
Athens, 2013 

NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

SCHOOL OF MECHANICAL ENGINEERING 

SECTOR OF INDUSTRIAL MANAGEMENT AND OPERATIONAL RESEARCH 

 

 

Doctoral Thesis 

Decision Making in Project Management: 

 Multi Objective Extended Resource Constrained Project 

Scheduling 

 

Eleni I. Rokou 

BSc Computer Science Univ. of Ioannina, MSc Financial and Management Engineering Univ. Aegean 

 

 

 

Supervisor: 

 Assist. Prof.     Κ. Kirytopoulos 

 

Supervisory Committee 

Prof.       Ι. Tatsiopoulos 

Assoc. Prof.          V. Leopoulos 

 Assist. Prof.     Κ. Kirytopoulos 





To the one who taught me how to learn,
grazie mamma.





Acknowledgements

I would like to thank first and foremost my supervisor, professor K. Kirytopoulos for his patience,
generous guidance, advice and the long hours spent on discussing each and every idea here in
presented. I am especially grateful to my supervisor professor and the members of the supervisory
committee professors I. Tatsiopoulos and V. Leopoulos for entrusting me with this endeavour. I
would also like to thank professor D. Drivaliaris for his insightful comments and support on the
validation of the mathematical model.

I am obliged to professor N.Marmaras and my colleagues V. Tsagkas and X. Vassilakopoulou
for helping me see the world on a less deterministic way. I would also like to thank the adminis-
trative staff of the Sector of Industrial Management and Operational Research, especially Vicky
Koulara, whose support and encouragement was vital for the success of the project.

It is a pleasure to thank the undergraduate students being supervised by professor K. Kirytopou-
los and myself for the challenging discussions and their support during these years.

Finally, I would like to thank my father, my husband and the rest of the family and friends for
their patience and support.

ix





Abstract

A holistic approach is proposed for defining the resource constrained project scheduling problem
(RCPSP). The doctoral thesis’ aim is to give a formulation of the project scheduling problem where
all deterministic aspects that have been previously explored in the relevant literature are covered.
Our goal is to provide a way to model and solve project scheduling problems as they actually are,
without compromises other than the assumption that the given inputs are realistic. An appropriate
mathematical formulation along with a concise solution process, covering both the single and
multi-objective case, are presented. Based on this model an adaptive evolutionary algorithm is
implemented to solve the unified version of the problem along with and Add in for MS Project to
provide an easy to use interface to the project managers. The efficiency of the proposed approach
is compared to existing implementations through a number of experiments. The experiments are
grouped in two classes: in the first one the best known results from each variation and extension
of the single objective RCPSP are compared to the results given by the proposed algorithm and in
the second one the multi-objective approach is compared to the single-objective results given in
the same test cases appropriately adapted. Finally, the application of the proposed approach in real
situations is illustrated through a case study on a medium sized project (200 activities) taken from
the GIS domain.

The results show that the usage of the holistic model doesn’t affect the quality of results or the
needed CPU-time when compared to the existing RCPSP formulations, whereas it adds the ability
to describe more realistically any complex project scheduling problem. We overcome the raise of
complexity and the infeasibilities by using penalty functions when relaxation of the constraints is
needed. In the multi-objective case the algorithm is capable of providing multiple solution scenar-
ios that are generated either based on the simple Pareto front or on a weighted approximation of
it.

xi





Declaration

I Elena Rokou, hereby declare that to the best of my knowledge and belief, this PhD Thesis is
my own work and all sources or work of other people have been properly acknowledged. The
dissertation contains no plagiarism nor material that has already been used to any substantial extent
for a comparable purpose.

xiii





Contents

0.1 Εισαγωγή . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
0.2 Δομή Διατριβής . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii
0.3 Χρονοδιάγραμμα Εκπόνησης της Διατριβής . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiv
0.4 Ορισμός Προβλήματος . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxvi
0.5 Προτεινόμενη Μαθηματική Μοντελοποίηση . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxix

0.5.1 Ορισμοί . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxix
0.5.2 Αντικειμενικοί στόχοι . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xlv
0.5.3 Περιορισμοί . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xlvii

0.6 Μαθηματική Μοντελοποίηση . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xlviii
0.7 Προτεινόμενη Μέθοδος Επίλυσης . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l
0.8 Πειραματική Επαλήθευση Αποτελεσμάτων . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lv
0.9 Μελέτη Περίπτωσης . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . λvιιι

0.10 Συμπεράσματα - Σημεία Καινοτομίας . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . λvιιι

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Overall structure and contents of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Project Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Project Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Classification of Project Scheduling problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 The Resource Constrained Project Scheduling Problem. . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Variations and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.4 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Multi-Criteria Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1 Multi-Objective Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 Multi-Attribute Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xv



xvi Contents

3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 General Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Systems approach to project scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Problem Structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 System Dynamics view of project scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Available Inputs and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Proposed Holistic Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1 Proposed Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Solution Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Decision Making using the Analytic Network Process . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Proposed Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 Basic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.3 Proposed Schedule Generation Schemes for the extended RCPSP . . . . . . . . . 98
6.3.4 Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.5 Initial Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.6 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.7 Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.8 Multi-Objective Optimisation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.9 Auxiliary Solution Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Computational Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Experiments design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Experimental Comparison to best in class algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 Experimental results for multi-objective optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.1 Execution modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2.2 Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2.3 Variability of resource availabilities and requirements . . . . . . . . . . . . . . . . . . . 133
8.2.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Solution scenarions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



Contents xvii

9 General Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.1 Summary of PhD Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2 Potential Impact and Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.2.1 Implications for researchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.2.2 Implications for practitioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.1 Exerpt of analytical results RCPSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2 Exerpt of analytical results MRCPSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.3 Exerpt of analytical results MRCPSP/max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.4.1 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.4.2 Gantt chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B Implemented Code – Main Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C Ms Project 2013 – Add In for Multi-Objective Resource Constrained Project
Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203





List of Figures

0.1 Σχηματική αναπαράσταση προς επίλυση προβλήματος . . . . . . . . . . . . . . . . . . . . . . xxviii
0.2 Χρονοπρογραμματισμός Εκπόνησης Διατριβής . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv
0.3 (α) Δραστηριότητες, τρόποι εκτέλεσης, απαιτήσεις σε πόρους και σημεία

διακοπής των δραστηριοτήτων του έργου, (β) minimal και maximal lag των

δραστηριοτήτων ανά τρόπο εκτέλεσης . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xliii
0.4 (α) διαθεσιμότητα πόρου Ρ1 σε σχέση με το χρόνο, (β) διαθεσιμότητα πόρου

Ρ1 σε σχέση με το χρόνο και (ς) διαθεσιμότητα μη ανανεώσιμου πόρου ΝΡ1

σε σχέση με τις περιόδους Il0 = [0, ta1), Il1 = [ta1, ta2) και Il2 = [ta2,T ) . . . . . . . . . xliii
0.5 (α)Γράφος του έργου για επιλογή τρόπων εκτέλεσης M1(0,0,0,0,0,0,0,0) και

(β) M2(0,0,2,1,1,2,1,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xliv
0.6 Φάσεις προτεινόμενης μεθόδου επίλυσης . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l
0.7 Ροή δεδομένων . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lii
0.8 Βελτιστοποίηση πολλαπλών αντικειμενικών στόχων με ΑΝΡ . . . . . . . . . . . . . . . . liii
0.9 Pareto ΓΑ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . liv
0.10 EMO−RCPSP−MSPro ject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lv

2.1 Project scheduling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Typology of Scheduling problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 RCPSP: (a) Activity on Node representation of the project’s network, (b) duration

and resource requirements of each activity and (c) resulting schedule when the
resource’s availability is five units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 P-RCPSP: (a) Activity on Node representation of the project’s network, (b)
duration and resource requirements of each activity and (c) resulting schedule
when the resource’s availability is five units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 MRCPSP: (a) Activity on Node representation of the project’s network, (b)
duration and resource requirements of each activity, (c) resulting schedule when
the resource’s availability is five units and mode assignment {0,0,0,0,0,0,0,0,0}
and (d) resulting schedule when the resource’s availability is five units and mode
assignment {0,0,1,1,2,0,1,0,0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Example digraph with time lags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 RCPSP/max: (a) Representation of the project’s network extended for GPRs

using the G(V,E) digraph, (b) duration and resource requirements of each activity . 24
2.8 Classification of Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 Multi-objective optimisation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Mathematical modelling process and its validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xix



xx List of Figures

3.2 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Project Scheduling Rich Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Project monitoring cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 (a) Project activities, modes, resource requirements and preemption status, (b)
minimal and maximal lag of activities per mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 (a) R1 renewable resource availability in relation to time, (b) R2 renewable
resource availability in relation to time and (c) NR1 non-renewable resource
availability in relation to periods Il0 = [0, ta1), Il1 = [ta1, ta2) and Il2 = [ta2,T ) . . . . . 75

5.3 (a)Project network for mode set M1(0,0,0,0,0,0,0,0) and (b) Project network
for mode set M2(0,0,2,1,1,2,1,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Phases of the proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Flow of events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 ANP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Solution process moderator basic flow of events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5 Usage of auxiliary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6 (a) Example of graph with generalised precedence constraints, (b) initial distance

matrix and (c) final distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7 GA chromosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.8 Example of initial population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.9 Crossover operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.10 Mutation operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.11 Pareto GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.12 ANP weighted multi-objective optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1 EMO-RCPSP: a Ms Project Add-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2 Single objective execution of j30 instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 Single objective execution of MRCPSP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4 Single objective execution of MRCPSP/max instances . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.1 Initial data of the GIS project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2 Overallocated resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.3 Defining multiple execution modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.4 Defining task preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.5 Defining task resource requirements per step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.6 Weighting the objectives using the ANP Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.7 Best schedule found by pareto optimal approach - 598 days . . . . . . . . . . . . . . . . . . . . 136

A.1 Single objective execution of j30 instances - part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.2 Single objective execution of j30 instances - part II . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.3 Single objective execution of j30 instances - part III . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.4 Single objective execution of j30 instances - part IV . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.5 Single objective execution of j30 instances - part V . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.6 Single objective execution of MRCPSP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.7 Single objective execution of MRCPSP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.1 Ribbon styled toolbox for EMO- RCPSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
C.2 Import text files formatted as in PSPLib to run experiments . . . . . . . . . . . . . . . . . . . . 197



List of Figures xxi

C.3 Set up additional properties to handle multiple modes of execution, non renewable
resource type and maximal time lags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

C.4 Define one or more optimisation objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
C.5 Select execution algorithm to generate solutions - schedules . . . . . . . . . . . . . . . . . . . . 198
C.6 Set up parameters for the genetic algorithm (auxiliary algorithm) . . . . . . . . . . . . . . . . 199
C.7 Set up parameters for the simulated annealing algorithm (auxiliary algorithm) . . . . . 199
C.8 The given scheduled as was imported from J3011.rcp file from PSPLib . . . . . . . . . . 200
C.9 Schedule generated by the proposed algorithm - note that the ”As Soon As

Possible” constraint has been changed to ”Must Start On” . . . . . . . . . . . . . . . . . . . . . . 201
C.10 Resource availabilities - the overallocated resources are marked with red . . . . . . . . . 201
C.11 Duration of proposed scheduled compared to the results of MS Project’s levelling

option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202





List of Tables

0.1 Μαθηματικοί Συμβολισμοί . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xlii
0.2 Συγκριτικά αποτελέσματα για ελαχιστοποίηση διάρκειας έργου . . . . . . . . . . . . . . lvi
0.3 ὃμπαρατιvε ρεσυλτς φορ μυλτι-οβθεςτιvε ινστανςες . . . . . . . . . . . . . . . . . . . . . . . . . . lvii

2.1 Job-shop sequencing and assembly-line balancing problem compared to project
scheduling as referred by Icmeli (1996) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Priority Rules based on Kolisch and Hartmann (1999) . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Comparative results for single-objective instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Comparative results for multi-objective instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1 Comparative results for GIS project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xxiii





Acronyms

ANP Analytic Network Process
CPM Critical Path Method
EMO-RCPSP Extended Multi Objective Resource Constrained Project Scheduling
GA Genetic Algorithm
MRCPSP Multi mode Resource Constrained Project Scheduling Problem
OBS Organizational Breakdown Structure
p-SGS Parallel Schedule Generation Scheme
PERT Program Evaluation Research Technique
P-RCPSP Preemptive Resource Constrained Project Scheduling Problem
PSO Particle Swarm Optimisation
RCPSP-GPR Resource Constrained Project Scheduling Problem with Generalised Precedence

Relations
RCPSP/max Resource Constrained Project Scheduling Problem with maximal time lags
RCPSP/t Resource Constrained Project Scheduling Problem with resource capacities and re-

quests varying with time
SA Simulated Annealing
SGS Schedule Generation Scheme
s-SGS Serial Schedule Generation Scheme
WBS Work Breakdown Structure

xxv





Greek Synopsis

«Λήψη αποφάσεων στη διοίκηση έργων: Πολυστοχικός διευρυμένος χρονικός προγραμματι-

σμός έργων υπό περιορισμένους πόρους»

0.1 Εισαγωγή

Η διαχείριση του χρόνου ή αλλιώς ο χρονικός προγραμματισμός των εργασιών ενός έργου

αποτελεί μια από τις σημαντικότερες συνιστώσες της διοίκησης έργων. Κατά κανόνα συμ-

περιλαμβάνει διαδικασίες όπως τον καθορισμό των εργασιών που πρέπει να γίνουν ώστε να

ολοκληρωθεί το έργο, τον καθορισμό της σειράς με την οποία πρέπει να εκτελεσθούν οι εργα-

σίες, την εκτίμηση των απαιτούμενων πόρων για την πραγμάτωση κάθε μιας από τις εργασίες,

την εκτίμηση του απαιτούμενου χρόνου με βάση τους διαθέσιμους πόρους και εν τέλει τη

δημιουργία και παρακολούθηση του χρονικού προγράμματος που προκύπτει. Στόχος της πα-

ρούσας Διατριβής είναι η μελέτη της διαδικασίας ανάπτυξης χρονοδιαγραμμάτων έργων και

η εύρεση μεθόδων για τη βελτιστοποίηση του τρόπου παραγωγής τους λαμβάνοντας υπόψιν

τους τιθέμενους περιορισμούς όσο αφορά την διαθεσιμότητα πόρων, το συνολικό κόστος, την

απαιτούμενη ομαλότητα του προφίλ των χρησιμοποιούμενων πόρων. Στην παρούσα Διατριβή

θα επικεντρωθούμε στον τρόπο σχηματισμού κατά το δυνατό βέλτιστων χρονοδιαγραμμάτων

όσο αφορά κάποιες βασικές παραμέτρους όπως ο χρόνος, το κόστος και το προφίλ των πόρων.

Συγκεκριμένα, το προς επίλυση πρόβλημα εκτείνεται κατά κύριο λόγο σε τρείς άξονες: χρόνο,

κόστος και ομαλότητα προφίλ πόρων και αποσκοπούμε στην:

• ελαχιστοποίηση της διάρκειας του έργου δοθέντων προτεραιοτήτων για την εκτέλεση των

δραστηριοτήτων και περιορισμένου πλήθους διαθέσιμων πόρων

• ελαχιστοποίηση του κόστους λαμβάνοντας υπόψη τη συσχέτιση διάρκειας δραστηριότητας

– ποσότητας πόρων που της έχουν ανατεθεί και κόστους αλλά και των περιορισμένων

χρηματικών πόρων που διατίθενται για την υλοποίηση του έργου

• εξομάλυνση των χρησιμοποιούμενων πόρων

xxvii



xxviii Greek Synopsis

Περιορισμοί	
  
πόρων	
  

Εξαρτήσεις	
  
δραστηριοτή

των	
  
Εξομάλυνση	
  

πόρων	
  
Περιορισμοί	
  
κόστους	
  

Χρονο-­‐
πρόγραμμα	
  

Σχήμα 0.1 Σχηματική αναπαράσταση προς επίλυση προβλήματος

Συνεπώς, το παραπάνω πόνημα στρέφεται γύρω από τρεις βασικούς εννοιολογικούς άξονες:

το κόστος, το χρόνο και τους πόρους και αποσκοπεί στην υποστήριξη του διαχειριστή του

έργου στη προσπάθεια του να δημιουργήσει κατάλληλο χρονοδιάγραμμα για το εκάστοτε έργο

με τέτοιο τρόπο ώστε να συγκεράσει τις συγκρουόμενες απαιτήσεις που αφορούν την ταχύτη-

τα ολοκλήρωσης του έργου, το κόστος που θα απαιτείται και την βέλτιστη αξιοποίηση των

διαθέσιμων πόρων και μόνον αυτών.

Ουσιαστικά, η παρούσα Διατριβή πραγματεύεται την ανάπτυξη πρότυπου πολυκριτήριου

συστήματος αποφάσεων στη Διοίκηση ΄Εργων και υβριδικής μεθόδου για την εύρεση του

καλύτερου δυνατού χρονοπρογράμματος που να ικανοποιεί τις ανάγκες του λήπτη απόφασης.

Συγκεκριμένα αποσκοπεί στη σχεδίαση και ανάπτυξη ενός συστήματος για τη δημιουργία

χρονοδιαγραμμάτων έργων υπό συνθήκες περιορισμένων πόρων και διαθέσιμου κεφαλαίου με

την χρήση μεθόδων πολυκριτήριας ανάλυσης αποφάσεων για την βαθμονόμηση των προτε-

ραιοτήτων κόστους, χρόνου και προφίλ πόρων.

΄Ενα έργο μπορεί να οριστεί ως ένα σύνολο από δραστηριότητες το οποίο έχει σαφώς κα-

θορισμένη αρχή και συγκεκριμένο τέλος και αποσκοπεί στην επιτέλεση ενός συγκεκριμένου

σκοπού κάνοντας χρήση καθορισμένων πόρων. ΄Ενα χρονοπρόγραμμα συνήθως αποσκοπε-

ί στον προγραμματισμό των δραστηριοτήτων του έργου, δηλαδή τον καθορισμό της έναρξής

τους, με τέτοιο τρόπο ώστε να ικανοποιούνται οι σχέσεις προτεραιότητας και οι χρησιμοποιο-

ύμενοι πόροι να μην υπερβαίνουν την διατιθέμενη ποσότητα.

Παρόλο που το πρόβλημα του χρονοπρογραμματισμού έργου, μοιάζει να είναι σχετικά απλό,

η μοντελοποίηση του με τρόπο που να καλύπτει όλες τις δυνατές περιπτώσεις που συναντώνται

στην πράξη και η παροχή αποτελεσματικών τρόπων διαχείρισής τους, ισορροπώντας ανάμεσα

στην πολυπλοκότητα του προβλήματος και στην ταχύτητα και αποτελεσματικότητα των προ-

τεινόμενων λύσεων δεν είναι προφανής.

Το πρόβλημα του χρονοπρογραμματισμού έργων, ορίζεται ως η μέθοδος προγραμματισμού

δραστηριοτήτων δοθέντων συγκεκριμένων ποσοτήτων διαθέσιμων πόρων για κάθε περίοδο

της διάρκειας του έργου έτσι ώστε να ελαχιστοποιείται η αύξηση της συνολικής διάρκειας του

έργου (Davis, 1974).
Βασικά συστατικά στοιχεία ενός χρονοπρογράμματος είναι τα ακόλουθα:

• Δραστηριότητες με χαρακτηριστικά γνωρίσματα το αναγνωριστικό τους και τον τρόπο ε-

κτέλεσης της δραστηριότητας, ο οποίος αφορά την διάρκεια της δραστηριότητας, το είδος

και την ποσότητα πόρων που απαιτεί για την εκτέλεση της και εάν υπάρχουν χρηματοροές

που σχετίζονται με αυτήν.

• Σχέσεις προτεραιότητας που καθορίζουν ποιες δραστηριότητες πρέπει να ολοκληρωθούν

πριν η υπό εξέταση δραστηριότητα να μπορέσει να ξεκινήσει να εκτελείται

• Πόροι οι οποίοι ανήκουν σε μια από τις ακόλουθες κατηγορίες: α) ανανεώσιμοι – περιο-

ρισμένη διαθέσιμη ποσότητα ανά περίοδο του έργου πχ. εργάτες β) μη ανανεώσιμοι όπου

έχουμε συγκεκριμένη ποσότητα διαθέσιμη για το σύνολο του έργου, πχ. προϋπολογισμός,



0.1 Εισαγωγή xxix

γ) διπλά περιορισμένοι και δ) μερικώς ανανεώσιμοι όπου έχουμε περιορισμό στις διαθέσιμες

ποσότητες για ένα υποσύνολο της διάρκειας του έργου. Τέλος, οι πόροι χαρακτηρίζονται

από τη λειτουργική τους χρήση και τη διαθέσιμη ποσότητα.

Στην πράξη όμως πέραν από την εύρεση χρονοπρογραμμάτων, όταν έχουμε συγκεκριμένες

εξαρτήσεις μεταξύ των δραστηριοτήτων και συγκεκριμένο πλήθος διαθέσιμων προς χρήση

πόρων, πρέπει να λαμβάνουμε υπόψη και το κόστος του έργου. ΄Ομως συχνά η διάρκεια ε-

κτέλεσης μιας δραστηριότητας μπορεί να μεταβληθεί με βάση το πόσο είμαστε διατεθειμένοι

να πληρώσουμε για αυτήν, αφού ανάθεση περισσότερων ή διαφορετικών πόρων σε μια δρα-

στηριότητα μειώνει τη συνολική της χρονική διάρκεια. Επομένως, προστίθεται άλλος ένας

παράγοντας στο υπό μελέτη πρόβλημα του χρονοπρογραμματισμού, το κόστος και συνεπώς

και ο αντίστοιχος περιορισμός που αφορά το σύνολο του διαθέσιμου προϋπολογισμού. Επι-

πλέον, γίνεται προφανές ότι στην περίπτωση αυτή οι δραστηριότητες θα έχουν πάνω από ένα

δυνατούς τρόπους εκτέλεσης, ο οποίος θα προσδιορίζει το είδος και την ποσότητα χρησιμο-

ποιούμενων πόρων και τη συνεπαγόμενη διάρκεια αλλά και χρηματική επιβάρυνση (κόστος).

Τέλος, δεν είναι επιθυμητό ούτε και πρακτικώς εφαρμόσιμο να έχουμε χρονοπρογράμμα-

τα στα οποία υπάρχουν απότομες αυξομειώσεις των πόρων οπότε προστίθεται στα παραπάνω

και η απαίτηση για χρονοπρογράμματα στα οποία έχει γίνει εξισορρόπηση μεταξύ των σημε-

ίων μέγιστης και ελάχιστης ζήτησης πόρων για το σύνολο της χρονικής διάρκειας του έργου

και μάλιστα χωρίς αυτό να οδηγεί σε αύξηση του χρόνου εκτέλεσης του ή του συνολικο-

ύ πλήθους των χρησιμοποιούμενων πόρων και συνεπώς του κόστους του. Μελετώντας εις

βάθος την βιβλιογραφία του συγκεκριμένου ερευνητικού πεδίου προκύπτει ότι ενώ υπάρχει

πληθώρα αναλυτικών αλλά και ευρετικών μεθόδων για την εύρεση χρονοπρογραμμάτων όταν

το ζητούμενο είναι η βελτιστοποίηση ως προς τον χρόνο ολοκλήρωσης ή το κόστος ή η ο-

μαλότητα του προφίλ των πόρων, δεν υπάρχουν παρά περιορισμένες το πλήθος λύσεις για τις

περιπτώσεις εκείνες όπου έχουμε συνδυασμό δυο εκ των τριών παραγόντων και πρακτικά καμία

ολοκληρωμένη πρόταση για την περίπτωση που επιθυμούμε βελτιστοποίηση και ως προς τις

τρεις παραμέτρους.

Στην παρούσα Διατριβή αποσκοπούμε στην εύρεση μιας συνολικής λύσης στο πρόβλημα

του χρονοπρογραμματισμού έργων υπό συνθήκες περιορισμένων πόρων έτσι ώστε όταν εφαρ-

μόζουμε στη πράξη τη μέθοδο αυτή το παραγόμενο αποτέλεσμα να δίνει την ελάχιστη δυνατή

διάρκεια έργου στο ελάχιστο κόστος και με κατά το δυνατόν ομαλότερο προφίλ πόρων.

Επιπλέον, η ίδια η φύση του συγκεκριμένου προβλήματος οδηγεί σε μια σειρά από ερωτήματα

που εξαρτώνται από το εκάστοτε πρόβλημα αλλά και από το συγκεκριμένο λήπτη απόφασης

και την οπτική που έχει για το υπό εξέταση έργο και τις τρέχουσες συνθήκες που επικρατούν

όσο αφορά την εργολήπτρια επιχείρηση, όπως για παράδειγμα εάν για το εκάστοτε υπό εξέταση

έργο είναι το κόστος πιο σημαντικό από την ημερομηνία περάτωσης, είναι η ομαλότητα του

προφίλ περισσότερο σημαντική από το κόστος ή τη διάρκεια του έργου, κ.α.

Επομένως πρόκειται για ένα πολυκριτήριο πρόβλημα με συγκρουόμενα κριτήρια απόφασης,

οπότε η χρήση μηχανισμού υποστήριξης της διαδικασίας λήψης απόφασης κρίνεται απαραίτητη

ώστε να προσδιοριστούν οι βαρύτητες των παραμέτρων κόστους χρόνο και ομαλότητας προφίλ.

Ως πολυκριτήριο πρόβλημα απόφασης μπορεί να επιλυθεί είτε συνδυάζοντας τις επί μέρους

αντικειμενικές συναρτήσεις σε μια και χρησιμοποιώντας βάρη για την βαθμονόμηση είτε χρη-

σιμοποιώντας το διάνυσμα που προκύπτει από τις αντικειμενικές και υπολογισμό της κατά

Παρετο βέλτιστης λύσης. Στην προτεινόμενη προσέγγιση ο λήπτης απόφασης δύναται να επι-

λέξει να λάβει ως αποτελέσματα μείγμα λύσεων από κάθε μια από τις μονοκριτήριες αλλά και

πολυκριτήριες προσεγγίσεις σύμφωνα με τις ανάγκες του, ώστε να επιλέξει την καταλληλότερη

προσέγγιση για το προς χρονοπρογραμματισμό έργο.

Στην παρούσα Διατριβή προτείνεται μια ολιστική προσέγγιση για τον ορισμό του προβλήμα-

τος προγραμματισμού έργων υπό συνθήκες περιορισμένων πόρων (RCPSP). Στόχος είναι η



xxx Greek Synopsis

παροχή μιας ενιαίας εννοιολογικής έκφρασης του προβλήματος συμπεριλαμβάνοντας όλες τις

διαφορετικές ντετερμινιστικές εκδοχές και παραλλαγές που απαντώνται στη βιβλιογραφία και

έχουν πρακτική σημασία. Με βάση την ενιαία εννοιολογική προσέγγιση παρέχεται και η αν-

τίστοιχη μαθηματική μοντελοποίηση του προβλήματος, όπως και η διαδικασία επίλυσης και

οι απαιτούμενοι αλγόριθμοι για την υλοποίηση αυτής. Το πρόβλημα αντιμετωπίζεται ως βελ-

τιστοποίηση ως προς μια ή περισσότερες μεταβλητές – στόχους. Απώτερος στόχος είναι η

παροχή ενός τρόπου μοντελοποίησης και επίλυσης των προβλημάτων χρονοπρογραμματισμού

όπως αυτά συναντώνται στην πράξη χωρίς άλλους συμβιβασμούς και τροποποιήσεις των δε-

δομένων για να ταιριάξουν στο μοντέλο πέρα από την υπόθεση ότι τα εισαγόμενα στοιχεία

προσεγγίζουν ικανοποιητικά την πραγματικότητα και είναι ντετερμινιστικά.

Στηριζόμενοι στο νέο ενιαίο μοντέλο, σχεδιάστηκε ένας υβριδικός αλγόριθμος, καλούμενος

διαχειριστής (μοδερατορ), που προσαρμόζεται στο μέγεθος και τα χαρακτηριστικά του προς

επίλυση προβλήματος και βελτιστοποιεί τόσο ως προς έναν όσο και ως προς πολλαπλούς

στόχους, υπολογίζοντας Παρετο βέλτιστες λύσεις και λαμβάνοντας ή μη υπόψη προτεραιότητες

μεταξύ των αντικειμενικών στόχων.

Αποδείχθηκε πειραματικά ότι η χρήση του προτεινόμενου αλγορίθμου αυξάνει την ακρίβεια

και σε κάποιες περιπτώσεις υπολογίζει και καλύτερες λύσεις χωρίς να επηρεάζει αρνητικά το

χρόνο επίλυσης του προβλήματος. Επομένως, έχουμε έναν αξιόπιστο τρόπο για την επίλυση

προβλημάτων χρονοπρογραμματισμού έργων είτε πρόκειται για απλά και κλασσικά προβλήματα

RCPSP είτε σύνθετους συνδυασμούς παραλλαγών και επεκτάσεων αυτού του τύπου προβλη-

μάτων. Επιτυγχάνεται με αυτόν τον τρόπο η παροχή στους διευθυντές έργων ενός ευέλικτου

μοντέλου το οποίο προσαρμόζεται στις ανάγκες τους αντί του ισχύοντος καθεστώτος όπου

το πρόβλημα έπρεπε να προσαρμοστεί στο μοντέλο. Επιπλέον, παρέχεται και ένας διαφανής

τρόπος επίλυσης του προβλήματος χωρίς ιδιαίτερα πολύπλοκα ή χρονοβόρα βήματα.

Η αυξημένη πολυπλοκότητα και η υψηλή πιθανότητα ανυπαρξίας εφικτών λύσεων στις πιο

πολύπλοκες περιπτώσεις αντιμετωπίζεται με χαλάρωση των περιορισμών όταν αυτό κρίνεται

αναγκαίο και με βάση πάντοτε τις επιλογές του διευθυντή έργου. Στην περίπτωση των πολλα-

πλών στόχων παράγονται πολλαπλά εναλλακτικά σενάρια με βάση τις Παρετο βέλτιστες λύσεις

ή προσεγγίσεις αυτών, οι οποίες λαμβάνουν υπόψη και τα βάρη που ορίστηκαν για κάθε στόχο.

Η προτεινόμενη προσέγγιση αναπτύχθηκε σε τρεις φάσεις:

Α) Ολιστική μοντελοποίηση του χρονοπρογραμματισμού έργου υπό περιορισμένους πόρους

ώστε να συμπεριλαμβάνει όλες τις διαφορετικές εκδοχές του προβλήματος και να προσφέρει

έναν εύκολο και κοντινό στην πραγματικότητα τρόπο μοντελοποίησης των έργων όπως αυ-

τά συναντώνται στην πράξη. Το προτεινόμενο μαθηματικό μοντέλο καλύπτει τις περιπτώσεις

που έχουμε πολλαπλούς τρόπους εκτέλεσης δραστηριοτήτων, χρονικά μεταβαλλόμενες διαθε-

σιμότητες ανανεώσιμων και μη ανανεώσιμων πόρων αλλά και μεταβαλλόμενες ανάγκες χρήσης

των πόρων, δυνατότητα διακοπής ή μη των δραστηριοτήτων κατά την εκτέλεση τους, γενικευ-

μένους τύπους προτεραιοτήτων (FS, SS, SF, FF) και παράθυρα χρόνου για την εκτέλεση των

δραστηριοτήτων.

Β) Ανάπτυξη γενετικού αλγορίθμου για τη διαχείριση πολυκριτήριας και μονοκριτήριας

βελτιστοποίησης χρονοπρογραμμάτων με τα παραπάνω χαρακτηριστικά και δυνατότητας προ-

σαρμογής στο εκάστοτε υπό επίλυση πρόβλημα και χρήσης κατάλληλου μετα-ευρετικού αλ-

γόριθμου (Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization, κ.λ.π.) και

προσαρμογή υπαρχόντων εξελικτικών αλγορίθμων για την πολυκριτήρια βελτιστοποίηση τόσο

στην περίπτωση του βαρυτικού αθροίσματος των επί μέρους κριτηρίων όσο και στην περίπτωση

της Παρετο επίλυσης.

Γ) Ανάπτυξη κατάλληλης διεπαφής για τη χρήση των παραπάνω μεθόδων και πρακτική

εφαρμογή τους σε πραγματικό έργο μεγάλου μεγέθους.



0.1 Εισαγωγή xxxi

Συνοψίζοντας, προτείνεται ένα ενοποιημένο μαθηματικό μοντέλο και τρόποι εύρεσης λύσε-

ων, αξιόπιστα και προσαρμοσμένα στις ανάγκες του διευθυντή έργων, όπως αυτές συναντώνται

στην πράξη, ενώ ταυτόχρονα παρέχεται ευελιξία ως προς το είδος, το πλήθος και τα χαρα-

κτηριστικά των παραγόμενων λύσεων αλλά και το βαθμό που κάθε αντικειμενικός στόχος θα

πρέπει να βελτιστοποιηθεί.



xxxii Greek Synopsis

0.2 Δομή Διατριβής

Η Διατριβή περιλαμβάνει ένα αρχικό κεφάλαιο στο οποίο εισάγονται τα βασικά στοιχεία του

περιεχομένου της και στη συνέχεια διαρθρώνεται ως εξής:

Κεφάλαιο 2, όπου γίνεται τοποθέτηση του προβλήματος σε σχέση με τη βιβλιογραφία και

ανάλυση των στοιχείων εκείνων που σχετίζονται άμεσα με το αντικείμενο της παρούσας Δια-

τριβής. Η μελέτη εκτείνεται γύρω από τρεις άξονες: το χρονοπρογραμματισμό έργων, τη βελ-

τιστοποίηση πολλαπλών στόχων και την πολυκριτήρια λήψη αποφάσεων. Ιδιαίτερη έμφαση

δίνεται στις διάφορες εκδοχές του προβλήματος χρονοπρογραμματισμού και στις μεθόδους

επίλυσης του.

Κεφάλαιο 3, όπου παρουσιάζεται η μεθοδολογική προσέγγιση του προβλήματος κυρίως σε

σχέση με τη μαθηματική μοντελοποίηση και την αλγοριθμική σχεδίαση.

Κεφάλαιο 4, αφορά την ολιστική προσέγγιση του προβλήματος και αποσκοπεί στην απάντη-

ση ερωτημάτων όπως: «ποιο είναι το ευρύτερο πλαίσιο του προς επίλυση προβλήματος·», «ποιοι

είναι οι στόχοι μας και πως επηρεάζονται από περιβαλλοντικές παραμέτρους·» και τελικά «τι

δεδομένα μπορούμε να έχουμε όταν επιλύουμε το πρόβλημα·». Περιγράφονται συνοπτικά τα βα-

σικά στοιχεία του συστήματος, οι συσχετίσεις μεταξύ τους και οι τρόποι που αλληλοεπιδρούν.

Η συστημική μεθοδολογία (Soft Systems Methodology) και η δυναμική συστημάτων (System
Dynamics) χρησιμοποιούνται για να προσδιοριστεί το γενικότερο πλαίσιο του προβλήματος και

τα βασικά στοιχεία του. Στη συνέχεια τα χαρακτηριστικά των επιθυμητών λύσεων χρησιμο-

ποιούνται ως βάση για τον προσδιορισμό των στόχων της βελτιστοποίησης και η προηγούμενη

ανάλυση για τον τελικό καθορισμό του προς επίλυση προβλήματος και των χαρακτηριστικών

που πρέπει να έχει η μοντελοποίησή του για να μπορεί να είναι πρακτικά εφαρμόσιμη σε κάθε

περίπτωση.

Κεφάλαιο 5, στο οποίο παρουσιάζεται η εννοιολογική και μαθηματική μοντελοποίηση του

προβλήματος ως δυαδικό πρόβλημα γραμμικού προγραμματισμού.

Κεφάλαιο 6, στο οποίο γίνεται αναλυτική περιγραφή τόσο της προτεινόμενης διαδικασίας

επίλυσης όσο και του νέου αλγόριθμου (moderator) και των βοηθητικών αλγόριθμων επίλυσης

του προβλήματος. Πρόκειται για μια διαδικασία που απαρτίζεται από τρεις φάσεις, στην 1η

γίνεται καθορισμός των δεδομένων, όπως εναλλακτικών τρόπων εκτέλεσης των δραστηριο-

τήτων, δυνατότητα διακοπής εκτέλεσης δραστηριοτήτων, διαθεσιμότητες και ανάγκες πόρων

αντικειμενικών στόχων του προβλήματος και εάν απαιτείται, χρήση συστήματος υποστήριξης

λήψης απόφασης για την εύρεση των σχετικών προτεραιοτήτων μεταξύ τους. Στη 2η φάση τα

αρχικά δεδομένα και οι επιλογές του διευθυντή του έργου τροποποιούνται και προσαρμόζονται

κατάλληλα για την διευκόλυνση της διαδικασίας επίλυσης. Στην 3η φάση καλείται ο διαχειρι-

στής (moderator) αλγόριθμος για να ρυθμίσει τη διαδικασία επίλυσης, επιλέγοντας από γενιά

σε γενιά τους αλγόριθμους επίλυσης που έχουν υψηλότερη απόδοση στο συγκεκριμένο στιγμι-

ότυπο του προβλήματος και στους στόχους και τις προτεραιότητες αυτών, όπως καθορίστηκαν

από τον διευθυντή έργου.

Κεφάλαιο 7, το οποίο παρουσιάζει τις πειραματικές διατάξεις και τα αποτελέσματα που

επιτεύχθηκαν με τη χρήση του προτεινόμενου μοντέλου και αλγόριθμου και τα συγκρίνει με

τις καλύτερες λύσεις, όπως αυτές προκύπτουν από τη βιβλιογραφία.

Κεφάλαιο 8, στο οποίο παρουσιάζεται η εφαρμογή του προτεινόμενου μοντέλου και της

διαδικασίας επίλυσης σε πραγματικό πρόβλημα χρονοπρογραμματισμού έργου για την κτημα-

τογράφηση συγκεκριμένων περιοχών της Ελλάδας. Συγκεκριμένα, παρουσιάζεται βήμα-βήμα η

διαδικασία από τον αρχικό προσδιορισμό του προβλήματος ως την τελική επιλογή της βέλτιστης

εναλλακτικής λύσης για τον προγραμματισμό του έργου. Ο προσδιορισμός των δεδομένων του

έργου, δραστηριότητες, συσχετίσεις, ανάγκες σε πόρους και διαθεσιμότητα αλλά και οι προτε-



0.2 Δομή Διατριβής xxxiii

ραιότητες των αντικειμενικών στόχων και το είδος και πλήθος των ζητούμενων εναλλακτικών

λύσεων, προέκυψαν κατόπιν σειράς συνεντεύξεων με το διευθυντή και την ομάδα έργου.

