore the problem is to

determine the unique root of x = x∗ when f reaches the target value γ. The target level γ is

usually the desired level of a system’s performance, which is obtained by manipulating the input

vector x [17].

The algorithms have been divided into two major groups: the direct and the iterative. The

difference between the two lies in time. That is, the direct algorithms complete and provide

the solution in a finite number of steps where the iterative algorithms converge to the solution

over time. They stop until a convergence criterion is met. Since these methods converge to

the solution it becomes quite apparent that it is of utmost importance to know and track the

convergence rate of the solution that is how quickly the algorithm converges to the solution.

Obviously the fastest the better. [5,6]

The distinction between direct and iterative algorithms has given rise to two different classes of

problems: deterministic root-finding problems and stochastic root-finding problems. An example

of a problem deterministic in nature has already being shown, as simple as it may be. On the

other hand a stochastic root-finding problem could be the following: We would like to minimize
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the function z(θ) = E[θX1 + X2, (1-θ)X3], where X1, X2, X3 are Erlang(2) with means 1,2,3,

and 0 < θ < 1 [p.253, 10]. It is often the case where the computation of the expected value

will be difficult to compute with analytical methods and therefore simulation will be used. In

our context, this is the case, the computation of expected values using either deterministic or

stochastic root-finding algorithms.

3.1.1 The problem

Simply put, we are interested in estimating the value of a specific risk measure (utility-based

shortfall risk) associated with a portfolio (first step). In order to achieve that, we transform the

initial problem of estimating the value of a risk measure, to an equivalent problem, of that of

finding the root of a function and hence the naming of root-finding problems (second step). This

is how risk measures and RFPs are linked. Finally, what is left is to find ways to solve the RFP

(third step).

As we will see later on, apart from the computation of the root of a function, we will also be

interested to compute an expected value. Therefore, another issue of concern is what happens

if we shift the focus from the root-finding algorithm to the computation of the expected value.

That is, we are interested in comparing the Monte Carlo method with the Fourier Transform.

This come later on the presentation and we will fully explain and define what we mean and what

we are looking for.

In this chapter we will present the RFPs, the two major categories of algorithms, deterministic

and stochastic, and finally we will present results concerning the convergence and the convergence

rates of the problems.

3.1.2 Motivation

Our motivation lies at the different mathematical and computational properties of risk measures

and how could these potentially affect the outcome. Firstly, V@R is not a coherent risk measure

and utility-based shortfall risk is. As we have already demonstrated by the example in the

section 2.2, this is a quite important feature. Secondly, we would like to compare and contrast

the different algorithms that exist for solving RFPs problems and what useful information might

come from that. Thirdly, we would like to see if the use of stochastic algorithms could give us

a computational edge (parallel programming), when it comes to computing the value of the risk

measure. Therefore, we will be involved in the above three steps of the problem, in some of

them more, in others less. Last but not least, we are highly interested in observing whether the
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Fourier transform will be quicker, as we expect, from the simulation method, as Monte Carlo is.

3.2 Deterministic Root Finding

We begin with the simpler of the two cases, that of the deterministic case. The generic case is

the following:

We are interested in finding x: f(x) = 0 where f: Rn-Rn denotes a system of n non-linear

equations and x is the n-dimensional root. The preceding example of f(x) = x2 -x was a simple

case with n=1 and rather simple function f.

3.2.1 Methods

There have been proposed several methods in order to address the problem of finding the root

[5]. We will briefly introduce them:

• Fixed point iteration is a very basic algorithm and it works only if the iteration function

is convergent.

Description: Given f(x)=0 we rewrite as xnew=g(xold)

Algorithm. Fixed Point Iteration

Initialize: x0=..

for k = 1, 2, 3.. do

Xk= g(xk−1)

end for

if converged then

stop

end if

• Bisection:

The bisection method is among the simplest and most robust algorithms for finding the

root of a one-dimensional continuous function on a closed interval. Suppose that f(.) is a

continuous function defined over an interval [a,b] and f(a) and f(b) have opposite signs. By

the intermediate value theorem, there exists at least one m [a,b] such as f(m)=0. The key

idea of the method is that it is iterative and each iteration starts by breaking the current

interval thus bracketing the roots into two subintervals of equal length (hence the name

bisection). The interval with the opposite signs on each endpoint becomes the new interval
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and the next iteration begins. Continuing this procedure with diminish our interval as

much as possible and stops when a specific level of error tolerance has been reached. [5,6]

Description: Given an initial interval, break it into two subinterval. Find the one

with opposite sings at each endpoints, make it the new interval and continue until it

converged.

Algorithm. Bisection

Initialize: a =..., b =...

for k = 1, 2, 3.. do

xm= α + (β - α)/2

if sign(f(xm)) = sign(f(xα)) then

α = xm

else

β = xm

end if

if converged then

stop

end if

end for

Due to the simplicity of the methods we will not mention any convergence criteria. We

point to the bibliography for further reading [6].

• Newton: The basic idea behind Newton’s method is that for a given initial guess xk, we

use the f(xk) and the derivative f’(xk) to predict where f(x) crosses the x axis and therefore

be the root of the function. Given an initial guess x1 of the root we could approximate the

function using Taylor expansion (the order depends on the problem) about x1:

f(xk + ∆x) = f(xk)+ ∆x
df

dx
|xk +

(∆x)2

2

d2f

dx2
|xk + ...

By substituting ∆x = xk+1 − xk and neglect the second term we arrive to

f(xk+1) = f(xk) + (xk+1 − xk)f ′(xk), wheref ′(xk) =
df

dx
|xk

Keeping in mind that our goal is to find x such that f(x) = 0 we set f(xk+1) =0 and solve

for xk+1 we get
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f(xk) + (xk+1 − xk)f’(xk) = 0 ⇒ xk+1 = xk -
f(xk)

f ′(xk)

Newton’s algorithm displays very good properties in terms of convergence, especially with

high accuracy in the neighbourhood close to the solution.

Algorithm Newton

Initialize: x1 =...

for k = 1, 2, 3.. do

xk = xk−1 − f(xk−1)/f ′(xk−1)

if converged then

stop

end if

end for

The benefit of using Newton instead of bisection lies at the faster convergence rate. But the

gain comes with costs. The function in hand must be differentiable and the derivative must

be supplied. Quite frequent we have functions that are differentiable but the computation

of the derivatives is extremely difficult, especially when talking about n >1 where we involve

the Jacobian matrix of partial derivatives.

As far as the drawbacks are concerned, Newton’s methods depend heavily on the initial

guess. As a consequence, the global convergence is likely to fail and the method does not

always guarantee that it will converge. For more details on the subject[4,5,6]

• Secant The major drawback in terms of computation for the newton method is that it is

very difficult to compute and evaluate the derivative both at the beginning and at every

step of the method. So a better choice would be to avoid the computation of the derivative

and try to evaluate the function instead. These methods are called Quasi-Newton methods

because they consist of iterations over successive linear equation solving problems but they

differ in the sense that they do not require the computation of the derivative. Obviously this

gain comes with the drawback of slower convergence compared to the Newton’s method.

What secant method suggests is that when evaluation of the derivative is a problem, we

could do the following iteration:

xk+1 = xk −
f(xk)

m

where m is the approximation of the derivative and is the following:
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mk =
f(xk)− f(xk−1)

xk − xk−1

This number, which is actually a difference quotient, uses the already-computed values of

the function f from the current as well as the previous iterate. Thus we have:

xk+1 = xk −
f(xk)

f(xk)− f(xk−1)

xk − xk−1

⇒ xk+1 = xk − f(xk) ∗ xk − xk−1

f(xk)− f(xk−1)

It has been shown that the convergence of the secant algorithm is superlinear (quotient

1.62) which is faster than bisection but slower than Newton. Nevertheless when evaluating

an algorithm the convergence rate is not the only factor we take into consideration. The

number of floating-point operations, or just flops, per iteration should also be examined.