Τέλος, στο κεφάλαιο 9, παρουσιάζονται τα συμπεράσματα που προέκυψαν από την έρευνα,

την ερευνητική συμβολή και την πρακτική συνεισφορά αυτής αλλά και προτάσεις για περαιτέρω

ερευνητικές κατευθύνσεις.



xxxiv Greek Synopsis

0.3 Χρονοδιάγραμμα Εκπόνησης της Διατριβής

Το χρονοδιάγραμμα της εκπόνησης της διατριβής δίνεται στο σχήμα 0.2 και παρακάτω επεξη-

γούνται οι βασικότερες επιμέρους δραστηριότητες όπως αυτές έχουν πραγματοποιηθεί:

• Βιβλιογραφική επισκόπηση: αποσκοπεί στην οργάνωση των βασικών εννοιών που θα πραγ-

ματευτεί η διατριβή ώστε να παρουσιαστούν με σαφήνεια οι υπό εξέταση ερευνητικές πε-

ριοχές, τα κρίσιμα τεχνικά ή/και θεωρητικά ζητήματα που άπτονται αυτών σε σχέση με

το κεντρικό θέμα της τρέχουσας διατριβής και οι μέθοδοι αντιμετώπισης των θεμάτων αυ-

τών, όπως έχουν παρουσιαστεί στη διεθνή βιβλιογραφία. Η εργασία αυτή απαιτεί συνεχή

ενημέρωση και ανανέωση των πηγών καθ’ όλη την διάρκεια εκπόνησης της διατριβής.

Αποτελέσματα:

– Καταγραφή της τρέχουσας κατάστασης στο πεδίο έρευνας όπως αυτή αποτυπώνεται στην

επιστημονική αρθρογραφία.

– Κωδικοποίηση των τριών καλύτερων μεθόδων χρονοπρογραμματισμού (Particle Swarm
Optimisation, Simullated Annealining, Genetic Algorithm) με περιορισμένους πόρους και

σύγκριση αποτελεσμάτων με δημοσιευμένα αντίστοιχα αποτελέσματα (PSPLib)

• Μοντελοποίηση συστήματος: Στο στάδιο αυτό με βάση το θεωρητικό υπόβαθρο που ανα-

λύθηκε στις προηγούμενες ενότητες, γίνεται ο σαφής καθορισμός του προς επίλυση προ-

βλήματος και εν συνεχεία η μαθηματική μοντελοποίηση τόσο της μεθόδου δημιουργίας

χρονοπρογραμμάτων όσο και η καθεαυτό μοντελοποίηση του προτεινόμενου συστήματος

και των συνεπαγόμενων διαδικασιών. Αποτελέσματα:

– Μαθηματική μοντελοποίηση του υπό εξέταση προβλήματος για τη δημιουργία νέου ολι-

στικού μοντέλου που να επιτρέπει την συνύπαρξη όλων των διαφορετικών παραμέτρων

που παρουσιάζονται στην πράξη

– Επιλογή οικογένειας αλγορίθμων για την επίλυση του προβλήματος και σχεδιασμός νέου

εξειδικευμένου προσαρμοστικού αλγόριθμου επίλυσης.

– Μοντελοποίηση του πολυκριτήριου προβλήματος και της διαδικασίας υποστήριξης λήψης

απόφασης.

– Πειραματικός έλεγχος ορθής λειτουργίας του αλγόριθμου.



0.3 Χρονοδιάγραμμα Εκπόνησης της Διατριβής xxxv

Σχήμα 0.2 Χρονοπρογραμματισμός Εκπόνησης Διατριβής

• Υλοποίηση συστήματος: Ιδιαζούσης σημασίας στάδιο αποτελεί η σχεδίαση του προτεινόμε-

νου συστήματος υποστήριξης λήψης απόφασης και η υλοποίηση αυτού ώστε να εφαρμοστο-

ύν στη πράξη οι μέθοδοι και διαδικασίες στις οποίες καταλήξαμε στα προηγούμενα στάδια

και να ελεγχθεί τόσο η αποτελεσματικότητα όσο και η ορθότητα των παραγόμενων αποτε-

λεσμάτων σε σύγκριση με τα αντίστοιχα δημοσιευμένα αποτελέσματα των προϋπαρχόντων

συστημάτων. Αποτελέσματα

– Υλοποίηση και έλεγχος ορθής λειτουργίας επιλεχθέντος αλγόριθμου για κάθε μια από

τις παραμέτρους του προβλήματος βελτιστοποίησης και ανά ζεύγη.

– Ανάπτυξη προσαρμοστικού αλγόριθμου για την επίλυση του προτεινόμενου ενοποιημένου

μαθηματικού μοντέλου.

– Υλοποίηση και έλεγχος ορθής λειτουργίας του προτεινόμενου αλγόριθμου για το σύνολο

των παραμέτρων και των περιορισμών του ντετερμινιστικού προβλήματος εύρεσης βέλτι-

στου χρονοπρογράμματος.

– Υλοποίηση και έλεγχος ορθής λειτουργίας αλγορίθμων διαχείρισης πολλαπλών αντικει-

μενικών στόχων.

– Ενσωμάτωση των αλγορίθμων σε γραφικό περιβάλλον ως προσάρτημα του Μιςροσοφτ

Προθεςτ.

– Μελέτη Περίπτωσης: Χρήση του παραχθέντος μοντέλου και εργαλείων για τον χρονο-

προγραμματισμό συγκεκριμένου έργου, «Εργασίες Κτηματογράφησης για τη Δημιουργία

Ψηφιακής Κτηματολογικής Βάσης».



xxxvi Greek Synopsis

0.4 Ορισμός Προβλήματος

Ζητούμενο είναι τόσο η εύρεση ενός τρόπου που να διευκολύνει το διευθυντή του έργου

να καθορίσει με ακρίβεια και σαφήνεια τα χαρακτηριστικά του υπό εξέταση έργου και των

περιβαλλοντικών παραμέτρων που επηρεάζουν την επίλυση του, όσο και η παροχή μιας δια-

δικασίας επίλυσης του προβλήματος που θα δύναται να παράγει λύσεις προσαρμοσμένες

στις ιδιαίτερες συνθήκες που προσδιορίζουν το συγκεκριμένο έργο, το μέγεθος της εργο-

λήπτριας επιχείρησης, τη γενικότερη στρατηγική που έχει αυτή επιλέξει αλλά ταυτόχρονα

να είναι και κλιμακούμενου μεγέθους με βάση το ίδιο το έργο και την κρισιμότητα αυτού.

Επιπρόσθετα, η διαδικασία αυτή θα πρέπει να είναι αρκετά απλή και γρήγορη ώστε να ε-

πιτρέπει επαναληπτικές εκτελέσεις της, για την διευκόλυνση της παραγωγής εναλλακτικών

σεναρίων, ώστε ο διευθυντής του έργου ή/και η ομάδα που είναι υπεύθυνη για τη λήψη

των τελικών αποφάσεων και την επιλογή του χρονοδιαγράμματος που θα χρησιμοποιηθεί,

να έχουν ένα επαρκές πλήθος εναλλακτικών λύσεων προς σύγκριση, συζήτηση και εν τέλει

επιλογή.

Επομένως, πρώτο βήμα αποτελεί ο καθορισμός των χαρακτηριστικών εκείνων που θα πρέπει

να έχουν τα παραγόμενα χρονοπρογράμματα ώστε να καλύπτουν τις κατά περίπτωση ανάγ-

κες αλλά και ο καθορισμός των δομικών στοιχείων του έργου. Τα χαρακτηριστικά του χρο-

νοπρογράμματος, είτε έμμεσα είτε άμεσα, συσχετισμένα με περιβαλλοντικές παραμέτρους,

όπως για παράδειγμα τους στρατηγικούς στόχους της επιχείρησης, που συχνά περιλαμ-

βάνουν το κέρδος, την ικανοποίηση των πελατών και την ελαχιστοποίηση των κινδύνων.

Βέβαια οι ίδιοι οι παράγοντες αλλά και η σημασία καθενός σε σχέση με τους υπόλοιπους,

συσχετίζονται με την ίδια την επιχείρηση και την τρέχουσα κατάσταση. ΄Ενα ¨καλό’ χρονο-

πρόγραμμα για την εργολήπτρια επιχείρηση, θα πρέπει να της δίνει τη δυνατότητα να:

(αʹ) ικανοποιεί τους πελάτες της, με το να οδηγεί στην παροχή του συμφωνηθέντος προϊόντος:

το οποίο έχει τη ζητούμενη ποιότητα, έχει παραχθεί στον προσυμφωνηθέντα χρόνο,

παρουσιάζει όλα εκείνα τα χαρακτηριστικά που είχαν συμφωνηθεί κατά την ανάθεση του

έργου και βέβαια με το προϋπολογισθέν κόστος,

(βʹ) χρησιμοποιεί με βέλτιστο τρόπο το διαθέσιμο προϋπολογισμό και να ελαχιστοποιεί το

κόστος, χωρίς όμως αυτό να λειτουργεί εις βάρος του (α) ,

(γʹ) διαχειρίζεται τους ανθρώπινους πόρους με τέτοιο τρόπο ώστε να τηρούνται οι κείμενες

νομοθεσίες αλλά και οι όροι των αντίστοιχων συμβάσεων, όσο αφορά το χρόνο και το

είδος εργασίας αλλά και να γίνεται ισορροπημένη χρήση των υλικών και των μηχανη-

μάτων,

(δʹ) είναι κατά το δυνατόν εύρωστο ώστε μικρές αλλαγές σε διάρκειες δραστηριοτήτων ή

διαθεσιμότητες πόρων να μπορούν να απορροφηθούν και να μην προκαλούν σοβαρές

αλλαγές στο συνολικό χρονοπρόγραμμα.

Συνεπώς, ένα χρονοπρόγραμμα κρίνεται με βάση τα χαρακτηριστικά του, όπως τη διάρκεια,

το κόστος, το πλήθος, το είδος και τον τρόπο χρήσης των πόρων και την ευρωστία του

αλλά και το κατά πόσο κάθε ένα από αυτά τα στοιχεία είναι επιθυμητό και σε ποιο βαθμό

από την πλευρά της εργολήπτριας επιχείρησης τη συγκεκριμένη χρονική περίοδο. Τα χαρα-

κτηριστικά αυτά αποτελούν κατ ‘ουσία και τους αντικειμενικούς στόχους στην προσπάθεια

βελτιστοποίησης ενός χρονοπρογράμματος. Είναι συχνά αντικρουόμενα μεταξύ τους και η

προτεραιοποίηση τους είναι σχετικά πολύπλοκη αφού απαιτεί τον συνυπολογισμό διάφορων

ποσοτικών αλλά και ποιοτικών κριτηρίων.

Τα δομικά στοιχεία ενός έργου είναι οι δραστηριότητες που το αποτελούν, οι συσχετίσεις

μεταξύ τους και οι διαθέσιμοι πόροι, τύποι και ποσότητες. ΄Ενα χρονοπρόγραμμα καθορίζει



0.4 Ορισμός Προβλήματος xxxvii

τον τρόπο που θα εκτελεστεί η κάθε δραστηριότητα και τη χρονική στιγμή που αυτή θα

αρχίσει να εκτελείται.

Κάθε δραστηριότητα έχει έναν ή περισσότερους τρόπους εκτέλεσις, κάθε ένας από τους

οποίους μπορεί να συνεπάγεται διαφορετικές ποσότητες χρησιμοποιούμενων πόρων και αν-

τίστοιχη διάρκεια ή διαφορετικούς τύπους πόρων και άλλη διάρκεια εκτέλεσης. Κάθε τρόπος

εκτέλεσης ενδέχεται να οδηγεί σε διαφορετικό κόστος για την ίδια δραστηριότητα.

Οι δραστηριότητες μπορεί να επιτρέπεται να διακόπτονται κατά την εκτέλεση τους και να

επανεκκινούν με μηδενικό κόστος ή και όχι. Τα σημεία διακοπής κάθε δραστηριότητας μπο-

ρεί να είναι προκαθορισμένα ή τυχαία με μόνο στόχο τη διευκόλυνση του προγραμματισμού

των δραστηριοτήτων υπό συνθήκες περιορισμένων πόρων.

Οι δραστηριότητες μπορεί να απαιτούν είτε σταθερές είτε μεταβαλλόμενες ποσότητες πόρων

κατά την εκτέλεση τους. Η ανάγκη μεταβαλλόμενων ποσοτήτων πόρων κάποιες φορές μπο-

ρεί να αντιμετωπισθεί με την περεταίρω ανάλυση της εκάστοτε δραστηριότητες σε ύπο-

δραστηριότητες που έχουν σταθερή απαίτηση σε πόρους, αλλά όχι πάντα, μιας και οδηγεί

σε αύξηση του πλήθους των δραστηριοτήτων και άρα του μεγέθους του προβλήματος.

Μια δραστηριότητα μπορεί να προγραμματιστεί οποιαδήποτε στιγμή μετά την ολοκλήρωση

των προαπαιτούμενων της αλλά όχι νωρίτερα. Στην περίπτωση που υπάρχουν παράθυρα

χρόνο για την έναρξη ή/και τη λήξη της, τότε πρέπει στο χρονοπρόγραμμα να λαμβάνονται

υπόψην.

Διακρίνουμε τρεις διαφορετικούς τύπους πόρων: ανανεώσιμους, μη ανανεώσιμους και διπλά

περιορισμένους. Στην κατηγορία των ανανεώσιμων πόρων ανήκουν εκείνοι οι πόροι που

η διαθεσιμότητα τους ορίζεται ανά μονάδα χρόνου, όπως οι ανθρώπινοι πόροι, αν έχω 5

εργάτες σημαίνει ότι τους αναθέτω σε μια εργασία και μετά το πέρας της είναι ξανά δια-

θέσιμοι ή αλλιώς είναι πόροι που χρησιμοποιούνται αλλά δεν καταναλώνονται. Αντίθετα

οι μη ανανεώσιμοι πόροι καταναλώνονται έτσι για παράδειγμα μη ανανεώσιμος πόρος είναι

τα χρήματα, για τα οποία όταν λέμε ότι έχουμε 50.000 ευρώ τότε αυτό το ποσό είναι για

ολόκληρο το έργο και κάθε φορά που χρησιμοποιείται μέρος του, όπως όταν γίνεται μια

πληρωμή τότε αυτό το ποσό δεν θα είναι ξανά διαθέσιμο, αφαιρείται από το συνολικό ποσό.

Τέλος, οι διπλά περιορισμένοι πόροι, έχουν όριο τόσο στη συνολική διαθέσιμη ποσότητα

όσο και στην ανά χρονική μονάδα διαθέσιμη ποσότητα, όπως για παράδειγμα όταν έχουμε

3 μηχανές που μπορούν να λειτουργούν το πολύ 11 ώρες την ημέρα.

Το κόστος των ανανεώσιμων και των διπλά περιορισμένων πόρων είτε υπολογίζεται ως το

γινόμενο του χρόνου εργασίας επί την τιμή αυτής είτε έχει τη μορφή μισθού/μισθώματος.

Η διαφοροποίηση αυτή επηρεάζει ιδιαίτερα το κατά πόσο θα έχει ή όχι ιδιαίτερη σημασία

η επίτευξη ομαλού προφίλ για τον συγκεκριμένο πόρο ή η ανάγκη ελαχιστοποίησης της

μέγιστης χρήσης του.

Η διαθεσιμότητα των πόρων συνηθίζεται να θεωρείται σταθερή και αμετάβλητη για ολόκληρη

τη διάρκεια του έργου. Η παραδοχή αυτή δεν προσεγγίζει ικανοποιητικά την πραγματικότη-

τα μιας και συχνά στα έργα η διαθεσιμότητα των πόρων μεταβάλλεται, είτε πρόκειται για

ανθρώπινους πόρους, οπότε έχουμε μεταβολές λόγω ασθένειας, αδειών άλλων έργων που

διεκδικούν τους ίδιους πόρους, κ.α. αλλά και στην περίπτωση των μηχανημάτων, συντη-

ρήσεις, βλάβες, κλπ.

Τέλος, οι περιορισμοί που τίθενται στο συγκεκριμένο πρόβλημα, μπορούν να ομαδοποι-

ηθούν σε δυο κατηγορίες: αυτούς που προκύπτουν από τη λογική του προβλήματος και

αυτούς που εκφράζουν συγκεκριμένες απαιτήσεις σε σχέση με το ζητούμενο σύνολο χρο-

νοπρογραμμάτων. Στην πρώτη κατηγορία ανήκουν οι περιορισμοί που αφορούν τις σχέσεις

προτεραιότητας μεταξύ των δραστηριοτήτων είτε προέρχονται από τον ορισμό του έργου

είτε λόγω εισαγωγής δυνατότητας διακοπής της εκτέλεσης κάποιων δραστηριοτήτων. Στη

δεύτερη ανήκουν περιορισμοί που αφορούν το κόστος/προϋπολογισμό του έργου, τις δια-



xxxviii Greek Synopsis

θεσιμότητες των πόρων και τις ημερομηνίες ολοκλήρωσης συγκεκριμένων δραστηριοτήτων.

Οι περιορισμοί που ανήκουν στη 2η κατηγορία, μπορούν ενδεχομένως σε περιπτώσεις α-

δυναμίας εύρεσης καλών λύσεων στο πρόβλημα να ¨χαλαρώσουν’ για να μπορέσουμε να

οδηγηθούμε σε κάποιες εφικτές λύσεις ή σημαντικά καλύτερες όσο αφορά κάποιο από τα

επιθυμητά χαρακτηριστικά, αφού για παράδειγμα αν και δεν είναι επιθυμητό θα μπορούσα-

με ενδεχομένως σε περίπτωση ανάγκης να κάνουμε κάποιες προσλήψεις ή αγορά κάποιου

μηχανήματος ή αύξηση του προϋπολογισμού.



0.5 Προτεινόμενη Μαθηματική Μοντελοποίηση xxxix

0.5 Προτεινόμενη Μαθηματική Μοντελοποίηση

0.5.1 Ορισμοί

Η προτεινόμενη ολιστική μοντελοποίηση του προβλήματος του χρονοπρογραμματισμού έρ-

γων υπό περιορισμένους πόρους, με βάση τα παραπάνω μπορεί να εκφρασθεί ως εξής:

– ΄Ολα τα δεδομένα θεωρούνται ντετερμινιστικά και εκ των προτέρων γνωστά.

– Ορίζουμε μοναδικό έργο αποτελούμενο από n δραστηριότητες συν μια βοηθητική δραστη-

ριότητα, την 0 που αναπαριστά την έναρξη του έργου και μια βοηθητική δραστηριότητα

την n+ 1 που εκφράζει τη λήξη του έργου, με μηδενικές διάρκειες και απαιτήσεις σε

πόρους. Ορίζουμε το σύνολο των δραστηριοτήτων ως V = {0,1, . . . ,n,n+1}
– T είναι ο χρονικός ορίζοντας του έργου, που υπολογίζεται ώς το άθροισμα της μέγιστης

διάρκειας κάθε δραστηριότητας του έργου.

– Το σύνολο των ανανεώσιμων πόρων συμβολίζονται με Rρ
. Για κάθε ανανεώσιμο πόρο

k ∈ Rρ
η διαθέσιμη ποσότητα ανά χρονική περίοδο είναι μεταβλητή και ορίζεται ως α

ρ

kt ,

t = 0,1, . . . ,T −1.
– Το σύνολο των μη ανανεώσιμων πόρων ορίζεται ως Rν

. Σε κάθε μη ανανεώσιμο πόρο

l ∈ Rν
αντιστοιχούμε ένα υποσύνολο {tlx|x = 0, . . . ,Xl} οφ {0,1, . . . ,T} όπου

0 = tl0 < · · ·< tlx < tl(x+1) < · · ·< tlXl = T .

Το υποσύνολο αυτό ορίζει μια διαμέριση του διαστήματος [0,T ) το οποίο αποτελείται

από τα υποδιαστήματα Ilx = [tlx, tl(x+1)), x = 0, . . . ,Xl−1. Η συνολική κατανάλωση του μη

ανανεώσιμου πόρου l για την περίοδο Ilx του έργου δεν μπορεί να υπερβαίνει το αν
lIlx

.

– Κάθε δραστηριότητα i αντιστοιχίζεται σε ένα σύνολο Mi εναλλακτικών τρόπων εκτέλε-

σης.

· Κάθε δραστηριότητα i μπορεί να εκτελεστεί με ακριβώς ένα τρόπο m ∈ Mi σε κάθε

διακριτό χρονοπρόγραμμα.

· Κάθε τρόπος εκτέλεσης m έχει διάρκεια dim χρονικές μονάδες.

· Η δραστηριότητα i με τρόπο εκτέλεσης m απαιτεί rρ

imkτim
ανανεώσιμους πόρους του

τύπου k ∈ Rρ
στην τim-στη περίοδο εκτέλεσης της, τim = 0, . . . ,dim−1. Οι απαιτούμενοι

πόροι δεν καταναλώνονται, απλά χρησιμοποιούνται και επιστρέφονται στη δεξαμενή

πόρων μετά την ολοκλήρωση της αντίστοιχης δραστηριότητας.

· Η δραστηριότητα i με τρόπο εκτέλεσης m απαιτεί την κατανάλωση rν
imlτim

μη ανανεώσι-

μων πόρων του τύπου l ∈ Rν
στην τim-στη περίοδο εκτέλεσης της, τim = 0, . . . ,dim−1.

– Κάθε τρόπος εκτέλεσης m μιας δραστηριότητας i καθορίζει την δραστηριότητα είτε ως

διακοπτόμενη είτε όχι.

· Το σύνολο των μη διακοπτόμενων τρόπων εκτέλεσης μιας δραστηριότητας i ορίζεται

ως Mp′
i και το σύνολο των διακοπτόμενων τρόπων εκτέλεσης ως Mp

i .

· Η διάρκεια dim μιας δραστηριότητας i μπορεί να διακοπεί σε zim+1 διαστήματα μοναδια-

ίας ή μεγαλύτερης ακέραιας διάρκειας. Κάθε τμήμα ορίζεται ως pimq, q = 0, . . . ,zim και

έχει διάρκεια dimq. Κάθε τμήμα λαμβάνει τιμή έναρξης εκτέλεσης simq και ολοκλήρωσης

fimq.

· Για την απλοποίηση της παρακάτω μοντελοποίησης όλες οι δραστηριότητες θεωρούνται

διακοπτόμενες και απλά όσοι τρόποι εκτέλεσης δεν είναι διακοπτόμενοι έχουν μηδενικό

πλήθος σημείων διακοπής, όπως για παράδειγμα η δραστηριότητα έναρξης του έργου

zim = 0. Αν simq, q = 0, . . . ,zim, είναι γνωστά, τότε μπορούμε να μετατρέψουμε τις



xl Greek Synopsis

περιόδους εκτέλεσης της δραστηριότητας i που εκτελείται με τον τρόπο m, τim, σε

περιόδους t του έργου ως εξής:

t =


τim + sim0 , τim = 0, . . . ,dim0−1
τim + sim1 , τim = dim0, . . . ,dim1−1
.
.
.

τim + simzim , τim = dim(zim−1), . . . ,dimzim−1

. (0.1)

– Με βάση τα παραπάνω:

· sim0 είναι η χρονική στιγμή έναρξης της δραστηριότητας i ∈ V εκτελούμενης με τον

τρόπο m και το πρώτο της τμήμα pim0. fimzim είναι η χρονική στιμή ολοκλήρωσης της

δραστηριότητας i∈V εκτελούμενης με τον τρόπο m και το τελευταίο της τμήμα pimzim .

· Η δραστηριότητα έναρξης του έργου έχει μοναδικό τρόπο εκτέλεσης m = 0, διάρκεια 0
χρονικών μονάδων και δεν μπορεί να διακοπεί. Επομένως, z0 = 0 και s00z0 = s000.
Συνεπώς, θέτοντας τη χρονική έναρξη του έργου στη χρονική στιγμή 0 δίνει ότι

s000 = 0.
· Αντίστοιχα για τη δραστηριότητα λήξης του έργου έχουμε zn+1 = 0 και f(n+1)0zn+1 =

f(n+1)00 δίνει τη συνολική διάρκεια του έργου.

– Ορίζουμε τις ακόλουθες σχέσεις προτεραιότητας μεταξύ των δραστηριοτήτων: start-to-
start SSim jn, finish-to-finish FFim jn, finish-to-start FSim jn, start-to-finish SFim jn, με ελάχιστες

και μέγιστες υστερήσεις μεταξύ των δραστηριοτήτων i και j που εκτελούνται με τους

τρόπους m και n αντίστοιχα.

– Μετά τον προσδιορισμό της διάρκειας και των χρονικών υστερήσεων μεταξύ των δρα-

στηριοτήτων, μετατρέπονται όλες οι σχέσει προτεραιότητας σε ένα μοναδικό τύπο, τον

SS, χρησιμοποιώντας τους ακόλουθους κανόνες μετατροπής:



0.5 Προτεινόμενη Μαθηματική Μοντελοποίηση xli

Start to Start:

sim0 +SSmin
im jn ≤ s jn0→ sim0 +δim jn ≤ s jn0 ,

with δim jn = SSmin
im jn ,

sim0 +SSmax
im jn ≥ s jn0→ s jn0 +δ jnim ≤ sim0 ,

with δ jnim =−SSmax
im jn .

Start to Finish:

sim0 +SFmin
im jn ≤ f jnz jn → sim0 +δim jn ≤ s jn0 ,

δim jn = SFmin
im jn−d jn ,

sim0 +SFmax
im jn ≥ f jnz jn → s jn0 +δ jnim ≤ sim0 ,

δ jnim =−(SFmax
im jn−d jn) .

Finish to Start:

fimzim +FSmin
im jn ≤ s jn0→ sim0 +δim jn ≤ s jn0 ,

with δim jn = FSmin
im jn +dim ,

fimzim +FSmax
im jn ≥ s jn0→ s jn0 +δ jnim ≤ sim0 ,

δ jnim =−(FSmax
im jn +dim) .

Finish to Finish:

fimzim +FFmin
im jn ≤ f jnz jn → sim0 +δim jn ≤ s jn0 ,

δim jn = FFmin
im jn +dim−d jn ,

fimzim +FFmax
im jn ≥ f jnz jn → s jn0 +δ jnim ≤ sim0 ,

δ jnim =−(FFmax
im jn +dim−d jn) .

(0.2)

– Το διάνυσμα S = (simq)i=0,1,...,n,n+1 q=0,...,zim ορίζει ένα χρονοπρόγραμμα του έργου. Το

χρονοπρόγραμμα S καλείται εφικτό ως προς το χρόνο και τους πόρους αν οι περιορισμοί

που αφορούν τη διαθεσιμότητα των πόρων και τις προτεραιότητες των δραστηριοτήτων

τηρούνται.

– Act(t) ορίζεται ως το σύνολο των υπό εκτέλεση δραστηριοτήτων τη χρονική περίοδο t,
t = 0,1, . . . ,T .

Στόχος είναι ο προσδιορισμός των τρόπων εκτέλεσης m και των ενάρξεων simq όλων των

δραστηριοτήτων i = 1, . . . ,n και όλων των τμημάτων τους q = 0, . . . ,zim με τέτοιο τρόπο

ώστε να επιτυγχάνεται βελτιστοποίηση των αντικειμενικών στόχων υπό τους δοθέντες πε-

ριορισμούς.

Ο πίνακας 0.1 συνοψίζει τους συμβολισμούς που εισήχθησαν σε αυτή την ενότητα.

Στη συνέχεια οι παραπάνω ορισμοί παρουσιάζονται με τη χρήση ενός σύντομου αριθμητικού

παραδείγματος, όπως φαίνεται στις εικόνες: 0.3 - 0.5, όπου περιγράφεται ένα έργο με 6

δραστηριότητες πλέον της έναρξης (0) και λήξης του έργου (7). Για κάθε δραστηριότητα

προσδιορίζονται η διάρκεια, οι απαιτήσεις σε ανανεώσιμους και μη ανανεώσιμους πόρους,

αν και σε ποια σημεία μπορεί να διακοπεί η εκτέλεση της και τις σχέσεις προτεραιότητας,

συμπεριλαμβανομένων των χρονικών παραθύρων.

Τέλος, στην εικόνα 0.5, παρουσιάζεται ο γράφος που προκύπτει για το έργο σε δυο δια-

φορετικές, τυχαίες, επιλογές τρόπων εκτέλεσης των δραστηριοτήτων: M1 (0,0,0, 0,0,0,0,0)

και M2 (0,0,2,1,1,2,1,0).



xlii Greek Synopsis

Πίνακας 0.1 Μαθηματικοί Συμβολισμοί

Σύμβολο Περιγραφή

V = {0,1, . . . ,n,n+1} το σύνολο των δραστηριοτήτων i
n πλήθος πραγματικών δραστηριοτήτων

G(V,A) κατευθυνόμενος γράφος χρονικών περιορισμών

T ο χρονικός ορίζοντας, άθροισμα της μέγιστης διάρκειας κάθε δραστηριότητας

t περίοδοι, δείκτης του T
[t, t +1) χρονικό διάστημα που αντιστοιχεί στην περίοδο t
Act(t) σύνολο όλων των δραστηριοτήτων που είναι υπό εκτέλεση τη χρονική στιγμή

t, t = 0,1, . . . ,T
Rρ

σύνολο ανανεώσιμων πόρων

α
ρ

kt μεταβλητή ποσότητα διαθέσιμων πόρων τύπου k, t = 0, . . . ,T −1
Rν

σύνολο μη ανανεώσιμων πόρων

tlx κάθε μη ανανεώσιμος πόρος l ∈ Rν
αντιστοιχίζεται σε ένα υποσύνολο {tlx|x =

0, . . . ,Xl}, {0,1, . . . ,T} με 0 = tl0 < .. . < tlx < tl(x+1) < .. . < tlXl = T
Ilx υποδιαστήματα Ilx = [tlx, tl(x+1)],

x = 0, . . . ,Xl −1 που συνιστούν μια διαμέριση του [0,T )
αν

lIlx
μεταβλητό πλήθος διαθέσιμης ποσότητας μη ανανεώσιμων πόρων l

Mi σύνολο εναλλακτικών τρόπων εκτέλεσης της δραστηριότητας i
Mp′

i σύνολο μη διακοπτόμενων τρόπων εκτέλεσης της i
Mp

i σύνολο διακοπτόμενων τρόπων εκτέλεσης της i
dim διάρκεια της δραστηριότητας i που εκτελείται με τον τρόπο m
rρ

imkτim
για τη δραστηριότητα i ανά περίοδο χρήσης του πόρου τύπου k όταν εκτελείται
με τον τρόπο m

rν
imlτim

για τη δραστηριότητα i ανά περίοδο χρήσης του πόρου τύπου l όταν εκτελείται
με τον τρόπο m

zim πλήθος διακοπών της δραστηριότητας i όταν εκτελείται με τον τρόπο m, zim =
0, ...,dim−1

pimq τμήμα της διακοπτόμενης δραστηριότητας i με q = 0,1,2, . . . ,zim
dimq διάρκεια του τμήματος q της δραστηριότητας i όταν εκτελείται με τον τρόπο m
simq χρονική στιγμή έναρξης του τμήματος q της δραστηριότητας i όταν εκτελείται

με τον τρόπο m
fimq χρονική στιγμή ολοκλήρωσης του τμήματος q της δραστηριότητας i όταν ε-

κτελείται με τον τρόπο m
sim0 έναρξη της δραστηριότητας i
fimzm χρονική στιγμή ολοκλήρωσης της δραστηριότητας i
s000 χρονική στιγμή έναρξης του έργου

f(n+1)00 χρονική στιγμή λήξης του έργου

S = (simq) χρονοπρόγραμμα, διάνυσμα των χρόνων έναρξης όλων των τμημάτων όλων

των δραστηριοτήτων του έργου



0.5 Προτεινόμενη Μαθηματική Μοντελοποίηση xliii

(a) (b)

Σχήμα 0.3 (α) Δραστηριότητες, τρόποι εκτέλεσης, απαιτήσεις σε πόρους και σημεία διακοπής των δραστηριοτήτων του

έργου, (β) minimal και maximal lag των δραστηριοτήτων ανά τρόπο εκτέλεσης

5
7

9

5

(a) (b)

(c)

R1
 A

va
ila

bi
lit

y

Time

t11 t12 t13 T0

8
5

7

8
t21 t22 T0

R2
 A

va
ila

bi
lit

y

Time

5

15 17

15
ta1 ta2 T0

N
R1

 A
va

ila
bi

lit
y

Time

Σχήμα 0.4 (α) διαθεσιμότητα πόρου Ρ1 σε σχέση με το χρόνο, (β) διαθεσιμότητα πόρου Ρ1 σε σχέση με το χρόνο και

(ς) διαθεσιμότητα μη ανανεώσιμου πόρου ΝΡ1 σε σχέση με τις περιόδους Il0 = [0, ta1), Il1 = [ta1, ta2) και Il2 = [ta2,T )



xliv Greek Synopsis

0

1 3 5

7

2 4a

0

0

4 0

3 1

2

6

1

-4

-3

0

5 4 5

5 2 4

0

3,2,1
2,1
1,2

1,2,1
4,1
2,4

2,1,2
1,3
2,3

1,1,1
1,2
1,3

2,1,2
1,2
3,2

1,2,1
2,1
3,1

0
0
0

0
0
0

i

dim

R1 t11t12t13
R2 t11t12
NR1 ta1ta2

j

δimjn

dmj

R1 t11t12t13
R2 t11t12
NR1 ta1ta2

4b 0

2

2,1,2
1,2
3,2

0

1 3 5

7

2b 4

0

0

2 1

2 1

1

6a

0-2

-3

0

5 9 4

3 4 1

03,2,1
2,1
1,2

2,1,2
2,4
2,1

2,1,2
3,1
1,3

0,2,2
2,1
1,1

1,2,2
2,1
3,2

1,2,1
1,2
3,2

0
0
0

0
0
0

2a 0

0,2,2
2,1
1,1

6

6b

1
4

1,2,1
1,2
3,2

(a)

(b)

Σχήμα 0.5 (α)Γράφος του έργου για επιλογή τρόπων εκτέλεσης M1(0,0,0,0,0,0,0,0) και (β) M2(0,0,2,1,1,2,1,0)



0.5 Προτεινόμενη Μαθηματική Μοντελοποίηση xlv

0.5.2 Αντικειμενικοί στόχοι

Στο χρονοπρογραμματισμό έργων αναζητάμε ένα πρόγραμμα αναφοράς όπου ο χρόνος ολο-

κλήρωσης του έργου, το κόστος, η ομαλότητα του προφίλ των πόρων, η ελάχιστη μέγιστη

χρήση συγκεκριμένων πόρων και η ευρωστία, είναι οι κύριοι στόχοι αναφορικά με τη διαδι-

κασία βελτιστοποίησης.

Η διάρκεια του έργου είναι ένα κανονικό μέτρο απόδοσης (γνησίως μονότονο) του χρονο-

προγράμματος ενός έργου και εκφράζεται ως τη χρονική στιγμή έναρξης της δραστηριότητας

τέλους του έργου:

min s(n+1)0 . (0.3)

Επιπλέον, μπορεί να προστεθεί ως ¨τιμωρία’ στην συνάρτηση βελτιστοποίησης ένας πα-

ράγοντας που εκφράζει το χρόνο απόκλισης από συγκεκριμένες ημερομηνίες που αντιστοι-

χούν π.χ. σε παραδοτέα ή ορόσημα του έργου:

min s(n+1)0 +Tover , (0.4)

όπου Tover είναι το πλήθος των χρονικών περιόδων που καθυστέρησε η ολοκλήρωση της

αντίστοιχης δραστηριότητας. Ο παράγοντας αυτός μπορεί να συνδέεται με συγκεκριμένες

βαρύτητες που αντικατοπτρίζουν την κρισιμότητα της καθυστέρησης:

Tover =
n

∑
i=1

wi(Ti− fimzim) , (0.5)

όπου Ti είναι η ημερομηνία παράδοσης (deadline) της δραστηριότητας i.
Οι αντικειμενικοί στόχοι που σχετίζονται με τους πόρους, κατά κύριο λόγο αφορούν τη

μείωση της μέγιστης χρήσης πόρων υψηλού κόστους ή χαμηλής διαθεσιμότητας αλλά τις

έντονες διακυμάνσεις στις ποσότητες χρησιμοποιούμενων πόρων σε συνάρτηση με το χρόνο.

΄Οταν στόχος είναι η μείωση των διακυμάνσεων και επομένως η εξομάλυνση του προφίλ των

πόρων, γίνεται υπολογισμός της ιδανικής μέσης χρήσης του κάθε πόρου και στη συνέχεια

άθροιση των αποκλίσεων ανά χρονική μονάδα και πόρο:

min ∑
k∈Rρ

f(n+1)00

∑
t=0

∣∣∣∣∣∣∣∣∣∣
(

N

∑
i=1

rρ

imkτim

)
−

f(n+1)0

∑
t=0

N

∑
i=1

rρ

imkτim

f(n+1)00

∣∣∣∣∣∣∣∣∣∣
. (0.6)

Σημειώνεται εδώ, ότι τόσο στη παραπάνω εξίσωση όσο και στις επόμενες με τim συμβο-

λίζουμε την αντίστοιχη τιμή του t όπως προκύπτει από την αντίστοιχη εξίσωση (0.1).

Αν ck είναι το μοναδιαίο κόστος που σχετίζεται με τον ανανεώσιμο πόρο k και c0 είναι

το άθροισμα των έμμεσων κοστών που αντιστοιχούν στο έργο, τότε το συνολικό κόστος

μπορεί να εκφραστεί ως το άθροισμα των ποσοτήτων αυτών:

min c0 + ∑
k∈Rρ

ck

(
T

∑
t=0

N

∑
i=1

rρ

imkτim

)
. (0.7)



xlvi Greek Synopsis

Στην περίπτωση που υπάρχει συγκεκριμένος προϋπολογισμός, αυτός μπορεί να χρησιμοποι-

ηθεί είτε ως περιορισμός είτε ως ποινή στην αντικειμενική συνάρτηση, όπως και προηγου-

μένως.

Η μείωση της μέγιστης κατανάλωσης ενός ή περισσότερων πόρων, χρησιμοποιείται συ-

νήθως για πόρους που είτε το κόστος τους είναι τέτοιο ώστε και ακόμα και μια μόνο

μονάδα επιπλέον να χρησιμοποιηθεί επηρεάζει σημαντικά τον προϋπολογισμό είτε είναι ιδια-

ίτερα δυσεύρετες. Σε αυτές τις περιπτώσεις στοχεύουμε στην ελαχιστοποίηση της μέγιστης

κατανάλωσης του πόρου:

min max

{
N

∑
i=1

rρ

imkτim

∣∣∣∣∣ t = 0,1, . . . ,T −1

}
. (0.8)

Τέλος, όσο αφορά την αύξηση της ευρωστίας του χρονοπρογράμματος προτείνεται η μεγι-

στοποίηση είτε του συνολικού είτε του ελεύθερου περιθωρίου του έργου. Στην προτεινόμενη

προσέγγιση θέτουμε το συνολικό περιθώριο, την διαφορά νωρίτερης και αργότερης έναρξης

των δραστηριοτήτων ως αντικειμενικό στόχο με σκοπό την ελαχιστοποίηση του:

max
n

∑
i=1

(LSim−ESim) , (0.9)

όπου ESim είναι η ενωρίτερη έναρξη και LSim η αργότερη έναρξη της δραστηριότητας i όταν
εκτελείται με τον τρόπο m– στην περίπτωση διακοπτόμενης δραστηριότητας λαμβάνονται

υπόψη οι τιμές του πρώτου και του τελευταίου τμήματος αυτής.

Οι παραπάνω στόχοι συχνά είναι αλληλοσυγκρουόμενοι και εκφράζουν διαφορετικές οπτικές

και απαιτήσεις σε σχέση με το υπό σχεδίαση χρονοδιάγραμμα. Ο κατάλληλος συνδυασμός

στόχων αλλά και ενδεχομένως η ιεράρχηση τους εξαρτάται από το εκάστοτε στιγμιότυπο του

έργου αλλά και τα περιβαλλοντικά χαρακτηριστικά και την ίδια την εργολήπτρια επιχείρηση.



0.5 Προτεινόμενη Μαθηματική Μοντελοποίηση xlvii

0.5.3 Περιορισμοί

Οι δραστηριότητες πρέπει να εκτελούνται με τέτοιο τρόπο ώστε να ικανοποιούνται οι γενι-

κευμένες σχέσει προτεραιότητας μεταξύ των δραστηριοτήτων, που μπορούν να μετατραπο-

ύν σε έναν τύπο σχέσεων προτεραιότητας χρησιμοποιώντας τους κανόνες των εξισώσεων

(2.32), οπότε προκύπτει ο γενικευμένος περιορισμός:

δim jn ≤ s jn0− sim0 ,

∀(i, j) ∈ A ,∀m ∈Mi ,∀n ∈M j .
(0.10)

Η έναρξη κάθε τμήματος q μιας διακοπτόμενης δραστηριότητας i, πρέπει να ξεκινάει μετά

το πέρας του προηγούμενου τμήματος της ιδίας άρα τουλάχιστον dim(q−1) μονάδες χρόνου

από την έναρξη του τμήματος q−1 της ιδίας:

sim(q−1)+dim(q−1) ≤ simq ,

∀i = 1, . . . ,n ,∀m ∈Mi ,∀q = 1, . . . ,zim .
(0.11)

Επιπρόσθετα, αυτός ο περιορισμός καλύπτει και την ανάγκη συσχέτισης των τμημάτων μιας

δραστηριότητας με FS σχέσεις για να διατηρηθεί η σειρά εκτέλεσης των τμημάτων της

δραστηριότητας.

Προφανώς, η δραστηριότητα έναρξης του έργου πρέπει να είναι η 1η που προγραμματίζεται

τη χρονική στιγμή t = 0:
s000 = 0 , (0.12)

και η δραστηριότητα τέλους πρέπει να προγραμματιστεί μετά την ολοκλήρωση όλων των

υπόλοιπων δραστηριοτήτων:

s(n+1)00 ≥ fimzim ,

∀i = 0,1, . . . ,n ,∀m ∈Mi .
(0.13)

Οι χρησιμοποιούμενες ποσότητες ανανεώσιμων και μη ανανεώσιμων πόρων κάθε χρονική

στιγμή t πρέπει να είναι μικρότερες ή ίσες της αντίστοιχης διαθέσιμης ποσότητας εκείνη τη

χρονική στιγμή:

∑
i∈Act(t)

rρ

imkτim
≤ α

ρ

kt ,

∀k ∈ Rρ ,∀t = 0,1, . . . ,T −1 ,∀m ∈Mi ,

(0.14)

tl(x+1)−1

∑
t=0

∑
i∈Act(t)

rν
imlτim

≤ α
ν
lIlx

,

∀l ∈ Rν ,∀x = 0, . . . ,Xl−1 ,∀m ∈Mi .

(0.15)

Στην περίπτωση που είτε κάποια ορόσημα είτε ο προϋπολογισμός του έργου θέλουμε να

ληφθούν υπόψη ως περιορισμοί και όχι ως παράμετροι τιμωρίας τότε προστίθενται οι αν-

τίστοιχοι περιορισμοί. Βέβαια, για την παροχή περισσότερων βαθμών ελευθερίας προτιμάται

και προτείνεται η χρήση των ποινών ώστε να διευκολυνθεί και να επιταχυνθεί η διαδικασία

εύρεση εφικτών λύσεων.



xlviii Greek Synopsis

0.6 Μαθηματική Μοντελοποίηση

Οι προτεινόμενες παραλλαγές του προβλήματος RCPSP μπορούν να μοντελοποιηθούν μα-

θηματικώς εισάγοντας τις δυαδικές μεταβλητές ximqt που ορίζονται ως εξής:

ximqt =

{
1, ιφ τηε σεγμεντ pimq οφ i ιν μοδε m σταρτς ατ t
0, οτηερωισε

. (0.16)

Η μαθηματική μοντελοποίηση που παρουσιάζεται στις εξισώσεις (0.17)-(0.25), είναι μια ε-

πέκταση του μοντέλου που αρχικά παρουσιάστηκε από τους Πριτσκερ ετ αλ. (1969) ώστε

να συμπεριλαμβάνει διακοπτόμενες δραστηριότητες, πολλαπλούς τρόπους εκτέλεσης δρα-

στηριοτήτων, γενικευμένες σχέσεις προτεραιότητας και μεταβλητή ζήτηση και απαίτηση σε

πόρους. Επιπλέον, δανείζεται στοιχεία και από τις μοντελοποιήσεις των DeReyck (1999) και

Hartmann (2013) για τα προβλήματα MRCPSP−GPR και RCPSP/t αντίστοιχα.

min f (ximqt) , (0.17)

υπό τους περιορισμούς:

∑
m∈Mi

T−1

∑
t=0

zim

∑
q=0

ximqt = 1 ,

∀i = 0,1, . . . ,n+1 ,

(0.18)

(
∑

m∈Mi

T−1

∑
t=0

txim0t

)
+δim jn ≤ ∑

n∈M j

T−1

∑
t=0

tx jn0t ,

∀(i, j) ∈ A ,

(0.19)

n

∑
i=1

∑
m∈Mi

zim

∑
q=0

rρ

imkτim
ximqt ≤ α

ρ

kt ,

∀k ∈ Rρ ,∀t = 0,1, . . . ,T −1 ,

(0.20)

tl(x+1)−1

∑
t=0

n

∑
i=1

miλ

∑
m=1

zim

∑
q=0

rν
imlτim

ximqt ≤ α
ν
lIlx

,

∀l ∈ Rν ,∀x = 0, . . . ,Xl−1 ,

(0.21)

x0000 = 1 , (0.22)

T−1

∑
t=0

tximzimt ≤
T−1

∑
t=0

tx(n+1)00t ,

∀i = 0,1, . . . ,n ,

(0.23)

T−1

∑
t=0

txim(q−1)t +dimq ≤
T−1

∑
t=0

tximqt ,

∀i = 0,1, . . . ,n ,∀m ∈Mi ,∀q = 1, . . . ,zim ,

(0.24)



0.6 Μαθηματική Μοντελοποίηση xlix

ximqt ∈ {0,1} ,
∀i = 0,1, . . . ,n+1 ,∀m ∈Mi ,∀t = 0,1, . . . ,T −1 .

(0.25)

Η αντικειμενική συνάρτηση (0.17) ελαχιστοποιεί τους επιλεχθέντες αντικειμενικούς στόχους,

για παράδειγμα τον στόχο ελαχιστοποίησης της συνολικής διάρκειας του έργου γράφεται

ως:

min
T−1

∑
t=0

tx(n+1)00t .

Οι περιορισμοί (0.18) διασφαλίζουν ότι κάθε δραστηριότητα και κάθε τμήμα στο οποίο

διασπάται, εκτελείται ακριβώς μιας φορά και με ένα συγκεκριμένο τρόπο εκτέλεσης.

Οι περιορισμοί (0.19) αφορούν τις σχέσεις προτεραιότητας με ελάχιστη και μέγιστη χρονική

υστέρηση, όπου οι τιμές της μέγιστης ή ελάχιστης υστέρησης δίνονται από το δ im jn.
Οι περιορισμοί στη διαθεσιμότητα ανανεώσιμων και μη ανανεώσιμων πόρων δίνονται στις

εξισώσεις (0.20) και (0.21), αντιστοίχως.

Οι εξισώσεις (0.22) και (0.23) διασφαλίζουν ότι η πρώτη δραστηριότητας που προγραμ-

ματίζεται είναι η έναρξη και η τελευταία μετά την ολοκλήρωση όλων των άλλων είναι η

δραστηριότητα τέλους.

Οι περιορισμοί (0.24) εξασφαλίζουν ότι τα τμήματα κάθε δραστηριότητας θα εκτελεστούν

με τη σωστή σειρά.

Ο περιορισμός (0.25) ορίζει ότι οι μεταβλητές μας είναι δυαδικές και λαμβάνουν τις τιμές 0
ή 1.



l Greek Synopsis

0.7 Προτεινόμενη Μέθοδος Επίλυσης

Η προτεινόμενη μέθοδος επίλυσης απαρτίζεται από τρεις φάσεις, όπως φαίνεται στην εικόνα

0.6. Αρχικά, το πρόβλημα αναλύεται ώστε να καθοριστούν τα δομικά στοιχεία του υπό

εξέταση έργου, ποιες είναι οι δραστηριότητες, με ποιο τρόπο συσχετίζονται, αν είναι διακο-

πτόμενες και πώς ή όχι, ποιοι είναι οι εναλλακτικοί τρόποι εκτέλεσης, τι είδους και ποιες

ποσότητες πόρων και σε ποιες χρονικές στιγμές εκτέλεσης της δραστηριότητας απαιτούνται

και αντίστοιχα οι διαθεσιμότητες για τον χρονικό ορίζοντα του έργου. Το σύνολο αυτών

των στοιχείων αποτελούν τις εισόδους της διαδικασίας επίλυσης του προβλήματος.

Η δεύτερη φάση αφορά τους αντικειμενικούς στόχους. Αποφασίζεται ποιοι είναι οι αντι-

κειμενικοί στόχοι, επιλέγοντας ανάμεσα στις διαθέσιμες εναλλακτικές, κόστους, χρόνου,

προφίλ πόρων, ευρωστίας χρονοπρογράμματος και ελαχιστοποίησης μέγιστης χρήσης. Με

βάση αυτή την επιλογή, στη συνέχεια εάν έχουμε πάνω από έναν αντικειμενικό στόχο τότε

η ομάδα λήψης απόφασης ή και ο διευθυντής του έργου επιλέγει αν θα γίνει ιεράρχηση

τους με χρήση της ANP ή θα ακολουθηθεί η πιο παραδοσιακή πορεία της εύρεσης των κατά

Pareto βέλτιστων λύσεων, όπως φαίνεται στην εικόνα 0.7.

Tasks’  
Duration

Execution 
Mode

Resource 
Needed

Relationships

Adaptive GA 
to choose 
solution 

algorithm 
and solve 

Define the problem 
parameters

SplitsMust 
Stat/Finish 

On

Res. 
Renewable

/Non

Res. 
Calendar

Prioritize the objectives 
using ANP

or Pareto vector

Solve the specific instance

Makespan

Cost

Robustness

Res. 
Profile

Σχήμα 0.6 Φάσεις προτεινόμενης μεθόδου επίλυσης

Στην τελευταία φάση πραγματοποιούνται όλες οι απαιτούμενες διεργασίες για την μετατροπή

των δεδομένων εισόδων στην μορφή που απαιτεί ο αλγόριθμος επίλυσης για την εκτέλε-

ση του και την παραγωγή των διάφορων εναλλακτικών λύσεων. Εφόσον ο αλγόριθμος -

ενορχηστρωτής της όλης διαδικασίας είναι ένας υβριδικός γενετικός αλγόριθμος, έχουμε

κωδικοποίηση των δραστηριοτήτων και των αντίστοιχων τρόπων εκτέλεσης σε ένα χρω-

μόσωμα, μαζί με γονίδια για τον προσδιορισμό του αλγόριθμου αποκωδικοποίησης και του

καθ’ αυτό αλγόριθμου επίλυσης (SA,T S,PSO,GA). Ο αρχικός πληθυσμός παράγεται τυ-

χαία ενώ με χρήση τελεστών διασταύρωσης και μετάλλαξης προκύπτει ο πληθυσμός των

παιδιών που προστίθεται στους γονείς. Ο ενοποιημένος πληθυσμός κατανέμεται με βάση

το αν λύνουμε μονής, πολλών αντικειμενικών συναρτήσεων Pareto ή ANP πρόβλημα στην



0.7 Προτεινόμενη Μέθοδος Επίλυσης li

αντίστοιχη διαδικασία και εν συνεχεία ελέγχεται το γονίδιο αλγόριθμου επίλυσης για την

ανάθεση σε έναν από τους αλγόριθμους επίλυσης. Τα χρωμοσώματα τροποποιούνται μέσω

αυτής της διαδικασίας και επιστρέφονται στον αλγόριθμο - ενορχηστρωτή της διαδικασίας

για την ταξινόμηση τους με βάση την τιμή της συνάρτησης καταλληλότητας καθενός από

αυτά και επιλογή των καλύτερων για να μεταβούν στην επόμενη γενιά. Η διαδικασία επανα-

λαμβάνεται για προκαθορισμένο πλήθος κύκλων ή ως το πέρας κάποιου μέγιστου χρονικού

διαστήματος από την έναρξη.

Η ροή των δεδομένων από τον καθορισμό των στοιχείων του έργου ως την παραγωγή του

ζητούμενου συνόλου των εναλλακτικών συνοψίζεται στην εικόνα 0.7.



lii Greek Synopsis

Objectives, Criteria, 
Relationships

     ANP Model

Collect judgments 
from decision maker(s)

Objectives Ranking
Weights Vector

Project Specific Inputs

Data Transformations

ACTIVITIES RESOURCES

Availability

Cost

Usage

Duration

Precedences

Modes

Preemption

ANP||Pareto? ANP

Current situation &
Project related information

1 5 2

 

Pareto

Objectives 
Vector

Generate chromosomes of initial population

Start

Gene of solution 
algorithm

(SA,TS,GA,PSO)

Gene of encoding/
decoding algorithm
serial-parallel SGS

Generate offspring chromosomes
 crossover & mutation

Select chromosomes
Two tournament

Calculate fitness of R
ANP_MOGA/ ParetoGA /SingleObjective

Num of Gen < max?

YES

End

NO

Best found 
solutions + 
Algorithms 

Combine to one population R
 parents U children  

Priority List of 
Activities

Σχήμα 0.7 Ροή δεδομένων



0.7 Προτεινόμενη Μέθοδος Επίλυσης liii

Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι περιπτώσεις βελτιστοποίησης με πολλαπλούς αντικει-

μενικούς στόχους. Στην περίπτωση της ΑΝΡ, η διαδικασία βελτιστοποίησης βασίζεται στον

διαχωρισμό του δοθέντος αρχικού πληθυσμού σε υποπληθυσμούς.

Subpopulation k = 1

Subpopulation k = K

New 
Population

Current U Offspring

1 7 6 2 8 7 5 3 9Chromo Ns

1 2 6 4 8 7 3 5 9Chromo 1

1 2 6 4 8 7 5 3 9Chromo KNs

1 8 6 3 2 7 5 4 9Chromo 
1+(K-1)Ns

Obj 
Function 1

Obj 
Function K

5
10
20
3
4

11
17
13
19
22

2
3
4
4
5

9
10
11
13
16

c’(1)
c(4)
c(5)
c’(4)
c(1)

c’(2)
c’(3)
c(1)
c(3)
c’(5)

Fitness
Selected 

Chromosomes

Fitness
Selected 

Chromosomes

w1%

wK%

c’(1)
c(4)

c’(2)
c’(3)
c(1)

ActNumber

1 6 2 3 8 7 4 5 9

1 2 6 4 8 7 5 3 9

1 2 6 4 8 7 3 5 9

1 3 6 4 8 7 5 2 9

1 4 6 2 8 7 5 3 9

1 2 6 4 8 7 5 3 9

1 0

0 2

0 3

0 2

0 3

1 1

Σχήμα 0.8 Βελτιστοποίηση πολλαπλών αντικειμενικών στόχων με ΑΝΡ

Ο κάθε ένας υποπληθυσμός χρησιμοποιείται για την επιδίωξη του αντίστοιχου αντικειμενι-

κού στόχου ανεξάρτητα από τους υπόλοιπους. Στο τέλος του κύκλου εργασιών επιλέγεται

αριθμός λύσεων από τον κάθε υποπληθυσμό ανάλογα με τις βαρύτητες που είχαν δοθεί

στους αντικειμενικούς στόχους μέσω της μεθόδου ΑΝΡ, όπως φαίνεται στην εικόνα 0.8. Ο

αντίστοιχος αλγόριθμος περιγράφεται ως εξής:

Algorithm 0.1: ANP
input : Pg, ANPweights=[w1,. . . ,wk], K = total number of objectives, Ns = 2POP/K
output: Pg+1
// for each objective k
for k = 1. . . K do

// for each chromosome i
for i = 1+(k−1)Ns. . . kNs do

Fitness (i) =ObjectiveFunction (k,i);
end
Psubk =FormSubPopulation (Pg, 1+(k−1)Ns. . . kNs);

end
Select from Pg by subpopulations;
Pg+1=Form (w1×P′sub1

,. . . ,wk×P′subk
);

Η δεύτερη δυνατότητα που δίνεται για πολυστοχική βελτιστοποίηση αφορά την εύρεση βέλ-

τιστων κατά Pareto λύσεων. Χρησιμοποιείται μια αντικειμενική συνάρτηση για κάθε στόχο

προς βελτιστοποίηση και οι τιμές σχηματίζουν το Pareto διάνυσμα. Η ιδέα βασίζεται στην

ταξινόμηση του πληθυσμού με βάση έναν προκαθορισμένο κανόνα κυριαρχίας και την τιμή

της αντίστοιχης συνάρτησης καταλληλότητας (εικόνα 0.9.



liv Greek Synopsis

Current U Offspring

Calculate Solutions

Non Dominated 
Sorting

New Population

ActNumber

1 6 2 3 8 7 4 5 9

1 2 6 4 8 7 5 3 9

1 2 6 4 8 7 3 5 9

2POP

1 3 6 4 8 7 5 2 9

1 4 6 2 8 7 5 3 9

1 2 6 4 8 7 5 3 9

1 0

0 2

0 3

0 2

0 3

1 1

SGS: 1
Algo: 0

SGS:0
Algo:3

SGS:0
Algo:2

SGS:0
Algo: 1

5
10
..
3

0
1
...
0
2

Fitness= Rank

#solutions 
dominating it

DC

3
10
..
3

5
9
..
3

5
10
..
1

Values

c’(0)

c(0)

c’(1)

c’(1)
c’(2)

c’(2)

POP

Sort by
Closeness

c(2)
c’(2)

c’(2)

c’(3)

c’(4)
c’(5)

c’(5)

c(6)

c’(0)

c(0)

c’(1)

c’(1)
c’(2)

c’(2)

POP

Obj1
…
ObjN

Obj1
…
ObjN

Obj1
…
ObjN

Obj1
…
ObjN

Σχήμα 0.9 Pareto ΓΑ

Εδώ πρέπει να σημειωθεί ότι η συνάρτηση καταλληλότητας δεν βασίζεται στις αντικειμε-

νικές συναρτήσεις αλλά σχετίζεται άμεσα με το σε ποιο Pareto μέτωπο αντιστοιχεί, όπως

φαίνεται αναλυτικά στον αντίστοιχο αλγόριθμο 2.

Algorithm 0.2: Pareto
InputFinput set(input Rg) set(output Pg+1) // calculate non dominated

sets for population Rg
Non-Dominated-Sort (Rg, out Fi, out rank[ ]);
// select chromosomes to pass to the next generation
foreach Fi do

set sizeF = count(Fi);
if emptySlots ≥ sizeF then

forall the solutions j ∈ Fi do
Copy (chromo( j), Pg+1);
emptySlots=emptySlots - sizeF;

end
else

SortClosenessDesc (Fi);
while emptySlots> 0 do

Take chromosome in desc order of closeness;
Copy (chromo( j), Pg+1);
emptySlots = emptySlots−1;
j = j+1;

end
end
set emptySlots=POP;

end



0.8 Πειραματική Επαλήθευση Αποτελεσμάτων lv

0.8 Πειραματική Επαλήθευση Αποτελεσμάτων

Η προτεινόμενη μαθηματική μοντελοποίηση και η αντίστοιχη μέθοδος επίλυσης υλοποιήθη-

κε κάνοντας χρήση της γλώσσας προγραμματισμού C#.NET . Ο παραχθέν κώδικας παρέχει

ένα διπλό περιβάλλον υλοποίησης των αλγορίθμων, αφενός έχουμε μια απλή εφαρμογή χω-

ρίς γραφική διεπαφή για την εκτέλεση των αλγορίθμων με στόχο την βέλτιστη ταχύτητα

και αποτελεσματικότητα και αφετέρου παράχθηκε ένα πλήρες περιβάλλον διεπαφής σαν ε-

πέκταμα του γνωστού εργαλείου διαχείρισης έργων Microso f t Pro ject. Στο εργαλείο αυτό,

που από εδώ και στο εξής θα καλούμε EMO−RCPSP, παρέχονται στον τελικό χρήστη όλα

εκείνα τα εργαλεία που απαιτούνται για τον λεπτομερή προσδιορισμό των χαρακτηριστικών

και των δομικών στοιχείων ενός έργου αλλά και η επιλογή και παραμετροποίηση τόσο των

αντικειμενικών στόχων και του πλήθους των παραγόμενων λύσεων όσο και των ίδιων των

αλγόριθμων επίλυσης, όπως φαίνεται στην εικόνα 0.10.

Σχήμα 0.10 EMO−RCPSP−MSPro ject

Δυο διακριτά πειράματα σχεδιάστηκαν και υλοποιήθηκαν:

– το πρώτο πείραμα αποσκοπεί στην επαλήθευση των προτεινόμενων αλγόριθμων συγ-

κρίνοντας τα αποτελέσματα που δίνουν σε σχέση με τα αντίστοιχα αποτελέσματα σε

σχετικά μικρά (15, 30 δραστηριοτήτων) προβλήματα που υπάρχουν δημοσιευμένα και ε-

ίναι εκ των προτέρων γνωστά τα βέλτιστα αποτελέσματα. Επίσης, κάνοντας χρήση των

ίδιων αλλά και μεγαλύτερου μεγέθους (120 δραστηριοτήτων) προβλημάτων γίνονται συγ-

κρίσεις για τη διαπίστωση της αποτελεσματικότητας των προτεινόμενων μεθόδων. Τελι-

κός στόχος είναι να αποδειχθεί ότι το προτεινόμενο ολιστικό μοντέλο και οι αντίστοιχοι

αλγόριθμοι δίνουν τουλάχιστον το ίδιο καλές λύσεις και σε αντίστοιχους χρόνους με

τους αναφερόμενους στην πρόσφατη βιβλιογραφία του χώρου δηλαδή ότι δεν οδηγεί σε

απώλεια ποιότητας ή ταχύτητας επίλυσης των προβλημάτων.



lvi Greek Synopsis

– το δεύτερο πείραμα έχει περισσότερο διερευνητικό χαρακτήρα μιας και αφορά την πολυ-

στοχική βελτιστοποίηση για την οποία δεν υπάρχουν διαθέσιμα στη βιβλιογραφία στοιχε-

ία για να γίνει σύγκριση, οπότε γίνεται προσέγγιση των προβλημάτων βελτιστοποίησης

του προηγούμενου πειράματος, αυτή τη φορά κάνοντας χρήση πολλαπλών αντικειμενι-

κών στόχων και οι λύσεις ελέγχονται απλά ως προς την εφικτότητα τους και το βαθμό

ικανοποίησης των τεθέντων στόχων αλλά και την απόκλιση τους από τα αντίστοιχα πα-

ραδείγματα με ένα αντικειμενικό στόχο.

Στον πίνακα 0.2, συνοψίζονται τα αποτελέσματα του 1ου πειράματος ενώ στον πίνακα

0.3 του 2ου πειράματος. Για το 1ο πείραμα έχουμε στην πρώτη στήλη το στιγμιότυπο

που εκτελέστηκε, στη δεύτερη η ελάχιστη διάρκεια έργου, στην τρίτη στήλη η μέγιστη

διάρκεια έργου, στη συνέχεια δίνεται η μέγιστη απόκλιση από το καλύτερο δημοσιευμένο

αποτέλεσμα και η συχνότητα που το καλύτερο γνωστό αποτέλεσμα βρέθηκε κατά τις

επαναλήψεις του πειράματος. Τα αποτελέσματα οδηγούν στο συμπέρασμα ότι ο προτει-

νόμενος αλγόριθμος δίνει το ίδιο καλά αποτελέσματα με τους καλύτερους εξειδικευμένους

ανά τύπο προβλήματος αλγόριθμους της βιβλιογραφίας και μάλιστα έχει στις περισσότε-

ρες περιπτώσεις ποσοστό απόκλισης από αυτή την τιμή κάτω του 2%. Επομένως, ο

στόχος του πειράματος, η απόδειξη ότι επιτυγχάνουμε το ίδιο καλά αποτελέσματα με

τους υπάρχοντες αλγόριθμους, επιτεύχθηκε.

Πίνακας 0.2 Συγκριτικά αποτελέσματα για ελαχιστοποίηση διάρκειας έργου

΄Ονομα Μέση Απόκλιση Μέγιστη Απόκλιση Βέλτιστο/ΥΒ)

Ρ῝ΠΣΠ Θ30 0.25% 3% 96.7%

Ρ῝ΠΣΠ Θ120 1.42% 8% 34.46%

ΠΡ῝ΠΣΠ Θ30 0.12% 2.5% 98.7%

ΠΡ῝ΠΣΠ Θ120 1.21% 5% 42.73%

ΜΡ῝ΠΣΠ ῝15 0.23% 1% 98.9%

ΜΡ῝ΠΣΠ ῝21 0.01% 1% 99.9%

ΜΡ῝ΠΣΠ Θ10 0.01% 0% 99.9%

Ρ῝ΠΣΠ-τ Θ30 0.05% 1% 99.7%

Ρ῝ΠΣΠ-τ Θ120 0.22% 1.5% 99.5%

Ρ῝ΠΣΠμαξ Θ30 0.12% 1.8% 90.12%

Τα αποτελέσματα του 2ου πειράματος δείχνουν ότι η συνδυασμένη χρήση των δυο πολυ-

στοχικών τρόπων βελτιστοποίησης δίνουν στο διευθυντή έργου μια πιο σφαιρική εικόνα

όσο αφορά τις δυνατές εναλλακτικές λύσεις και τους διάφορους ισοδύναμους δρόμους

που μπορεί να ακολουθήσει για τον προγραμματισμό του εκάστοτε έργου. Επιπρόσθετα,

συγκρίνοντας τα αποτελέσματα της πολυστοχικής βελτιστοποίησης με την βελτιστοπο-

ίηση μονού αντικειμενικού στόχου, συχνά (57% των περιπτώσεων) η πολυστοχική αν-

τιμετώπιση οδηγεί σε σημαντική βελτίωση των μη κυρίαρχων αντικειμενικών στόχων με

συγκριτικά μικρή απώλεια στον βασικό στόχο (λιγότερο από 5%). Το ιδανικό θα ήταν

η σύγκριση και αυτών των αποτελεσμάτων με αντίστοιχα της βιβλιογραφίας αλλά δεν

υπάρχουν διαθέσιμα στοιχεία.



0.8 Πειραματική Επαλήθευση Αποτελεσμάτων lvii

Πίνακας 0.3 ὃμπαρατιvε ρεσυλτς φορ μυλτι-οβθεςτιvε ινστανςες

Ινστανςε Αλγοριτημ Μακεσπαν ΡΛΙ ὃστ Ροβυστνεσς

Θ301 1 1 Παρετο 43 124.10 4900 30

Θ301 1 1 ΑΝΠ 45 133.10 4500 32

Θ301 1 1 Σινγλε Οβθ. 43 124.10 4900 30

Θ301 2 2 Παρετο 47 176.18 5500 32

Θ301 2 2 ΑΝΠ 47 173.28 5600 30

Θ301 2 2 Σινγλε Οβθ. 47 176.18 5500 32

Θ301 3 6 Παρετο 47 153.02 5200 46

Θ301 3 6 ΑΝΠ 47 158.65 5300 48

Θ301 3 6 Σινγλε Οβθ. 47 161.65 5600 42

Θ301 4 7 Παρετο 62 185.10 6600 35

Θ301 4 7 ΑΝΠ 64 187.63 5800 28

Θ301 4 7 Σινγλε Οβθ. 62 185.09 6800 21

Θ3034 9 3 Παρετο 60 207.33 5400 40

Θ3034 9 3 ΑΝΠ 60 208.32 5400 40

Θ3034 9 3 Σινγλε Οβθ. 60 207.82 5300 37



lviii Greek Synopsis

0.9 Μελέτη Περίπτωσης

Η προτεινόμενη μοντελοποίηση και μέθοδος επίλυσης του προβλήματος χρονοπρογραμ-

ματισμού έργου με περιορισμένους πόρους χρησιμοποιήθηκε στην πράξη για την κτημα-

τογράφηση συγκεκριμένων περιοχών της Ελλάδας. Συγκεκριμένα, η προτεινόμενη διαδι-

κασία ακολουθήθηκε βήμα-βήμα από τον αρχικό προσδιορισμό του προβλήματος ως την

τελική επιλογή της βέλτιστης εναλλακτικής λύσης για τον προγραμματισμό του έργου.

Ο προσδιορισμός των δεδομένων του έργου, δραστηριότητες, συσχετίσεις, ανάγκες σε

πόρους και διαθεσιμότητα αλλά και οι προτεραιότητες των αντικειμενικών στόχων και

το είδος και πλήθος των ζητούμενων εναλλακτικών λύσεων, προέκυψαν κατόπιν σειράς

συνεντεύξεων με το διευθυντή και την ομάδα έργου.

0.10 Συμπεράσματα - Σημεία Καινοτομίας

Συνοψίζοντας, η παρούσα Διατριβή παρουσιάζει τα ακόλουθα στοιχεία καινοτομίας:

· Ολιστικό μαθηματικό μοντέλο που ενσωματώνει όλες τις γνωστές επεκτάσεις και πα-

ραλλαγές του προβλήματος χρονοπρογραμματισμού έργων υπό περιορισμένους πόρους.

Συγκεκριμένα καλύπτει τις περιπτώσεις, δραστηριοτήτων με πολλαπλούς τρόπους ε-

κτέλεσης, γενικευμένες σχέσεις προτεραιότητας μεταξύ των δραστηριοτήτων, δυνα-

τότητα διακοπής της εκτέλεσης συγκεκριμένων δραστηριοτήτων σε ένα ή περισσότερα

σημεία, μεταβλητή διαθεσιμότητα πόρων αλλά και μεταβλητή ανάγκη σε πόρους ανά

δραστηριότητα.

· Προσαρμόσιμο υβριδικό εξελικτικό αλγόριθμο που διαχειρίζεται την επιλογή τόσο του

τρόπου αποκωδικοποίησης των λύσεων όσο και των συνδυασμών αλγορίθμων ανα-

ζήτησης που χρησιμοποιούνται σε κάθε γενιά για τον υπολογισμό των λύσεων με

βάση την αποδοτικότητα τους στο συγκεκριμένο, υπό επίλυση πρόβλημα.

· Επίτευξη καλών αποτελεσμάτων βελτιστοποίησης, ίδια ή και καλύτερα σε σύγκριση με

τα αντίστοιχα που αναφέρονται στη βιβλιογραφία.

· Ανάπτυξη πρόσθετου εργαλείου για το ΜΣ Προθεςτ, το οποίο υλοποιεί τους προα-

ναφερθέντες αλγορίθμους, με σκοπό την παροχή στον διευθυντή έργου μιας σειράς

εργαλείων για τον καθορισμό των δεδομένων του έργου ( πολλαπλούς τρόπους εκτέλε-

σης, κυμαινόμενη απαίτηση σε πόρους, καθορισμός μη ανανεώσιμων πόρων, κ.α.), των

στόχων της βελτιστοποίησης με τρόπο απλό και ευέλικτο, αλλά και την παραγωγή

εναλλακτικών λύσεων αντί μιας μοναδικής λύσης.

· Λαμβάνονται υπόψη συστημικοί παράγοντες που επηρεάζουν το χρονοπρογραμματισμό

του έργου τόσο στη μοντελοποίηση του έργου όσο και στον τρόπο σχεδιασμού.

Εν κατακλείδι, απώτερος στόχος της Διατριβής είναι η αντιμετώπιση του προβλήματος

του χρονοπρογραμματισμού έργων και κατά συνέπεια η κατά στοιχείο (μοδυλαρ) μοντε-

λοποίησή του, η οποία δίνει τη δυνατότητα στο διευθυντή έργου να συνδυάζει, προσθέτει,

αφαιρεί χαρακτηριστικά, για να πετύχει όσο γίνεται πιο ρεαλιστική αναπαράσταση του

έργου που πρέπει να προγραμματίσει, των συνθηκών που επικρατούν αλλά και του είδους

των επιθυμούμενων λύσεων. Τελικός στόχος η παραγωγή λύσεων από τις οποίες ο διευ-

θυντής έργου θα επιλέξει την καταλληλότερη, που ουσιαστικά αντικατοπτρίζει καλύτερα

το πραγματικό πρόβλημα που πρέπει να λυθεί και ταιριάζει στις συνθήκες που επικρατούν

και τους στόχους που ο ίδιος έχει θέσει.



Chapter 1
Overview

1.1 Introduction

Managing projects dates back thousands of years. The builders of the pyramids in Egypt and
the Acropolis in Greece are often cited as some of the world’s first project managers. They
had no computers nor planning software to assist them, but they managed complex projects,
using the simplest of tools. A project can be defined as a set of activities which have a defined
start point and a defined end state and which pursue a defined goal and use a defined set of
resources. The most common goal is to assign starting times to each activity in a way that all
the precedence relationships among the activities are obeyed, there are no overallocations of
resources and the project finishes as soon as possible.
Although this problem might seem quite simple, trying to model it in such a way as to cover
all the different situations that are encountered in practice and provide an effective way to
handle them, balancing between the complexity of the problem and the efficiency of the
provided solutions, is not straightforward.
In this thesis a holistic approach is proposed for defining the so called resource constrained
project scheduling problem (RCPSP). The aim is to give a conceptual formulation of the
project scheduling problem as a whole, where all deterministic aspects that have been previ-
ously explored in the relevant literature are covered. Moreover, an appropriate mathematical
formulation along with a concise solution process covering both the single and the multi-
objective case, are presented. The final goal is to provide a way to model and solve project
scheduling problems as they actually are, without compromises other than the assumption
that the given inputs are realistic.
Based on this model an adaptive algorithm the moderator, handling single objective and
multi-objective cases either with prioritisation of the objectives and/or pareto optimality, was
proposed. The moderator algorithm has as its main role to regulate the process and select the
best algorithm to be used based on the instance currently being used.
It was experimentally proven that the usage of the algorithm raises the accuracy of the re-
sults without harming the execution time. Therefore we have a reliable way for solving any
scheduling problem having features spanning from the standard RCPSP to any combination
of existing variations. This way the project managers have a way of modelling their project
in a single step following a transparent process. We overcome, the raise of complexity and
the infeasibilities by using penalty functions when relaxation of the constraints is needed.
In the multi-objective case the algorithm is capable of providing multiple solution scenarios
that are generated either based on the Pareto front or on a weighted approximation of it.

1



2 1 Overview

Summarising, we have a unified model, that is reliable and accommodates the needs of
project scheduling in practice, keeping at the same time great flexibility on what kind of
solutions and at what degree each objective should be pursued.
The next step on this research is to enhance it by adding a mechanism for automatically
dealing with infeasibilities instead of interactively doing it. Further experimentation on the
multi-objective side of the problem focusing on the comparison with the existing approaches
it is expected to give valuable insight.