Even though an algorithm may have a faster rate of convergence if it requires many flops

then it takes longer to reach a certain level of accuracy. This is particularly the reason why

Secant is faster, in practice, than Newton. Moreover, the Secant method doesn’t require the

knowledge and hence the computation of the derivative, just one function. On the negative

side the algorithm is also not so robust and also requires two initial guesses. [4,5,6]

Algorithm Secant

Initialize: x1 =..., x2 =...

for k = 1, 2, 3... do

xk+1 = xk − f(xk) ∗ xk − xk−1

f(xk)− f(xk−1)
if converged then

stop

end if

end for

3.3 Stochastic Root Finding Problems (SFRP)

3.3.1 Introduction

The generalization of the deterministic root finding problem is called the stochastic root finding

problem. The significant difference between the deterministic and the stochastic case is that in

the former the function f is known where in the latter all we have is an estimator Y m(x) (which

has to hold certain attributes for example consistency) of f(x). What this means in practise is

that a large sample is required in order to obtain an accurate value f(x) for any value of x in the
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domain of f. We now state a formal definition of the SRFP as found on Chen and Schmeiser,

1994b, 2001:

Given a constant vector γ ∈ R and a (computer) procedure for generating, for any x ∈ R, a

q-dimensional consistent estimate Ym(x) of g(x) such that Ym(x) ⇒ g(x) as m ⇒ ∞ for all x ∈

R find the unique root of x∗ satisfying g(x)= γ using only the procedure.

3.3.2 Stochastic Approximation

We begin again by recalling the well-known Newton’s method for the DRFPs on the function g:

Rn → Rn:

xn+1 = xn - (∇ g(xn))−1g(xn)

where the function g and the gradient ∇ -g are assumed to be known, which is a major difference

for the SRFPs as we have already mentioned, since in the latter only a consistent estimator of g

is available.

In 1951 Herber Robbins and Sutton Monro introduced a variation of the above iteration by sub-

stituting the estimator G for g and including a carefully chosen sequence an aimed at eliminating

the effects of randomness:

Xn+1 = Xn − an ·G(Xn) (2)

This algorithm is what we call today the ”Robbins-Monro” algorithm, it has been thoroughly

studied since and a few important variations as well improvement have been made such as the

one suggested by the Pollyart- Ruppert.

3.3.3 Robbins - Monro

Again we will present the general case and later on we will see how this algorithm will be tailored

to our case for the utility based shortfall risk. We would like to minimize a function g(θ) over

some region Θ subset of Rd. We assume that the function is smooth. Let us also assume that

the algorithm is at iteration n and has produced an approximation θn to θ∗, it then generates a

r.v. Yn+1 having an expectation close to ∇(θn). If we are able to obtain an unbiased gradient

estimator then the conditional expectation of Yn+1 given θn is exactly ∇(θn). Therefore, at

every iteration the algorithm tries to converge to the true zero of the ∇(θn). The use of random

variables along with expected value is what makes the algorithm ”random” in nature. [10]
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3.3.4 Polyak - Ruppert

The convergence of the Robbins-Monro algorithm depends on the choice of
c

nγ
. Ruppert (1988),

Ruppert (1991), Polyak (1990), and Polyak and Juditsky (1992) suggested that instead of just

relying on the last iteration xn, to average the results of the slowed Robbings Monro algorithm.

In our examples, we treat the Polyak-Ruppert algorithm as an average of the values produced

from the Robbins-Monro algorithm. That is, if xi is the result of the i simulation we average

producing the following:

x̄ =
∑n

1 xi

Therefore instead or running the algorithm just n times, because we are averaging we also

impose N simulations, each consisting of n steps. Therefore, in the Robbins-Monro context,

the algorithms concludes after n steps and in the Polyak-Ruppert case, the algorithm concludes

in Nxn steps. The latter will serve our framework for the analysis and implementation of our

examples.[13]

For terms of complete presentation we will briefly refer here the five criteria by which the

above and the rest of the algorithms for SRFPs can be evaluated and these are the following:

1. Numerical Stability

Numerical stability is the actual performance of the algorithm when implemented into a

computer in contrast with the theoretical performance that measures that don’t take into

account factors such as computer arithmetic or floating-point arithmetic.

2. Robustness

Robustness addresses the issue of how sensitive is the algorithm to the changes of the initial

values of the parameters in the algorithm. This means that a good algorithm shouldn’t

rely on specific initial values to and should perform well irrespective of them.

3. Convergence

Convergence refers to asymptotic convergence in some probability measure. Obviously we

prefer algorithms that guarantee convergence over those that don’t, although convergence

may not be indicative of the finite time performance of the algorithm.

4. Computational efficiency

The relation between the quality of the solution and the amount of computing effort in-

volved is expressed by a (tradeoff) function. One suggested measure is the expected value
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of the product of work with squared error. The smaller values indicate higher efficiencies.

Computational efficiency is interesting because it combines the finite and asymptotic per-

formance of the algorithm in terms of the solution quality and the effort needed in obtaining

the solution.

5. Ability to report solution accuracy

The main issue here is that since we only have an estimator of the function, the solution at

each stage is random. The use of Variance is the only measure we could use but this means

that the variance itself is an unbiased estimator. If the bias though is persisted through

the iterations of the algorithm then the variance will be a poor estimator and therefore a

poor measure of accuracy.

[17]

3.3.5 Convergence

What is of utmost importance of course if the convergence of the method for which a rich

literature lies [7,8,10,11]. We base our presentation now on the paper of the R. Pasupathy and

S. Kim [11].

As we have seen in section 3.3.2, Robbins-Monro (1951) introduced the estimator function G

instead of g. In SFRP in general, no assumptions about the nature of the estimator function

Gm(x) are made apart from the fact that as m→ +∞ it should converge in probability to g(x):

i.e. Gm(x)
d→ g(x) as m→ +∞. Therefore all we know and we are given at the beginning is the

following (as taken from [11]):

A simulation capable of generating, for any x ∈ D ⊂ Rq, an estimator Gm(x) of the function

g : D → Rq such that Gm(x)
d→ g(x) as m→ +∞ for all x ∈ D.”

We return to (2) and write it a little bit different but having a clear goal in mind: separating

the deterministic and stochastic parts in the equation:

Xn+1 = Xn − anG(Xn)

Xn+1 =

deterministic︷ ︸︸ ︷
(Xn − ang(Xn))−an

stochastic︷ ︸︸ ︷
{G(Xn)− g(Xn)} (3)

where the part in parenthesis is the ”deterministic” and the part in brackets represents the

”stochastic” part. (We insert the quotes because Xn is a random variable and so the term de-

terministic doesn’t really hold). The important here is to observe that apart from the conditions
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that function g must hold (e.g. monotonicity), condition(s) for the sequence an should hold as

well in order to drive the ”stochastic” part to zero.

Three criteria that guarantee convergence are the ones set by Robbins Monro original paper [7]:

(a) The function satisfies

g(x∗) = 0

 g(x)<0 for x <x∗

g(x)>0 for x >x∗

(b) The positive valued sequence {an} satisfies
∑∞
n=1 an = +∞ and

(c) The sum
∑∞
n=1 a2

n <+∞

The first two conditions drive the deterministic part towards the zero of the function g (which

is what we are looking for) and the last condition is aimed at driving the stochastic component

to zero (we would like to get rid of the ”randomness”).

As the literature evolved other conditions have been added. For example Blum [1954a] established

a.s. convergence of (2) under the same conditions as Robbins and Monro [1951] [7] but weakens

the conditions for the structure of the root-finding function g. This is the following theorem:

Theorem 1. Convergence of Stochastic Algorithms in one Dimension.

We assume the following:

A1.
∑∞
n=1 an = ∞

A2.
∑∞
n=1 a2

n <+∞

A3. |g(x)| <c(|x− x∗|+1) for all x and some c >0

A4. Var(Gx(Xn)) <σ2 <∞ for all x

A5.  g(x)<0 for x <x∗

g(x)>0 for x >x∗

A6. infδ1<|x−x∗|<δ2 g(x) >0 for every pair of numbers δ1 , δ2 satisfying 0 < δ1 < δ2 <∞.

Then {Xn} → x∗ a.s. as n → ∞ [11]

The conditions A3, A5, A6 specify the structure of the function g: A3 sets the maximum

growth rate, A5 ensures the maximum of one root and the last condition A6 ensures that the

iterates do not accumulate at any finite point. These three conditions along with A1 are focused

at the deterministic part of the recursion (3). The remaining conditions (A2,A4) are used to

drive the stochastic component in (3) to zero. Therefore we observe the similarity in conditions
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between those set by Robbins and Monro and Blum. We also have to notice that an is a sequence

of positive real numbers, which practically means that they are predetermined ahead of time and

cannot therefore be a function of the iterates Xn.

In our thesis we are particularly interested in problems in one dimension. Nevertheless for

purposes of complete presentation we will just present the conditions that guarantee convergence

in multiple dimensions and these are the following:

Theorem 2. Convergence of SA methods in multiple dimensions.