1.2 Motivation

Scheduling problems have been investigated since the late fifties, motivated by the need to
improve and facilitate project management. Project scheduling is a complex problem that
every project manager faces in the beginning of each project and the consequences of an ill
designed schedule can seriously endanger the successful project execution and completion.
Applications can be found in diverse industries such as construction management, software
development, etc. In addition, project scheduling is very attractive for researchers, mainly
those related to operational research, because the models in this area are rich and, hence,
difficult to solve.
Project scheduling involves the development of a project base plan (baseline schedule) which
specifies for each activity the precedence and resource feasible start and completion dates,
the amounts of the various resource types that will be needed during each time period and
as a result the corresponding budget required for the execution of the project (Brucker et al.,
1999). The fundamental issue for relevant problems is to generate a schedule that is prece-
dence and resource feasible, that is to fulfil the initially set precedence constraints and re-
spects the available capacity of the resources involved. But, apart from this major issue, it is
also desirable to come up with a schedule of minimal total project duration and cost, smooth
profiles for the resource types used and increase robustness, in order to minimise the effect of
possible perturbations in the duration of the activities and the resource availabilities during
the execution. Project managers depending on the project and the situation at hand give more
or less importance to each of the above objectives, therefore, a multidimensional approach
is implicitly or explicitly used in practice (Viana and Pinho de Sousa, 2000). These differ-
ent aspects, are often conflicting and all of them need to be taken into consideration as they
play different roles in the schedule generation process based on the specific organisation and
its priorities, the size and the budget of the project, the customer and other environmental
parameters.
Although the project scheduling problem, was initially faced as a ”hard” problem assuming
that it is fully observable, governed by well-defined laws of behaviour and closed to the en-
vironment, this is not the case. Still, when trying to take into consideration all the parameters
defining and affecting a good project schedule a very complex system emerges. Therefore,
it is essential to try to define the project scheduling problem taking into consideration con-
flicts and uncertainties but in a level of abstraction that will keep it general and permit its
modelling and solution.
The vast majority of the research efforts in project scheduling over the past years has concen-
trated on the development of procedures for the generation of an effective baseline schedule,
often called pre-schedule, predictive schedule or proactive, assuming that the environment is
deterministic and all the needed information exists and is accurate (Herroelen and Demeule-
meester, 1996). The baseline schedule serves very important functions like the allocation of



1.2 Motivation 3

starting times and resources as to optimise some measure of performance (e.g. project dura-
tion) (Aytug et al., 2005; Demirkol et al., 1998), planning external activities, such as material
procurement, preventive maintenance and committing to external deadlines (Xu and Cheng,
2008), cash flow projections and even as a measure of the performance of the project team.
Indeed, baseline schedule enables good scheduling and resource allocation decisions that in
turn allow quoting competitive and reliable due dates (Herroelen and Leus, 2004).
The early work in the project scheduling field addressed scheduling problems with finish
to start precedence constraints among activities assuming that sufficient resources are avail-
able to perform the activities. Later on, resources were taken into account leading to the so-
called resource-constrained project scheduling problem (RCPSP). More recently, multiple
optimisation objectives and variations and extensions of the initial problem, mainly related
to additional constraints and types of precedence relations, have been investigated.
Due to the complexity of the problem and the difficulties encountered when solving even the
simple RCPSP problem and much more when handling its various extensions and variations,
even today, there is a lack of generic models that integrate all the different facets of a project
that should be scheduled and provide a solution process. However, in practice projects often
fail to fall precisely in a sole case of those studied in the literature. For example a project
can have some tasks that are splittable but not all and at the same time some activities with
variable resource demands and a few tasks with hard deadlines. In such a case, either some
of the features should be omitted to fall in one of the existing problem types or a multi-phase
approach, handling each situation separately, should be followed. Furthermore, there is the
issue of whether a single or multi-objective approach should be followed, when even if it
seems a straightforward decision, it is not, as managers used on ”what-if” scenarios would
prefer to have both options and evaluate the different results against the case at hand to work
using just one or two objectives.
To fill in this research gap, a holistic model is proposed in order to provide a way to de-
fine all the desired characteristics, and provide a solution process that will generate project
schedules adaptable to different project settings, organisational sizes and strategies and scal-
able according to the size and criticality of the undergoing project. Furthermore, a solution
process that is simple and quick enough to permit immediate re-runs for the generation of
alternative scenarios, is proposed to give the opportunity to the project manager (and/or the
group of decision makers) responsible for the definition and final selection of the baseline
schedule to have a satisfactory number of alternatives to choose from.
Therefore, a generic model for project scheduling is proposed so as to cover holistically the
majority of existing variations and extensions of the RCPSP and give project managers a
straightforward way for scheduling their projects. This model is conceptually and mathe-
matically formulated to support further extension and be the basis of a single unified project
scheduling model. Based on this model, an adaptable evolutionary solution algorithm is im-
plemented to handle single and multi-objective instances of scheduling problems. This al-
gorithm is used on the one hand to prove that existing variations of the RCPSP problem are
efficiently handled by the generic model giving as good results as the best known solutions
and on the other hand that actual projects can be modelled and feasibly solved using the
proposed set of model and algorithm.



4 1 Overview

1.3 Research Objectives

The general research objective can be stated as:

to formulate a holistic model, that is reliable and capable of accommodating the needs of
project scheduling in practice, keeping at the same time extended flexibility on what kind of
solutions and at what degree one or more objectives should be pursued.

This research objective leads to the following specific objectives:
· holistic modelling of the project scheduling problem so as to cover the majority of cases

encountered in practical situations,
· generation of a conceptual and mathematical model of the problem having as a basis

the resource constrained project scheduling problem and including all the deterministic
extensions and variations of this problem,

· propose a solution process able to appropriately handle any situation from small and every
day projects to large scale problems with complex activity relations, splittable activities,
multiple execution modes, time windows and variability on the resource requirements and
availability.

· a solution algorithm capable of adapting itself and providing different ways of handling
the specific instance of the problem at hand, based on:
· the number of objectives to be pursued,
· the type of the problem: simple, multi-mode, with generalised precedence constraints,

minimal and maximal time lags, preemption or any mix of these features and
· the number and type of solution scenarios that are desired: from single objective opti-

misation of a range of objectives to multi-objective optimisation using weighted sum
and/or pareto-optimal solutions, or a mix of the above,

· experimental verification of the efficacy of the proposed algorithm by comparing the re-
sults of the best in class algorithms for each of the extensions and variations of the resource
constrained project scheduling problem to those given by the proposed algorithm, having
in mind that the goal is to get results at least as good as the best known results based on
the recent literature.

· experimental verification of the usability of the proposed model and its accompanying
process by following it for the scheduling of a real project and comparing the process and
the results to those given without its usage.

1.4 Research Boundaries

The area of project scheduling is vast, however, the present study focuses on proactive
scheduling of single projects where the activities and their attributes have already been de-
terministically defined and likewise the optimisation objectives to be pursued.
This study is about generating a number of schedules (solution scenarios) based on the ac-
tivities, the different modes that each activity can be executed, the relationships among the
activities and the related execution time windows on their execution time, the renewable and
non renewable resource availability and demand, the duration, as well as the selected objec-
tives. All the parameters beside the resource availability depend on the selected execution
mode, therefore each combination of execution modes reflects a different set up of the same
project. The provided solutions can either be the result of a single objective optimisation of



1.4 Research Boundaries 5

one of the four available optimisation objectives (duration, cost, resource profile, robustness)
or the result of multi-objective optimisation, where either the weights of two or more ob-
jectives are taken into consideration during the optimisation process or the pareto-optimal
solution of a vector consisting of the selected objectives is calculated. Furthermore, due to
the fact that the project manager is provided with a set of solutions and not a single one, any
mix of the above solution scenarios can be requested as to compare the different solutions
and choose the one that best fits or even combine solutions.
Having defined, what this study is about the boundaries of this research should also be clearly
defined. First of all, the aim is to provide proactive scheduling of the project and not reactive.
This means that the result is a baseline schedule meant to act as guideline during the project
execution and it is not expected that the project will be executed exactly as it was scheduled,
or at least often this doesn’t happen. The provided schedules are proactive, as opposed to
reactive schedules that include mechanisms for reacting on changes usually related to the
activities duration and resource availability (e.g activities taking less or more time to be exe-
cuted or resources being available sooner or later than the expected or in different quantities).
Nevertheless, a way of elevating the chances of successful reaction in cases of delay in the
execution of some of the activities through the robustness objective, is provided. Schedules
that are created by using some robustness measure are able to partially absorb unanticipated
disruptions.
Aspects of project scheduling concerning issues related to the existence of multiple projects
either contending or not the same resources, are out of the scope of this study. Even so,
the limitations on the availability of the resources due to their usage in other projects that are
being executed concurrently, are handled by the variability of the availability of the resources
over time. More specifically, when there is a priori knowledge of the projects that will be
executed in parallel and when the common resources will be needed then either this resource
can be made unavailable or at least have limited availability for that period of time and
therefore the new project’s schedule will not create any conflicts.
Furthermore, in this work the durations of the activities are taken as deterministic and known
in advance, although the difficulties and risks lurking in expressing the activities’ duration
in a strictly deterministic way are recognised. Even so, in small and medium projects or
for specific activities whose duration could make a great difference on the final results it
is advised to have multiple executions of the project scheduling algorithm with different
duration values (e.g. min, max and most likely) so as to be able to have a more precise view
of the situation.
It is known that project scheduling is a multi-facet problem affected by a plethora of systemic
parameters that cannot be easily taken into consideration in a quantitative model. This study
aims in giving a tool to support the project manager on scheduling the project by providing
a number of alternative solution scenarios to select the one that best fits the situation and
not just a unique solution that can act as panacea. It is expected that the inputs and objec-
tives are set based on the current situation, taking into consideration all those uncountable
parameters that are not part of the model but play a role on how the schedule should be. Even
so, the provision of tools for ranking the objectives using quantitative and qualitative criteria
(through an ANP model) and the ability to have mixed solution scenarios are valuable tools
in handling the complexity of this problem.



6 1 Overview

1.5 Overall structure and contents of this Thesis

This thesis is organised as follows:
· In this chapter the motivation of this work, the research objectives and boundaries were

defined.
· In chapter 2, an introduction to the research domain of this thesis is effectuated through

the literature review of the last decades. The study is developed around three axes: project
scheduling, multi-objective optimisation and multi-criteria decision making. The focus on
the different aspects of existing RCPSP extensions and variations along with the most
commonly used solution methods.

· Chapter 3 is about the research method that was followed, focusing on the mathematical
modelling and algorithmic design concepts.

· In chapter 4, a holistic approach is followed in order to define the project scheduling
problem. The analysis is expanded around three axes: ”What is the context of the problem
that we want to cope with?”, ”What do we want to achieve?” and ”What inputs do we
have?”. The interrelations among the components of the system and the flows of influence
are briefly presented. Soft Systems Methodology and System Dynamics are used in some
extend to initially frame and define the issues constituting the problem. After that, the
features of the desired solution are used to define the objectives that should be pursued
during the solution process. Finally, the problem is defined in terms of available inputs
and desired outputs.

· In chapter 5, based on the problem definition, first a conceptual formulation of the prob-
lem is analytically described and then its mathematical formulation as a binary linear
programming problem is presented.

· In chapter 6, the solution process is described and its main components explained in detail.
It is a three phase process. It begins with the project manager defining which objectives
(one or more) should be pursued and if there is some kind of prioritisation of these ob-
jectives. Following, the inputs are transformed in order to simplify the search for a good
feasible solution. The final phase consists in executing the proposed adaptive genetic al-
gorithm, that iteratively leads to the selection of the most proper solution algorithm from
a predefined set of algorithms along with the best solutions/schedules calculated in the
given time frame.

· In chapter 7, the results of experiments concerning the validity of the proposed process
are shown. This is achieved by comparing its results to the best known solutions of the
major RCPSP problem types.

· In chapter 8, the preliminary design of a real project for the development of large scale
spatial data infrastructure for terrestrial areas network is presented to illustrate the pro-
posed approach. Based on the proposed model the project manager was interviewed about
the constraints, objectives and their weighting and degrees of freedom. Having modelled
the project and defined all the needed inputs, the proposed algorithm with three different
settings: a) as a single objective, b)using the given weights for the requested objectives
and c) looking for pareto-optimal schedules, was executed. Then the best schedules got
by each method, were presented to the project manager and the results were analysed.

· Finally, in chapter 9, potential impact and significance of the conducted study, implica-
tions for researchers and practitioners and possible directions for further research on this
subject, are discussed.



Chapter 2
Literature Review

2.1 Project Management

The field of project management has taken decisive steps forward in the past decades. In
today’s competitive environment it is crucial to deliver quality products on time and within
budget. It is not surprising that project management has become a hot research topic.
Nowadays, the word ’project’ is very often used by practitioners and it implies differ-
ent things to different people depending on the context. It originates from the Latin verb
proicere,”to throw something forward” meaning ”something that comes before anything
else happens” thus initially, it referred to planning (Herroelen et al., 1998). A well accepted
definition of a project is given by the ISO where project is defined as a ”unique process,
consisting of a set of coordinated and controlled activities with start and finish dates, under-
taken to achieve an objective, conforming to specific requirements including constraints of
time, cost and resources” (21500, 2012). An alternative definition is provided by the Project
Management Book of Knowledge where a project is defined as ”a temporary endeavour un-
dertaken to create a unique product, service, or result” (PMBOK, 2012). The notion of project
can be formally defined (Tavares, 2002) as ”any purposeful transformation leading a system,
X , from an initial state, s, to a specific state, s0 and so s0 should represent the targets to be
achieved. This means that the concept of project implies: the identification of the system, X ,
to be transformed, b) the description of the initial state, s and c) the description of the new
state, s0, that should represent the targets of the project”.
Analysing the project’s definition, its temporary nature is indicated by the existence of a def-
inite beginning and end. The end is reached when the project’s objectives have been achieved
or when the project is terminated because its objectives will not or cannot be met, or the need
for the project no longer exists. The project’s duration is always finite and defined by the
timespan between the project’s start and end. Furthermore, the temporary nature of a project
indicates that a concentrated use of resources is needed to carry out the project. The unique
nature of projects expresses the fact that every project creates a specific product, service,
or result that differentiates it from other products, services, or results (PMBOK, 2012). A
successful project is a project that is finished on time, within the budget and according to the
preset specifications. Summarising, each project is characterised by:
· A goal or objective: A definable end product, result or output that is typically defined in

terms of cost, quality and timing of the output from the project activities.
· Uniqueness: A project is a one-at-a-time, not a repetitive undertaking.
· Temporary nature: Projects have a defined start and end.

7



8 2 Literature Review

· Uncertainty: Projects are planned before they are executed and therefore carry an element
of risk.

· Life cycle: A project passes through a life cycle that consists of different phases from
conceptual design, definition, planning and scheduling to execution and delivery of the
results.

A project consists of a number of events (milestones) and activities or tasks that have to be
performed in accordance with a set of precedence constraints. An event (milestone) refers
to a stage of accomplishment of activities, associated with a certain point in time and has a
zero duration and thus no resource requirements. Each activity has a duration and requires a
certain amount of one or more types of resources in order to be executed.
An activity can be preemptive (splittable), when the activity can be interrupted during its exe-
cution and started later on, with or without additional cost or time penalty, or non preemptive
when interruption is not allowed.
The duration of each activity can either be deterministic or stochastic. In the first case, the
duration is a single constant value, usually calculated as estimate using the average time
the activity should take, excluding uncontrollable contingencies or stochasticity. In very spe-
cific situations, which involve imprecision rather than uncertainty, activity duration can be
expressed using fuzzy numbers.
An activity can either be multi-mode, that is executable in different discrete modes, with each
mode having different duration, resource type and/or amount requirements or it can have a
single duration and set of resource requirements and then it is called single mode.
Resources may be of different types, including financial resources, manpower, machinery,
equipment, materials, energy, space, etc. Resources are classified as renewable, non renew-
able, doubly constrained and partially renewable.
Renewable resources are available on a period-by-period basis. Only the total amount of
resource used within each period is constrained and the per period availability of resource
type k is Rρ

k . Typical examples of renewable resources, include manpower, machines, tools,
equipment, space, etc. The per period renewable resource units of type k required by activity
i, rρ

ik may be a constant number for all the activity duration, a variable related to the activity’s
execution stage or it can be a stochastic variable.
Nonrenewable resources are available on a total project basis, with a limited consump-
tion availability for the entire project. Typical examples of nonrenewable resources include
money, raw materials and energy. The set of nonrenewable resources is denoted as Rν . The
availability of nonrenewable resource type k is denoted as Rν

k and the required amount for
the execution of activity i is rν

ik and it can be deterministic, constant or variable, or stochastic.
Doubly-constrained resources are constrained per period as well as for the whole project.
Capital with restricted period cash flow and limited total cash amount is a typical example.
Man-hours per day in combination with a constraint on the total number of man-hours for
the project is another. Doubly-constrained resources can be incorporated by a combination
of a renewable and a nonrenewable resources (Blazewicz et al., 1986) thus usually are not
handled separately.
Partially (non)renewable resources are resources whose availability is defined for a specific
time interval (subset of periods). This resource type was introduced by researchers recently
and is not used very often (Böttcher et al.,1996, Schirmer and Drexl,1996) although it is a
generalisation of the above resource types and can be used to define both renewable and non
renewable resources using a single resource type.
A project can be represented as a project network, Gantt chart (Clark (1954)), track plan-
ning (Herroelen (1998)) and line of balance (Lumsden (1968)). A project network can be
described as the graphical representation of events, activities and precedence relationships.



2.1 Project Management 9

A project network is a graph G = (N,A), consisting of a set of nodes N and a set of arcs
A. There are two possible modes of representation of a project network: the activity-on-arc
representation which uses the set of arcs A to represent the activities and the set of nodes N
to represent events, and the activity- on-node representation which uses the set of nodes N
to denote the activities or events and the set of arcs A to represent the precedence relations
(Demeulemeester and Herroelen, 1992).
Having defined what is a project and its main components, we can pass to project manage-
ment, that essentially is a set of processes aiming at a successful project accomplishment.
More formally, project management: ”involves planning, scheduling and control of project
activities to achieve performance, cost and time objectives for a given scope of work, while
using resources efficiently and effectively” (PMBOK, 2012). Planning calls for the definition
of a listing of activities that must be performed along with requirements for the various types
of resources and estimates for the duration and costs of the various activities. Scheduling is
the laying out of the actual activities of the project in the time order in which they have to be
performed. This way the actual resources needed at each stage in the project are calculated,
along with the expected completion time of each of the activities. Finally, control focuses
on the difference between the schedule and actual performance once the project has started
(Lewis, 1998). All project management processes are mapped into ten Project Management
Knowledge Areas (PMBOK, 2012):
· Scope management refers to the process of directing and controlling the entire scope of a

project with respect to a specific goal.
· Quality management involves ensuring that the performance of a project conforms to the

specifications of the project stakeholders and participants
· Schedule/time management involves the effective and efficient use of time to facilitate

the execution of a project.
· Cost management deals with methods used to keep a project within its budget.
· Risk management is the process of identifying, analysing, and recognising the various

risks and uncertainties that might affect a project.
· Human resources management involves the function of directing human resources through-

out the life cycle of a project.
· Contract/procurement management involves the process of acquiring the necessary re-

sources to successfully accomplish project goals.
· Communications management involves having the proper skills to communicate to the

right people at the right time, using the proper organisation, routing and control of infor-
mation.

· Project integration management includes the processes required to ensure that the various
elements of the project are properly coordinated.

· Stakeholder management involves four processes: identifying stakeholders, planning
stakeholder management, managing stakeholder engagement and controlling stakeholder
engagement.

Herein the focus is given to schedule/time management that is often identified by practition-
ers as one of the most common causes of project failure (Duarte et al., 1995; Goldratt, 1997).
Schedule/time management involves the effective and efficient use of time to facilitate the
execution of a project and its effectiveness is reflected in the schedule performance as it is
calculated by comparing the actual progress and/or cost of the project to the initial baseline
schedule. Primary goal is to generate a feasible schedule, that is a schedule that respects the
logic of the project network (e.g. the precedence relations and time lags) and the availability
of resources and then optimise it under some objective either regular (monotone function of
the starting/finishing times), or non-regular.



10 2 Literature Review

2.2 Project Scheduling

Scheduling problems have been investigated since the late fifties, motivated by the need to
improve and facilitate new products, mainly military, delivery. Applications can be found
in diverse industries such as construction engineering, software development, etc. Project
scheduling is very attractive for researchers, because the models in this area are rich and,
hence, difficult to solve.
Project scheduling involves the construction of a project base plan (baseline schedule) which
specifies for each activity the precedence and resource feasible start and completion dates,
the amounts of the various resource types that will be needed during each time period and
as a result the corresponding budget required for the execution of the project (Brucker et al.,
1999). The development of a realistic baseline schedule is critical to the successful accom-
plishment of a project. Fundamental issue is to generate a schedule that is not only prece-
dence and resource feasible, having fulfilled the resource and precedence constraints initially
set, but also robust, having minimised the effect of possible perturbations in the duration of
the activities and the resource availabilities during the execution. The project activities are
usually scheduled under one or more regular objectives (e.g. project duration) or non-regular
objectives (e.g. net present value of the project).
The project scheduling process can be roughly summarised as follows: a) design of the work
breakdown structure (WBS) and organisational breakdown structure (OBS) for the specific
project, b) definition of activities and events, available amounts and types of resources, along
with the estimation of the tasks duration, c) the definition of the precedence relationships and
time lags and d) selection of start times for the activities in order to fulfil the constraints set
in the previous steps, as shown in Figure 2.1.

 

Develop 
schedule

Estimate 
duration/ 
execution 

modes

Check 
availabilities

Estimate 
resource 

needs

Precedence
/Lags

Define 
activities 

and events
WBS

Fig. 2.1 Project scheduling process

The vast majority of the research efforts in project scheduling over the past years has concen-
trated on the development of procedures for the generation of an effective baseline schedule,
often called pre-schedule, predictive schedule or proactive, assuming that the environment is
deterministic and all the needed information exists and it is accurate (Vanhoucke et al., 2002).
The baseline schedule aids very important processes like the allocation of starting times and
resources for optimising performance measures (e.g. project duration) (Aytug et al., 2005;
Varma et al., 2007), planning external activities such as material procurement, preventive
maintenance, committing to external deadlines (Liang et al., 2012), and cash flow projec-
tions. Indeed, baseline schedules enable good scheduling and resource allocation decisions
that in turn allow quoting competitive and reliable due dates (Herroelen and Leus, 2004).
However, during execution, the project is subject to considerable uncertainty, which may
lead to schedule disruptions due to activities that took more or less time than originally
estimated, resources that became unavailable, material supplies that arrived behind schedule
and changes in scope that cause addition of new activities, merging or splitting of activities,



2.3 Classification of Project Scheduling problems 11

abandonment of existing activities, etc. The recognition that uncertainty lies at the heart of
project planning induced a number of research efforts in the field of project scheduling under
uncertainty (Herroelen and Leus, 2005). One research track involves the development of
baseline schedules that are protected as well as possible against schedule disruptions that
may occur during project execution. On the other hand, another track focuses on reactive
scheduling that is about the revision and re-optimisation of the baseline schedule after one
or more unexpected events have occurred (Vieira et al., 2003).
Early work in the project scheduling field investigated scheduling situations with precedence
constraints between activities assuming that sufficient resources are available to perform
the activities. Following, scarce resources have been taken into account leading to so-called
resource-constrained project scheduling problems (RCPSP). More recently, multiple optimi-
sation objectives and variations and extensions of the initial model have been investigated.
Finally, the last few years the proactive - reactive schedule has started emerging. In the fol-
lowing sections, after presenting the most common way that project scheduling problems are
classified, an overview of the RCPS problem will be given, including its definition, the most
common mathematical formulations, existing variations and extensions along with popular,
optimisation objectives and exact and heuristic solution approaches.

2.3 Classification of Project Scheduling problems

The growing research efforts in the area of project scheduling have led to a wide and grow-
ing variety of problem types, as shown in Figure 4.2. This motivated the introduction of a
specific classification scheme. The extensive scheme commonly used in project scheduling
(Demeulemeester and Herroelen, 1992) resembles the standard scheme for machine schedul-
ing problems. In machine scheduling problems (Graham et al., 1979; Blazewicz et al., 1983)
there is a three fields classification scheme, α|β |γ , where the first field [U+FFFC] describes
the machine environment, the second field is used to describe the task and resource character-
istics and the third field [U+FFFC] denotes the optimality criterion (performance measure).
In project scheduling, field α is used to describe the resource characteristics. It contains at
most four elements [U+FFFC]α1,α2,α3,α4. The machining process (no machines, dedi-
cated, parallel identical, uniform in parallel, unrelated, etc.) is specified by the parameter α1.
However when dealing with a pure project scheduling problem the specification of structural
resources is irrelevant. This is denoted by using the empty symbol α1 = ◦. The number of the
resources of a project scheduling problem (other than machines) is specified by parameter
α2 = {◦,1,m}. When no resources are available α2 = ◦, when only 1 resource type is avail-
able then α2 = 1 and in case of multiple resource types then α2 = m, with m representing the
number of available resource types. Parameter α3 denotes the specific resource types used
(◦ no resources, 1 renewable, T non renewable, 1T both renewable and non renewable, ν

partially (non) renewable, etc.). Finally, α4 [U+FFFC] describes the resource availability
characteristics (◦ constant arbitrary amount, k constant amount of k units, ν variable over
time, α stochastic, α̃ fuzzy, etc.).
The second field β specifies the activity characteristics of a project scheduling problem. It
contains at most nine elements β1,β2,β3,β4,β5,β6,β7,β8,β9. Parameter β1,[U+FFFC] in-
dicates the possibility of activity preemption (◦, pmtn for preemption and resume at another
time point, pmtn− rep for preemption and resume at the same point). The second parameter
β2 concerns the precedence constraints and whether minimal and/or maximal time lags are
allowed.The third parameter β3 refers to activities’ deadlines. Parameter [U+FFFC] β4 de-



12 2 Literature Review

scribes the duration type of the project activities, whether discrete, continuous, stochastic or
fuzzy. Parameter [U+FFFC] β5 describes the existence or not of activities and project dead-
lines. Parameter β6 denotes the nature of the resource requirements of the project activities
(constant, variable, etc.). The type and number of possible execution modes for the project is
denoted by parameter β7. Parameter β8 is used to describe the financial implications of the
project activities by associating the cash flows with the activities. Parameter β9 is used to de-
note change-over times (no change-over, sequence-dependent, stochastic or fuzzy) that is the
time needed to pass from the execution of activity i using resource type rx to the execution
of activity j using the same or another resource type.
The third field γ[U+FFFC] is reserved to denote optimality criteria, which are either regular
performance measures, involving functions which are nondecreasing in activity completion
times (Erenguc et al., 2001), like minimisation of the project duration (makespan), of the
project lateness or tardiness, of the sum of the direct and indirect project costs, etc. and
non regular performance measures as the maximisation of the net present value of a project
characterised by arbitrary cash flow values.

ACTIVITIES

RESOURCES

Project Network

OBJECTIVES

Duration

1 5 2

 
Use of resources

Levelling of resources

Financial-economic 
indicators

Availability

Consumption

Duration

Precedences

Mode

Preemption

1
0

3

Fig. 2.2 Typology of Scheduling problems

2.4 The Resource Constrained Project Scheduling Problem

In the late 1950s the development of PERT (Program Evaluation Research Technique) and
CPM (Critical Path Method) techniques allowed projects to be described using network di-
agrams where, either activities are represented by nodes, and the inter-relations between the
activities are defined by the network structure (Activity on Node - AoN) or activities are
represented by arcs (Activity on Ark - AoA). However, this way it is possible to deal only
with the time aspect assuming that there are no resource restrictions. In practical situations
it is uncommon to be able to follow a schedule generated using either PERT or CPM due to
insufficient resource availability (Icmeli and Erenguc, 1994).
The first complete survey of this area was performed by (Davis, 1973) who categorised
the resource allocation problems into three types: time/cost trade-off problems, problems
in which resource demands are levelled and project scheduling problems with fixed resource
limits. In addition, (Davis and Patterson, 1975) remarked on the strong similarities that exist
between project scheduling problems and job-shop sequencing and assembly-line balanc-
ing problems. The correspondence between project scheduling and assembly-line balancing
problems was summarised by (Icmeli and Erenguc, 1996c) as in Table 2.1:



2.4 The Resource Constrained Project Scheduling Problem 13

Table 2.1 Job-shop sequencing and assembly-line balancing problem compared to project scheduling as referred by Icmeli
(1996)

Assembly-line balancing Project scheduling

Work elements Activities
Work element times Activity resource requirements
Work stations Days
Cycle time Maximum available units of resource

This particular problem of scheduling a project’s activities under precedence and resource
constraints is known as the ”resource-constrained project scheduling problem” in the liter-
ature. It was firstly proposed by Kelley 1963 while solving the project scheduling problem
with resource constraints in 1963. It is a very general scheduling problem which may be used
to model many applications in practice like production process, school timetable, construc-
tion projects and it is a combinatorial optimisation NP-hard problem.
The problem is built upon three main axes: activities, resources and performance measures.
A project consists of single activities, the execution of each activity requires resources from a
predefined total available amount, so it is resource constrained and one or more performance
measures are used to compare the generated schedules, that are the optimisation objectives
(Liu et al., 2009).Therefore, Resource Constrained Scheduling consists of scheduling activ-
ities on scarce resources, with each activity requiring one or more resource types at a time,
and each resource being available in the same quantity throughout the planning period (Leon
and Balakrishnan, 1995).
The first optimisation objective used for the resource-constrained project scheduling prob-
lem, was the project’s makespan, that is the project’s total duration. The corresponding op-
timisation problem was defined as ”finding precedence and resource feasible start times for
all activities such that the makespan of the project is minimised” (Davis, 1973). Later on, the
RCPSP was defined in more detail as the problem consisting in scheduling all the activities
of a project so as to minimise its total duration subject to zero-lag feasible precedence of
the PERT/CPM type and constant availability constraints on the required set of renewable
resources (Herroelen et al., 1998).
Summarising, as illustrated in Figure 2.3, RCPSP involves the scheduling of project activi-
ties subject to finish-start precedence constraints with zero time lag and constant renewable
resource constraints in order to minimize the project duration. Activities have a single exe-
cution mode with a fixed integer duration, preemption is not allowed and renewable resource
requirements are constant throughout the duration of an activity. This problem is denoted
as m,1|cpm|Cmax using the classification scheme presented in Section 2.3 (Herroelen and
Demeulemeester, 1996).



14 2 Literature Review

id dur res
1
2
3
4
5
6
7
8
9

0 0
1 1
2 2
4 2
3 2
1 2
5 1
3 2
0 0

1

2 6 7

93

4

5 8

3 8

2 6 7

5 4

R
es

o
u

rc
es

Time Units

(a)

(b)

(c)

Fig. 2.3 RCPSP: (a) Activity on Node representation of the project’s network, (b) duration and resource requirements of each
activity and (c) resulting schedule when the resource’s availability is five units

This problem deals with the optimum allocation of scarce resources over time and results in
the definition of which activities are to be performed at which particular time. The allocation
of scarce resources over time has been the subject of extensive research since the early days
of operations research in the mid 1950s (Tavares, 2002). The result is a vast and not easy to
digest literature and there is a considerable gap between scheduling theory and its applica-
tion in practice. Practitioners often blame scheduling theoreticians for studying toy problems
that oversimplify the reality. On the other hand theoreticians blame practitioners for their
reluctance in applying the recent developments in practice and give valuable feedback (De-
meulemeester et al., 1994). Despite the valid arguments about its simplified formulation, the
resource-constrained project scheduling problem has become a standard problem for project
scheduling in the literature.



2.4 The Resource Constrained Project Scheduling Problem 15

2.4.1 Problem Definition

The resource constrained project scheduling problem (RCPSP) may be formulated as follows
(Christofides et al., 1987; Demeulemeester et al., 1994):
· There is a single project consisting of n activities i= 1, . . . ,n plus, a dummy source activity

0 representing the “project start” and a dummy sink activity n+1 representing the “project
end”, both with zero duration and resource requirements.

· Each activity i, has a duration of di time units. Setup times are not taken into consideration
separately but are included in the duration.

· There are two kinds of constraints, precedence and resource related.
· The activities should be processed in a specific order given by the precedence constraints,

where each activity i should start after the completion of all its immediate predecessors.
Precedence constraints are given by relations i→ j , where i→ j means that activity j
cannot start before activity i is completed.

· When the structure of the project is represented by an activity-on-node network G =
(V,A), then the vertex set V = {0,1, . . . ,n,n + 1} contains all activities and the set of
arcs A = {(i, j)|i, j ∈ V ; i→ j} represents the precedence constraints. For each activity i
we define the set of predecessors of activity i as Pred(i) := { j|( j, i) ∈ A}

· Performing an activity requires resources, which have limited capacity. There is a set of
K renewable resource types k = 1, . . . ,r, and each resource type has a limited capacity Rk
that is constantly available at any time.

· Each activity i in order to be executed, requires rik units of resource type k. The required
resources are not consumed but used for the time period of the activities duration and then
returned to the resource pool.

· The activities are assumed not preemptive, thus their processing cannot be stopped once
it has been started.

· All data is assumed to be deterministic and known in advance.
· The objective is to determine starting times Si for all the activities i = 1, . . . ,n in such a

way that:
· at each time t the total resource demand is less than or equal to the resource availability

of each resource k = 1, . . . ,r
· the given precedence constraints are fullfilled so each activity should start after the

completion of all its predecessors and
· the makespan, that is the total project duration, which is the completion time of the

dummy sink activity representing the ”project end”, is minimised.
· The vector S =

−→
Si defines a schedule of the project, under the condition that preemption

of activities is not allowed. A schedule S is called feasible if all resource and precedence
constraints are fulfilled.

The RCPSP can be conceptually formulated (Christofides et al., 1987; Demeulemeester and
Herroelen, 1992), as follows:

min fn+1 (2.1)
Si +di ≤ S j j = 1, . . . ,n, i ∈ Pred( j) (2.2)

∑
j∈Act(t)

r jk ≤ Rk Act(t) = { j| j = 1, . . . ,n S j+1 ≤ t ≤ S j} (2.3)

S j ≥ 0 j = 0, . . . ,n+1 (2.4)



16 2 Literature Review

The objective function of Equation 2.1 minimises the completion time of the project’s end
activity and thus the makespan of the project. Constraints defined in Equation 2.2 take into
consideration the precedence relations, that are of ”finish to start with no time lag” type.
The constraints set in Equation 2.4 limits the total resource usage within each period to
the available amount. By relaxing the resource constraints, set in Equation 2.4, the problem
reduces to the CPM case and can be easily solved in polynomial time by forward recursion.
Equations 2.1 to 2.4 do not give a mechanism to compute Act(t), hence the problem with the
above formulation cannot be solved using linear programming. To overcome this deficiency,
the RCPSP has to be modelled with 0-1 variables as outlined in Pritsker et al. 1969.
Following is presented this 0-1 integer programming formulation of RCPSP. This formula-
tion can be used to directly solve small instances of the problem as it requires the use of
nT max at most) binary decision variables and n+n(n−1)/2+kT max number of constraints
that is O(n2)+ kTmax restrictions (Maniezzo and Mingozzi, 1999).

min
lsn

∑
t=esn

t ·ξnt (2.5)

s.t.
lsi

∑
t=esi

ξit = 1 (2.6)

ls j

∑
t=es j

t ·ξ jt −
lsi

∑
t=esi

t ·ξit ≥ di (i, j) ∈ A (2.7)

∑
i∈Act(t)

rik

t

∑
τ=σ(t,i)

ξiτ ≤ Rk t = 0, . . . ,Tmax Tmax = ∑
i

di (2.8)

σ(t, i) = max(0, t−di +1) (2.9)
ξit ∈ {0,1} t = esi, . . . , lsi (2.10)

In this formulation, the binary variable ξit gets the value 1 when the corresponding activity
starts at the beginning of period t, assuming that time period t corresponds to the time interval
[t, t +1] and the value 0 otherwise. The time window [esi, lsi] of earliest and latest start times
for each activity i is computed by performing a forward and backward recursion on the graph
G, by setting es1 = 0 and lsn = Tmax where Tmax is the time horizon that equals a feasible finish
time of the project as it can be calculated by any heuristic method (Elmaghraby, 1977).
The objective function of Equation 2.5 minimises the project’s makespan by minimising the
start time of the project’s end activity, as ξnt has value 1 when t = Sn thus min ∑

lsn
t=esn t ·

ξnt ⇒min (0+0+ . . .+Sn ·1+0+ · · ·+0). Constraints set in Equation 2.6 secure that each
activity is executed exactly once, while constraints (2.7) take care of the standard precedence
constraints, since if t j = S j and ti = Si then S j−Si≥ di for all activities i that are predecessors
of activity j, these constrains are of ”finish to start with no time lag” type. Constraints (2.8)
reflect the resource availability restrictions, by calculating for each resource type the amount
of resources being used by the in progress activities each time period and comparing it to the
amount available. An activity is being executed in period t if it has been started in period q
where 0≤ q≤ t−di +1. Finally, constraints (2.10) define the binary decision variables.
Here should be noted that the size of the formulation is favourably affected by an increased
amount of sequencing, by activities with relatively long duration and by close proximity of
the scheduling horizon to the optimal project completion date (Pritsker et al., 1969).



2.4 The Resource Constrained Project Scheduling Problem 17

Other formulations are presented by: a) Alvarez Valdes and Tamarit (1989) that is based on
the definition of a set of all minimal resource incompatible sets where a resource incompat-
ible set is a set of activities between which no precedence relation exists and that can be
resource feasibly scheduled in parallel and it is called minimal if it is impossible to remove
an activity and still have a resource incompatible set, this formulation requires O(n2) deci-
sion variables and O(2n) restrictions, b) Mingozzi (1998) that defines feasible subsets, which
are subsets of activities between which no precedence relation is specified and that, if sched-
uled in parallel, do not violate the resource constraints and requires [U+FFFC]O(2nTmax)
binary decision variables and O(n2,nTmax) restrictions and c) Klein (2000), where the binary
decision variable xit is 1 if activity i is in progress at t or has been in progress before t and 0
otherwise, there are needed O(nTmax) decision variables and O(n2Tmax) restrictions.

2.4.2 Variations and Extensions

While the RCPSP as given above is already a powerful model, it cannot cover all situations
that occur in practice. Therefore, many researchers have developed more general project
scheduling problems, often using the standard RCPSP as a starting point. Generalisations
of the activity concept, precedence constraints and network characteristics as well as exten-
sions of the resource concept and multiple objectives have been proposed the last few years
(Hartmann and Briskorn, 2010).
The common point of all the variants of the RCPSP problem is the fact that each time one or
two facets of the actual problem are included in the problem definition letting out the rest of
them and conditions or axioms usually are applied to all the activities of the projects although
this is not the case in the real world. In the approach proposed in this thesis all the following
variants are integrated as alternative ways of describing each task composing the project and
the problem and solution process are defined accordingly.

2.4.2.1 Preemptive scheduling

The preemptive resource-constrained project scheduling problem (PRCPSP) allows activi-
ties to be preempted at any integer time instant and restarted later on at no additional cost
(Demeulemeester and Herroelen, 1992; Bianco et al., 1998; Brucker et al., 1999; Debels and
Vanhoucke, 2005). This problem is denoted as m,1|pmtn, cpm|Cmax using the classification
scheme presented in Section 2.3 (Herroelen et al., 1999). In this case, the duration di of an
activity i may be split in [U+FFFC]di duration units, as shown in Figure 2.4.



18 2 Literature Review

id dur res
1
2
3
4
5
6
7
8
9

0 0
1 1
2 2
4 2
3 2
1 2
5 1
3 2
0 0

1

2 6 7a

9
3a

4a

5a 8a

4b 4c 3a 4d

6

2 7a 7b 7c 7d 7e

5a 5b 5c 8a 8b 8c 3b

(a)

(b) (c)

8b

8c

5b 5c

4b 4c 4d

3b

7b 7c 7d 7e

R
es

o
u

rc
es

Time Units

4a

Fig. 2.4 P-RCPSP: (a) Activity on Node representation of the project’s network, (b) duration and resource requirements of
each activity and (c) resulting schedule when the resource’s availability is five units

Each duration unit j = 1,2, . . . ,di of activity i is assigned a finish time fi j.[U+FFFC] To
simplify the conceptual formulation, a variable fi,0 denoting the earliest time that an activity
i can be finished is used. In the PRCPSP only relations of ”finish - start” type with 0 time-lag
are allowed. Therefore fi,0 equals to the latest finish time of all its predecessors. An activity
i belongs to the set of activities in progress at time t, Act(t) if and only if one of its duration
units finishes at time t. Having in mind the above, the PRCPSP can be modelled conceptually
in the following way:

min fn,0 (2.11)
s.t fi,di ≤ f j,0 ∀(i, j) ∈ A (2.12)

fi, j−1 +1≤ fi, j f or i = 1, . . . ,n and j = 1, . . . ,di (2.13)
f1,0 = 0 (2.14)

∑
i∈Act(t)

rik ≤ ak f or k = 1, . . . ,m and t = 1, . . . , fn,0 (2.15)

The objective function 2.11 minimises the project makespan by minimising the earliest start
time of the dummy end activity which by assumption has a duration of 0. Equation 2.12



2.4 The Resource Constrained Project Scheduling Problem 19

ensures that all precedence relations are satisfied by requiring the earliest start time of each
activity j to be larger than the finish time of the last unit of duration of each predecessor i. In
Equation 2.13 it is specified that the finish time for every unit of duration of an activity has to
be at least one time unit larger than the finish time that the previous unit of duration has been
assigned. The dummy start activity is assigned an earliest start time of 0 in Equation 2.14.
Equation 2.15 ensures that the resource constraints will not be violated by requiring the total
amount of used resources at each time instant to be less or equal to the available amount per
resource type. Another, well known formulation of the PRCPSP, is the binary formulation
proposed by Kaplan (1988) where the binary variable xit is defined to be 1 if i is in progress
in period t and to be 0 otherwise.
Based on the recent review of Hartmann 2010, following are presented some variations of
preemptive scheduling, focusing in the diversity of problem settings currently available.
Slowinski (1981) and Weglarz (1980) have studied the preemptive case when continuous
processing times are assumed for the different activities and these activities can be restarted
later on at no additional cost. Franck et al. (2001) propose a calendar concept for project
scheduling where activities are allowed to be interrupted but only at specific points defined
in the calender and each activity j has a minimum processing time j during which it may
not be interrupted. Debels and Vanhoucke (2005) extend the concept of preemption by a fast
tracking option where the parts of a preempted activity can be carried out either in sequence
or in parallel. Ballestin et al. (2007) consider a variant in which an activity may be interrupted
at most m times. Damay et al. (2007) consider two types of activities, the first type contains
non-preemptable activities and the second one preemptable at arbitrary points in time.
However, in practical situations not all activities are preemptable and often preemption is
only possible in specific points of time and has a minimum, not unitary, duration per sub-
activity. For example a task like a software module’s development could be split at definite
time instances corresponding to the sub-modules completion but it wouldn’t be wise to split
it in the middle of a complex function development.

2.4.2.2 Multiple modes

The standard RCPSP assumes that an activity can only be executed in a single way which
is determined by fixed duration and fixed resource requirements. The activity concept as
given in the standard RCPSP has been extended by allowing several alternatives (modes)
in which an activity can be performed. In the so called, multi-mode resource-constrained
project scheduling problem (MRCPSP), each activity can be performed in one out of several
modes (Elmaghraby, 1964). Each mode reflects a feasible way to combine an alternative du-
ration and different levels of resource requirements that allow accomplishing the underlying
activity. The idea is based on the assumption that by using more resources of the same type
or more efficient types of resources it is possible to get shorter execution time.
The corresponding optimisation problem can be stated as: ”given a set of interrelated ac-
tivities (precedence relations) where each activity can be performed in one of several ways
(modes) and each mode is characterised by a known duration and given resource require-
ments, when should each activity begin and which resource – duration mode should be
adopted so as to optimise some managerial objective?” (Boctor, 1990).



20 2 Literature Review

3

 

(a) (b)

id mode res dur
1
2
3
 

4

 
5
 

0 0 0
0 1 1
0 2 2
1 4 1
0 2 4
1 4 2
2 1 8
0 2 3
1 1 4
2 3 1

6
7

 
8
 

9

0 2 1
0 1 5
1 3 2
2 4 1
0 2 3
1 1 4
0 0 0

1

2 6 7

93

4

5 8

(c)

3 8

2 6 7

5 4

Time Units

R
es

o
u

rc
es

6  8

     

  4    

   5  7  

2      8

Time Units

R
es

o
u

rc
es

(d)

Fig. 2.5 MRCPSP: (a) Activity on Node representation of the project’s network, (b) duration and resource requirements of
each activity, (c) resulting schedule when the resource’s availability is five units and mode assignment {0,0,0,0,0,0,0,0,0}
and (d) resulting schedule when the resource’s availability is five units and mode assignment {0,0,1,1,2,0,1,0,0}

In MRCPSP, as illustrated in Figure 2.5, each activity can be performed in one out of a set
of prescribed ways, called modes, with mode specific duration and resource requirements. A
mode represents a way of combining different resources and/or levels of resource requests.
Mi denotes the number of distinct modes of activity i. The duration of activity i being per-
formed in mode mi, 1 < mi < Mi, is given by dimi . Once an activity is started in one of its
modes, it is not allowed to be interrupted or switch mode. Following (Patterson et al., 1989),
renewable, non renewable and doubly constrained resources are distinguished. While renew-
able resources have a limited per-period availability, nonrenewable resources are limited for
the entire project, and doubly constrained resources are limited both for each period and for
the whole project. However, since the doubly constrained resources can be represented by
a pair of, one renewable and one non renewable resource type, we do not consider them
explicitly.
The set of renewable resources is referred to as Rρ . For each renewable resource k ∈ Rρ the
per period availability is constant and given by α

ρ

k . For nonrenewable resources, the avail-
ability within the entire project is limited. The set of nonrenewable resources is denoted as
Rν . For each nonrenewable resource l ∈ Rν the overall consumption for the entire project
is limited by αν

l . Each activity i in mode mi requires the consumption of rρ

imik renewable



2.4 The Resource Constrained Project Scheduling Problem 21

resources of resource type k ∈ Rρ and rν
imil non renewable resources of resource type l ∈ Rν .

The objective of the MRCPSP problem is to find a makespan minimal schedule that deter-
mines: a) timing of activities and b) assignment of modes, such that the schedule is feasible
with respect to the precedence and resource constraints. The MRCPSP can be conceptually
formulated as (Hartmann, 2001):

min sn+1 (2.16)
s.t. si +dimi ≤ s j ∀i ∈ Pred( j) (2.17)

∑
i∈Act(t)

rρ

imik ≤ α
ρ

k ∀k ∈ Rρ ,∀mi ∈Mi (2.18)

∑
∀i

rν
imil ≤ α

ν
l ∀l ∈ Rν ,∀mi ∈Mi (2.19)

s0 = 0 (2.20)
si ∈ int+∀i (2.21)

Each activity i has to be performed in exactly one mode mi. The objective function 2.16 min-
imises the total makespan of the project. Constraints set in Equation 2.17 are used to take the
finish-start precedence relations with a minimal time lag of zero, into account. Constraints
(2.18) and (2.19) concern the renewable and non renewable resource limitations, respec-
tively. Equation 2.20 sets the project start at time instance zero and Equation 2.21 ensures
that the activity start times get non negative integer values. A mathematical programming
formulation for this model has been developed by Talbot (1982).
Before starting any solution process for the MRCPSP a procedure introduced by Sprecher
et al. (1997) to reduce the volume of the data and speed up the execution of the solution
algorithm is used to simplify the given inputs. More specifically, this procedure excludes
modes which are inefficient or non-executable and resources which are redundant. A mode
mi is called inefficient if there is another mode m′i of the same activity with the same or
smaller duration, dim′i ≤ dimi and no more requirements both for renewable, rρ

im′ik
≤ rρ

imik and
non renewable, rν

im′il
≤ rν

imil resources.

rρ

imik > α
ρ

k (2.22)

∑
j 6=i

min(rν
jm jl)+ rν

imil > α
ν
l (2.23)

A mode mi is called non executable if its execution would violate either a renewable (2.23)
or a non renewable (2.22) resource constraint.

∑
j

max(rν
jm jl)≤ α

ν
l (2.24)

A non renewable resource rν
l is called redundant if the sum of the maximal requests for that

nonrenewable resource can not exceed its availability (2.24). Excluding these modes and/or
resources does not affect the set of feasible or optimal schedules.
Summarising, the MRCPSP includes time/resource and resource/resource trade-offs, multi-
ple renewable, nonrenewable and doubly-constrained resources. In the basic problem setting
activities have to be scheduled in one of their possible execution modes subject to renewable
and nonrenewable resources. Under the minimum makespan objective the general problem
can be denoted as m,1T |cpm,disc,mu|Cmax for projects with finish-start precedence con-



22 2 Literature Review

straints with zero time lag (Herroelen et al., 1997). It is a strong NP-hard problem and in the
case of at least two non renewable resources, the problem of finding a feasible solution is
already NP-complete, as was demonstrated by Kolisch and Drexl (1997).

2.4.2.3 Generalized temporal constraints

In the classical RCPSP, to start executing an activity all its immediate predecessors should
have been finished. This precedence concept can be extended by considering generalised
precedence relations (GPRs) with minimal and maximal time lags that can be used to define
release dates and deadlines. There are four types of GPRs: start-start (SS), start-finish (SF),
finish-start (FS) and finish-finish (FF) precedence constraints. Minimal time lags in a FS
relation introduce a time period t between the finish time of activity i and the start time of
activity j. Allowing negative minimal time lags implies that the corresponding activities may
overlap. Similarly maximal time lags in a FS relation, introduce a maximum time period t
between the finish time of activity i and the starting time of activity j. A release date is a
minimal finish to start time lag between the dummy source and the under question activity j
and a deadline is a maximal finish to finish time lag between the dummy source activity and
activity j. GPRs are often useful in practice, for instance in cases where activities require
fixed or simultaneous starting or completion times, non-delay execution, mandatory over-
laps with other activities, time-varying resource requirements and deadlines ((De Reyck and
Herroelen, 1999)).
The resource-constrained project scheduling problem with generalised precedence relations
is often denoted as RCPSP-GPR or RCPSP/max and extends the standard RCPSP problem
m,1|cpm|Cmax by allowing start-start, finish-start, start-finish and finish-finish precedence
constraints with both minimal and maximal time lags. This extension can be denoted as
m,1|gpr|Cmax. Furthermore, the use of minimal and maximal time lags allows modelling
of activity deadlines as well as variable resource requirements and availabilities. Therefore,
generalised precedence constraints can lead to a very general resource constraint scheduling
problem setting denoted as m,1,να|gpr,ρ j,δ j,νr|Cmax (Herroelen et al., 1999).
Generalised precedence relations with minimal and maximal time-lags between two activi-
ties i and j have the form:

si +SSmin
i j ≤ s j ≤ si +SSmax

i j (2.25)

fi +FSmin
i j ≤ s j ≤ fi +FSmax

i j (2.26)

si +SFmin
i j ≤ f j ≤ si +SFmax

i j (2.27)

fi +FFmin
i j ≤ f j ≤ fi +FFmax

i j (2.28)

where in the Equations [U+FFFC]2.25 to 2.28, SSmin
i j represents a minimum time-lag be-

tween the start time si of activity i and the start time s j of activity j, likewise SFmin
i j denotes

a minimum time-lag between the start time si of activity i and the finish time f j[U+FFFC]
of activity j, similar definitions apply for SFmin

i j , FFmin
i j , SSmax

i j , etc. A common graphical
representation of a network with time lags, is shown in Figure 2.6. A small rectangle is
used to represent each activity. The left (right) side denotes the activity’s start (completion).
The activity’s id and duration are written in the rectangle. Time lags are represented by ar-
rows between the associated sides of the rectangles and the values are set in parenthesis
(lagmin, lagmax).



2.4 The Resource Constrained Project Scheduling Problem 23

1

2 6 7

9
3

4

5 8

3

4

2

1
5

(a)
(b)

-2

-1

1

id dur res
1
2
3
4
5
6
7
8
9

0 0
1 1
2 2
4 2
3 2
1 2
5 1
3 2
0 0

1/0

2/1

3/2

4/4

5/3 8/3

9/0

6/1 7/5

(0,inf) (0,inf)

(0,inf)

(0,inf)

(0,inf)(0,inf)

(0,inf)

(1,-2)

(1,-1)

Fig. 2.6 Example digraph with time lags

The GPRs can be represented in standardised form by transforming all of them to the same,
arbitrary selected, form:

s j− si ≥ δi j ∀(i, j) ∈ E (2.29)

In Equation 2.29, that represents the so-called temporal constraints where all the generalised
precedence constraints have been transformed to SS, we define δi j to be the time-lag required
between activities i and j and E the set of pairs of activities (i, j) with precedence relation-
ships. A schedule that satisfies the temporal constraints of type 2.29 is termed time-feasible.
The rules introduced by Bartusch et al. (1988) are used to represent all the different kinds of
time lags in the standardised form:

si +SSmin
i j ≤ s j→ si +δi j ≤ s j with δi j = SSmin

i j (2.30)

si +SSmax
i j ≥ s j→ s j +δ ji ≤ si with δ ji =−SSmax

i j (2.31)

si +SFmin
i j ≤ f j→ si +δi j ≤ s j with δi j = SFmin

i j −d j (2.32)

si +SFmax
i j ≥ f j→ s j +δ ji ≤ si with δ ji =−(SFmax

i j −d j) (2.33)

fi +FSmin
i j ≤ s j→ si +δi j ≤ s j with δi j = FSmin

i j +d j (2.34)

fi +FSmax
i j ≥ s j→ s j +δ ji ≤ si with δ ji =−(FSmax

i j +d j) (2.35)

fi +FFmin
i j ≤ f j→ si +δi j ≤ s j with δi j = FFmin

i j +di−d j (2.36)

fi +FFmax
i j ≥ f j→ s j +δ ji ≤ si with δ ji =−(FFmax

i j +di−d j) (2.37)

The interval [U+FFFC] [si + SSmin
i j ,si + SSmax

i j ] is called the time window of s j[U+FFFC]
relative to si, SF , FF , FS time windows are defined analogously (Bartusch et al., 1988).
This reduction makes possible the representation of the temporal constraints using a digraph
G = (V,E) where each task is a vertex of the graph. An edge from i to j is formed if there
are one or more constraints of the form si + δi j ≤ s j. The maximum value of δi j of all the
constraints, between each two activities, is assigned as weight to the edge (i, j), as illustrated
in Figure 2.7.



24 2 Literature Review

1

2 6 7

9
3

4

5 8

3

4

2

1
5

(a)
(b)

-2

-1

1

id dur res
1
2
3
4
5
6
7
8
9

0 0
1 1
2 2
4 2
3 2
1 2
5 1
3 2
0 0

1/0

2/1

3/2

4/4

5/3 8/3

9/0

6/1 7/5

(0,inf) (0,inf)

(0,inf)

(0,inf)

(0,inf)(0,inf)

(0,inf)

(1,-2)

(1,-1)

Fig. 2.7 RCPSP/max: (a) Representation of the project’s network extended for GPRs using the G(V,E) digraph, (b) duration
and resource requirements of each activity

It should be noted that project networks with GPRs when depicted as digraphs may contain
cycles, a cycle is a directed path < is, ik, il, . . . , it > with s = t. The length of a cycle in a
project digraph equals to the sum of all the lags associated with the corresponding path. It
holds that if the project network does not contain any cycle of positive length then there are
time-feasible schedules.
To ensure that the dummy start and finish activities correspond to the beginning and the
completion of the project, it is required to ensure through the constraints that the dummy
start activity will always be executed before every other activity and the dummy end activity
will never terminate before any other activity.
The RCPSP/max problem can be conceptually formalised using the standard RCPSP equa-
tions 2.1 - 2.4 by replacing the precedence constraints of Equations 2.4 with Equation 2.29
and adding the following constraints:

si ≥ 0 (2.38)
s0 = 0 (2.39)

Equation 2.38 ensures that start times of activities are non negative numbers and Equation
2.39 sets the starting time of the dummy start activity to zero.
The initial idea about GPRs was introduced by Kerbosh and Schell (1975). Other studies
include Elmaghraby (1977), Wiest (1967), Bartusch et al. (1988). In the last decade problems
with minimal and maximal time lags have been discussed by a large number of authors like
De Reyck et al. (1998), Dorndorf and Pesch (2000), Chassiakos and Sakellaropoulos (2005)
etc.

2.4.2.4 Resource requests varying with time

The activities in standard RCPSP require constant amounts of renewable resources, that is,
the per-period request for a resource remains unchanged until the activity has been com-
pleted. This can be generalised by resource requests varying with time. This is formalised
by denoting with rikt the request of activity i for renewable resource k in the t period of its
processing time. This problem can be conceptually formalised using the standard RCPSP



2.4 The Resource Constrained Project Scheduling Problem 25

equations 2.1 - 2.4 or 2.5-2.10 by slighthly changing the way that the resource constraints
are formalised, Equations 2.4 and 2.9 respectively, as follows:

∑
j∈Act(t)

r jkt ≤ Rk Act(t) = { j| j = 1, . . . ,n S j +1≤ t ≤ S j} (2.40)

∑
i∈Act(t)

rikt

t

∑
τ=σ(t,i)

ξiτ ≤ Rk t = 0, . . . ,Tmax (2.41)

Note, that the only change is the replacement of the constant resource requirement rk with
the variable resource requirement rikt in Equations 2.40 and 2.41.
This extension has not yet received great attention in literature and there is a very restrict
number of methods and applications for the case of varying resource requests. More specif-
ically, (Hartmann, 2013) proposes an extension of RCPSP to include resource requests and
availability varying with time. Cavalcante et al. (2001) had a similar problem setting han-
dling activities with time-dependent resource requests for one renewable resource. Similarly,
Drezet and Billaut (2008) deal resource requests having a minimum and a maximum value
per period. Here should by noted that resource requests varying with time can be transformed
into constant requests if maximal time lags are available by splitting the activities into parts
with constant requests and adding a precedence constraint to order the sequence of execution
of the parts (Bartusch et al., 1988).

2.4.2.5 Generalised resource types and variable availability

The basic RCPSP features only one type of resources the renewable type that is available in
each period with its full capacity. In project scheduling with multiple modes three different
kinds of resources are considered (Sprecher et al., 1997): renewable, non-renewable and
doubly constrained. Renewable are limited on a per period basis, Machines and manpower
are examples of this resource category. Non-renewable have a limited capacity for the entire
project. An example of this resource category is money if the budget of the project is limited.
Doubly constrained are limited both for each period and for the whole project, an example
of this resource category is money in the case that not only the budget of the project but also
the per-period cash-flow is limited.
Less commonly used are the partially renewable resources, which generalise both renewable
and non-renewable resources by defining different per period availabilities over a total avail-
ability for the whole project.Furthermore, continuous resource availability instead of discrete
is needed in cases that the resources correspond to e.g. energy, raw materials like liquids, etc.
Finally, dedicated resources refer to resources that can be assigned to one activity at a time,
can be represented by renewable resources with 1 unit of per period availability.
In the RCPSP problem, resource availabilities have been assumed to be constant over time.
This assumption is not very close to what actually happens in practical cases where changing
availability of workers due to vacations, maternity leaves, sickness or varying equipment
capacities due to maintenance or damage are on the everyday schedule. Bartusch et al. (1988)
proves that a way to deal with resource capacities varying with time is to transform them into
constant capacities by using minimal and maximal time lags. The constant capacity would be
defined as the maximum of the time-dependent capacity over time, and for each time interval
with a smaller capacity, an artificial activity is defined to reduce the capacity appropriately.
Each artificial activity is then fixed to the desired time interval using a minimal and a maximal
time lag.



26 2 Literature Review

2.4.2.6 Alternative Objectives

In addition to the parameters previously analysed there are also various alternative optimisa-
tion objectives, although the minimisation of the makespan is the most popular one. These
objectives can be classified as: time based, robustness based, objectives for rescheduling
and objectives based on renewable resources and non-renewable resources consumption and
smoothness of profiles.

Time-based objectives

Besides the objective of minimising the makespan Cmax := maxn
i=1Ci, where Ci = Si + di =

fi one may consider other objective functions depending on the completion times of the
activities, like the total flow time, ∑

n
i=1Ci or more generally the weighted (total) flow time

∑
n
i=1 wiCi. Other objective functions depend on due dates ddi, which are associated with the

activities, as follows:

Lmax = maxn
i=1Li, Li =Ci−ddi (2.42)

n

∑
i=1

Ti, Ti = max{0,Ci−ddi} (2.43)

n

∑
i=1

Ui, Ui = 0 i f Ci ≤ ddi otherwise Ui = 1 (2.44)

where Equation 2.42 describes the maximum lateness. Equation 2.43 describes the total tar-
diness, Ballesti´n et al. (2008), Kolisch (2000), and Viana and de Sousa (2000) consider the
minimisation of the weighted version of this objective. Equation 2.44 refers to the number of
late activities.
All the above objective functions are regular, thus monotone non-decreasing in the comple-
tion times. On the other hand, objectives like the maximum earliness (2.45) are an example
for a non regular objective function (Vanhoucke et al., 2003; Lorenzoni et al., 2006).

maxn
i=1Ei with Ei := max{0,ddi−Ci} (2.45)

Another non regular objective function that is quite commonly used (Kimms, 2001; Mika
et al., 2005; Vanhoucke et al., 2008) deals with the net present value, where a so-called cash-
flow cF

i ∈ R is associated with each activity i and it is supposed to occur at the completion
time Ci of i. The objective is to maximise the net present value (NPV) (2.46) given a discount
rate α ≥ 0.

n

∑
i=1

cF
i e−aCi (2.46)

Objectives based on resources

Resource based objectives occur in the area of resource investment (RIP) and resource lev-
elling problems (RLP). In the RIP (Neumann and Zimmermann, 2000; Drexl and Kimms,
2001) the resource capacities Rk are not given but have to be determined as additional deci-
sion variables, given the per unit cost of each resource type ck and a target value of resources



2.4 The Resource Constrained Project Scheduling Problem 27

to be used Yk, the objective is to find a schedule with makespan less than the given project
deadline T and minimal resource cost.
In the RLP, the variation or the deviation of the resource usage over time is measured. In
the deviation problems given a resource profile, where rs

k(t) the resource usage of resource k
the time period t ∈ 1, . . . ,T ], the goal can be (Davis, 1973; Viana and Pinho de Sousa, 2000;
Neumann and Zimmermann, 2000) to minimise the deviation from a given resource usage
level (2.47), the overload (2.48) or the squared deviation (2.49)).

r

∑
k=1

ck

T

∑
t=1
|rs

k(t)−Yk| (2.47)

r

∑
k=1

ck

T

∑
t=1

max(0,rs
k(t)−Yk) (2.48)

r

∑
k=1

ck

T

∑
t=1

(rs
k(t)−Yk)

2 (2.49)

On the other hand, in variation problems the resource usage should not substantially vary over
time. This can be achieved by minimising the per period variation (2.50), the max variation
(2.51), or the squared per period variation (2.52).

r

∑
k=1

ck

T

∑
t=1
|rs

k(t)− rs
k(t−1)| (2.50)

r

∑
k=1

ck

T

∑
t=1

max(0,rs
k(t)− rs

k(t−1)) (2.51)

r

∑
k=1

ck

T

∑
t=1

(rs
k(t)− rs

k(t−1))2 (2.52)

Robustness-based objectives

During the execution of a project, delays may occur that could not have be foreseen when
the schedule was determined. Therefore, a project manager might be interested in a robust
schedule, that is a schedule in which a delay has only a limited effect. This approach is often
referred to as proactive scheduling (Abbasi et al., 2006; Kobylanski and Kuchta, 2007).

Objectives for rescheduling

Rescheduling is necessary if the project is already in progress, but due to unexpected events
(e.g., delays) the schedule that has been calculated before the start of the project is no longer
valid. In such a situation, the problem’s characteristics may have changed. For example, some
activities may already be finished and can be ignored, other activities may be in progress
and must be considered unchangeable and the resource availability may have changed and
might even have switched from time-independent to time-dependent. In contrast to proactive
scheduling which anticipates disruptions by building robust schedules, here the case is that
some disruption has already occurred and a new schedule has to be determined with minimal



28 2 Literature Review

differentiation from the original/baseline schedule. This case is often referred to as reactive
scheduling (Vanhoucke et al., 2002; Calhoun et al., 2002).

2.4.3 Complexity

When scheduling problems or more generally combinatorial optimisation problems are con-
sidered, an important issue is the complexity of the under question problem. Complexity
theory provides a mathematical framework in which computational problems can be studied
so that they can be classified as ”easy” or ”hard” (Karp, 1975; Graham et al., 1979; Garey
and Johnson, 1979; Shmoys and Tardos, 1993). A computational problem can be viewed as
a function f that maps each input x in some given domain to an output f (x) in some given
range. Complexity theory is about the time required by an algorithm to compute f (x) as a
function of the length of the encoding of the input x, denoted as |x|. The efficiency of an al-
gorithm that computes f (x) on input x is measured by an upper bound T (n) on the number of
steps that the algorithm takes on any input x with |x|= n. In most cases it is difficult to calcu-
late the precise form of the T function, therefore its asymptotic order is used. T (n)=O(p(n))
if there exist constants c> 0 and a non negative integer n0 such that T (n)≤ c · p(n) ∀ n≥ n0.
A problem [U+FFFC] is considered to be ”easy” if there exists an algorithm A for its solu-
tion which has execution time, T (n)=O(nk) for some constant k. Therefore, T (n) is bounded
by a polynomial function of n. A polynomial-time (polynomial) algorithm is one whose time
complexity function is O(p(n)), where p is some polynomial and n is the input length of
an instance. Each algorithm whose time complexity function cannot be bounded this way is
called an exponential-time algorithm (Garey and Johnson, 1979).
Any scheduling problem can be formulated as a decision problem, for example ”Is there a
feasible schedule with the given resource and precedence constraints?”. Note that the ‘yes’
answer can be certified by a small amount of information and can typically be verified in
polynomial time. A decision problem can not be computationally harder than the correspond-
ing optimisation problem e.g. ”Find the feasible schedule which has the smallest schedule
length”. That means that if one is able to solve an optimisation problem in an efficient way,
then it will also be possible to solve a corresponding decision problem efficiently. On the
other hand, if the decision problem is computationally hard, then the corresponding optimi-
sation problem will also be hard (Demeulemeester and Herroelen, 1997).
P class consists of all decision problems that may be solved by the Turing machine (an ab-
stract computer), in time bounded from above by a polynomial time algorithm in the input
length. The NP class [U+FFFC] of decision problems consists of all decision problems
for which no polynomial time algorithms are known but for which the ‘yes’ answer can be
verified in polynomial time. It follows that P ⊆ NP. If a NP− complete problem would be
solvable in polynomial time, then each problem in NP would be also solvable in polynomial
time. The principal notion in defining [U+FFFC] NP− completeness is that of a reduction.
For two decision problems P and Q, we say that P reduces to Q, if there exists a polynomial-
time computable function g that transforms inputs for P into inputs for Q such that x will be
a yes input for P if and only if [U+FFFC]g(x) is a yes input for Q. A decision problem is
NP− complete if it is NP and every other problem in NP can be reduced to it. An optimisa-
tion problem will be called NP−hard if the associated decision problem is NP− complete.
To prove that an optimisation problem is computationally hard, one has to prove that the
corresponding decision problem is NP− complete. To prove that an optimisation problem is
easy, it is sufficient to find an optimisation polynomial-time algorithm (Brucker, 2007).



2.4 The Resource Constrained Project Scheduling Problem 29

Blazewicz et al. (1983) have shown that the RCPSP belongs to the class of the strongly
[U+FFFC]NP−hard problems. More specifically, the decision problem corresponding to
the RCPSP was proven to be NP− complete using reduction from the 3-partition problem,
that concerns the decision whether a given set of integers can be partitioned into triples that
all have the same sum. The 3-partition problem has been proven to be [U+FFFC]NP− complete
by Garey and Johnson (1979). Therefore, the corresponding optimization problem, the
RCPSP, is NP−hard.

2.4.4 Solution Methods

For hard optimisation problems, like the RCPSP, exact algorithms, which always determine
an optimal solution and approximation algorithms, which only provide approximate solu-
tions, are distinguished.
Exact algorithms for project scheduling problems usually are either linear programming or
branch and bound approaches. Branch-and-bound is the most widely used solution technique
for solving RCPSPs when optimal solutions are needed, as very often it is the only available
technique for the generation of optimal solutions within an acceptable computational effort.
A heuristic may be defined as a logical sequence of steps giving a not necessarily optimal
solution but good enough to be used in practice. The heuristic procedures for RCPSP fall
into two categories, constructive heuristics and improvement heuristics. Constructive heuris-
tics start from an empty schedule and add activities one by one until one feasible sched-
ule is obtained. To that purpose, the activities are typically ranked by using priority rules
which determine the order in which the activities are added to the schedule. Improvement
heuristics, start from a feasible schedule that was obtained by some constructive heuristic.
Operations are performed on a schedule which transforms a solution into an improved one.
These operations are repeated until a locally optimal solution is obtained. In this category
fall meta-heuristics like tabu search, simulated annealing and genetic algorithms.
One of the basic drawbacks with heuristics is their validation that is usually based on the
comparison of average and worst case behaviour of the under examination heuristic on large,
often randomly generated problem sets compared to known optimal results. Another draw-
back of heuristics is the impossibility to absolutely guarantee in advance which particular
heuristic, or combination of heuristics, will produce the best results for a given problem. In
spite of these drawbacks, heuristics are widely used in practice in order to cope with complex,
highly combinatorial sequencing and scheduling problems (Herroelen et al., 1998).
The literature about resolution approaches for this problem is quite extensive, both in terms
of heuristic and optimal procedures, as shown in numerous surveys on the field (Boctor,
1990; Sampson and Weiss, 1993; Icmeli and Erenguc, 1994; Ulusoy and Ozdamar, 1994;
Ozdamar and Ulusoy, 1995; Kolisch, 1996; Herroelen et al., 1998; Kolisch and Padman,
2001; Hartmann and Briskorn, 2010).

2.4.4.1 Branch and Bound

The method was first proposed by Land and Doig in 1960 for discrete programming. Branch
and Bound (B&B) is a divide and conquer method, where a large problem is repeatedly
divided into smaller ones, the ”branch” part and for each sub-problem are estimated the
possible solutions and if not promising the branch is ignored, the ”bound” part. B&B searches



30 2 Literature Review

the complete space of solutions for a given problem without explicitly enumerating all of
them by utilising bounds on the optimisation function in combination with the current best
solution. This way parts of the search space are searched only implicitly. To describe branch
and bound in detail, some terminology is introduced:
· Node: any partial or complete solution.
· Leaf node: a complete solution in which all of the variable values are known. Leaf nodes

have objective function values, which are actual values and not estimates.
· Bud node: a partial solution, either feasible or infeasible. Bud nodes have associated

bounding function values.
· Bounding function: the method of estimating the best value of the objective function ob-

tainable by growing a bud node further. It should be an optimistic estimator to avoid
omitting good solutions.

· Branching: the process of creating the child nodes for a bud node. One child node is
created for each possible value of the next variable.

· Incumbent: the best complete feasible solution found so far.
Each specific branch-and-bound algorithm is defined as a set of rules for:
1. branching: given a bud node, how the child nodes will be created,
2. lower bound calculation: how to calculate the lower bound of the node, that is the number

that bounds from below the solution set that can be generated by this node,
3. next node selection: how to choose the bud node from which to branch next,
· best-first node: choose the bud node that has the best value of the bounding function

anywhere on the B&B tree
· depth-first node: choose from the children nodes of the current node, this way each

iteration leads to one step deeper into the tree and early incumbent solutions are
achieved,

· breadth-first node: expand bud nodes in the same order in which they were created,
4. pruning/fathoming: how to recognise if a node will lead only to infeasible or nonoptimal

solutions, or that for every solution that can be created from this node a similar or better
solution would be constructed by branching from a different node

5. incumbent: how to recognise that a leaf node’s feasible solution is the optimal one
Numerous branch-and-bound procedures for solving certain variants of the RCPSP optimally
were developed (Pritsker et al., 1969; Davis, 1973; Patterson and Huber, 1974; Stinson et al.,
1978; Talbot and Patterson, 1978; Christofides et al., 1987; Bell and Park, 1990). Following
the most efficient approaches (based on % deviation from optimality) are briefly presented:
Talbot and Patterson (1978) approach consists of a systematic enumeration of all possible
activity finish times with the order of nodes selection defined beforehand. A network cut to
eliminate from explicit consideration inferior activity completion times is used in the enu-
meration phase of the algorithm.
Stinson (1978) developed a best-first branch-and-bound procedure in which nodes in the
solution tree correspond to precedence and resource feasible assignments for a subset of the
activities of a project. Node branching is based upon a four-element decision vector. Left-
shift dominance and lower bound pruning are used to bound the search space. This procedure
was reported (Patterson et al., 1989) to be the most effective and efficient.
Christofides et al. (1987) proposed the use of disjunctive arcs for resolving conflicts that are
created whenever sets of activities have to be scheduled whose total resource requirements
exceed the resource availabilities in some periods.
Demeulemeester and Heroellen (1992) presented an efficient depth-first B&B procedure,
called DH-procedure that computational experiments have proven almost twelve times faster
than the best-first procedure developed by Stinson et al. (1978).



2.4 The Resource Constrained Project Scheduling Problem 31

Following, the DH-procedure is analysed, as a representative branch and bound algorithm
for the RCPSP. It generates a search tree having as nodes partial schedules PS in which
finish times temporarily have been assigned to a subset of the activities of the project. The
partial schedules are considered at time instants m corresponding to the completion time of
one or more project activities. In PS scheduling decisions are temporary in the sense that
in child nodes activities priorly scheduled may be delayed as a result of decisions made at
later stages. Partial schedules are built up starting at time 0 and proceeding by adding at each
decision point subsets of activities until a complete feasible schedule is obtained.
At time m the corresponding partial schedule PSm will contain some activities which have
been finished and others which are still in progress. The former activities have finish times
smaller than or equal to m and are placed in the set Fm, the latter activities belong to the set
Sm, of activities in progress. At every time instant m the eligible set Em as the set of activities
which are not in the partial schedule and whose predecessor activities have finished, therefore
these activities can start at time m if the resource constraints are not violated (Algorithm 3).
If it is impossible to schedule all eligible activities at time m, a resource conflict occurs and
leads to new branching in the solution tree. Each branch describes a way to resolve the re-
source conflict through decisions about which combinations of activities are to be delayed.
A delaying set D(p) consists of all subsets of activities Dq, either in process or eligible, the
delay of which would resolve the current resource conflict at level p of the search tree. Dq
is minimal if it does not contain other delaying alternatives as a subset (Algorithm 4). For
every delaying alternative a set of extra precedence relations Gq is constructed by setting as
predecessor the earliest finishing, in progress or eligible to start at time m, activity. Each de-
laying alternative is evaluated by computing the critical sequence lower bound LB as defined
by Stinson et al. (1978).
Two dominance rules are used: the left-shift dominance rule and cutsets. The left-shift dom-
inance rule is invoked on a non empty delay set, and consists on checking the hypothesis if
the precedence relationships which were added at previous levels of the search tree forced an
activity to become eligible at time m and the current decision was to start that activity at time
m and if delaying activity set DS would allow activity i to be left-shifted without causing a
resource conflict, then the corresponding partial schedule is dominated.
The second dominance rule is based on the concept of a cutset. At every time instant m a
cutset Cm is defined as the set of all unscheduled activities for which all predecessor activities
belong to the partial schedule. If a cutset Ck stored previously and belonging to a different
tree path is equal to the current cutset Cm and its activities finish no later of those in Cm and
k ≤ m then the current partial schedule can be dominated.
Backtracking occurs when a schedule is completed or a branch is to be fathomed by the
lower bound calculation and/or dominance rules. If there is no delaying alternative left un-
explored at this level, backtracking to the previous one occurs. When level zero (root node)
is reached, the search process is completed and the optimal solution has been found and has
been verified.