Assume the following:

A1.
∑∞
n=1 an = ∞

A2.
∑∞
n=1 a2

n <+∞

A3. There exists a positive-valued function f(x): D ⇒ R with unique minimum at x∗, and

having continuous first and second partial derivatives such that:

• supε≤||x−x∗|| ∇ f(x)T g(x) <0 for all ε >0 , where ∇ f(x) is the column vector of first

partial derivatives of the function f at x, and,

• E[Gx(Xn)TH(x)Gx(Xn)] <∞, where H(x) is the matrix of second partial derivatives of

the function f at x.

Then {||Xn − x∗||} → 0 a.s. as n → ∞. [11]

3.3.6 Convergence Rates

Obviously in our context, the convergence of the algorithms is of utmost importance. After all

an algorithm that doesn’t converge at all or partially is not useful algorithm. Therefore the

guarantee that the algorithm will converge is essential but not enough. Another characteristic

we ought to closely look is the convergence rate of the algorithm, that is how fast the algorithm

convergences. In the best case scenario we would like to have an algorithm that converges and

it does it fast. Fast convergence means small computation time.

Particularly the a.s. convergence of the SA algorithms ensures that the distance between the

iterates Xn and the solution we are seeking x∗ converges to zero. But it doesn’t provide any

additional information about how fast the iterates approach the solution, an information that

we would like to possess. The convergence rates can be obtained by establishing the asymptotic

distribution for the iterate Xn.
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Theorem 3. Convergence Rates for SA in one dimension.

Consider the unconstrained SA algorithm. Assume that the assumptions for a.s. convergence

hold. Further, assume

A1. g has a positive derivative g′(x∗) at x∗

A2. α is in (
1

2
,1], nα an for some α >0, and if α =1, a >

1

2g′(x∗)
A3. the function σ2(x) = V ar(Gx(Xn)) is continuous at x∗

A4. sup|x−x∗|<ε E[(Gx(Xn)− g(x))2I{|Gx(Xn)− g(x)| > K}] → 0 as K → ∞, for some ε > 0.

Then, n

α

2 (Xn− x∗)
d→ N(0,s2) is a Gaussian random variable with mean zero and variance s2.

The asymptotic variance s2 = ασ2(x∗)/2g′(x∗)-1 if α=1, and ασ2(x∗)/2g′(x∗) otherwise. [11]

Let us comment the above conditions. Condition A1 just describes that function g is strictly

increasing in a neighborhood of x∗ while A2 sets the decay rate of the sequence an. The as-

sumption A3 implies that the variance of the stochastic components converges at x∗ while A4

provides an essential condition to obtain asymptotic normality of the iterates.

The main point is that the convergence of the SA depends on the sequence an. If a = 1 the

optimal convergence rate O(1/
√
n) can be guaranteed which is in line with the result in a typical

central limit theorem.

Since we have established the criteria for convergence and convergence rates, it is time to proceed

to the presentation of our project, where we use the algorithm of Robbins Monro (to be explained

later) along with stochastic and deterministic root finding algorithms to solve the problem of

the utility-based shortfall Risk. But first let us present the powerful and interesting connection

between the stochastic algorithms and the parallel programming on the implementation side of

things.

3.3.7 Stochastic algorithms and parallel programming

Two of the reasons we employ stochastic algorithms to solve root-finding problems are apparently

that they are robust and fast. The first characteristic, robustness, refers to the structure of the

algorithm and we can’t improve it unless we have the function and the design in hand. As for

the speed of the algorithm, there we could improve it by employing parallel programming. The

justification for the use of parallel programming stems from the fact that stochastic algorithms

are loop-independent (the steps of the loop body are independent of one another), meaning that

we could run each iteration of the algorithm separately, which translates to one iteration per core

(or per CPU if you prefer). All we have to do then is to combine the final result. This feature
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allows us to experience important change in terms of time, as we will present later.

Parallel programming as an idea is nothing more than running your code in parallel which means

in practice running your code on a separate core, hence the name parallel. We therefore have a

program to run and multiple cores to use. But when we run the code at the same core, it seems

that the code is running on parallel but what the CPU actually does, is that is uses an algorithm

for time sharing but optimized. Even if we have multiple cores, the CPU doesn’t utilize the other

cores unless is instructed to do so. So if we have large project we enormous data, as it is often

the case in the finance industry, then, running it on a simple core we experience a lot of latency.

Instead if we could run the code, or even better, if we could create or structure the code in such

way that enables the program to run on multiple cores then we get the computational advantage

of speed and accuracy.

In practice parallel programming is more than just specifying how many cores to use. We have

to create the program so that it uses every possible degree of parallelism, which depends on the

hardware architecture. Therefore the design of the algorithm is very important. Even if we have

an already established program we have to re-design it in order to use this computational benefit.

On the pure implementation side several environments offer the option of executing the code in

parallel. The C++ language offers the Parallel Patterns Library or PPL which is come with

the 2010 visual studio and sets all the essential details needed on the hardware level in order to

execute the code. In addition to C++, Matlab also offers the same possibility. In our examples

we used matlab and the parafor loop feature.

4 Applications

Proposition 1 implies that the value of the SRl,λ = s∗ is the unique zero of the function g(s) =

E[l(−X− s∗)] - λ. Therefore the problem is now how to find the roots of a given function, hence

it’s a root-finding problem. In order to do that we split-up the problem into two phases:

1. Compute the expected value E[l(−X − s∗)] = λ

2. Employ root-finding algorithms to find the root, either stochastic or deterministic.

There are a number of ways to address the above two points. First of all we are facing the

problem of computing the expected value which could be done by either of the following methods:

(a) Monte Carlo.

Generate sample paths of the underlying distribution from a very large sample. Then due
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to the law of large numbers the mean value we are calculating will converge to the expected

value we are trying to find.

(b) Fourier Transform

Instead of generating sample path and therefore doing simulation we could instead try to

compute the integral itself (since the expected value over a given probability measure is an

integral). The Fourier transform will do exactly that, by transforming the loss function and

then computing the integral (by numerical integration but that’s not a simulation).

Second of all, we will use both deterministic and stochastic root-finding methods, such as

Secant and Robbins - Monro algorithm, respectively, to find the root of the function. The final

objective will be to compare and contrast all the different methods and finally suggest the best

solution to the problem in hand. From all the above plausible combinations, we summarize on

the following matrix the methods we will use:

Root-Finding Algorithm Expected Value computation

Deterministic Monte Carlo

Stochastic Monte Carlo

Deterministic Fourier.

(I) Deterministic RF with Monte Carlo

As we have already define we have the function g(s) = E[l(−X − s∗)] - λ. In order to find

the roots of the function we will use the Secant method which is deterministic in nature

and in order to compute the expected value we will use Monte Carlo. We remind that the

secant method is the following:

sn+1 = sn − g(sn)
(sn − sn−1)

(g(sn)− g(sn−1))
, (5)

where the function g(s) is the one above (*). The logic is quite simple. Loop through a

number of times while calculating the expected value at each iteration using Monte Carlo

simulation. At the end, the final value will be sN = s∗ which is the root of the function

and the value of the shortfall risk. This is the simplest method we could use to solve the

problem. We will see whether this method is the best in terms of speed and accuracy.

(II) Stochastic RF with Monte Carlo

Instead of using the Secant method we will use the Robbins-Monro method. We will now
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describe how the algorithm is applied to the context of the shortfall risk and we will follow

the presentation as in [13]. As a reminder from earlier the algorithm has the following

structure:

Xn+1 = Xn - an G(Xn) (*)

In order to compute the expected value we will use a measurable function GX : [0,1] →

R such that g(X) = E[ GX(U) ] for any on [0,1] uniformly distributed random variable

U . The function G(.) should be carefully chosen in order to increase the efficiency of the

stochastic root finding scheme but a good choice, at least for our examples, is GX(U) =

l(-q(U)−X) - λ, where q is the quantile function of X. We would also like to bound and

restrict the domain and to this end we define a projection function Π :R → [a, b] onto the

interval [a, b] by

Π(x)


a for x ≤ a

x for a <x <b

b for b ≤ a

Now the Robbins-Monro algorithm can be constructed in the following way:

(a) Choose a constant γ ∈(1/2, 1], c >0 and a starting value X1 ∈ [a, b]

(b) For n ∈ N we define recursively:

Xn+1 = Π[ Xn +
c

nγ
* GXn(Un)]

where the
c

nγ
is the an sequence of (*) and GXn

(Un), for a sequence (Un) of indepen-

dent, uniform [0,1] distributed random variables.