2.4.4.2 Schedule Generation Scheme

Constructive heuristics consist of two major components, the scheduling scheme and the
priority rule. The scheduling scheme determines the way in which a feasible schedule is
constructed by assigning starting times to the different activities. The two basic scheduling
schemes are the serial and the parallel. The priority rule, on the other hand, determines the ac-
tivity that is selected next during the heuristic search process. The usage of some priority rule



32 2 Literature Review

Algorithm 2.1: Branch and Bound - DH-procedure (Demeulemeester and Herroelen, 1992)
Step 1: Initialization;
T = 9999; p = 0;m = 0; fi = 9999;
f1 = 0;PS = 1;S = {1};
Calculate LB(0) = RCPLi;

Step 2: Calculate next decision point m;
m = min{ fi, i ∈ S};
S = S−{ j | f j = m};
if (n ∈ S) then

T = fn;
if (T = LB(0)) then

ST0P;
else

goto STEP 7 (backtracking);
endif

endif
if C dominated then goto STEP 7 ;
else save S, fi, m;
;
E = /0;
E = E ∪{i | i ∈C, si = m};
if E = /0 then goto STEP 2;
;
if S = /0 then goto STEP 3;;

else goto STEP 4;
;

Step 3: Parallelization;
// ∀i ∈ E and i /∈ PSm count j that can be fs executed with i→ parCounti
if parCounti = 0 then

PS = PS∪{i},S = {i}, fi = m+di ;
C =C−{i}+{x | x ∈ Predi, Predx ∈ PS};
∀x ∈C : sx = fi ;

else if parCounti = 1 and d j ≤ di then
PS = PS∪{i, j},S = {i, j}, fi = m+di , f j = m+d j ;
C =C−{i, j}+{x | x ∈ (Predi||Pred j), Predx ∈ PS};
∀x ∈C : sx = fi ;

if an activity was scheduled in STEP 3 then goto STEP 2;
else goto STEP 4;

;

Step 4: Temporary Partial Schedule;
PS = PS∪E, S = S∪E, fi = mi +di;
sx = max{ fa| (a,x) ∈ H};
C =C−E +{x| x ∈ Predi, Predx ∈ PS};
foreach k ∈ K do

if ∑i∈S rik > bk then
goto STEP 5

else
goto STEP 2;

results in a priority list, in which the activities are set in precedence feasible non-increasing
order of priority. The generated feasible schedules fall into one of the following categories,
as shown in Figure 2.8:



2.4 The Resource Constrained Project Scheduling Problem 33

Algorithm 2.2: Branch and Bound - DH-procedure (Demeulemeester and Herroelen, 1992)
Step 5: Minimal Delay Sets;
p = p+1;
foreach k ∈ K do

ck = ∑i∈S rik−bk
end
D(p) = {Dq ⊂ S|∑i∈S rik ≥ ck} ∀k, Dq 6w Dr ∈ D(p);
foreach Dq ∈ D(p) do

foreach j ∈ (S−Dq) do
Gq = {( j, i) ∀i ∈ Dq}

end
end
LB(p) = max{LB(p−1), L∗q};
D∗q = {D∗q ∈ D(p)|min L∗q};
if LB(p)≥ T then {goto STEP 7;};
else {STORE (f, PS, S, C, s, m)};
;

Step 6: Branching;
DS = {i ∈ D∗q| fi < m+di};
H = H ∪G∗q; PS = PS−D∗q; S = S−D∗q;
foreach i ∈ D∗q do

fi = 9999;
si = { fi|( j, i) ∈ G∗q};

end
C =C+D∗q−{r |x ∈ D∗q, (x,r) ∈ H};
if DS 6= /0 then left shift dominance rule;
;
if PS dominated then goto STEP 7;;
else goto STEP 2;
;

Step 7: Backtracking;
if p = 0 then STOP;;
else H = H−G∗q;
;
if D(p) = /0 then p = p−1; goto STEP 7;;
foreach Dq ∈ D(p) do

foreach j ∈ (S−Dq) do
Gq = {( j, i) ∀i ∈ Dq}

end
end
LB(p) = max{LB(p−1), L∗q};
D∗q = {D∗q ∈ D(p)|min L∗q};
if LB(p)≥ T then

p = p−1;
goto STEP 7;

else
RESTORE (f, PS, S, C, s, m);
goto STEP 6;

endif

Semi-Active

Active

Non-delay

Fig. 2.8 Classification of Schedules



34 2 Literature Review

· Semi-active schedules: Feasible schedules obtained by sequencing activities as early as
possible. In a semi-active schedule no activity can be started earlier without altering the
precedences.

· Active schedules: Feasible schedules in which no activity could be started earlier without
delaying some other activity or breaking a precedence constraint.

· Non-delay schedules: Feasible schedules in which no resource is kept idle when it could
start processing some activity.

Initially, this type of methods consisted of a single scheduling scheme that was combined
with a single priority rule generating a single solution schedule which constitutes in a single-
pass method. Consequently, the methods become a little more elaborate, by requiring the
repetition of the process more than one times using different priority rules and/or scheduling
schemes, this approach is known as multi-pass method.
The serial schedule generation scheme (serial SGS) dates back to a paper by Kelley (1963).
It sequentially adds activities to the schedule until a feasible complete schedule is obtained.
In each iteration, the next activity in the priority list is chosen and for that activity the first
possible starting time is assigned such that no precedence or resource constraint is violated.
Let g = 1, ...,n be the stages of the serial SGS algorithm. Let Sg be the set of activities
which have been already scheduled and Dg the eligible set of activities that is comprised of
those activities whose predecessors have already been scheduled and completed, therefore
Dg = { j | j /∈ Sg, Pred( j) ∈ Sg}. Let Fg = { f j| j ∈ Sg} denote the set of finish times of
activities at step g and R̃k(t) = Rk−∑ j∈Act(t) r jk, k ∈ K the remaining capacity of resource
type k at time instant t. The serial SGS is shown in Algorithm 5.

Algorithm 2.3: serial Schedule Generation Scheme
F0 = 0, S0 = {0};
for g = 1 to n do

Calculate Dg,Fg, R̃k(t) (k ∈ K, t ∈ Fg) ;
Select j ∈ Dg;
EFj = maxh∈Pred( j)( fh +d j);
f j = min {t ∈ [EFj−d j,LFj−d j]∩Fg| r jk ≤ R̃k(τ), k ∈ K,τ ∈ [t, t +d j]∩Fg}+d j;
Sg = Sg−1∪{ j};

end
fn+1 = maxh∈Pred(n+1){ fh}

For a given priority list, the application of the serial scheduling scheme requires [U+FFFC]
time O(n2k) (Pinson et al., 1994). It has been proven by Kolisch (1995) that any schedule
that is generated by the serial scheduling scheme belongs to the set of active schedules, that
have the property that none of the activities can be started earlier without delaying some other
activity. For scheduling problems with a regular performance measure the optimal solution
will always be in the set of active schedules.
Contrary to the serial scheduling scheme, the parallel scheduling scheme Brooks (1963)
iterates over the different decision points at which activities can be added to the schedule,
thus it does time incrementation. These decision points correspond with the completion times
of already scheduled activities and thus at most n decision points need to be considered in
the parallel scheduling scheme. At each decision point, the unscheduled activities whose
predecessors have completed are considered in the order of the priority list and are scheduled
on the condition that no resource conflict originates at that time instant.



2.4 The Resource Constrained Project Scheduling Problem 35

More specifically, for each stage g there is a schedule time tg. Activities which have been
scheduled up to g either belong to the complete set Cg = { j| f j ≤ tg} or to the active set Ag =
Act(tg) = { j| f j−d j ≤ t < f j} of stage g. The eligible set Dg = { j /∈ (Cg∪Ag)|(Pred( j) ⊂
Cg)∩ (r jk ≤ R̃k(tg))} is composed of all the activities which can be precedence and resource
feasibly started at tg and R̃k(tg) = R̃k−∑ j∈Ag r jk is the remaining capacity of resource type k
at time instant tg. The parallel SGS is illustrated in Algorithm 6.

Algorithm 2.4: parallel Schedule Generation Scheme
g = 0, tg = 0, A0 = {0},C0 = {0}, R̃k(0) = Rk ;
while |Ag∪Cg| ≤ n do

g = g+1;
tg = min j∈Ag{ f j};
Calculate Cg, Ag, R̃k(tg), Dg ;
while Dg 6= /0 do

Select j ∈ Dg ;
f j = tg +d j;
Calculate R̃k(tg), Ag, Dg;

end
end
fn+1 = maxh∈Pred(n+1) fh

For a given priority list, the application of the parallel scheduling scheme also requires
[U+FFFC] time O(n2k) (Kolisch and Hartmann, 1999). It has been proven by Kolisch
(1996) that any schedule that is generated by the parallel scheduling scheme belongs to the
set of non-delay schedules which are schedules where, even if activity preemption is allowed,
none of the activities can be started earlier without delaying some other activity. The set of
non-delay schedules is a subset of the set of active schedules but it has the drawback that it
might not contain an optimal schedule for a regular performance measure.

Priority rules

”A priority rule is a mapping which assigns each activity j in the decision set Dg a value
v( j) and an objective stating whether the activity with the minimum or the maximum value
is selected” (Kolisch and Hartmann, 1999). In case of tie the simplest way to resolve it is
to choose the activity with the smallest activity label, however there are several tie breaking
rules.
Research on priority rules for the RCPSP has been quite extended from the very early days
of the field (Cooper, 1976; Doersch and Patterson, 1977; Alvarez-Valdes and Tamarit, 1989;
Boctor, 1990; Ozdamar and Ulusoy, 1995; Thomas and Salhi, 1998).
Table 2.2 gives an overview of the most frequently used priority rules and their mathematical
formulations: greatest rank positional weight (GRPW), latest finish time(LFT), latest start
time (LST), minimum slack (MSLK), most direct and indirect successors Suc j of activity j
(MTS), resource scheduling method (RSM) that is applied to the AP set of eligible activity
pairs, shortest processing time (SPT) and worst case slack (WCS) that also employs the AP
set and sets E(i, j) as the earliest precedence and resource feasible start time of activity j
assuming that activity i was started at the schedule time tg.



36 2 Literature Review

Table 2.2 Priority Rules based on Kolisch and Hartmann (1999)

Rule Priority of j Reference

GRPW d j +∑ j∈Suc j d j Alvarez–Valdes, Tamarit (1989)
LFT LFj Davis, Patterson (1975)
LST LFj−d j Kolisch (1995)
MSLK LFj−EFj Davis, Patterson (1975)
MTS |Suc j| Alvarez–Valdes, Tamarit (1989)
RSM max(i, j)∈AP{0, tg +d j− (LFi−di)} Shaffer et al. (1965)
SPT d j Alvarez–Valdes, Tamarit (1989)
WCS LFj−d j−max(i, j)∈AP{E(i, j)} Kolisch (1996)

2.4.4.3 Solution Representations

Generally, meta-heuristic approaches for the RCPSP do not operate on actual schedules
but on representations of schedules where the representation is transformed into a sched-
ule through a decoding procedure. Consequently, operators used to produce new solutions
should take into consideration the selected representation. Operators fall into two categories:
a) unary operators that produce a new solution from an existing one, as in the case of neigh-
bourhood move in SA and TS and mutation in GA., b) binary operator where a new solution
is generated from two existing ones, as in GA’s crossover. Following are briefly presented
the most commonly used solution representations in RCPSP:
· Activity List: In the activity list representation, a precedence feasible activity list λ =
{ j1, j2, . . . , jn} is given, in which each activity jg must have a higher index g than each of
its predecessors in Preds( jg).

· Random Key of Priority Representation: In this representation an array ρ = {r1,r2, . . . ,rn}
is used to assign real-valued number r j to each activity j. These r j values are used as
priorities, meaning that activities are ordered and scheduled in descending order of ρ .
This encoding is called random key representation after Bean (1994).

· Priority Rules: The priority rule representation, is based on a list of priority rules
π = {π1,π2, . . . ,πn}, where each πi is a priority rule (e.g. LFT, LST, MSLK, etc.) and
each activity i should be scheduled according to the corresponding priority rule πi.This
representaion was adapted by Hartmann (1998)to the RCPSP, from the job shop problem
(Dorndorf and Pesch, 1995).

· Shift Vector Representation: In the shift vector representation a solution is represented
by a shift vector σ = (σ1,σ2, . . . ,σn), where σ j is a non negative integer. The decoding
procedure consists in calculating the starting time S j of each activity j as the maximum of
the finish times of all its predecessors plus the shift σ j of activity j (Sampson and Weiss,
1993).

2.4.4.4 Genetic Algorithms

Genetic Algorithms (GA) firstly introduced by Holland (1975) were inspired by the process
of biological evolution. A Genetic Algorithm is a problem solving technique based on the
concepts of evolution and hereditary that is well fitted in cases of complex problems with
large solution spaces due to its intrinsic parallelism, which allows efficient exploration of
these spaces (Sevaux and Dauzere-Peres, 2003). The idea is to generate a group of initial
solutions and iteratively work toward their improvement. This group of solutions is called



2.4 The Resource Constrained Project Scheduling Problem 37

population and its initial form, initial population. A genetic algorithm starts with the gener-
ation of a number of random solutions for the problem, properly encoded, using one of the
solution representations, as chromosomes, to form the initial population. Then new popula-
tions (off-springs) are repeatedly generated by combining the chromosomes of the current
population using rules for combining chromosomes (crossover operators), randomly chang-
ing parts of chromosomes (mutation operators) and choosing which chromosomes will pass
to the next generation using a selection policy (selection method). The fitness value measures
the quality of a solution, usually based on the objective function value of the optimisation
problem to be solved. In Algorithm 7 is outlined a standard genetic algorithm.

Algorithm 2.5: Pseudo-code of a standard genetic algorithm
set populationSize=POP;
set crossoverType; set probMutation ;
set generation counter g=0 ;
Generate initial population Pg;
while stopping criteria not met do

Evaluate Pg;
Crossover Pg and get Pchildren ;
Mutate Pchildren;
Evaluate Pchildren;
Select from Pg and Pchildren and form Pg+1;
g = g+1;

end

Studying the applications of GAs to the RCPSP (Hartmann, 1998, 2002; Kim et al., 2003;
Cervantes et al., 2008; Mendes et al., 2009; Montoya-Torres et al., 2010; Peteghem and Van-
houcke, 2010; Wang et al., 2010; Xie et al., 2010; Proon and Jin, 2011) can be deduced
that although GAs generally are very efficient procedures for finding global optima or near
optimal solutions, the definition of activity representation, fitness function, crossover and
mutation operators and selection process are the decisive factors for the efficiency and ef-
fectiveness of the algorithm. At the same time, these factors differentiate each proposed
solution from those already existing. In depth analysis and experimental comparison of the
initial population generation (Kim and Ellis, 2010), activity representation, crossover and
mutation operators (Hartmann and Kolisch, 2000) can be found in the literature.

2.4.4.5 Simulated Annealing

Simulated Annealing (SA) was introduced by Kirkpatrick et al. (1983), it is based on a con-
cept from the physical annealing process in which a metal is heated to above the critical
temperature, maintained in a suitable temperature and then cooled. The process begins with
a single initial solution that is used as basis to generate a so-called neighbourhood by slightly
perturbing the initial solution.The new solution will be accepted and used to proceed the
search when it is better than the current one. However, it can also be accepted with a prob-
ability when it is worse. This acceptance probability depends on the cooling temperature
that is a parameter initially set at such value to allow the acceptance of a large proportion
of the generated solutions and it is gradually decreased to reduce the acceptance rate of less
promising solutions. This prevents the algorithm from getting trapped in a local optimum at



38 2 Literature Review

early stages (Boctor, 1996). The algorithm is stopped as soon as a stopping criterion reaches
a predetermined value. This solution method can be classified as a First Fit Strategy .
Following the simulated annealing algorithm of Bouleiman and Lecocq (2003) is briefly
presented in Algorithm 8. The solution representation used in this approach is the activity
list and the decoding procedure is the serial schedule generation scheme.
Neighbourhood generation begins with the current solution and a randomly selected activity.
The positions of this activity’s latest predecessor l p and earliest successor es are calculated.
Then the new position of the activity is randomly chosen within [l p, es]. The neighbour is
obtained by a cyclical (left/right) shift of all the activities placed between the old and the new
positions.

Algorithm 2.6: Simulated annealing algorithm by Bouleiman and Lecocq (2003)
Read: project Data, SA parameters: N0, h, T0max , α, S and C;
Calculate initial solution x0 and fitness f (x0);
xbest = x0, fbest = f (x0);
xcurrent = x0, fcurrent = f (x0);
for C chains do

T = T0max ;
Ns = N0;
for S steps do

Ns = Ns(1+h× s);
for Ns neighbourhoods do

Generate neighbour x′ of xcurrent ;
Calculate f (x′) and ∆ = f (x′)− f (x);
if ∆ < 0 then

xcurrent = x′, f (xcurrent) = f (x′);
if f (x′)< fbest then xbest = x′, fbest = f (x′);
;
if fbest =CP value then EXIT;
;

else
if P = e

−∆

T > yrandom then xcurrent = x′, f (xcurrent) = f (x′) ;
end

end
T = αs×T ;

end
end
Explore neighbourhood of fbest ;

The cooling scheme consists of a multiple cooling chain C that is restarted each time a
different initial solution is tested. The number of neighbourhoods tests in every step s of the
chain is progressively increased as Ns = Ns−1(1+h · s), where h defines the step length.
The temperature T is decreased in S steps, starting from an initial value T0, which is supposed
to be high enough to allow acceptance of any new neighbour in the first steps and using an
attenuation factor α , 0 < α < 1. In each step s, the procedure generates a fixed number of
neighbour solutions Nsol and evaluates them using the current temperature value Ts = αsT0.



2.4 The Resource Constrained Project Scheduling Problem 39

2.4.4.6 Tabu Search

Tabu Search (TS) was developed by Glover (1989) and can be defined as a steepest descent
/ mildest ascent method. It starts with a single solution used to create a neighbourhood and
then all the generated solutions are evaluated and the best one is chosen and used in the
next iteration. This process can very easily lead to cyclic moves around a local optimum. In
order to avoid this problem a number of previous moves are stored in a memory like data-
structure, the so-called tabu list, which is used to reject repeating moves that could lead back
to a recently visited solution. Usually, a tabu status can be ignored only in the case that the
proposed move would lead to a new overall best solution, based on the so called aspiration
rule (Nonobe and Ibaraki, 2002b). In Algorithm 9 is outlined a generic tabu search algorithm
for RCPSP.

Algorithm 2.7: Pseudo-code for tabu search algorithm
Generate initial solution x0 and calculate f (x0);
Initialise TabuList;
xbest = x0, fbest = f (x0);
xcurrent = x0, fcurrent = f (x0);
while stopping criteria not met do

Generate Moves(x0) list of candidate moves ;
while move not effectuated do

Select best move M(x′);
if M(x′) /∈ TabuList OR M(x′) meets AspirationCriteria then

Execute move M(x′);
xcurrent = x′, fcurrent = f (x′);
Update TabuList;
Update AspirationCriteria;

end
end

end

The usage of tabu search in the RCPSP is not as extended as the genetic algorithm and
simulated annealing but has often given very good results as in the case of the approached
proposed by Klein (2000), Nonobe and Ibaraki (2002a) and Thomas and Salhi (1998).

2.4.4.7 Particle Swarm Optimization

Particle Swarm Optimisation (PSO) simulates a social behaviour such as bird flocking to a
promising position for certain objectives in a multidimensional space (I. C. Trelea, 2003). In
PSO a population, called swarm, of individuals, called particles, is updated using information
from both the local and the global search. Each particle represents a solution, that for PSO is
a candidate position and it is treated as a point in an M − dimension space. The particle is
characterised by its position and velocity. PSO, as GA, is initialised using random particles
to form the swarm and in each iteration improvement is obtained by adjusting the particle’s
position and velocity based on it’s overall best position (local best) and the best position ever
found by all particles (global best).
Let an N dimension space that has M particles. Let i be a particle, i = 1, . . . ,M of N. Let
the positional vector of i to be defined as Xi = {Xi1, . . . ,XiN} and the velocity vector as
Vi = {Vi1, . . . ,ViN}. For each particle i the individual experience is Li = {Li1, . . . ,LiN} and



40 2 Literature Review

the global best experience is defined as G = {G1, . . . ,GN}. The updating mechanism for
each component is described by Equations 2.53 and 2.54 (Chen et al., 2010).

V new
i j = wV old

i j + c1r1(Li j−Xold
i j )+ c2r2(Gi j−Xold

i j ) (2.53)

Xnew
i j = Xold

i j +V new
i j (2.54)

where w is a weighting parameter used to adjust the influence of the previous velocity to
the new velocity, c1, c2 are learning factors used to define the effect of individual and global
experience to the velocity and r1, r2 ∈ [0,1], are random variables also influencing the balance
between local and global search. In Algorithm 10 is shown the PSO algorithm’s generic
formulation.

Algorithm 2.8: Pseudo-code for PSO algorithm
Generate Swarm;
Initialise Local Best L and Global Best G;
set w, c1, c2, r1, r2;
while stopping criteria not met do

foreach particle i in Swarm do
Update Velocity;
Update Position;
Calculate Fitness of new particle;
Update L, G;

end
end

Although PSO, the last few years has been applied in scheduling problems (Zhang et al.,
2005, 2006; Deng et al., 2008; Jarboui et al., 2008; Li et al., 2009; Liu et al., 2009) only
a few efforts have been done to use it for the RCPSP problem Zhang et al. (2006), Chen
(2006).

2.5 Multi-Criteria Decision Making

”Decision aiding is the activity of the person who, through the use of explicit but not nec-
essarily completely formalised models, helps obtain elements of responses to the questions
posed by a stakeholder in a decision process” (Roy and Vanderpooten, 1997).
Multi-Criteria Decision Making is the most well known tool of decision aiding. It is a branch
of a general class of Operations Research models which deal with decision problems un-
der the presence of a number of decision criteria. This super class of models is divided into
Multi-Objective Decision Making (MODM) that studies decision problems in which the de-
cision space is continuous and Multi-Attribute Decision Making (MADM), that deals with
problems with discrete decision spaces, where the set of decision alternatives has been pre-
determined (Neumann and Zimmermann, 2000).
In broad terms, decision problems involving multiple axes of evaluation of the merits of
potential alternative solutions can be classified as:
· Multi-objective optimization problems: alternatives are implicitly defined by a set of con-

straints defining a feasible region (search space) and the objective functions are optimised
in this region.



2.5 Multi-Criteria Decision Making 41

· Multi-attribute decision making problems: alternatives and their performance according
to the evaluation criteria are explicitly known before iniatilising the solution process.
In this case the decision maker’s partial preferences regarding each one of the multiple
evaluation criteria need to be aggregated, which implies some loss of information. There
are two main methodological approaches: Outranking and Multi Attribute Utility/Value
Theory (MAUT/MAVT). Multi-Attribute Value Theory (MAVT) is a rigorous framework
for computing an overall score for each alternative. The main difference of MAUT from
MAVT is that it works with utility functions that take into account the clients’ attitudes
towards risk.

2.5.1 Multi-Objective Decision Making

In the single objective case we have a single objective function while all the other properties
are defined through the constraints. In real-world projects it is very common to need to pursue
at the same degree more than one objectives. The aim is to find a vector of decision variables
which satisfies constraints and optimises a vector function whose elements represent the
objective functions. These functions form a mathematical description of performance criteria
which may be in conflict with each other. Hence, the term optimise means finding a solution
which would give values to all the objective functions that are acceptable to the decision
maker.
There is a number of differences between a single and a multi-objective optimisation prob-
lem. The latter usually has a) an optimal set with cardinality greater than one, b) two distinct
goals of optimisation, instead of one, convergence to the Pareto-optimal solutions and main-
tenance of a set of maximally-spread Pareto-optimal solutions and c) two different search
spaces, the multi-dimensional space that is formed by the objective functions, in addition to
the usual decision variable space, common to all optimisation problems.
An ideal multi-objective optimisation procedure consists of two discrete phases, first a mul-
tiple trade-off optimal solutions with a wide range of values for objectives, should be found
and in the second step one of the obtained solutions is chosen using higher level information
(Deb et al., 2002), as shown in Figure 2.9.

MO OPTIMIZATION 
PROBLEM

IDEAL MO 
OPTIMIZER 

TRADE OFF 
SOLUTIONS

HIGH LEVEL 
INFORMATION

CHOOSE SOLUTION

min f1
min f2
min f3
….

min fn
s.t constraints

Fig. 2.9 Multi-objective optimisation procedure

Each trade-off solution corresponds to a specific order of importance of the objectives. There-
fore, if a relative preference factor among the objectives is known for the problem being
solved, there is no need to follow the above process and solve the multi-objective prob-
lem. Instead, a composite objective function as the weighted sum of the objectives, where a
weight for an objective is proportional to the preference factor assigned to that particular ob-
jective can be formed. This method of scalarising an objective vector into a single composite



42 2 Literature Review

objective function converts the multi-objective optimisation problem into a single-objective
optimisation problem. This path can be followed as long as the objectives may be expressed
in the same metric.
The RCPS problems discussed above have a single objective function, usually the makespan
minimisation, while all other properties of the schedule are controlled by means of con-
straints. However, several authors have employed multiple performance measures into their
project scheduling problems. A widely used approach for such problems is to artificially con-
vert them into a single-objective problem by defining one overall objective as the weighted
sum of all the performance measures and solve it (Al-Fawzan and Haouari, 2005; Bomsdorf
and Derigs, 2008). Another equally popular way is the generation of Pareto-optimal sched-
ules (Hapke et al., 1998; Nabrzyski and Weglarz, 1999; Viana and Pinho de Sousa, 2000)
and letting to the decision maker the final decision about which is the most fitted solution.

2.5.1.1 Single Objective Function Aggregation

This category consists of approaches that combine all objective functions to a single one.
Scalarization is the traditional approach to solving multi-objective problems. It involves for-
mulating a multi objective problem as single objective by means of a real-valued scalarizing
function typically being a function of the objective functions of the initial problem, auxiliary
scalar or vector variables, and/or scalar or vector parameters. The feasible set of the multi-
objective problem can be additionally restricted by new constraint functions related either to
the objective functions of the initial problem and/or the newly introduced variables. There-
fore, all objective functions fi(x) corresponding to the objectives i = 1, . . . ,k, are aggregated
into a single one (2.55) where the non negative weights used sum to 1 (2.56).

F(x) =
k

∑
i=1

wi fi(x) (2.55)

k

∑
i=1

wi = 1, wi > 0 (2.56)

If the weights are constant throughout the optimisation process, the method is called Conven-
tional Weighted Aggregation, otherwise when the weights are dynamically adjusted during
the optimisation, we have the Dynamic Weighted Aggregation. In this case the weights are
not user defined, but the way that the weights should change from one iteration to the next,
is defined.
The trade-off solution obtained by using the preference-based strategy is largely sensitive to
the relative preference vector used in forming the composite function. A change in this pref-
erence vector will result in a different trade-off solution. The process of finding the relative
preference vector is highly subjective and not straightforward as it requires an analysis of the
non-technical, qualitative and experience-driven information to find a quantitative relative
preference vector.



2.5 Multi-Criteria Decision Making 43

2.5.1.2 Pareto Optimality

Multi-objective optimisation problems consist of several objectives that are necessary to be
handled simultaneously. Often the different objectives can be competing and/or incommen-
surable and need to be optimised concurrently.
Let S ⊆ Rk be a k-dimensional search space, and fi(x), i = 1, . . . ,k, be k objective func-
tions defined over S. Let f (2.57) be a vector consisting of all the objective functions and m
inequality constraints (2.58).

f = [ f1(x), f2(x), . . . , fk(x)] (2.57)
gi(x)≤ 0 i = 1, . . . ,m (2.58)

The goal is to calculate a solution, x∗ = (x∗1,x
∗
2, . . . ,x

∗
k), that optimises (minimise /maximise)

f(x). However, the objective functions fi(x) may be conflicting with each other, therefore
a unique global minimum cannot be found in the search space. Therefore, the definition of
optimal solution should be adapted, giving rise to the concept of Pareto optimality, that was
originally proposed by Francis Ysidro Edgeworth in 1881 and it was later generalized by
Vilfredo Pareto (1896).
To overcome this issue, optimality of a solution for multi-objective problems is redefined as
follows. Let u = (u1, . . . ,uk) and v = (v1, . . . ,vk) be two vectors of the search space S. Then,
u dominates v, if and only if, u no worse than v (2.59) in all objectives, and it is better in at
least one objective (2.60). This property is known as Pareto dominance.

ui ≤ vi ∀i = 1,2, . . .k (2.59)
ui < vi f or at least one i = 1,2, . . .k (2.60)

When Equations 2.59 and 2.60 stand, we equivalently say that v is dominated by u or u is non
dominated by v or u is non inferior of v. A solution, x, of the multi-objective problem is said
to be Pareto optimal, if and only if there is no other solution, y, in S such that f (y) dominates
f (x). The set of all Pareto optimal solutions of a problem is called the Pareto optimal set, and
it is denoted as P∗. The set PF∗ = { f (c) : x ∈ P∗} is called the Pareto front.
Primary goal when solving a multi-objective optimisation problem is to find the Pareto front.
However, the Pareto optimal set can be infinite. Consequently, the goal is rendered as the
detection of as many Pareto optimal solutions as to form an adequately spread Pareto front
that is not distant from the actual Pareto front. The need for multiple trade-off optimal solu-
tions (Pareto-optimal solutions), is based on the fact that any two Pareto solutions constitute
a trade-off among the objectives and decision makers would be in a better position to make
a choice when many such trade-off solutions are unveiled.

2.5.1.3 Evolutionary algorithms

Evolutionary algorithms such as evolution strategies and genetic algorithms have become
the method of choice for optimization problems that are too complex to be solved using
deterministic techniques (exact methods) such as linear programming. The large number of
applications (Beasley, 1997) are due to several advantages of this kind of algorithms when
compared to the deterministic techniques especially in cases of complex and/or large sized
problems. These advantages can be summarised as: a) need of very restricted amount of
information about the problem being solved, it is enough to have a way to represent the
solutions and a measure to compare the different solutions and select the most fitted, b) ease



44 2 Literature Review

of implementation, no complex encoding is needed, c) robustness, and d) fitness for parallel
optimisation (Sbalzarini, 2001).
Evolutionary algorithms seem to be particularly suited to multi-objective problems due to
their ability to synchronously search for multiple Pareto optimal solutions and perform better
global exploration of the search space ( Lamont, 2002, Deb, 1999 and Schaffer, 1984). More
specifically, the population approach of evolutionary algorithms allows an efficient way to
find multiple Pareto-optimal solutions simultaneously in a single simulation run.
This aspect has made the research and application in evolutionary multi-objective optimisa-
tion (EMO) popular in the past decade (Deb, 2001, Coello, 2002; Bagchi, 1999, Fonseca et
al., 2003). Of special interest are approaches, implementing concepts such as fitness sharing
and niching (Fonseca and Fleming, 1993, Goldberg, 1994 and Deb, 1994), and elitism (Deb,
2002, Erickson 2001; Zitzler 1999).
Following, the Strength Pareto Evolutionary Algorithm (SPEA) is presented, as it is a repre-
sentative example of this class of algorithms (Zitzler and Thiele (1999), Zitzler and Thiele
(2000)). The algorithm consists of the following steps:
Step 1: Generate random initial population P and create an initially empty set of non dom-

inated individuals P′.
Step 2: Evaluate objective function for each individual in P.
Step 3: Select the non dominated members of P and copy them to P′.
Step 4: Examine solutions within P′ and remove all those that are covered by an other

member of the same set.
Step 5: If the number of non dominated solutions exceeds a given maximum size, remove

the exceeding by means of clustering in order to have equally distributed non dominated
members of P′ along the Pareto-front.

Step 6: Calculate the fitness of each individual, both in P and in P′.
· Each solution i ∈ P′ is assigned a real value si ∈ [0,1), called strength that is pro-

portional to the number of population members j ∈ P for which i dominates j. The
strenght gives the fittness of the corresponding individual, as shown in Equation 2.61,
where n is the number of individuals in P that are covered by i and N the size of P.

· The fitness of each individual j ∈ P is calculated by summing the strengths of all
external non dominated solutions i ∈ P′ that cover j. This sum is augmented by 1 to
guarantee that members of P′ always have better fitness than members of P (2.62).

fP′i = si =
n

N +1
∈ [0,1) (2.61)

fPi = 1+ ∑
i,i� j

si, fi ∈ [1,N) (2.62)

Step 7: Select individuals from P∪P′ to create the predefined number of pairs for off spring
generation.

Step 8: Apply crossover and mutation operators in order to create a new population Pnew.
Step 9: If maximum number of generations is reached, then stop, else set P = Pnew and go

to Step 2.

2.5.2 Multi-Attribute Decision Making

Multi-Attribute Decision Making (MADM) deals with the problem of choosing an option
from a set of alternatives which are characterized in terms of their attributes. It is a mainly



2.5 Multi-Criteria Decision Making 45

qualitative approach that requires inputs from the decision maker about the preferences
among the alternative solutions based on their performance on the selected criteria. Final
goal is to obtain the optimum alternative that has the highest degree of satisfaction for all of
the relevant attributes (Ribeiro, 1996)
In MADM, three concepts play a fundamental role for analysing and structuring the decision
aiding process: a) alternatives, b) criteria and c) problem types.
Potential action, is the object of the decision, or the goal of the decision making process. An
action is qualified as potential when it is feasible or seems possible to implement it and thus,
deserves to be taken into consideration during the decision making process. The subset of
actions that are mutually exclusive and therefore cannot be implemented conjointly, defines
the alternatives of the decision making problem under question. (Roy and Mousseau, 1996).
A criterion is a measure of effectiveness, which provides the basis for the analysis. It is con-
structed for evaluating and comparing potential actions according to a point of view which
must be well-defined and consistent throughout the decision making process. It is necessary
to define explicitly the set [U+FFFC] of all the possible values that can be given when
evaluating each criterion. To enable comparability, it should be possible to define a complete
order of the evaluations, which is called the scale of the criterion. The impact matrix displays
the performance of each of the alternatives according to the criteria in an appropriate scale
(Roy, 1994). According to Baker et al. (2001), criteria should be able to discriminate among
the alternatives and to support the comparison of the performance of the alternatives, com-
plete to include all goals, operational and meaningful, non-redundant and as few in number as
possible. An attribute is a performance parameter. Attributes may be quantitative and/or qual-
itative. In some approaches, qualitative attributes must be transformed into quantitative ones
by means of some operation. If that is strictly required by the method, transforming qualita-
tive into quantitative measurements can be done using a bipolar scale (e.g 0-100) although it
is an arbitrary process. Also, even quantitative attributes can be expressed in different mea-
surement units. However, if needed the different measurement scales can be transformed into
a common (artificial) scale by e.g. rescaling or Euclidean normalisation (C. Bana e Costa,
1990).
In order to compare two actions according to a criterion the two degrees of preference used
for evaluating their respective performances need to be compared. This leads to distinguish-
ing various types of scales: (Roy, 1990)
· Ordinal: alternatives can be ordered but no information exists about the distances between

the different levels. Consequently, the gap between two degrees does not have a clear
meaning in terms of difference preferences, as in the case of verbal scales where having
pairs of consecutive degrees doesn’t lead to invariant preference difference all along the
scale.This type of scale is often called a qualitative scale.

· Numerical: a scale whose degrees are defined by referring to a clear, concrete defined
quantity. Furthermore, the total absence is clearly defined and each degree of the scale can
be calculated as the sum of some kind of units. This scale substantially gives information
about the difference of each alternative to a non-arbitrary origin. In this case, as opposed
to the ordinal scale, the ratio between two degrees can receive a meaning which does
not depend on the two particular degrees considered. This type of scale is also called
quantitative, cardinal or ratio scale.

The problem’s formulation, is used to define the way that the problem should be posed,
the expected results and often the most appropriate solution process. Usually the MADM
problems are classified in three groups (Roy, 1996):
· Choice: select the best alternative or a reduced set of good alternatives.The idea is to select

a small number of good actions in such a way that a single alternative can be chosen.



46 2 Literature Review

However, it is not implied tha the selection will lead to the optimum solution. In this
category, also fall problems that concern the elimination of as many actions as possible so
as to have as result a very restricted set of alternative solutions.

· Ranking: order the alternatives from the best one to the worst one, even if there are in-
comparable alternatives.

· Sorting: assign the alternatives to predefined ordered classes (categories) of merit. Each
action should be assigned to only one category that is judged the most appropriate among
those that were initially defined as categories.

The decision making process can be summarised in the following steps:
Step 1: Identification of the stakeholders, decision makers and main actors in the decision.
Step 2: Problem definition. At this step system and organizational boundaries and inter-

faces, assumptions and overall goal are identified. The expected output consists in the
problem’s statement, including initial conditions and expected results.

Step 3: Requirements specification. The requirements are expressed as the problem’s con-
straints. They are used to describe the set of the feasible/acceptable solutions of the deci-
sion problem.

Step 4: Goals definition. Goals are the objectives set by the decision makers for the specific
problem under consideration. There can be one or more, often conflicting, objectives.

Step 5: Alternatives identification. Alternatives are the actions that can be taken in order
to achieve the goals. Alternatives should be mutually exclusive, the actions that can be
executed conjointly, usually are grouped together to form a single alternative. In the math-
ematical formulation of the decision problem, correspond to the solutions.

Step 6: Criteria definition. Criteria related to the problem and its context, and are used
to evaluate the alternatives. Each criterion shows how well each alternative achieves the
goals from the point of view defined by the criterion. It is expected to have at least one
criterion per goal/objective.

Step 7: Alternatives evaluation. At this step the evaluation of the alternatives against the
criteria takes place and depending on the criterion, the assessment may be objective using
some kind of measurement scale or can be judgmental, reflecting the subjective assess-
ment of the evaluator.

Step 8: Solutions validation. The final solutions should be validated against the initial prob-
lem statement and their feasibility should be confirmed.

2.5.2.1 Outranking

Outranking Methods (OMs) were first developed in France in the late sixties following diffi-
culties experienced with the value function approach in dealing with practical problems. The
outranking decision aid methods compare all couples of actions. Instead of building complex
utility functions, they determine which actions are being preferred to the others by system-
atically comparing them on each criterion. An outranking relation is developed to model
the “non-controversial” component of the decision maker’s preferences. This relation should
allow incomparability of alternatives and intransitivity. The outranking relation is exploited
according to the problem type (choice, ranking, sorting) to be solved.
The outranking methods are based on the idea of building a preference relation that is called
outranking relation, among alternatives evaluated on several attributes. An outranking rela-
tion is defined as a binary relation S on the set X of alternatives such that xSy stands if there
are enough arguments to declare that x is at least as good as y, and there is no essential reason
to refute the statement. This definition assumes that the existing data about the preferences of



2.5 Multi-Criteria Decision Making 47

the decision-maker are satisfactory, the quality of the evaluations of the alternatives is good
and the nature of the problem complies to the selected decision making method. In most
cases the outranking relation is built through a series of pairwise comparisons of the alterna-
tives. Pairwise comparisons usually are made using the concordance-discordance principle:
”an alternative x is at least as good as an alternative y(xSy) if: a majority of the attributes sup-
ports this assertion (concordance condition) and if the opposition of the other attributes—the
minority—is not “too strong” (non-discordance condition)” (Roy and Vanderpooten, 1997).
The concordance-discordance principle is based on a “voting” analogy and can be applied
without having to do a detailed analysis of trade-offs between attributes (Bouyssou, 1986).
The application of this principle gives rise to binary relations which are neither complete
(NOT (xSy) different from NOT (ySx)) nor transitive, therefore, it is not a simple process
to go from the outranking relation to the final alternative recommendation, thus the appli-
cation of specific techniques is needed (Roy and Vanderpooten, 1997). The most popular
families of methods under this category are ELECTRE (Roy and Vanderpooten, 1997)and
PROMETHEE (Brans, 1992) that represent ”the European school” of multi-criteria decision
making.