We could observe the similarity in both the secant method and Robbins-Monro algorithm.

The difference lies in the way we choose the starting values, the use of random variables and

the fact that the Monte Carlo method is used only once, for the whole algorithm, rather

than every step of the loop. The advantage of this algorithm is the possibility to run each

loop on a separate core and therefore taking advantage of the hardware architecture by

utilizing parallel programming while the secant method cannot be employed on a parallel

environment.
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(III) Deterministic RF with Fourier Transform

In this case we will use the Secant method again but instead of using the Monte Carlo

simulation to compute the integral we will use the Fourier transform. For this presentation

we will follow the presentation as in [3]. We denote the dampened function g(x) = e−Rxl(x)

for some R ε R. Moreover, let ĝ denote the Fourier transform of a function g, i.e., ĝ(u) =∫
eiuxg(x)dx and MX the moment generating function of X, i.e., MX = E[euX ] for suitable

u ε C. We also define the domain of R to be the intersection of the following two sets:

I: = { R ∈ R : E[eRx] <∞ } and

J := { R∈ R : lR ∈ L1
bc(R) and lR ∈ L1(R) }

Then the expected value can be computed as follows:

E[l(−X − s)] =
1

2π

∫
R e

(iu−R)sMXT
(iu−R) · l̂(u+ iR)du

where R ∈ I ∩ J .

Proof:

First we work on the dampened function

g(x) = e−Rxl(x)⇒ l(x) = g(x)eRx (6)

l(−X − s) = g(−X − s)eR(−X−s) = g(−X − s)e(−RX−Rs) (7)

where in the last equality we have substituted x = (−X − s).

E[l(−X − s)] =

∫
Ω

l(−X − s)dP =

∫
R
l(−X − s)PXT

(dx) =

∫
R
g(−x− s)eR(−x−s)PXT

(dx)

(8)

= e−Rs
∫
R
e−Rxg(−x− s)PXT

(dx) (9)

where in (8) we have used (7).

In order to derive the inverse of g we rely on [3,p6] where the following are established:

By assumption, g εL1(R) and the Fourier transform of g, as we have already introduced:

ĝ(u) =
∫
eiuxg(x)dx

is well defined for every u ε R and is also continuous and bounded. Additionally, by

assumption ĝ ε L1(R), we have also ĝ ε L1
bc(R). Therefore, using the Inversion Theorem
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(cf. Deimtar 2004, Theorem 3.4.4), ĝ can be inverted and g can be represented, for all x

ε R, as

g(x) =
1

2π

∫
R e
−ixuĝ(u)du

g(−X − s) =
1

2π

∫
R e
−i(−x−s)uĝ(u)du

g(−X − s) =
1

2π

∫
R e

i(x+s)uĝ(u)du

Now, we return to (9), we get

E[l(−X − s)] = e−Rs
∫
R
e−Rxg(−x− s)PXT

(dx) = e−Rs
∫
R
e−Rx

( 1

2π

∫
R
ei(x+s)uĝ(u)du

)
PXT

(dx)

(10)

=
e−Rs

2π

∫
R
e−Rx

(∫
R
eixu+isuĝ(u)du

)
PXT

(dx) (11)

=
e−Rs

2π

∫
R
eisu

(∫
R
eixu−RxPXT

(dx)
)
ĝ(u)du (12)

=
1

2π

∫
R
eisu−Rs

(∫
R
e(iu−R)xPXT

(dx)
)
ĝ(u)du (13)

=
1

2π

∫
R
e(iu−R)s

(∫
R
ei(u+iR)xPXT

(dx)
)
ĝ(u)du (14)

=
1

2π

∫
R
e(iu−R)s

(
φXT

(u+ iR)
)
ĝ(u)du (15)

=
1

2π

∫
R
e(iu−R)sMXT

(iu−R)ĝ(u)du (16)

=
1

2π

∫
R
e(iu−R)sMXT

(iu−R)l̂(u+ iR)du (17)

where the for (11) to (12) we have applied Fubini’s theorem and for the last equality we

have:

ĝ(u) =

∫
R
eiuxe−Rxl(x) =

∫
R
eiux−Rxl(x) =

∫
R
ei(u+iR)xl(x) = l̂(u+ iR) (18)

So we have proved the following:

E[l(−X − s)] =
1

2π

∫
R
e(iu−R)sMXT

(iu−R) · l̂(u+ iR)du (19)

What is left then is to define the moment generation function in hand and compute the

fourier transform of the loss function. Both actions are relatively easy for well-known

distributions and functions. The Secant method is as described in the case (I) and we

note that at each step the expected value will be computed using the fourier method. The

advantage we foresee is the computation speed in the calculation of the expected value
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between the simulations of the Monte Carlo method and the ”pure” computation using

the Fourier transform

4.1 Examples

We are now in place to apply the above using two specific loss functions: the exponential and

the piecewise polynomial function. We note that we will use the loss amount L instead of the

portfolio value X. L is simply the negative of X, that is X = -L. What this means is that

positive values of L correspond to losses where negative values to gains.

4.1.1 Example I-1: Deterministic - Exponential Loss function

In the first example we will use the exponential loss function

l(−x)=e−βx, β >0

with normal (Gaussian) distribution, l ∼ N(µ0,σ2
o). In this case the value of the utility-based

shortfall risk can be calculated in a closed form:

E[l(−X − s)] = E[l(e(−X−s)β)] = e−sβE[e−Xβ ] = e−sβe
−βµ+

1

2
β2σ2

= λ⇔ (20)

−sβ − βµ+
1

2
β2σ2 = log λ⇔ (21)

s = −µo +
1

2
βσ2 − log λ

β
(22)

where we used the fact that E[e−Xβ ] is the moment generating function of N(µo, σ
2), E[e−Xβ ] =

e
−µβ+

1

2
β2σ2

.

So by plugging in values of β=0.5, λ=0.05, µo=0, σ0=1 we obtain the value SR = s∗ = 6.2415.

We will now perform the same calculation at Matlab, by using the Secant and Monte Carlo

method. We have to choose the N simulation runs and n the number of steps per simulation run

(the algorithm will run Nxn times in total). For this example we will use N =1000 and n=100,

with initial values α1= 10, α2=1. The execution took 1.98 seconds and we got the result of s∗

= 6.2431 which is close enough to the value computed by the closed form formula. As we have

already mentioned for the Secant method the two initial guesses, which are the starting values,

influence the performance of the algorithm. If we test for example negative values or values

above 12 the algorithm diverges. So it is a rather quick calculation but we have to be careful of

the initial choices.
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Deterministic Case - Monte Carlo

N=1.000,n=100,µo=0,σo=1,λ=0.05 Exponential loss(β=0.5) Piecewise loss (η=2)

Time (in sec) 1.98 1.92

SR value = s∗ 6.2431 0.8303

Note: The convergence of the algorithm (Secant) depends heavily on the choice of the two

initial starting values.

Table 1: The results of our first two examples for each loss function, using the Secant method

and Monte Carlo simulation for the computation of the expected value. We present the time of

execution as well as the value s∗.

4.1.2 Example I-2: Deterministic - Piecewise Loss Function

Unlike the previous example, the piecewise loss function cannot be evaluated on a closed form

solution. Therefore we have to compute it numerically by using a computer. The piecewise loss

function is the following:

lη(L− s) = η−1(L− s)η1L>s =

 η−1(L− s)η for L ≥ s

0 for L <s

again with normal (Gaussian) distribution, L ∼ N(µo, σ
2
0)

We set N=1000, n=100, η=2, µo=0, σo=1, λ=0.05 and we run again the Secant and Monte

Carlo method. The algorithm ran for 1.92 seconds and returned the value of s∗ = 0.8303. Again

we see that the computation is rather fast but again we have the dependence on the initial

guesses. If we try negative values, zero or values that are far from the solution then the algo-

rithm diverges.

We summarize the findings of our two first examples (I-1,I-2) by using the deterministic root-

finding algorithm Secant and computing the expected value using Monte Carlo simulation.

4.1.3 Example II-1: Stochastic - Exponential Loss Function

We now turn our attention to the stochastic root-finding algorithms again with Monte Carlo

simulation. To this end we will use the Robbins-Monro algorithm. We define the following inputs,
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β=0.5, λ=0.05, γ=0.7, n=100, N=1000. Next we define the domain close to the root (since we

have already analytically obtained the root s∗ = 6.2415 from (22)) as [a, b] = [s∗−10, s∗+10]=[-

3.7585,16.2415]. The algorithm runs for 2.23 seconds and returns the value s∗= 6.2508, which

is close enough to the computed value from the closed form. We present here the histogram

of the sn values to check whether or not the distribution is normal. We could state that the

distribution is standard normal.

We have a few observations to make. It took a little more time for the algorithm to execute but

the range of the domain is quite broad, accepting also negative values, a flaw the secant method

had. So Robbins-Monro doesn’t have a dependence on the initial values, as we previously had.

It is a mere a feature of how well we know the neighborhood of the root. If we are certain we

could look around a rather narrow domain.But we have to note the dependence on the sequence

an =
c

n
. The choice of this sequence is of utmost importance because by changing these numbers

the algorithm responds differently.

At this point we will prove that the sequence used in exponential loss function (and in turn

in piecewise loss function later) satisfies the three (3) conditions set by Robbins-Monro that

guarantee convergence. We have the function g(s) = E[l(−X − s)] − λ and the sequence an =
c

n
. The second and third condition requires the divergence and convergence of the sequence,

respectively. In order to arrive at such conclusions we will use the integral test to examine the

convergence or not of the sequence. We examine the second condition first; the third condition

will follow naturally from the second. We note that the sequence is just like the sequence of
1

xp
.

So if we could derive a result for this sequence, then the same applies to our sequence in hand

as well. ∫ t

1

1

xp
dx =

t−p+1

−p+ 1
− 1

−p+ 1
=

1

(−p+ 1)tp−1
+

1

p− 1
(23)

36




p = 1 the limit does not exist

p>1 the integral converges

p<1 the integral does not converges

So for p < 1 the sum does not converge. Similar is the case for the third condition, where we

want the squared sum of the sequence to be finite.∫ t

1

1

x2p
dx =

t−2p+1

−2p+ 1
− 1

−2p+ 1
=

1

(−2p+ 1)t2p−1
+

1

2p− 1
(24)


p =

1

2
the limit does not exist

p>
1

2
the integral converges

p<
1

2
the integral does not converges

In this case we want the integral to converge, so we choose the p>
1

2
values. Therefore, we

established the conditions set by Robbins-Monro so the algorithm is guaranteed to converge. We

also derive the range of the γ value which is γ ∈ (
1

2
, 1].

4.1.4 Example II-1: Stochastic - Piecewise Loss Function

We try the second example with piecewise loss function by using Robbins - monro algorithm.

This time we use N=1000 and n=1000 because with n=100 the algorithm doesn’t converge to

the value. The domain is [a, b] = [ s∗-5,s∗+5]=[-4.1306,5.8694]. In case there is no analytical

solution available much wider bracket [a, b] must be provided. The rest of the parameters remain

almost the same as with the previous example: c=100, γ=1, λ=0.05. The algorithm runs for

21.79 seconds and returns the value of s∗=0.8980 which is not so close to the observed value of

0.8693.

We observe that the algorithm took much more time to execute than the deterministic case but

this is mainly because of the number of steps per simulation (n) which is now 1000 instead of

100. If we put the same n at secant method we also get the same value of 0.8928 and 22.065

seconds of execution. The advantage is again the independence from the initial values. We also

present the histogram of the sn values to see whether or not it follows a normal distribution. We

could state that the values follow a standard normal distribution.
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We summarize here our finding, after running both examples with the Robbins-Monro algo-

rithm and Monte Carlo simulation:

Stochastic Case - Monte Carlo

N=1.000,n=100,µo=0,σo=1,λ=0.05 Exponential loss(β=0.5) Piecewise loss (η=2)

Time (in sec) 2.23 21.79

SR value (s∗) 6.2508 0.8980

Table 2: The results of our first two examples for each loss function, using the Secant method

and Monte Carlo simulation for the computation of the expected value. We present the time of

execution as well as the value s∗.

Note: The algorithm took longer time to execute but the convergence is much more guaranteed

than in deterministic case. The algorithm is independent of the initial starting values since they

are randomly generated from a predefined interval when the algorithm begins.

4.1.5 Example III: Deterministic - Piecewise Loss Function

Here instead of changing the root-finding algorithm, we keep the deterministic Secant algorithm

and change the way we compute the expected value. Instead of using simulation, we are comput-

ing directly the integral through Fourier transform. Obviously we resort to numerical integration

at the implementation level. In addition, we are only going to focus on our second example, i.e.

on the piecewise loss function because we cannot apply the fourier transform to the first example

(on the exponential function). As we have already proved the expected value under the Fourier
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transform is given by:

E[l(−X − s)] =
1

2π

∫
R
e(iu−R)sMXT

(iu−R) · l̂(u+ iR)du (25)

We have to derive the moment generating function and the fourier transform of the loss function.

The following calculations explain how to do so.

Fourier Transform of the Piecewise Loss Function

The piecewise loss function is the following:

l2(L− s) = 2−1(L− s)21L>s =

 0.5(L− s)2 for L ≥ s

0 for L <s

We take for s = 0 in the above expression and derive the fourier transform of the function l for

z ∈ C

l̂(z) = 0.5

∫ +∞

0

eizx · x2dx = 0.5(eizx(
x2

iz
− 2x

(iz)2
+

2

(iz)3
))|+∞0 (26)

The exponential in order not to explode we have to impose the restriction: Im(z) > 0 which

means b > 0.

limx→+∞e
i(a+bi)x = limx→+∞e

(ia−b)x = 0, given b > 0 (27)

Also the exponential will converge much faster than the polynomial x2 so the first term will be

zero. Therefore,

l̂(z) = 0.5

∫ +∞

0

eizx · x2dx = 0.5(eizx(
x2

iz
− 2x

(iz)2
+

2

(iz)3
))|+∞0 (28)

= 0.5(0− e0(
0

iz
− 2 · 0

(iz)2
+

2

(iz)3
)) = −0.5

2

(iz)3
= − 1

(iz)3
(29)

Therefore

l̂(z) = − 1

(iz)3
(30)

Moment generating function

This is easy, since L follows N(0, 1) the moment generating function with µ = 0 and σ = 1 is:

MXT
(u) = eµu+ 1

2σ
2u2

= e
1
2u

2

(31)

MXT
(iu−R) = e

1
2 (iu−R)2 (32)
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Combing the above results (30),(32), our expected value now has the following representation:

E[l(−X − s)] = − 1

2π

∫
R
e(iu−R)se

1
2 (iu−R)2 · 1

(iu−R)3
du (33)

Implementing the above formula into Matlab, or any other software with numerical capabil-

ities, is relatively easy and straight forward. By choosing a value for R = 5 we get the value

0.8694 in time almost close to 0.052116 seconds. Therefore, we already see how accurate and

quick the fourier transform could be.

4.2 Comparison of I-II: Deterministic - Stochastic RFA

Now we will perform a series of tests each time changing a parameter and observing how the

algorithm will perform in terms of time and convergence. We will mainly focus on the number of

simulations (N) and on the number of steps per simulation (n). We will take the histogram and

the q-q plot each time along with the s∗ values and the time needed to execute the algorithm.

Through these case studies we will observe how each algorithm performs and try to conclude

which is better in terms of computation time and desired outcome.

4.2.1 Exponential Loss Function

For the first case study we keep constant the number of simulations (N) and change each time

the number of steps (n). For this reason we will keep N equal to 1000 and n will gradually

take the following values: 100, 500, 1000, 5000, 10.000, 50.000, 100.000 and once the algorithm

concludes we will save the histogram and the q-q plot of the stochastic algorithm apart from the

time taken and the value s∗. After running both the stochastic and the deterministic case we

get the following results:
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Stochastic Deterministic

N=1.000 Time of

execution

Value Time of

execution

Value

n=100 2.2 6.2515 2.09 6.2346

500 11.13 6.2497 11.42 6.2401

1.000 20.38 6.2422 20.92 6.257

5.000 114.26 6.2438 114.18 6.2351

10.000 218.44 6.2417 204.21 6.2511

50.000 1167.91 6.2407 1154.5 6.2301

100.000 2337.81 6.2417 2069.68 6.2667

We observe that the time taken for both algorithms to complete is almost the same as the

ratio of time of the stochastic against the time of the deterministic is almost 1 for all the cases.

As for the values we see that the stochastic gives us better and more stable results since the

value is always in the 6.2407-6.2497 range. The deterministic gives a broader and not so stable

range from 6.2351 - 6.2667. Even at the last case with 100.000 number of steps per simulation

where we expect good results the deterministic algorithm fails to monitor closely the desired

value whereas the stochastic algorithm gave the exact value of s∗.