2.5.2.2 Multi Attribute Utility Theory (MAUT)

Multiple attribute utility theory (MAUT) is an Multi Attribute Decision Making approach
that tries to assign a utility value to each action. This utility is a real number representing
the preferability of the considered action. Very often the utility is the sum of the marginal
utilities that each criterion assigns to the considered action.
More specifically, in MAUT the preferences according to each criterion are aggregated into a
function, which measures the global preference of each alternative. This preference relation
should be complete and transitive.There is an underlying compensation effect, therefore bad
performances in some criteria may be compensated by good performances in other criteria.
MAUT methods are based on the use of utility functions which quantify the preferences of
a decision-maker by assigning a numerical index to each level of satisfaction of a particular
criterion. For a single criterion, the utility of satisfaction of a consequence x is denoted by
(u(x)). Utility functions are constructed such that (u(x)) is less preferred to (u(x′)) if and
only if x is less preferred to x′. Therefore, utility functions are used to transform the raw per-
formance values of the alternatives against diverse criteria, both quantitative and qualitative,
to a common scale in such a way that a more preferred performance obtains a higher utility
value. The methods of this class are differentiated based on the technique used to derive the
function and its mathematical properties.

Ui =Vj,Ui j, ∀i (2.63)
Ui j = u(Xi), n≤ i≤ 1, m≤ j ≤ 1 (2.64)

The most common formulation of a utility function is the additive model (2.63), where Ui is
the overall utility value of alternative i, Ui j is the utility value of j criterion for i alternative
(2.64), n is the number of criteria, m is the number of alternatives and Wj is the relative weight
of j criterion. Depending on the decision maker’s attitudes toward risk, utility functions can
be concave, which describe risk-averse situations, convex for risk-seeking situations or linear,
in cases of risk-neutral situations.



48 2 Literature Review

Analytic Network Process (ANP)

Thomas Saaty (Saaty,1980) has presented a methodology to build utility functions, the AHP
(Analytic Hierarchy Process) and its more recent generalisation, the ANP (Analytic Network
Process). ANP is a theory of measurement that uses pairwise comparisons along with expert
judgments to deal with the measurement of qualitative or intangible criteria. ANP is based on
four axioms: (1) reciprocal judgments, (2) homogeneous elements, (3) hierarchic or feedback
dependent structure, and (4) rank order expectations (Wiecek et al., 2008).
It is a multi-criteria decision making method where a graph structure is created using the
problem’s components and the decision maker is asked to pairwise compare the components,
in order to determine their priorities. The method is based on relative measurements used
to derive composite priority ratio scales from individual ratio scales that represent relative
measurements of the influence of elements that interact with respect to control criteria (Saaty,
1996). Paired comparisons are made with judgments using numerical values taken from the
AHP absolute fundamental scale of 1-9 (Saaty, 1996) to capture the outcome of dependence
and feedback within and between clusters of elements. A scale of relative values is derived
from all these paired comparisons and it also belongs to an absolute scale that is invariant
under the identity transformation.
The elicitation of pairwise comparison judgements and the possibility of expressing them
verbally are cornerstones of the popularity of AHP/ANP. However, a key problem in the
applicability of the method is the fact that the priority vector derived from the principal
eigenvalue method used in AHP/ANP can violate the order of the respective preference in-
tensities, causing semantical inconsistencies between the decision maker’s preferences and
their representation in the model (Bana e Costa et al., 1999).
Summarising, the idea is to analyse the problem and extract the critical factors that affect
the decision along with the most viable alternative solutions. These factors, called criteria
in ANP, are grouped, based on some common property, in clusters, to make easier the deci-
sion process. Each model should have a cluster containing all the alternative solutions of the
problem and one or more clusters containing the elements/decision criteria. Then the rela-
tionships among all the objects of the model, both clusters and elements, should be defined.
These relationships can be either internal among elements of the same cluster or external
from an element of a cluster to an element of another cluster. The decision maker is asked to
compare couplets of elements with respect to some common property that they share. From
that point begins the computational part of the method, which should be automated through
software tools (Saaty and Sagir, 2009; Onut et al., 2011; Rokou and Kirytopoulos, 2012).
Following, the conceptual model of the ANP method is analysed and a brief description of
the process of applying the ANP is provided (Saaty and Sagir, 2009):
Step 1: Based on the decision goal, a network structure including clusters, criteria and alter-
natives should be configured. The decision problem should be described in detail including
its objectives, criteria, actors and their objectives and the possible outcomes of that decision.
At this point the details of influences that determine how that decision may come out, are
defined. Therefore, the decision maker selects which components influence the decision and
how they are grouped together. Hence, the network of clusters and their elements is deter-
mined.
Let C be the set of clusters composing the ANP model, and let Ni be the set of nodes (criteria)
belonging to cluster Ci. These sets fully describe the ANP network’s clusters and criteria. The
alternatives are not handled in any special way; they are just another cluster throughout the
process.



2.5 Multi-Criteria Decision Making 49

Step 2: The dependences among all components of the previous structure should be identified
and listed, in order to define the impacts among all the elements. For each control criterion or
sub-criterion, the clusters of the general feedback system with their elements are determined
and connected according to their outer and inner dependence influences. A relationship is
defined from the source cluster to any cluster whose elements influence it. The approach to
be followed in the analysis of each cluster or element, influencing other clusters and elements
with respect to a criterion, or being influenced by other clusters and elements, is selected and
should be kept consistent throughout the entire project.
Let R be the criteria relationship matrix. R is a k xk matrix, having k = ∑

N
i=1 ni where ri j = 1

if and only if ni node influences n j node, otherwise ri j = 0. Let Q be a nxn matrix, holding
the cluster relationships. Matrix Q is calculated from R based on the assumption that if one
or more criteria of a cluster are connected to one or more criteria of another cluster, then
the first cluster influences the second. Consequently inner and outer dependences among the
components of the ANP model are described using R and Q matrices. In other words, the
decision maker decides which criterion or group of criteria is influenced by other criteria or
even whole groups of criteria and this way creates the graph describing the decision space of
the problem currently being solved.
Step 3: Pairwise comparison matrices of the components with interval judgments have to be
constructed.
For each control criterion, the Supermatrix is constructed by laying out the clusters in a pre-
defined order and all the elements in each cluster both vertically on the left and horizontally
at the top. The priorities derived from the paired comparisons are entered as sub-columns
of the corresponding column of the Supermatrix. Then paired comparisons on the elements
within the clusters themselves according to their influence on each element in another cluster
they are connected to (outer dependence) or on elements in their own cluster (inner depen-
dence), are performed. Comparisons of elements according to which element influences a
given element more and how strongly more than another element it is compared with are
made with a control criterion or sub-criterion in mind.
Let ACi be the cluster’s pairwise comparison matrix containing all judgments done by the
decision maker and having as control element cluster Ci. Let BCiN j be the node’s pairwise
comparison matrix, containing all judgments done by the decision maker and having as con-
trol elements: cluster Ci and node N j. For each akl (or bkl), if k = l then akl = 1 that represents
the comparison of an item with itself and if the matrix is reciprocal then akl =

1
alk

. These com-
parison matrices are filled in by asking the decision maker to compare pairs of elements in
relation to a control element (i.e. is criterion ”Price” more important than criterion ”Cost of
Repairs” in relation to criterion”Budget” or the opposite? How much?).
Step 4: For each comparison matrix consistency should be checked and judgments should
be adjusted till the maximum inconsistency is less than 10% of the order of magnitude of
the actual measurement. Having an ACi (clusters) or BCiN j (criteria - nodes) matrix, that is
positive due to the scale used to represent decision makers judgments and it is reciprocal due
to the way it was created, we need to determine if the contained judgments are consistent or
in the opposite case, if the inconsistency is within acceptable levels. As measure of deviation
from consistency, we use the introduced by Saaty (Saaty, 1996) consistency index (C.I.):

C.I.=
λmax−n

n−1
(2.65)

where λmax is the Perron eigenvalue of the positive reciprocal matrix being examined. The
consistency ratio (C.R.), of the pairwise comparison matrix is the ratio of its inconsistency



50 2 Literature Review

index C.I. to the corresponding random index value, C.R. = C.I.
R.I. . Random index (R.I.) val-

ues are computed using multiple simulations of randomly created comparison matrices and
calculating the average of the consistency index. If the C.R. of a pairwise comparison matrix
is larger than 10% then it is necessary to find which are the most inconsistent judgments in
that matrix and ask the decision maker to consider changing his judgment to a value that will
lead to an acceptable value of C.R. The most inconsistent judgment can be computed using
the formula:

Max(ai j ∗
w j

wi
∀ i, j ∈ 0,1, ..,n) (2.66)

Step 5: The relative importance weights (local priorities) from each matrix can be calculated.
Some optimization methods, used for priority elicitations are the eigenvalue method, the
least squares, the weighted least squares and the logarithmic least squares. Another way
to compute a priority vector is to use the sum of the rows of each power of the matrix
in combination with Cesaro summability and Perron’s theorem (Tarazaga, 2001).The last
one is used in the herein discussed algorithm. Step 6: Supermatrix and Cluster Matrix have
to be filled with the weights elicitated during Step 3 and then the Supermatrix should be
transformed to column stochastic. This way all the results from questioning the decision
maker are summarised and used as a basis for the following calculation steps.
Step 7: Weighed Supermatrix calculation. This step uses the results from the paired compar-
isons that were performed on the clusters to weight the element’s priorities, as they influence
each cluster to which they are connected with respect to the given control criterion. The de-
rived weights are used to weight the elements of the corresponding column blocks of the
Supermatrix. When there is no influence, a zero value should be assigned.
To compute the Weighted Supermatrix, the Supermatrix is transformed to column stochastic,
and then the Hadamard product (Cheng, 2007; Li, 2007) of the updated Supermatrix with
Cluster Matrix, is calculated. If needed the columns are again normalized to keep summing
to 1. Attention should be given to columns that are from the beginning stochastic and thus
should not take part in the transformations. Furthermore, in the case where an entire vector
but not all vectors in that component are zero then the weighted column must be renormal-
ized. Last issue are sink components that need not to be included in Supermatrix, instead its
priorities will be used in the process of synthesis after the calculation of the limited priorities.
Step 8: The Weighted Supermatrix should be limited by raising it to a sufficiently large power
until it converges into a stable limit matrix. In the end, the weights of criteria and alternatives
are aggregated into final priorities. The process starts having a stochastic matrix W . First of
all, being W stochastic, we know that λmax = 1, because the principal eigenvalue of a matrix
lies between its largest and smallest column sums, and all columns of a column stochastic
matrix sum to 1.
Primary goal is to compute the limit matrix by calculating powers of this matrix till the limit
is reached, that is when W n+1 =W n. In this case all the columns of the matrix are identical
and priorities can be easily computed for the elements of each cluster. However, this is not
always a straightforward calculation of matrix powers. In order to select the computational
method for getting the limit matrix from the Weighted Supermatrix we need to know if it is
reducible or not. A matrix is reducible if it can be placed into block upper-triangular form
by simultaneous row/column permutations. Thus, a matrix is reducible (Muoneke, 1987;
Mesnard and Dietzenbacher, 1995) when its associated digraph is not strongly connected.
An easy way to control if a square matrix is irreducible is based on the Perron–Frobenius
theory of nonnegative matrices where is proved that a square matrix is irreducible, if and
only if for each i and j, there exists some k such that (I +W )n−1 > 0. The corresponding
model cannot have source or sink nodes.



2.5 Multi-Criteria Decision Making 51

Knowing that the matrix in question is irreducible, the next step is to define if it is primitive
or cyclic. A sufficient condition for a matrix to be primitive is to be a nonnegative, irreducible
matrix with a positive element on the main diagonal. In that case the limit matrix calculation
is given by raising the Weighted Supermatrix to large powers. On the other hand, a square
matrix A such that the matrix power Ak+n =An for a positive integer k is called a cyclic matrix
(Tam, 1999). If k is the least such integer, then the matrix is said to have period k. If the matrix
is reducible and cyclic then the result is calculated by averaging all matrices belonging to a
cycle and normalising the results by blocks. In the other case, when the matrix in question is
reducible we have to determine if λmax = 1, is simple or multiple root and if there are other
roots of unity or not. If there are other unitary roots then it is a cyclic matrix and limit can
be computed in the same way used for irreducible cyclic matrix. If λmax = 1, is a simple
root and the matrix is reducible the same computational steps with those used for irreducible
primitive matrix will give the desired result. If λmax = 1, is a multiple root and the matrix is
reducible then we are talking about hierarchies and the limit matrix can be computed as the
average of all powers of the matrix till the point that W k = 0,k ≤ n.
Two kinds of outcomes are possible. In the first all the columns of the matrix are identical and
each gives the relative priorities of the elements from which the priorities of the elements in
each cluster are normalised to one. In the second the limit cycles in blocks and the different
limits are summed and averaged and again normalised to one for each cluster.
Step 9: Perform sensitivity analysis on the final outcome. Sensitivity analysis is concerned
with ”what if” kind of question to investigate whether the final results are stable to changes
in the inputs whether judgments or priorities. Of great importance is control if these changes
affect the order of the alternatives or not. The Compatibility Index of the original outcome
and each new outcome can be used to measure how significant the change is.





Chapter 3
Research Method

3.1 General Research Methods

Undertaking a research study aims at finding answers to a problem or more generally a
question and it is implied that the process is being undertaken within a framework of a
set of approaches, uses procedures, methods and techniques that have been tested for their
validity and reliability and it is designed to be unbiased and objective. Therefore a process to
qualify as research, it must, as far as possible, be controlled, rigorous, systematic, valid and
verifiable, empirical and critical (Ball et al., 1995).
There are various ways of classifying the research methods based on the application of the
research study (pure or applied), the objectives in undertaking the research (descriptive, cor-
relational, explanatory, exploratory), the inquiry mode employed (quantitative or qualitative).
The current research followed the quantitative approach. Following are presented the main
differences between the quantitative and qualitative research methods to show the rationale
behind this choice.
Qualitative research methods are more appropriate for exploring the nature of a problem,
issue or phenomenon without quantifying it. Focal point of this type of research is to de-
scribe the variation in a phenomenon, situation or attitude, the reasons that generate the
phenomenon, the factors that affect it and how it is affected, leading this way to new hypoth-
esis or explanations of the why and when something happens. On the other hand quantitative
research methods focus on the generalisation of experimental results, quantification of data
and are more appropriate when a very structured approach that will give specific results is
needed.
Furthermore, there are several technical differences between qualitative and quantitative re-
search methods, for example the former usually needs small samples for the research as op-
posed to the latter that usually needs large and random samples to be valid. Additionally, the
data collection methods are usually unstructured or loosely structured methods as opposed
to quantitative data collection methods that give less freedom and focus on reproducibility.

3.2 Mathematical Modelling

Having in mind that one of the major aspect of this Thesis is the generation of a holistic
conceptual and mathematical modelling of the project scheduling problem, following the
basic notions of mathematical modelling and the relevant process are described.

53



54 3 Research Method

A mathematical model is a description of a system using mathematical concepts and lan-
guage. Mathematical models are often classified according to how much a priori information
is available for the system or from having all the needed information at hand to not having
any. However, in practice all systems are somewhere between these two states.
Mathematical modelling is defined as the implementation of mathematics in solving unstruc-
tured problems in real-life situations. In other words, mathematical approaches are used in
finding solutions related to real-life problems. The goal is to transform a real-life problem
into a mathematical problem and solve it using mathematical techniques (Jin et al., 2001).
The process of developing a mathematical model usually begins with the statement of a
problem which has come to light in some practical situation. The first task is to create a
mathematical representation of the physical process, that is a first ”draft” of the model being
created which defines the basic variables and incorporates all the needed assumptions and
constraints. From this model, information is extracted which must then be compared with
physical evidence typically gained through experimentation. This comparison is designed to
determine the worth of the mathematical model and potentially lead to adjustments based
on the results. If the model appears to be inadequate it must be altered and new quantitative
information gathered. Fidelity to the original problem and inclusion of all the needed details
is of great importance if the modelling process is to be effective (Spanier, 1980). The basic
steps of this procedure are depicted in Figure 3.1.

Actual System

Mathematical 
Model

Conceptual Model

System Response

Simplify

Math  Procedures

Solution Algorithm

Fig. 3.1 Mathematical modelling process and its validation

Noble (1982) summarises the major activities in mathematical modelling:
· understanding the actual practical problem to be modelled and defining the aspects to be

modelled or the specific instance types that are of interest and then try to simplify the
representation,

· manipulating the problem and developing a mathematical model by identifying the vari-
ables and the relationships among them and constructing hypotheses, evaluating contex-
tual information and in the end developing models,

· interpreting the provided solution and evaluating its validity and completeness



3.3 Algorithm Design 55

Therefore, mathematical modelling could be described as a loop between the real life prob-
lem to be modelled and the mathematics used to describe it until a satisfactory model is
generated. The modelling process begins with a complicated real-life situation. A problem
representation is obtained from that situation. Then, a mathematical model is obtained via a
mathematical study performed on the actual model. The proposed initial model is applied to
the real problem and if it conforms with the reality then the goal has been reached, otherwise
certain stages or the entire modelling process is repeated.
A crucial step of the modelling process is the evaluation of whether or not a given mathemat-
ical model describes a system accurately (Noble, 1982). The validation of a mathematical
model can be a difficult task. The easiest part of model evaluation is checking whether the
generated model fits experimental measurements or other empirical data. Assessing the scope
of the generated model by determining what situations the model is applicable to, can be less
straightforward especially if no initial instantiation of the problem at hand has ever been
done.
Summarising, mathematical modelling aims at describing in a precise and quantifiable mode
a practical problem in such a way that it will be close to the practical cases, enough generic
to cover multiple if not all the instances of the targeted problem and as simple as possible to
be easily applicable.

3.3 Algorithm Design

An algorithm is a procedure to accomplish a specific task, composed of a finite number of
steps handling a well-specified set of inputs characterising the problem at hand and resulting
in a predefined output. When defining an algorithmic problem, the complete set of instances
it must work on, should be specified.
There are several general approaches to the construction of efficient solution algorithms to
problems, usually called algorithm design paradigms, providing templates suited to solving
a broad range of diverse problems. Each algorithm design paradigm is expressed in such a
way to be easily translated into clear execution steps using one or more common data struc-
tures (provided by most high level programming languages). The resulting algorithms have
specific temporal and spatial requirements that characterise the algorithm (e.g. number of
fundament instructions to be executed on worst case scenario). Each problem can be solved
using more than one algorithmic design techniques and lead to correct results. However, often
a design pattern (paradigm) can lead to clearly superior algorithms than the other alternatives
(e.g. to more efficient algorithms). Following some of the most popular design paradigms are
presented:
· Brute force is a straightforward approach to solve a problem based on the problem’s state-

ment and definitions of the concepts involved. It is considered as one of the easiest ap-
proaches to apply and is useful for solving small – size instances of a problem. In optimi-
sation problems, brute force methods exhaustively explore the solution space until finding
the best solution.

· In greedy algorithms the solution is constructed through a sequence of steps, each ex-
panding a partially constructed solution obtained during the previous steps. The core of
this method is that at each step the choice must be locally optimal.

· Divide-and-conquer is a top-down method where the given instance of the problem is split
into several smaller sub-instances (of the same problem) and the process is repeated until
having a number of smaller and usually simpler problems that are independently solved



56 3 Research Method

and then the sub-instance solutions are combined so as to yield a solution for the original
instance, usually by means of recursion.

· Dynamic Programming improves the divide-and-conquer logic by maintaining a table of
the sub-instances results to avoid recalculations of the same sub-problems. It is a bottom-
up method as the smallest sub-instances are solved first and are used to solve progressively
larger sub-instances.

· Backtracking and branch-and-bound methods are used for state-space search problems,
where the problem representation consists of an initial state, one or more goal states and a
set of operators to pass from one state to another. Optionally a cost function for evaluating
the cost of each operation and a utility function for evaluating the closeness of the current
state to the goal state, can be used. The solving process is based on the construction of a
state-space tree, whose nodes represent states, the root represents the initial state, and one
or more leaves are goal states. Each edge is labeled with some operator. The solution is
obtained by searching the tree until a goal state is found. Rules for branching, bounding
and backtracking are defined based on the specific problem.

· Meta-heuristics are computational methods that optimise a problem by iteratively trying to
improve a candidate solution with regard to a given measure of quality. These algorithms
have very little or no information about the problem being solved. Their great advantage
is that they can search very large spaces of candidate solutions. Even so, these methods do
not guarantee that an optimal solution is ever found.

· Evolutionary algorithms are population based meta-heuristics which are used mainly for
optimisation problems for which the exact algorithms are of very low efficiency. These
methods search for good solutions to a problem from among a (usually very large) num-
ber of possible solutions. The current set of possible solutions is used to generate a new
set of possible solution. These algorithms are inspired by biological evolution and use
mechanisms like reproduction, mutation, fitness and selection.

The proposed solution algorithm is an adaptive evolutionary algorithm that based on the
instance being solved selects the best fitted solution algorithm among different available
meta-heuristics.

3.4 Research Process

The process followed during this research is shown in Figure 3.2. Starting from the project
scheduling literature review and preliminary field study, a first conceptual model of the prob-
lem has been defined and then mathematically formulated. Following a set of algorithms of
proven efficiency for this kind of problems where implemented and based on the experimen-
tal data an innovative adaptive algorithm was designed and added to the implementation in
order to moderate the single and multi-objective optimisation process.



3.4 Research Process 57

Literature Review

Case Study

Conceptual Model

Mathematical Model

Algorithm Design

Experimental Validation

Implementation

Application to real case

Feedback 

Final Result:
Model

+
Algorithms

Application to reference libraries 
cases

Fig. 3.2 Research Process

This evolutionary algorithm, based on the instance being solved selects through evolution the
most proper algorithm and uses it to find a near-optimal solution. After the implementation
of the model and the solution algorithm a large set of data available in the literature were used
to initially fine tune the algorithms used and then prove its validity and efficiency. The set of
model plus algorithm was used for the actual scheduling of a real life medium sized project
and feedback gathered from the modelling stage was used to update the model. Finally, the
numerical results were compared to those given by commercial scheduling tools.





Chapter 4
Problem Definition

4.1 Systems approach to project scheduling

The traditional analysis of projects and project scheduling is based solely on the project
characteristics (duration of activities, resource availability, costs, etc.) and takes as granted
that all the information is available at the start of the project and will remain unchanged
during its execution, allowing the design of an optimal schedule and leaving to the project
manager the task to keep the project on track.
In practice, management needs to be dynamic, responding to new information, easily adapt-
able to disruptions rather than sticking to the original and able to make decisions based on the
actual project state instead of the perceived one which often is quite different to the reality
(Rodrigues and Bowers, 1996). This does not mean that the traditional operational research
methods for project scheduling should be rejected but that they should be properly adapted so
as to endorse the dynamic environment and the effect of contextual parameters. Traditional
methods are still the best way to set the initial schedule and budget-related goals, though
they can only be achieved if all goes strictly according to plan. The effort is to enhance these
methods so as to endorse environmental parameters related to the organisation and the spe-
cific situation being faced, without loosing their generality and the ability to give specific
results.
Systems approach, or systems thinking, which has been connected with the development
of operational research and management science from its beginning especially through the
work of Churchman (1963) and Ackoff (1962), may well advance project scheduling. The
systems approach is being steadily adopted in management thinking especially for the last
two decades (McMaster, 1996; Battram, 1998). Systems theory is about studying the prop-
erties of entities in relation both to their components and the ways that they interact with
each other and with their environment. The fundamental systems thinking ideas can be sum-
marised as follows:
· studying each situation holistically as a set of interacting elements within an environment,
· recognising that the relationships and interactions between elements are more important

than the elements themselves in determining the behaviour of the system,
· recognising the hierarchy of system’s levels and the consequent ideas of properties emerg-

ing at different levels, and mutual causality both within and between levels,
· accepting that different people act differently, in accordance with their specific purposes

and syllogisms.
Therefore, in project scheduling, when having in mind a systems approach, it is important
to make a detailed analysis not only of the specific project data and components, such as the

59



60 4 Problem Definition

activities and the resources needed, but also of the ways these elements interact with each
other and how the overall organisation’s strategies, priorities and other projects or external
environmental parameters affect the initial optimisation problem formulation and the choices
that should be done during the scheduling and the monitoring phase.

4.1.1 Problem Structuring

Problems often are classified as ”hard” and ”soft” problems. A problem is defined as ”hard”
when all its components are fully observable, closed to the environment and have sub-
systems fully aligned to the main system. On the other hand, ”soft” problems usually arise
when not all parts of the system in question are observable, contain epistemic uncertainty,
evolve over time, interact with the environment and/or involve political, cultural and ethical
aspects (Daniel, 1990).
Project management’s definition as a ”hard” problem is based on the assumption that the
decision to initiate a project is based on a well thought-out strategy, against which the out-
come of the project can be objectively evaluated, having all the important components de-
scribed in detail and closed to the environment. Similarly, project scheduling is thought as
a ”hard” problem assuming that all the needed information are initially available, remain
unchanged during the process and the only relations are the internal ones that are clearly
stated through the activities relationships. At the start of the twenty first century, the view
of project scheduling, as a ”hard” problem has come under criticism (Costello et al., 2002;
Checkland and Winter, 2005; Winter, 2006). In practice, projects can be sometimes initiated
as an outcome of non-rational decision, undertaken with the process in mind rather than the
outcomes, and pursued despite environmental changes which eventually leave the project
objectives obsolete or even undesirable (Checkland and Winter, 2005). Project scheduling is
not immune to changes and interactions caused by its components as well as external factors
and contains probabilistic elements like the activities durations, the resource requirement and
availabilities. Therefore it can be defined as a ”soft” problem.
When dealing with project scheduling as a ”soft” problem it is very important to use a well
fitted problem structuring method, that is a modelling approach very useful for framing and
defining the issues constituting the problem. One very popular method for problem structur-
ing is the Soft Systems Methodology (SSM) that is a methodology and a learning system
(Rosenhead and Mingers, 2001) which can be used both for general problem solving and
management of change.
SSM uses the notion of ”system” as a dialectical tool, through developing rich pictures and
root definitions to enable debate amongst concerned parties. In its initial form the method-
ology consists of seven steps, starting with an initial appreciation of the problem situation
leading to the modelling of several human activity systems that are relevant to the problem
situation. By discussions and exploration of these, the decision makers will arrive at accom-
modations on what is the problem being solved and what are its parameters. The seven stages
of SSM can be summarised as:
1. set initial description of the problem to be tackled with, giving focus to the area of interest

and not the exact problem,
2. express the problem, in all its ”richness” (Checkland, 2000) usually using a rich picture,
3. extract root definitions of relevant systems. In this step the passage from the ”real” world

to the systems,is effectuated and relevant perspectives are defined (Customer - Actor -
Transformations - World view - Owner - Environment)



4.1 Systems approach to project scheduling 61

4. develop the conceptual model using systems conventions,
5. compare the models with the real world,
6. define which changes are desirable and feasible under the specific circumstances,
7. implement the selected changes.
SSM uses a schematic model in the sense that it uses rich pictures to identify and represent
the problem. Rich picture diagram is an early draft of the structure of the processes with the
individual actors and their relation to each other. It can be used as a means of communication
between the analyst and the users of the system and therefore uses the terminology of the
environment in order to be self explanatory and easy to understand.
The drawing of the rich picture is subjective and the process of drawing it,is in itself useful,
by forcing decisions, illustrating and discussing the roles in the organisation and identifying
possible conflicts. Based on the guidelines provided by Checkland a rich picture should in-
clude: structures, processes, climate, people, issues expressed by people and conflicts. A rich
picture describing the project scheduling problem is presented in Figure 4.1. All people in-
volved in the process of project scheduling and partly in its execution are depicted. We focus
on the project manager that is responsible for the generation of an optimal project schedule
given the task to be completed, the organisation policies and priorities, the identified risks
and the customer’s needs and the financial manager, that could be also a role covered by the
project manager, who is concerned with the top level financial issues that are related to the
project. Project and financial managers are usually in conflict with each other, as the for-
mer tries to make a robust schedule with minimal risks and the other to force lower usage
of resources, minimal cost and balanced cash flows. These conflicting objectives when are
handled by the same person, as in cases that the project manager also covers the position of
the financial manager, are even more difficult to balance.



62 4 Problem Definition

I	
  need	
  to	
  sa*sfy	
  
this	
  client	
  he	
  
has	
  a	
  	
  lot	
  of	
  
upcoming	
  
projects	
  

Project Manager 

CEO 

Financial  
Manager 

Customer 

Resource Type 1 

Resource Type 2 

Resource Type 3 

Materials Delivery 

Res	
  levelled?	
  
robust?	
  	
  
Risks?	
  

Deadlines?	
  

Cash	
  Flow??	
  
Less	
  cost?	
  

Less	
  
resources?	
  
Profit?	
  

Quickly,	
  
perfect	
  and	
  
cheap!	
  

Nothing	
  to	
  do!	
  	
  
Too	
  simple	
  

task!	
  	
  
Wai*ng	
  on	
  
others!	
  

Where	
  are	
  
the	
  materials?	
  
Can’t	
  work	
  

bad	
  weather!	
  

Project  
Schedule 

feedback	
  

Create	
  &	
  
Update	
  

Push	
  delivery	
  

Too	
  much	
  
work	
  	
  

Its	
  more	
  
difficult	
  
I	
  am	
  sick!	
  

Standards	
  
Org	
  Strategy	
  
Priori<es	
  control	
  

Resource Type 4 

To	
  do	
  tasks	
  

Maintenance	
  
needed!	
  

Broken	
  Down!	
  

Fig. 4.1 Project Scheduling Rich Picture

Furthermore, there is the customer aiming at getting the best possible result at the lowest
possible price and with high quality. The executive management of the organisation where
along with relevant legal and international standardisation authorities monitor from a dis-
tance the project and ensure that both legal and related standards restrictions are obeyed and
a satisfactory profit is earned fulfilling at the same time the expectations of the customer.
The resources used to implement the project, the human resources - internal and external
work teams- have different views and expectations from the project schedule. Workers need
a balanced work load, possibility to leave work when there is the need to do so (e.g. time
off, sickness), an unobstructed flow of work with no delays caused by erroneous synchroni-
sation either caused by external contractors or belated deliveries of materials and of course
they need motivation and clear guidelines to know what should be done, when and how
and avoiding errors that cause frustration and extra work. Resources are also the machinery
needed for the specific project that might break down and need replacement or maintenance
during the project execution.

4.1.2 System Dynamics view of project scheduling

System dynamics was introduced by (Forrester, 1961) as a method for modelling and
analysing the behaviour of complex social systems, particularly in an industrial context and
it has been used to examine various social, economic and environmental systems, where a
holistic view is important and feedback loops are critical to catch the interrelationships. The
focus is on the results of the interaction of positive loops that lead to continual growth or



4.1 Systems approach to project scheduling 63

decline and negative loops that lead to stability (Forrester, 1961, 1968, 1980). There are two
stages in the process: a) identifying and mapping the causal loops and b) quantifying the
causal loops and building a computer model. Often only the first stage is implemented and
the process is stopped with the production of a causal-loop (influence) diagram, especially
in cases that the aim is to get a good understanding of the situation at hand (Wolstenholme,
1999).
The idea of using system dynamics to project scheduling rises from the need to consider
the project as a whole and not solely as the sum of its individual elements, activities and
resources, recognising the difference among these two aspects (Daniel, 1990). An easy way
for experimenting with management’s options and possible effects to the whole organisation
and not only the undergoing project, is offered to the project manager before deciding which
route to follow by comparing the different possible routes. In this case, the emphasis is given
to the influences of the different elements, on the identification of what might go wrong and
the generation of realistic estimates that can result in an overall more realistic project model.
In other words, a system dynamics analysis offers a distinctly different view of a project with
the main output being a better understanding of the important underlying influences and the
ways that they can affect the project under different circumstances.
The proposed approach includes the use of both traditional methods and system dynamics.
For each discrete organisation, an initial influence diagram should be generated and used for
highlighting the situations that cause the greatest actual-planned difference and the alterna-
tive paths for accommodating activities disruptions or wrong estimation of their duration.
The results obtained from system dynamics studies can also be used to generate guidelines
for use in estimating activity durations, resource requirements, costs and risks to reflect the
underlying influences and identify typical behaviours. Then traditional OR methods are used
to give results representing a desirable optimal schedule. Always keeping in mind that this
initial project schedule is unlikely to be achieved unless there is no difference between actual
and planned performance, but it is useful to have it as goal.
Toward this direction is the following project monitoring cycle inspired by (Rodrigues and
Bowers, 1996), that is shown in Figure 4.2, where the alternative paths that can be followed in
case of a perceived delay in the project schedule are presented. Moreover, Figure 4.2shows
how the environmental parameters influence each possible action and the associated chain
of possible events. The management responds to a perceived delay in the project schedule
by either deploying more resources or usage of schedule pressure, in order to increase the
progress rate and bring forward the completion date or simply adjusting the schedule in order
to accommodate the delay. However, there are disruptive factors that could cause problems
in the implementation of any of the above responses.
Analytically, adding resources, equipment and/or staff, can be hindered by low availability of
the needed resource type, restricted budget and low willingness of the management to change
workforce due to organisation’s policies or even legislation (hiring/firing). Increasing the
number of resources should lead to increased progress rate, however, this not always the case,
due to changes in the balance of the work team, augmented overheads for training the newly
hired staff (if not equipment) and communication between the members of the enlarged team
and possible higher rate of errors causing rework of activities and additional delays. On the
other hand, using the schedule pressure as a mean to increase the existing staff’s productivity
instead of adding new personnel, can increase the amount of work done but it is very likely to
lead to low motivation and increase of the errors rate and thus the activities needing rework.
Rework is a very crucial point, as the number of errors and the time taken over their detection
is very significant for having high, actual and not only perceived, progress rate, as the later
the errors are discovered the more activities are likely to be affected.



64 4 Problem Definition

Increased progress rate is expected to lead to more work done in less time, however, the
perceived work done can not accurately reflect the actual work done, due to defective moni-
toring process for example not accounting for quality errors of the completed activities and
limited information on the progress or inability to objectively account the progress (e.g. in
some cases of code development).

# 
Resources 

Progress 
rate 

Work 
Done 

Remaining 
Work 

Estimated 
completion date 

Delay in 
schedule 

Adjustments 
to schedule  

Scheduled 
completion 

date  

• Deadline 
Penalties  

• Low staff motivation 
• Overheads 
• Schedule pressure 
• Errors 

• Budget restrictions 
• Limited availability 
• Impact of hiring 

staff 

• Changes in scope 
introduced by 
customer 

• Defective monitoring 
• Limited info 
• Manager’s  

Conservatism 

• productivity 
• project size 

Fig. 4.2 Project monitoring cycle

Note, that in practical situations it is not improbable that during efforts to recover from a
delay in schedule, new requests by the customer arise, which if accepted will lead to changes
in scope, possibly increasing the project size and additionally setting back the schedule.
Finally, the second option of adjusting the schedule to overcome the delay, although is quite
straightforward, it can require great effort in order to re-calculate an optimal schedule taking
into consideration the work done, the rework needed and possible deadlines on the project
and/or on specific project activities. It is also very probable to be hindered by existing ar-
rangements made with sub-contractors and other external collaborators, material deliveries
and arising need for storage or synchronisation points involving environmental parameters
(e.g. weather related activities).
The above analysis, shows that both traditional approaches and system dynamics examine
the same basic issues but from different perspectives. In system dynamics the focus is on
feedback loops and the whole project instead of looking into details in restricted areas and
ignoring others, giving great importance to those factors that are subjective and to the hu-
man’s behaviour, aiming at the simulation of reality including human and system weaknesses
in order to indicate likely outcome.
Consequently, the two approaches provide valuable complementary information, the tradi-
tional techniques supply the detailed output necessary for project monitoring, whereas sys-



4.2 Problem Description 65

tem dynamics offer a holistic view of the problem itself and useful general strategic lessons
which should be considered when planning projects and producing the estimates for the tra-
ditional analysis. There are undeniable benefits in formally incorporating the two models
(Rodrigues and Bowers, 1996) both for the success of the undergoing project and the ongo-
ing learning process of the organisation itself.

4.2 Problem Description

Project scheduling is a quite complex problem that every project manager faces in the begin-
ning of each project. The consequences of an ill designed schedule can seriously endanger
the successful project execution and completion.
This problem, as analysed in section 4.1, although initially was faced as a ”hard” problem
assuming that it is fully observable, governed by well-defined laws of behaviour and closed
to the environment, in practice has been proven that this is not the case. Still, when trying to
take into consideration all the parameters defining and affecting a good project schedule, a
very complex system emerges. Therefore, it is essential to balance the hard and soft aspect
the project and try to define the project scheduling problem taking into consideration both
but in a level of abstraction that will keep it general and permit its modelling and solution.
The idea is to provide a way to define the desired characteristics and provide a solution pro-
cess that will generate project schedules adaptable to different project settings, organisational
sizes and strategies and be scalable according to the size and criticality of the undergoing
project. Furthermore, the process should be simple and quick enough to permit immediate
re-runs for the generation of alternative scenarios giving the opportunity to the project man-
ager and/or the group of decision makers responsible for the definition and final selection of
the baseline schedule to have a satisfactory number of alternatives to discuss on and choose
from.
First of all, the desired schedule characteristics should be defined and related to the envi-
ronmental parameters that affect them either directly or indirectly. Prevailing organisation’s
strategic goals include customer satisfaction, profit and risk minimisation. Different contri-
bution, of each factor for each organisation and time period, is assumed. Therefore a ”good”
project schedule should enable the organisation to:

(a) satisfy the customer, leading to the expected product, as expressed in terms of quality and
project’s scope, in the predefined time frame, deadline, and with the agreed cost,

(b) optimally use the available budget and minimise the cost without overruling (a) ,
(c) manage human resources so as to conform with work hours, contracts and related legisla-

tion and make a balanced use of materials and equipment,
(d) be as much insensitive to changes as possible and be robust. That is, meaning that small

changes in scope, perturbations in activity’s duration, due to internal or external parame-
ters, or resource availibility must not escalate but have limited effect to the total schedule.