As for the computation time we could easily see that every time we increase the number of steps

by a multiple of ten (100-1000-10.000) we also have an increase in time in multiple of 10 (2.2

- 20.38 -218.38). In addition every time we increase the number of steps by a multiple of 5

(100-500, 1000-5000) we also notice an increase in time of execution of a multiple of 5 (2.2-11.13,

20.38-114,26). In general, we observe the almost linear relationship between the number of steps

and the time of execution. We present the histogram and the q-q plot of the stochastic algorithm

for the exponential loss function:
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We could conclude that the errors (the computed value against the actual solution) follow a

standard normal distribution. For less than 1000 steps we could also argue that the fit is not so

good, we observe the ”bad fit” at the q-q plot. But as we increase the number of steps it gets

better and better. In the last example with n = 100.000 the fit is very good; only some values

are not on the q-q plot.

For the second case study we hold the number of steps per simulation constant (n) and we modify

the simulations runs (N) in order to observe how the behavior of the algorithm changes when the

number of simulations changes. We follow the same pattern, that is, we keep the number of steps

per simulation run (n) constant at 1000 and for the N we tried the following values: 100, 500,

1000, 5000, 10.000, 50.000, 100.000. After the execution of the algorithm we save the histogram

and the q-q plot of the stochastic algorithm as well as the time of execution and the value s∗.

After running both the stochastic and the deterministic case we get the following results:
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Stochastic Deterministic

n=1.000 Time of

execution

Value Time of

execution

Value

N=100 2.225 6.2436 2.26 6.2052

500 10.872 6.249 11.85 6.322

1.000 22.41 6.2462 22.28 6.2541

5.000 103 6.2443 121.66 6.2451

10.000 219.73 6.2418 217.95 6.2345

50.000 1094 6.2443 1122.9 6.2442

100.000 2226 6.2447 2312 6.2421

We observe almost the same results as previously. The stochastic algorithm keeps better

track of the real value sn, as it quickly converges even with the first try of one hundred sim-

ulation runs. The best approximation is achieved with 10.000 simulations. The deterministic

part on the other hand, has a broader range of values but after increasing the simulation runs

on 50.000 the value of s* is closer to the real value. The time taken is almost the same for both

algorithms again and the relationship between time and simulation runs is also linear. We could

easily observe that as we increase the simulations by ten the time of execution also increases by

ten (100-2.225, 1.000 - 22.41).

What remains now is to see whether the stochastic algorithm follows the standard normal dis-

tribution and conclude which case is the best in terms of how well the results fit the normal

distribution. We do not expect significant differences from the previous case.
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The best fit is observed for 100.000 simulation runs which rational given that the more
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simulations we add the more the value will converge to the normal distribution (central limit

theorem). Nevertheless, we observe from the q-q plot that the fit is almost perfect, evidence

supports by the histogram as well. The bad fit is observed for small number of simulations, 100

or 500, especially in the former case. We start to get good results from 5.000 simulations and

above. In the case of 1.000 the fit is quite good apart from some values that to deviate, which is

also seen in the histogram, some values on the right.

We conclude the first case study regarding the exponential loss function that since the stochastic

algorithm gives us better approximations, closer to the real value, than the deterministic and

since the distribution is standard normal, as we expected to be, we derive as a first outcome

that the use of the Robbins-Monro algorithm gives better implementation results but not to a

significant degree.

4.2.2 Piecewise Loss Function

We turn our attention to the second example and we will use the piecewise loss function. The

distribution is again standard normal. The main point here is that we cannot evaluate the

function numerically by hand and therefore we have to rely on the numerical methods to derive

the solution. Therefore we cannot know beforehand the solution as we did with the exponential

loss function. The tests will be of the same format. First, we will fix the number of simulations

(N) and secondly, we will keep the numbers of steps per simulation fixed (n) and observe both

times how the algorithm behaves.

For the first case study we keep constant the number of simulations (N) and change each time

the number of steps (n). For this reason we will keep N equal to 1000 and n will gradually

take the following values: 100, 500, 1000, 5000, 10.000, 50.000, 100.000 and once the algorithm

concludes we will save the histogram and the q-q plot of the stochastic algorithm apart from the

time taken and the value s∗. After running both the stochastic and the deterministic case we

get the following results:
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Stochastic Deterministic

N=1.000 Time of

execution

Value Time of

execution

Value

n=100 2.26 1.2622 2.25 0.843

500 11.45 0.9313 10.854 0.8875

1.000 22.93 0.9002 21.9696 0.8759

5.000 111.36 0.8741 103.822 0.8859

10.000 220.96 0.8726 214.84 0.864

50.000 1102.93 0.8704 1109.48 0.8537

100.000 2170.3 0.8693 2290.86 0.836

We observe that the time taken for both algorithms to complete is almost the same as the

ratio of time of the stochastic against the time of the deterministic is close to one for all the cases.

As the number of steps per simulation increases the better results we get and the closer we get to

the real solution. For n=1.000 we have s∗ =0.9002 and if we increase the steps ten times we get

s∗=0.8726, which is close enough to solution. For the deterministic we see a better approximation

early enough, even with 500 steps, but the more we increase the steps the approximation fails

to follow the solution closely. It fluctuates from 0.83 to 0.88. As for the values of the stochastic,

they are more stable since the value is always in the 0.8704-0.8793 range. For the last case of

n=100.000, the stochastic returned the correct value (0.8393) while the deterministic failed to

provide one (0.836).

As for the computation time we could easily see that every time we increase the number of steps

by a multiple of ten (100-1000-10.000-) we also have an increase in time in multiple of 10 (2.26

22.93 -220.96). In general, we observe the almost linear relationship between the number of steps

and the time of execution. We derived the same conclusion as we did with the previous example

of the exponential loss function. We now present the histogram and the q-q plot of the stochastic

algorithm for the piecewise loss function:

49



50



51



We could conclude that the errors follow a standard normal distribution. For less than and

including 1.000 steps we could also argue that the fit is not so good, we observe the bad fit

at the q-q plot. Especially for n=100 and n = 500 the distribution deviates a lot from the

standard normal. The histograms also support this. But as we increase the number of steps the

distribution converges to that of a standard normal. In the last example with n equal to 100.000

the fit is very good.

For the second case study we hold the number of steps per simulation constant (n) and we modify

the simulations runs (N) in order to observe how the behavior of the algorithm changes when the

number of simulations changes. We follow the same pattern, that is, we keep the number of steps

per simulation run (n) constant at 1000 and for the N we tried the following values: 100, 500,

1000, 5000, 10.000, 50.000, 100.000. After the execution of the algorithm we save the histogram

and the q-q plot of the stochastic algorithm as well as the time of execution and the value s∗.

After running both the stochastic and the deterministic case we get the following results:
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Stochastic Deterministic

n=1.000 Time of

execution

Value Time of

execution

Value

N=100 2.37 0.8885 2.29 0.9286

500 11.69 0.8817 11.5 0.8054

1.000 22.36 0.8929 21.51 0.8498

5.000 117.59 0.892 112.36 0.8653

10.000 249.45 0.8915 244.093 0.8684

50.000 1035.54 0.8929 1009.14 0.8668

100.000 2038.79 0.8932 1980.99 0.8645

The behavior of the results does not differ from the first example. The Robbins-Monro

algorithm does not improve significant as we increase the number of simulations. On the contrary,

the value stays at the 0.89xx level, far from the value of the 0.8693. On the other side of things,

deterministic algorithm seems to give better results. It starts with the value 0.9286, which is far

away from the correct solution, and gradually approaches the s∗. By 10.000 simulations we get

the value of 0.8684 and similar results we get for 50.000 and 100.000 simulations with values of

0.8668 and 0.8645, respectively. Thus the deterministic seems to benefit from the increase of the

simulations while the stochastic seems to have no advantage. We now present the q-q plot and

the histograms to determine whether the values of the stochastic algorithm follow a standard

normal distribution or not.
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From early on we discern that the fit to the standard normal is not so good. As the simu-

lations increase the fit gets better but there are still values that deviate, evidence supported by

both the q-q- plots and the histograms. Even with 50.000 or 100.000 simulations the distribution

is still not converging to that of a standard normal. This fact is in line with the previous results,

as the stochastic algorithm failed to converge (closely) to the true value. If we had a better

convergence of the distribution to the standard normal then the value would also converge to

the correct value of s∗.

As a conclusion, we would use the stochastic algorithm by using a moderate number of simula-

tions, 1.000 or 10.000, but with increased number of steps per simulations, 10.000 or more, as

with these values we got the best approximations (n =100.000 and N=1.000 → s∗=0.8693). If

we had to use the deterministic algorithm we would increase the number of simulations because

by doing so the value converges to the correct value and keep the number of steps per simulations

at a moderate level of 1.000 or 5.000. We therefore see that each algorithm requires different

choices. In both examples, the distributions converged to a standard normal.

Now looking at both examples, we do not find any difference in the time of exe-

cution, as both algorithms in all four (4) examples required the almost the same

amount of time to execute. The Robbins-Monro algorithm gave us better approx-

imating values, in the sense that is better converged to the real value of s∗. The

deterministic also converges but fluctuates over a broader range of values. In all four

cases, the distributions were converging to that of a standard normal. Therefore, if

we had to choose we would most probably choose the Robbins-Monro because of its

better convergence behaviour.

4.2.3 Introducing and using Parallel Programming

Now we will present why and how the Polyart Ruppert, and the stochastic algorithms in general,

could be proven to be superior to the deterministic ones. To this end, we will get advantage of

the design of the algorithm. In the construction of the Polyart Ruppert algorithm, we performed

N simulations, each having n steps per simulation. Because each simulation run is independent

from the rest, we can isolate the calculation of each simulation and execute them independently.

In the end, we collect the output of each simulation and construct the final result. This feature

makes the algorithm a very good candidate to be expressed and executed as a parallel program.

All we have to do, is to redesign the algorithm in order to fit to the standards applied by the

parallel programming. The reason for this is because the sequential algorithm runs and behaves
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in a different manner than the parallel equivalent algorithm. On top of that, each language and

developing environment sets its own commands and design considerations.

By not having the algorithm any cross-loop dependencies it means that each loop is independent

of the previous and the following loop, which practically means that it does not require any

information from the other loops. Therefore, we could separate each loop and not lose any

information or harm the algorithm, since each loop is independent (in terms of information).

Since we could separate the loops, we could proceed a step further by distributing and executing

them on separate cores and therefore execute them parallel in terms of time (the number of

cores depends on the underlying infrastructure, but given the today advances in technology and

that most financial institutions companies have access to this technology, this should not pose a

problem.) So what we end up with, is executing each loop on a separate core therefore gaining

significant in terms of speed, since now we dont use only one core but multiple, therefore running

the program in parallel rather than sequential. Instead of waiting each loop to conclude and then

proceed to the next loop, we now distribute the loops to the different number of cores, and once

one loop is terminated the new loop is distributed to that core.

For example, in the sequential example we have only one core. Lets say that we have 100

iteration. Each time, only one iteration can be executed at the core and therefore each iteration

should wait until the previous iteration has concluded in order to be executed. By having more

cores, lets assume for example four (4), we could distribute the first four iterations to the four

cores and each time that one iteration terminates we proceed and feed that core with the next

iteration. There is no guarantee or assumption that the four iterations will conclude all at the

same time (in order to say that we will feed the next four iterations to the four cores). For this

reason, the 5th iteration could be fed to any of the four cores. For example if the 2nd iteration

concludes first from the other four, then the 5th iteration will be fed to the 2nd core, and so on.

Exactly this is the fundamental characteristic of the parallel algorithm. Spot any parts that could

be executed on parallel and re-design the algorithm or design it from the beginning by having

this characteristic in mind. For our examples we used the Matlab command of parfor. The

only difference is that instead of using the normal for command, we use the parafor command,

which is used for parallel execution. Obviously, we have to be certain that our program could be

executed in parallel, as we have explained on the previous paragraph.

We expect therefore a noteworthy improvement in terms of time when we will execute the

stochastic algorithms. We also have to keep in mind, that in order for the parallel programming

to be effective we have to have a lot of iterations and/or many commands or calculations that
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need to be executed. The reason for this is because of the overhead of the parallelism. We

may win time by executing the program in many cores but we lose initially time by setting up

the program, as it needs many more variables from the compiler point of view, to keep track

of the different variables and executions. So if we dont have many commands or iterations this

overhead could be to our disadvantage. This could be more easily explained if we consider an

example of printing a number 100 times. For this example the sequential program will be faster

because of this overhead. It will take some time until the parallel program sets up everything

that it requires and therefore the gain will not be significant. Our examples though, as the

most situations in the real world, are complex enough that gain from the use of the parallelism.

The worst we could expect is that the parallel algorithm could perform as the sequential (every

iteration would run one after the other). So anything above that we would beneficial.

We try to run on parallel both loss function, including the two different cases we have, one for

the fixed number of simulations and one for the fixed number of steps per simulation. Therefore,

we will be able to compare and contrast the three different cases: deterministic, stochastic-

sequential, stochastic-parallel.

Exponential loss function We begin again from the exponential loss function. We ran the

parallel program for the first case of fixed number of simulations (N=1.000) and we will present

the results combined with the stochastic-sequential and deterministic cases, in order to be easy

to compare and contrast:

Stochastic Deterministic Parallel

N=1.000 Time of

execution

Value Time of

execution

Value Time of

execution

Value

n=100 2.2 6.2515 2.09 6.2346 1.33 6.2575

500 11.13 6.2497 11.42 6.2401 6.56 6.2446

1.000 20.38 6.2422 20.92 6.257 12.75 6.2429

5.000 114.26 6.2438 114.18 6.2351 68.24 6.2449

10.000 218.44 6.2417 204.21 6.2511 123.68 6.242

50.000 1167.91 6.2407 1154.5 6.2301 665.54 6.2409

100.000 2337.81 6.2417 2069.68 6.2667 1256.49 6.242

As we observe the parallel algorithm runs a lot faster while it returns correct values, which

converge to the real solution. The gain in terms of execution is quite important as we increase

58



the number of steps. In particular, for 10.000 numbers of steps, we see that both the stochastic

and the deterministic perform close to the 210 seconds, the parallel executed in 123 seconds. The

same gain is observed with 100.000 numbers of steps, with execution times for the stochastic,

deterministic and parallel being 2337, 2089 and 1256 seconds respectively.

If we look closely the time of execution between the stochastic and the parallel algorithm we see

that the ratio of time of execution of the parallel to the time of execution of the stochastic is in

most cases roughly 0.60. This means that the improvement in terms of time is 0.4 percent. In

particular, we present the ratios and the corresponding improvement for each case:

n Ratio Parallel/Stochastic Improvement

100 0.6045 39

500 0.5893 41

1.000 0.6256 37

5.000 0.5981 40

10.000 0.5661 43

50.000 .5698 43

100.000 0.5374 43

Therefore there is a significant gain in terms of execution time in using the parallel algorithm

instead of the sequential algorithm. In our simple example we managed to turn a 38.95-minutes

program run only in 20.93 minutes. Lastly, we present the graph of the execution time of each

case in order to confirm graphically the improvement in time. On the vertical axis we have time

in seconds and on the horizontal the number of steps per simulation.
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We observe how closely move, in terms of time, the stochastic and the deterministic algorithm.

We also see that once the numbers of steps increases significantly, for example after 10.000, the

improvement from the parallel algorithm is becoming more and more significant.

For the second case, we fix the number of steps per simulation (n) and we change the simulations

number (N) each time. We present here the results:

Stochastic Deterministic Parallel

n=1.000 Time of

execution

Value Time of

execution

Value Time of

execution

Value

N=100 2.225 6.2536 2.26 6.2052 2.17 6.2485

500 10.872 6.249 11.85 6.322 6.56 6.2483

1.000 22.41 6.2462 22.28 6.2541 12.46 6.246

5.000 103 6.2443 121.66 6.2451 64.0899 6.246

10.000 219.73 6.2418 217.95 6.2345 137.12 6.2432

50.000 1094 6.2443 1122.9 6.2442 637.8 6.2444

100.000 2226 6.2447 2312 6.2421 1235.88 6.2442

We get the same results as we previously. The parallel algorithm runs a lot faster while

converging to the real value as well. As we increase the number of simulations the gain of the

parallel becomes apparent and more useful. For 10.000 simulations the stochastic algorithm

concluded in 219.73 seconds, a time similar with the deterministic 217.95 seconds. On the

other hand the parallel algorithm ran in only 137.12 seconds. On the last case of 100.000

simulations both stochastic and deterministic finished in 2226 (37.1min) and 2312 (38.5 min)
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seconds respectively. The parallel finished in only 1235.88 (20.5 min) seconds which yields an

improvement of 46 percent.

n Ratio Parallel/Stochastic Improvement

100 0.59 40.67

500 0.603 39.66

1.000 0.556 44.4

5.000 0.622 37.78

10.000 0.624 37.60

50.000 0.582 41.7

100.000 0.555 44.48

So once again the parallel algorithm has shown to be faster in terms of execution time. In

both cases it runs faster while it converges to the real solution. We also provide the graph of the

execution times for each case:

Piecewise loss function Just like we did with the exponential function we execute the parallel

program for the first case of fixed number of simulations (N=1.000) and we will present the results

combined with the stochastic-sequential and deterministic cases, in order to be easy to compare

and contrast:
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Stochastic Deterministic Parallel

N=1.000 Time of

execution

Value Time of

execution

Value Time of

execution

Value

n=100 2.26 1.2622 2.25 0.843 1.36 1.2589

500 11.45 0.9313 10.854 0.8875 6.38 0.9071

1.000 22.93 0.9002 21.9696 0.8759 12.71 0.8993

5.000 111.36 0.8741 103.822 0.8859 63.65 0.8733

10.000 220.96 0.8726 214.84 0.864 124.57 0.8729

50.000 1102.93 0.8704 1109.48 0.8537 624.01 0.8691

100.000 2170.3 0.8693 2290.86 0.836 1254.91 0.8708

First of all we notice that the results are in accordance with the previous case, that is,

the parallel execution was much faster. In particular, the gain in terms of execution is again

significant as we increase the number of steps. For n = 500 the algorithm performs poorly, by

returning the value s∗ = 0.9071, despite the fact that concluded almost 40% faster. Better results

we observe for n = 10.000 or n = 50.000, where that latter returns value s∗ = 0.8691 in almost

624.01 seconds while the other algorithms conclude in 1100 seconds. Therefore the speed-up is

definitely not negligible. Next we take a look at the ratio of the time of execution between the

stochastic and the parallel algorithm.

n Ratio Parallel/Stochastic Improvement

100 0.60 40%

500 0.55 45%

1.000 0.55 45%

5.000 0.57 42%

10.000 0.56 43%

50.000 0.56 43%

100.000 0.57 43%

Once again we verify the fact that there is a significant gain in terms of execution time in using

parallel instead of sequential execution. The speed-up in overall time is of the same magnitude

as in the exponential example. Lastly, we present the graph of the execution time per number

of steps to visualize this improvement. On the vertical axis we have the time in seconds and on
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the horizontal axis the number of steps per simulation.

It is apparent that as we increase the number of steps per simulation the more we gain from

the parallel schema. This is quite evident from the graph. We continue with the second case,

where we fix the number of steps per simulation (n) and we change the simulations number (N)

each time. We present first the results:

Stochastic Deterministic Parallel

n=1.000 Time of

execution

Value Time of

execution

Value Time of

execution

Value

N=100 2.37 0.8885 2.29 0.9286 1.38 0.8775

500 11.69 0.8817 11.5 0.8054 6.43 0.8927

1.000 22.36 0.8929 21.51 0.8498 12.47 0.9012

5.000 117.59 0.892 112.36 0.8653 61.47 0.8904

10.000 249.45 0.8915 244.093 0.8684 123.35 0.8953

50.000 1035.54 0.8929 1009.14 0.8668 623.33 0.8923

100.000 2038.79 0.8932 1980.99 0.8645 1239.82 0.8920

Obviously the results of the parallel algorithm could not differ from the stochastic case. We

also observe that the results do not quite converge to the real solution. We also see that across

the different simulation runs the solution remains at the 0.89xx level. The only gain was as
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expected in the execution time. The results are almost the same as in the stochastic case but the

time has significantly dropped. Therefore it we could state that for the piecewise loss function the

increase in simulation runs does not bring any benefit nor any gain. Instead it is beneficial the

increase in the number of steps per simulation. If had to choose, we would pick a specific number

of simulations and we would change the number of steps, opting for the parallel execution. The

ratio of parallel to stochastic time

n Ratio Parallel/Stochastic Improvement

100 0.58 42%

500 0.55 45%

1.000 0.56 44%

5.000 0.52 48%

10.000 0.49 51%

50.000 0.60 40%

100.000 0.61 39%

No big surprises here, the speed-up almost 56%. But having in mind the deviation from

the true value the benefit is not so much beneficial. Yet the fact that we can employ a parallel

scheme of execution by using the stochastic algorithm, holds. To remain consistent, we present

the graph of execution times:
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To sum up, by using parallel programming we observe a speed up of roughly 40%. The

converge of the algorithms remains the same as in the sequential stochastic case. The only

exception is for the piecewise loss function, where the increase in simulations does not add any

value.

4.3 Comparison of I,II - III: Monte Carlo - Fourier Transform

In this section we let aside the root-finding algorithms and focus and compare the computation

of the expected value. The root-finding algorithm will be deterministic in the case of Fourier. As

we have already seen in section 4.1.5 on page 40 the execution time needed for the calculation

of the integral while executing the deterministic root-finding algorithm, was minimal, approxi-

mately 0.05 seconds. This time is considerably faster from all the previous cases we have seen so

far, including the parallel computation as well.

Particularly, for the piecewise loss function the times of execution with 1.000 simulations (N)

and 5.000 steps per simulation (n) are 111.36 seconds, for the stochastic case, and 103.82 sec-

onds, for the deterministic case. Even when we use parallel programming to take advantage

of the stochastic scheme, the time of execution was 63.65 seconds. If we increase the number

of steps per simulation in order to increase the accuracy, the time of execution increases to

220.96,214.84,124.57, for the stochastic, determinist and parallel case respectively. Therefore, we

see that that computational gain is tremendous, even when compared to the parallel execution

(0.05 sec to 63 sec). The same arguments hold when we examine the other case of holding 1.000

steps per simulation and 5.000 and 10.000 simulations (N). We summarise these results and

present the times for the other cases in the following table:

N=1000 Stochastic Deterministic Parallel Fourier

n=5.000 111.36 103.822 63.65 0.05

n=10.000 220.96 214.84 124.57 0.05

Table 3: N constant. All times in seconds

n=1000 Stochastic Deterministic Parallel Fourier

N=5.000 117.59 112.36 61.47 0.05

N=5.000 249.45 244.09 123.35 0.05

Table 4: n constant. All times in second
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Moreover, one good feature of applying Fourier transform is that it does not depend on any

choice of N and n. Nevertheless, we need to have (or have a way to derive) the moment generating

function and the fourier transform of the loss function should be solvable.

Therefore, in order to conclude the the comparison between the Fourier transform and the

Monte Carlo simulation, we would choose the former, given the simplicity of implementation

and the very very fast execution. It is also very simple to extend. We just need to specify the

moment generating function and the new fourier transform. Thus we could create a library of

function and choose even on run-time which one to calculate.

5 Final Conclusions

We have presented what risk measures are, which are the root-finding problems and algorithms,

namely we have demonstrated numerically and explained the differences of deterministic and

stochastic root-finding algorithms. Among the calculations required for the root-finding algo-

rithms, expected value was one of them. We specifically focused on calculating the expected

value using Monte Carlo simulation and the Fourier transform. All the aforementioned where

applied to a specific risk measure, the utility-based shortfall risk and provided two examples, the

exponential and piecewise loss functions.

From our simulations and programs, we did not observe any significant difference between the

deterministic and the stochastic root-finding algorithms, with respect to time. There was though,

a slightly better convergence of the stochastic case and therefore if we had to choose the one

or the other, we would opt for that. Next we applied parallel programming techniques to the

stochastic root-finding algorithm in order to gain advantage of the fact that each simulation is

independent from the next as we are only interested in the final value of each simulation. There,

we observed a significant speed-up which on average was of 40% magnitude, which definitely is a

non-negligible percentage. This practically means that if we have no resources, then the choice of

algorithm is just a matter of taste but if we have access to computational resources, which most

big companies and firms have, then the choice is obviously the use of stochastic root-finding.

Finally, we examined how extremely fast fourier transform proved to be by computing the exact

same result as the Monte Carlo simulation in just over 0.05 seconds, instead of at least 63 seconds,

and this includes the time of the parallel scheme not the normal case. Thus, if we are in place of

calculating the moment-generating function and the fourier transform of the loss function, then

fourier transform method is the appropriate choice, since it is faster.
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