4.2.1 Goals

The generated project schedule should lead to a product of the agreed quality, on time and
on budget and this should be achieved with the lowest cost, balanced usage of resources
and minimal sensitivity to unpredictable factors. The objectives to be pursued during project



66 4 Problem Definition

scheduling are defined by translating these schedule characteristics, to actual objectives to be
optimised during project scheduling.
In all projects there is a finish date, that is a deadline, either imposed by the customer or
internally set. Hence, the project’s duration is a natural measure of performance and as ex-
pected it is the objective which is most often found in the literature (Boctor, 1990; Icmeli
and Erenguc, 1996b; Hartmann and Drexl, 1998) and used in practice. In some situations
due dates for individual activities play an important role and the explicit consideration of the
lateness or tardiness of the different activities is needed. Often the project’s deadline and or
interim deadlines are associated with costs as in penalties, bonuses for quick execution or
planned cash inflows, giving to the time objective a connection to the cost dimension.
The project scope, defined as ”the work that needs to be accomplished to deliver a product,
service, or result with the specified features and functions” (PMI, 2012) does not lead to a
specific objective for the schedule as it marks out the boundaries of a completed project as
opposed to a failed (not resulting in the desired outcome) or incomplete one. Therefore it
is mandatory to have in the project schedule all the activities, as they arise from the scope
declaration and are outlined in the work breakdown structure. In other words the project’s
schedule activities are a specification of the project’s scope.
Quality is defined as ”the total of features and characteristics of a product or service that
bears on its ability to satisfy stated or implied needs” (Standardization, 1994). Although the
quality of the project is monitored through the quality management process, it can affect the
project’s schedule as analysed by (Icmeli and Erenguc, 1996a). Activities may be performed
at a poor quality, below the desired level. These activities will require additional rework time,
resulting in delaying the project completion time or if left as they are, lead to poor quality of
the project’s outcome. It should be noted here that rework is considered by several authors
as the primary cause of project schedule disruptions (Lewis, 1998; Cooper, 1993). However
the quality of the activities cannot be appraised before the actual execution of the activity so
cannot be used as a direct requirement of the schedule. A project schedule that can handle
the distress caused by the need to rework activities as to reach the desired level of quality
is a realistic way of accommodating the need for specific quality levels of the end product
with respect to the duration aspect of the project. Therefore to have the ability to address the
needed quality leads to the objective of robustness maximisation and possible constraints on
the quality of a subset of activities.
Cost and budget are facets of a complex requirement referring to the project in general and
strongly related with the project schedule itself. The cost refers to resource usage, resource
availability cost, earliness/tardiness penalties. When the maximum cost is predefined there
is a clear budget constraint. Otherwise the need of minimal cost can be expressed as an
objective. The majority of activities encountered in practice can be performed in shorter or
longer durations by increasing or decreasing the amount of resources available to them or
the quality of the used resources (Fulkerson, 1961). However, usually, this acceleration in
the execution of activities comes at a cost and at the same time accomplishing activities in
longer durations often gives reduced cost but can lead to increase in project duration which
can result in additional cost in form of time related penalties (Kelley Jr and Fort Washington,
1963).
Furthermore, there are cases where penalties or other cost raising factors are attached to spe-
cific activities deadlines and not only to the project’s makespan (Vanhoucke et al., 2001). For
example, costs of earliness can reflect extra storage requirements and idle time like tardiness
leads to customer complaints, loss of reputation and profits, monetary penalties or goodwill
damages. The resource related costs can origin not only from the resource usage itself but
also from the need to keep resources available for the project duration even when they are



4.2 Problem Description 67

not being used (Mahring, 1984; Demeulemeester and Herroelen, 1996) as in the case of time
based contracts. This leads to the need of minimisation of the maximum number of needed
resources per type, usually weighted by a factor related to their individual cost.
Therefore, the need of minimal cost is reflected in a variety of project scheduling objectives,
like the project’s makespan, earliness/tardiness of activities, minimal maximal usage of re-
source units made available throughout the project besides the cost itself. In most cases when
scheduling a project aiming at the cost minimisation the only costs that are taken into consid-
eration are the resource related costs and the time related penalties, as those are the directly
connected costs. The precise determination of these gains and penalties often poses a tough
problem to management that needs to prioritise these conflicting objectives.
The scheduling problem turns even more complicated by the need to manage human re-
sources and materials. Human resources either staff or external contractors, based on the
legislation and their individual contracts should work specific hours per day augmented by
specific overtimes constraining the amount of daily work per person, have vacation and sick-
ness leaves causing usually small variations in resource demands that not always are known
in advance and variable performance affected by a variety of parameters, like motivation,
work environment, etc. Furthermore, it is not easy and it is not very efficient to hire staff for
small periods to handle peak of work and fire them after that or even move team members
from one project to another too often as it can lower the project team’s productivity by re-
quiring time both from the existing members and the newcomers to teach/learn the way that
the work should be done, learning curve, and also become acquainted to each other. There-
fore, a smooth resource profile, for human resources is essential and strongly related to the
complexity and specialisation needed to execute the task, as the more complex is the task the
less changes in resources used is desired.
Materials as resources are less complex than human resources to handle but there are also
some points that attention is needed, especially when deliveries are connected to tasks initia-
tion as usually it is the case and storing the material is needed till its usage, as storing comes
at a cost, leading to dilemmas on how earlier should the delivery be scheduled as to lower
the risk of delaying the task in case of belated delivery but without creating a large additional
cost for storage.
Uncertainty lies at the very heart of any project leading to very low probability to have
a precomputed baseline schedule being executed exactly as planned. Activities may take
more or less time than originally estimated, resources may become unavailable, material
may arrive behind schedule, new activities may have to be incorporated or activities may
have to be dropped due to changes in the project scope, etc. An apparently optimal baseline
schedule may well be based on an unreasonable set of expectations about the real world and
therefore may be significantly less optimal when executed. Similarly, a baseline schedule
which appears less optimal before execution but which contains some built-in flexibility
for dealing with unexpected events, may turn out to be a good schedule upon execution
(Davenport et al., 2004). A safe route, when working in a deterministic environment, to
absorb uncertainties is the development of robust schedules that are schedules in which a
delay has only a limited effect due to the usage of techniques for absorbing the delays so as
to cause minimal effect to the rest of the project schedule.
Summarising, the project schedule generation problem seeks a baseline schedule for an up-
coming project where time, cost, smooth resource profile, minimal maximum usage per re-
source type and robustness are the core objectives. Project managers always reason in terms
of a mix of the above objectives, therefore, a multidimensional approach is implicitly or ex-
plicitly taken in practice (Viana and Pinho de Sousa, 2000). These different aspects, are often
conflicting and all of them need to be taken into consideration and will play different role in



68 4 Problem Definition

the schedule generation process based on the specific organisation and its priorities, the size
and the budget of the project, the customer and other environmental parameters.

4.2.2 Available Inputs and Constraints

A project schedule is a plan that defines which activity should be executed, when should
its execution start and what amount of resources per resource type will be used. The major
components of a schedule are the activities and the resources.
An activity can have one or more execution modes, meaning that it can be executed using
various resource types and amounts of resources, resulting in different durations. Each mode
reflects a feasible way to combine a duration and resource requests that allow accomplishing
the underlying activity. Multiple modes of execution assume that either more resources of
the same type or more efficient types of resources are used to get a shorter execution time. In
all cases, the values of both duration and resource requirements, are estimates based on the
past project’s experience and the current situation characteristics.
The activities can be splittable or not based on the specifics of the task. Splits can happen in
predefined points of time or in any time period, for example, a task like a software module’s
development could be split at definite time instances corresponding to the sub-modules com-
pletion but it wouldn’t be wise to split it in the middle of a complex function. An obvious
way to avoid using splittable activities is to split the activity itself in sub-activities and add
constraints to keep the chain of events intact. This actually, is the way that splittable activities
are handled when their number is limited. However, by using splittable activities the size of
the project remains the same, helping the project manager during the monitoring and in case
of activities that can be splittable at virtually any time, the manual process would be rather
copious while it is straightforward its automation and gives to the scheduling mechanism a
much needed grade of freedom letting the essence of the schedule intact.
The activities can either require constant amounts of renewable resources, that is, the per-
period request for a resource remains unchanged until the activity has been completed or
the resource requests can vary with time. However, it is not very probable that all activities
will have variable demands so a subset of activities with variable demands should be defined.
Again splitting the activities in sub-activities would do the trick but would cost in complexity
and readability of the schedule along with increase of the probability of errors during the
setting up of the schedule, as a number of new activities and constraints should be manually
added and never removed or relaxed by mistake.
To start executing an activity all its immediate predecessors should have been finished. This
precedence concept in practical situations is extended by allowing start-start, finish-start,
start-finish and finish-finish precedence constraints with both minimal and maximal time
lags. Obviously, finish-start constraints are more often used but the scheduler should not be
limited by the model. It is the other way round, the model should try to accommodate as
many facets of the problem as possible and let the scheduler decide what level of abstraction
is needed in each case.
Three different kinds of resources are considered: renewable, non-renewable and doubly con-
strained. Renewable are limited on a per period basis, non-renewable have a limited capacity
for the entire project and doubly constrained are limited both for each period and for the
whole project. In special cases we can have dedicated resources that refer to resources that
can be assigned to one activity at a time and can be represented by renewable resources with
one unit of per period availability. Each resource type comes with a cost either per time pe-



4.2 Problem Description 69

riod of work (e.g. daily cost) or in form of salary. There are two basic types of contractual
agreements that can lead to great difference on the way that the resources should be handled.
In case of resource types having a contract for the whole period of the project or more gen-
erally get a monthly salary then there is the need to make the most of their availability and
the issue is the smoothness of the resource profile, as they already have a contract and will
be available for the project duration so its no point in limiting their usage. On the contrary,
the number of resources on time contracts, should be minimised as the contracts can fit the
project needs so that the resource profile is not as important as the number of the needed
contractors.
Resource availabilities usually are assumed to be constant over time. This assumption is
not very close to what actually happens in practical cases where changing availability of
workers due to vacations, maternity leaves, sickness or varying equipment capacities due to
maintenance or damage are on the everyday schedule.
The constraints posed by the problem can be roughly grouped in two categories, those in-
duced by the problem’s logic and those induced by requirements that constitute the prob-
lem’s definition. In the former are the precedence constraints either explicit like those set to
define the sequence of the activities or generated when handling splits and variable resource
requests. In the latter are the project cost/budget, resource availabilities and deadlines of ac-
tivities that although should be obeyed under extreme circumstances the project manager can
decide to allow their relaxation in order to be able to solve the problem or even simply get a
better solution under some aspects.
Concluding, the organisation’s stakeholders, represented by the group of decision makers
(i.e. project manager or project team members), are responsible for the initialisation of the
process by setting the criteria and the priorities of the objectives to be pursued during the
scheduling process. This way the conflicting opinions can be expressed during the initial
decision making process, including both qualitative and quantitative factors related to the
specific project and thus giving a way of custom tailoring the project scheduling process
to the specific needs and circumstances. It should be noted here that it is crucial to be able
to have a general decision model that can be easily modified to reflect the changes in the
organisation’s strategic priorities but also can be repeatedly used in similar cases without the
need of continuous redesign.
Following, based on estimations of the needed input data a calculation process is followed
to generate one or more schedules. The input data, as defined in section 4.2.2, like activities
duration, resource requirements and resource availabilities in real cases it is highly probable
that will not be deterministic but we assume them deterministic. However, multiple execu-
tions using upper and lower bounds of estimations or even using multiple scenarios and fast
execution of the schedule generation process, are suggested to overcome the issue and get
more realistic results. Finally, the generated schedules are presented to the decision mak-
ers/project manager and the most proper baseline schedule will be selected and used as a
tool for monitoring the project’s execution.





Chapter 5
Proposed Holistic Mathematical Model

5.1 Proposed Problem Formulation

The proposed process is initialised by a group of decision makers in charge of the project.
This group based on estimations of the needed input data selects the type or mix of types
of solution scenarios among single objective, weighted and simple Pareto optimal schedules
that they would like to get as a result. Then a calculation process is followed to generate the
requested number of schedules. Although in real cases the input data, like activities duration,
resource requirements and resource availabilities, will not, most of the times, be deterministic
it is assumed that multiple executions using upper and lower bounds of estimations can cover
satisfactorily the issue. Finally, the generated schedules are presented to the decision makers
and the most proper baseline schedule is selected and used as a tool for monitoring the
project’s execution.

5.1.1 Definitions

The proposed variation of the resource constrained project scheduling problem may be con-
ceptually formulated as follows.
· All data is assumed to be deterministic and known in advance.
· There is a single project consisting of n activities plus a dummy source activity 0 represent-

ing the “project start” and a dummy sink activity n+1 representing the “project end” both
with zero duration and resource requirements. We will denote by V = {0,1, . . . ,n,n+1}
the set of all activities.

· T is the planning horizon, calculated as the sum of maximal durations of all activities.
· The set of renewable resources will be denoted by Rρ . For each renewable resource k ∈ Rρ

the per period availability is variable and is denoted by α
ρ

kt , t = 0,1, . . . ,T −1.
· The set of non-renewable resources will be denoted by Rν . With each non-renewable

resource l ∈ Rν we associate a subset {tlx|x = 0, . . . ,Xl} of {0,1, . . . ,T} with

0 = tl0 < · · ·< tlx < tl(x+1) < · · ·< tlXl = T .

Obviously this subset defines a partition of the inteval [0,T ) consisting of the subintervals
Ilx = [tlx, tl(x+1)), x= 0, . . . ,Xl−1. The overall consumption of the non-renewable resource
l for the period Ilx of the project is limited by αν

lIlx
.

71



72 5 Proposed Holistic Mathematical Model

· Each activity i is associated with a set Mi of modes which are alternatives ways of execut-
ing the activity.
· Each activity i has to be performed in exactly one mode m ∈ Mi in each discrete

schedule.
· Each mode m has a duration of dim time units.
· Activity i in mode m requires rρ

imkτim
renewable resources of type k ∈ Rρ in the τim-th

period of its execution, τim = 0, . . . ,dim−1. The required resources are not consumed
but used for the time period of the activities duration and then returned to the resource
pool.

· Activity i in mode m requires the consumption of rν
imlτim

non-renewable resources of
type l ∈ Rν in the τim-th period of its execution, τim = 0, . . . ,dim−1.

· Each mode m of an activity i defines the activity either as preemptive, i.e. its execution
can be stopped once it has been started, or not.
· The set of non-preemptive modes of an activity i is denoted by Mp′

i and the set of its
preemptive modes by Mp

i .
· An activity in a preemptive mode can be splitted either at any point, which gives splits

of unitary duration, or at specific, user defined, points. The definition of the split points
can be done either directly or using duration windows.

· The duration dim of an activity i may be split in zim + 1 duration units of unitary or
greater integer size. Each segment is denoted by pimq, q = 0, . . . ,zim, and has duration
dimq. Each segment is assigned a start time simq and a finish time fimq.

· To simplify the formulation all modes of all activities are considered to be preemptive.
Activity modes that are not preemptive, e.g. the dummy start activitity, will not have
any split points, i.e. zim = 0. If simq, q = 0, . . . ,zim, are known, then we can transfom
the periods of the execution of activity i in mode m, τim, to periods t of the project as
follows

t =


τim + sim0 , τim = 0, . . . ,dim0−1
τim + sim1 , τim = dim0, . . . ,dim1−1
...
τim + simzim , τim = dim(zim−1), . . . ,dimzim−1

. (5.1)

· Based on the above:
· sim0 is the start time of activity i ∈V in mode m and its first segment pim0. fimzim is the

finish/completion time of activity i ∈V in mode m and its last segment pimzim .
· The dummy source activity has one mode m = 0, duration of 0 time units and is not

preemptive. Therefore z0 = 0 and s00z0 = s000. Consequently, setting the project to
begin at time zero gives s000 = 0.

· The dummy sink activity has one mode m = 0, duration of 0 time units and is not pre-
emptive. Therefore zn+1 = 0 and f(n+1)0zn+1 = f(n+1)00 represents the project’s duration
or makespan.

· Four different types of precedence relations are defined: the start-to-start SSim jn, the finish-
to-finish FFim jn, the finish-to-start FSim jn and the start-to-finish SFim jn, with minimal and
maximal time lags between the activities i and j executed in modes m and n respectively.
More specifically:
· SSmin

im jn denotes that activity j in mode n cannot begin earlier than SSmin
im jn time units

after the start of activity i in mode m,
· SSmax

im jn denotes that activity j in mode n cannot start later than SSmax
im jn time units after

the start of activity i in mode m,



5.1 Proposed Problem Formulation 73

· SFmin
im jn denotes that activity j in mode n cannot finish earlier than SFmin

im jn time units
after the start of activity i in mode m,

· SFmax
im jn denotes that activity j in mode n cannot finish later than SFmax

im jn time units after
the start of activity i in mode m,

· FSmin
im jn denotes that activity j in mode n cannot begin earlier than FSmin

im jn time units
after the finish of activity i in mode m,

· FSmax
im jn denotes that activity j in mode n cannot start later than FSmax

im jn time units after
the finish of activity i in mode m,

· FFmin
im jn denotes that activity j in mode n cannot finish earlier than FFmin

im jn time units
after the finish of activity i in mode m,

· FFmax
im jn denotes that activity j in mode n cannot finish later than FFmax

im jn time units after
the finish of activity i in mode m.

· After fixing the activities’ durations and time lags, all the relations are represented using
just one type, the SS which is arbitrarily selected, using the following transformation rules:

Start to Start:

sim0 +SSmin
im jn ≤ s jn0→ sim0 +δim jn ≤ s jn0 ,

with δim jn = SSmin
im jn ,

sim0 +SSmax
im jn ≥ s jn0→ s jn0 +δ jnim ≤ sim0 ,

with δ jnim =−SSmax
im jn .

Start to Finish:

sim0 +SFmin
im jn ≤ f jnz jn → sim0 +δim jn ≤ s jn0 ,

with δim jn = SFmin
im jn−d jn ,

sim0 +SFmax
im jn ≥ f jnz jn → s jn0 +δ jnim ≤ sim0 ,

with δ jnim =−(SFmax
im jn−d jn) .

Finish to Start:

fimzim +FSmin
im jn ≤ s jn0→ sim0 +δim jn ≤ s jn0 ,

with δim jn = FSmin
im jn +dim ,

fimzim +FSmax
im jn ≥ s jn0→ s jn0 +δ jnim ≤ sim0 ,

with δ jnim =−(FSmax
im jn +dim) .

Finish to Finish:

fimzim +FFmin
im jn ≤ f jnz jn → sim0 +δim jn ≤ s jn0 ,

with δim jn = FFmin
im jn +dim−d jn ,

fimzim +FFmax
im jn ≥ f jnz jn → s jn0 +δ jnim ≤ sim0 ,

with δ jnim =−(FFmax
im jn +dim−d jn) .

(5.2)

· When the structure of the project is represented by an activity-on-node network G =
(V,A), then the vertex set V = {0,1, . . . ,n,n+1} contains all activities and the set of arcs
A = {(i, j)|i, j ∈ V ; i→ j} represents the generalised precedence constraints. More pre-
cisely, there will be an arc from node i to node j if and only if there are one or more prece-



74 5 Proposed Holistic Mathematical Model

dence relations between the two nodes. If (i, j) ∈ A, then, for each pair (m,n) ∈Mi×M j,
the maximum value of δim jn in (5.2) is assigned as weight to the edge (i, j).

· The vector S = (simq)i=0,1,...,n,n+1 q=0,...,zim defines a schedule of the project. A schedule S
is called feasible if all resource and generalised precedence constraints are fulfilled.

· Act(t) will denote all the activities of which a time unit is in progress at t, t = 0,1, . . . ,T .
The goal is to determine execution modes m and starting times simq for all the activities
i = 1, . . . ,n and all q = 0, . . . ,zim in such a way that the objectives are optimised while all the
given constraints are obeyed.
Table 5.1 summarises the notation introduced in this section.

Table 5.1 Basic Notation

Symbol Definition
V = {0,1, . . . ,n,n+1} the set of activities i
n number of real activities
G(V,A) directed graph of precedence or temporal constraints
T the planning horizon, sum of maximal durations of all activities
t periods, index of T
[t, t +1) time interval corresponding to period t
Act(t) set of all the activities of which a time unit is in progress at t, t = 0,1, . . . ,T
Rρ set of renewable resources
α

ρ

kt variable amount of available units of renewable resource k, t = 0, . . . ,T −1
Rν set of non-renewable resources
tlx each non renewable resource l ∈ Rν is associated to a subset {tlx|x = 0, . . . ,Xl} of

{0,1, . . . ,T} with 0 = tl0 < .. . < tlx < tl(x+1) < .. . < tlXl = T
Ilx subintervals Ilx = [tlx, tl(x+1)],

x = 0, . . . ,Xl −1 composing a partition of [0,T )
αν

lIlx
variable amount of available units of non-renewable resource l

Mi set of modes (alternative ways of execution) of activity i
Mp′

i set of non-preemptive modes of activity i
Mp

i set of preemptive modes of activity i
dim duration of activity i in mode m
rρ

imkτim
per period usage of activity i of renewable resource k in mode m

rν
imlτim

per period consumption of activity i of non-renewable resource l in mode m
zim number of splits on activity i in mode m, zim = 0, ...,dim−1
pimq segment of the preempted activity i with q = 0,1,2, . . . ,zim
dimq duration of segment q of activity i in mode m
simq start time of segment q of activity i in mode m
fimq finish time of segment q of activity i in mode m
sim0 start time of activity i
fimzm finish time of activity i
s000 start time of project
f(n+1)00 finish time of project
S = (simq) schedule, vector of start times of all segments of all activities
SSmin

im jn/SSmax
im jn minimum/maximum time lag between start of activities i and j in modes m and n

SFmin
im jn/SFmax

im jn minimum/maximum time lag between start of activity i in mode m and finish of j
in mode n

FSmin
im jn/FSmax

im jn minimum/maximum time lag between finish of activity i in mode m and start of j
in mode n

FFmin
im jn/FFmax

im jn minimum/maximum time lag between finish of activities i and jin modes m and n
δim jn minimum/maximum time lag between start of activities i and j in modes m and n

We will now illustrate the above definitions using the project example displayed in Figures
5.1 - 5.3, where a project with 6 activities plus the dummy source, activity 0 and the dummy



5.1 Proposed Problem Formulation 75

(a) (b)

Fig. 5.1 (a) Project activities, modes, resource requirements and preemption status, (b) minimal and maximal lag of activities
per mode

5
7

9

5

(a) (b)

(c)

R1
 A

va
ila

bi
lit

y

Time

t11 t12 t13 T0

8
5

7

8
t21 t22 T0

R2
 A

va
ila

bi
lit

y

Time

5

15 17

15
ta1 ta2 T0

N
R1

 A
va

ila
bi

lit
y

Time

Fig. 5.2 (a) R1 renewable resource availability in relation to time, (b) R2 renewable resource availability in relation to time
and (c) NR1 non-renewable resource availability in relation to periods Il0 = [0, ta1), Il1 = [ta1, ta2) and Il2 = [ta2,T )

sink, activity 7, is defined. Each activity, in this example project, has a maximum of 3 al-
ternative modes of execution. For each mode the duration, preemption status and resource
requirements are defined.
The duration refers to the total of the activity even when preemption is allowed. The pre-
emption status determines whether the activity in the specific mode of execution is splittable
and, if yes, what kind of split should be effectuated, as it can be either auto split in segments
with 1 time period of duration e.g. activity 6 in mode 1 or at specific points as in activity
2, mode 2. The resource requirements per activity mode can vary over time and therefore
the resource requirements of both renewable and non-renewable resources are defined for
each time period. However the time instances where there is a change in requirements can
vary from activity to activity or even among the different modes of the same activity, but for
reasons of simplicity in this example we use the same time instants.



76 5 Proposed Holistic Mathematical Model

0

1 3 5

7

2 4a

0

0

4 0

3 1

2

6

1

-4

-3

0

5 4 5

5 2 4

0

3,2,1
2,1
1,2

1,2,1
4,1
2,4

2,1,2
1,3
2,3

1,1,1
1,2
1,3

2,1,2
1,2
3,2

1,2,1
2,1
3,1

0
0
0

0
0
0

i

dim

R1 t11t12t13
R2 t11t12
NR1 ta1ta2

j

δimjn

dmj

R1 t11t12t13
R2 t11t12
NR1 ta1ta2

4b 0

2

2,1,2
1,2
3,2

0

1 3 5

7

2b 4

0

0

2 1

2 1

1

6a

0-2

-3

0

5 9 4

3 4 1

03,2,1
2,1
1,2

2,1,2
2,4
2,1

2,1,2
3,1
1,3

0,2,2
2,1
1,1

1,2,2
2,1
3,2

1,2,1
1,2
3,2

0
0
0

0
0
0

2a 0

0,2,2
2,1
1,1

6

6b

1
4

1,2,1
1,2
3,2

(a)

(b)

Fig. 5.3 (a)Project network for mode set M1(0,0,0,0,0,0,0,0) and (b) Project network for mode set M2(0,0,2,1,1,2,1,0)

Furthermore, each resource type, either renewable or not, can also have variable availabil-
ity, as shown in Figure 5.2. This feature can be used in practice to define the renewable
resources calendar by denoting for each resource type, the time periods that availability
changes due to scheduled vacations, weather related impossibility to use specific types of
equipment/machines, etc. In the case of non-renewable resources attention should be given
in defining the availability of each resource type. For example, at ta2 there would be 15 units
of NR1 if no unit would have been used by that time.
Finally, in Figure 5.3, the project networks for two different, random, combinations of modes
are presented: M1 (0,0,0, 0,0,0,0,0) and M2 (0,0,2,1,1,2,1,0). It can be deduced that the
project network itself and not only the durations and resource requirements are affected by
each mode selection. This way alternative project scenarios and not only activities execution
modes are defined. Each of the resulting combinations of modes gives a more or less com-
plex project scheduling problem that represents a different aspect of the project and how it
should be implemented.

5.1.2 Objectives

In the project schedule generation problem we seek a baseline schedule for an upcoming
project where time, cost, smooth resource profile, minimal maximum usage per resource
type and robustness are the core objectives.



5.1 Proposed Problem Formulation 77

The project duration is a regular measure of the performance measure and can be expressed
as the start of the dummy end activity of the project:

min s(n+1)0 . (5.3)

Furthermore, a penalty factor can be used in case that there are specific deadlines attached to
activities (e.g. milestones) of the project:

min s(n+1)0 +Tover , (5.4)

where Tover is the sum of the time periods that the completion of each activity is overdue.
The penalty factor can be weighted by the criticality of the corresponding activity (e.g. costs
related to the delay of specific milestones):

Tover =
n

∑
i=1

wi(Ti− fimzim) , (5.5)

where Ti is the due date (deadline) of activity i.
The resource related objectives concern the reduction of extraordinary demands and exces-
sive fluctuations in the usage of resources. When the goal is to use the required resources as
even as possible over time, the deviations of the resource usages from a given resource profile
are calculated. A measure of variability for this case is the resource levelling index (RLI),
where the request for a smooth resource profile of one or more resource types is expressed
as the total deviation of the consumption of that resource type from a target value, as it is the
average resource utilisation:

min ∑
k∈Rρ

f(n+1)00

∑
t=0

∣∣∣∣∣∣∣∣∣∣
(

N

∑
i=1

rρ

imkτim

)
−

f(n+1)0

∑
t=0

N

∑
i=1

rρ

imkτim

f(n+1)00

∣∣∣∣∣∣∣∣∣∣
. (5.6)

Note that, both in the above equation and in what follows, by τim we mean the corresponding
value of t given by (5.1).
If ck is the unitary cost related to renewable resource type k and c0 is the sum of the non
resource related costs then the project cost can be expressed as the sum of these two cost
types:

min c0 + ∑
k∈Rρ

ck

(
T

∑
t=0

N

∑
i=1

rρ

imkτim

)
. (5.7)

In case of specific budget, it can be set either as constraint or as a penalty in the objective
function, as in the case of the deadlines.
The reduction of extraordinary demands of one or more resource types, the so-called resource
investment problem, is used for those resources that are very expensive and even one unit of
difference has a consistent impact on the project’s cost. Therefore for these resource types
the maximal usage should be minimised:

min max

{
N

∑
i=1

rρ

imkτim

∣∣∣∣∣ t = 0,1, . . . ,T −1

}
. (5.8)



78 5 Proposed Holistic Mathematical Model

The slack-based method is usually used to generate robust schedules. Two types of slack are
widely used in the scheduling literature: total slack (also referred to as float time) that is the
difference between the earliest start time and latest start time of an activity and free slack that
is the amount of time that an activity can be delayed without delaying the start of the very
next activity. In the current approach the total slack is set as objective:

max
n

∑
i=1

(LSim−ESim) , (5.9)

where ESim is the earliest start time and LSim is the latest start time of activity i when executed
in mode m–in the case of splitting the start time of the first segment is taken into consider-
ation. It should be noted here that ESim, LSim calculations are not trivial in the multi-mode
preemptive with generalised precedence constraints case.
All the above different aspects are often conflicting. On the other hand all of them need to
be taken into consideration and will play different roles in the schedule generation process
based on the specific organisation and its priorities, the size and the budget of the project, the
customer and other environmental parameters.

5.1.3 Constraints

The activities should be processed in a specific order given by the generalised precedence
constraints, which can be represented in standardised form, by transforming all of them to
the same, arbitrarily selected, form using the transformation rules in Equations (5.2), leading
to the general constraint:

δim jn ≤ s jn0− sim0 ,

∀(i, j) ∈ A ,∀m ∈Mi ,∀n ∈M j .
(5.10)

All activities when executed in preemptive mode should have the start time for every segment
q of the preempted activity i, at least dim(q−1) time units later than the start time for the
previous segment q−1:

sim(q−1)+dim(q−1) ≤ simq ,

∀i = 1, . . . ,n ,∀m ∈Mi ,∀q = 1, . . . ,zim .
(5.11)

This constraint also addresses the need to relate each segment to the previous one with a
finish to start type of precedence constraint with zero minimal and no maximal time lag.
Furthermore, the dummy source activity should always be the first to be scheduled at time
t = 0:

s000 = 0 , (5.12)

and the dummy sink activity should always be the last one:

s(n+1)00 ≥ fimzim ,

∀i = 0,1, . . . ,n ,∀m ∈Mi .
(5.13)

The renewable and non-renewable resource usage at each time instant t should be less or
equal than the available amount:



5.2 Mathematical Formulation 79

∑
i∈Act(t)

rρ

imkτim
≤ α

ρ

kt ,

∀k ∈ Rρ ,∀t = 0,1, . . . ,T −1 ,∀m ∈Mi ,

(5.14)

tl(x+1)−1

∑
t=0

∑
i∈Act(t)

rν
imlτim

≤ α
ν
lIlx

,

∀l ∈ Rν ,∀x = 0, . . . ,Xl−1 ,∀m ∈Mi .

(5.15)

In the case that milestones with specific deadlines are introduced, then each of the milestones
should have its start time constrained by its due date or a penalty factor can be used in the
objective function. In the proposed approach penalties are used to give more flexibility during
the solution search.

5.2 Mathematical Formulation

The proposed variation of the resource constrained project scheduling problem can be math-
ematically formulated introducing the binary decision variables ximqt which are defined as
follows:

ximqt =

{
1, if the segment pimq of i in mode m starts at t
0, otherwise . (5.16)

The mathematical formulation, shown in Equations (5.17)-(5.25), is an extension of the
model first presented by Pritsker et al. (1969) to include preemption, multimode activities
and generalised constraints. It is also based on the formulations provided by De Reyck (1999)
and Hartmann (2013) for the MRCPSP-GPR and the RCPSP/t respectively.

min f (ximqt) , (5.17)

subject to:

∑
m∈Mi

T−1

∑
t=0

zim

∑
q=0

ximqt = 1 ,

∀i = 0,1, . . . ,n+1 ,

(5.18)

(
∑

m∈Mi

T−1

∑
t=0

txim0t

)
+δim jn ≤ ∑

n∈M j

T−1

∑
t=0

tx jn0t ,

∀(i, j) ∈ A ,

(5.19)

n

∑
i=1

∑
m∈Mi

zim

∑
q=0

rρ

imkτim
ximqt ≤ α

ρ

kt ,

∀k ∈ Rρ ,∀t = 0,1, . . . ,T −1 ,

(5.20)



80 5 Proposed Holistic Mathematical Model

tl(x+1)−1

∑
t=0

n

∑
i=1

miλ

∑
m=1

zim

∑
q=0

rν
imlτim

ximqt ≤ α
ν
lIlx

,

∀l ∈ Rν ,∀x = 0, . . . ,Xl−1 ,

(5.21)

x0000 = 1 , (5.22)

T−1

∑
t=0

tximzimt ≤
T−1

∑
t=0

tx(n+1)00t ,

∀i = 0,1, . . . ,n ,

(5.23)

T−1

∑
t=0

txim(q−1)t +dimq ≤
T−1

∑
t=0

tximqt ,

∀i = 0,1, . . . ,n ,∀m ∈Mi ,∀q = 1, . . . ,zim ,

(5.24)

ximqt ∈ {0,1} ,
∀i = 0,1, . . . ,n+1 ,∀m ∈Mi ,∀t = 0,1, . . . ,T −1 .

(5.25)

The objective function (5.17) minimises the selected objective; for example the objective of
minimising the makespan can be written as

min
T−1

∑
t=0

tx(n+1)00t .

Constraints (5.18) ensure that each activity is assigned exactly one mode and exactly one
start time.
Constraints (5.19) denote the generalised precedence relations with minimal and maximal
time lags, where the actual values for each time lag, whether they originate from a minimal
time lag or a maximal time lag are given by δ im jn.
The resource constraints are given in Equations (5.20) and (5.21) for renewable and non-
renewable resources, respectively.
Equations (5.22) and (5.23) ensure that the first activity of the schedule is the dummy source
and the last the dummy sink.
Constraints (5.24) ensure that the splitted activities will be executed in the correct order.
Equation (5.25) forces the decision variables to assume binary values.



Chapter 6
Solution Process

6.1 Overview

The proposed solution approach consists of three stages, as shown in Figure 6.1. Initially,
the problem is analysed to decide which are its activities and how they are related in terms
of execution precedences. Then, for each activity the different execution modes and whether
it can be split and at which points, are identified and the duration and resource requirements
are estimated. The estimations usually are based on the project’s manager experience on sim-
ilar projects and the specific’s project’s characteristics. Finally, the resources calendars and
availabilities are roughly outlined. The above information composes the solution’s process
input.
The second stage concerns the objectives. It is decided which objectives from the given set:
makespan, resource level index, max resource usage and robustness, should be pursued and
whether the objectives should be ranked or used to compose a vector and go for a Pareto
solution, as shown in Figure 6.2. The first option leads to the generation or usage, if a well-
fitted model already exists, of an ANP model and the calculation of the ranking through
an iterative process where the project manager or a whole group of decision makers give
judgments by answering simple pairwise comparison questions. The ANP model is formed
by the alternative solutions, that are the selected objectives, and the criteria needed to rank
them. Therefore the choice of ANP as a decision support tool requires additional inputs.

81



82 6 Solution Process

Tasks’  
Duration

Execution 
Mode

Resource 
Needed

Relationships

Adaptive GA 
to choose 
solution 

algorithm 
and solve 

Define the problem 
parameters

SplitsMust 
Stat/Finish 

On

Res. 
Renewable

/Non

Res. 
Calendar

Prioritize the objectives 
using ANP

or Pareto vector

Solve the specific instance

Makespan

Cost

Robustness

Res. 
Profile

Fig. 6.1 Phases of the proposed approach

The last stage includes all the transformations needed to convert the given input to the form
required by the solution algorithm and the execution of the solution algorithm in order to get
the final result set.
The flow of events, from the definition of the project to be scheduled till the actual generation
of the solution set, is summarised in Figure 6.2. Initially, the project to be scheduled along
with its context is analysed in order to generate not only the actual input data for the solution
algorithm but also the data needed to make the related decisions, like whether an ANP or
Pareto approach should be followed and which are the criteria that should be used to prioritise
the objectives and how they are related.
Following, input data are transformed as needed and fed to the actual solution algorithm
that is a genetic algorithm that adapts the solution method to the specific project that is
being scheduled. Each chromosome is composed of the encoded solution (the schedule),
the decoding procedure (serial or parallel extended SGS) and the corresponding solution
algorithm (SA, TS, PSO, GA). The generation of the initial and children populations through
crossover and mutation and the final selection of the chromosomes to be passed to the next
generation are handled by this algorithm. However, the fitness calculation depends on how
the project manager decided to solve the problem (ANP, Pareto, single objective).



6.1 Overview 83

Objectives, Criteria, 
Relationships

     ANP Model

Collect judgments 
from decision maker(s)

Objectives Ranking
Weights Vector

Project Specific Inputs

Data Transformations

ACTIVITIES RESOURCES

Availability

Cost

Usage

Duration

Precedences

Modes

Preemption

ANP||Pareto? ANP

Current situation &
Project related information

1 5 2

 

Pareto

Objectives 
Vector

Generate chromosomes of initial population

Start

Gene of solution 
algorithm

(SA,TS,GA,PSO)

Gene of encoding/
decoding algorithm
serial-parallel SGS

Generate offspring chromosomes
 crossover & mutation

Select chromosomes
Two tournament

Calculate fitness of R
ANP_MOGA/ ParetoGA /SingleObjective

Num of Gen < max?

YES

End

NO

Best found 
solutions + 
Algorithms 

Combine to one population R
 parents U children  

Priority List of 
Activities

Fig. 6.2 Flow of events



84 6 Solution Process

In the case of ANP, the optimisation process is based on splitting the given population in sub-
populations, using different objective functions for each one and then selecting the solutions
by comparing subpopulations corresponding to the same objective using the ANP weights
to define the percentage of the population that is represented by each objective. The second
option, the Pareto vector, is based on the ranking of the population according to a predefined
dominance rule and the fitness value assigned to each chromosome derives from its rank in
the population, not its actual objective function value. Finally, the single objective option
consists on using the given objective function to calculate the fitness of each chromosome.
In all the cases, attention should be given on the fact that the fitness calculation of a chromo-
some is not a straightforward process, as it implies the execution of the solution algorithm
on part of the chromosome, before calculating the value of the encoded solution, therefore it
can cause update of the chromosome.
The iterative process continues until either the optimum is found or the given number of
iterations (generations) is reached. The result set consists of one or more solutions that are
the best found solutions in relation to the given objectives. The maximum number of different
solutions in the result set is given by the project manager.

6.2 Decision Making using the Analytic Network Process

The second stage of the proposed approach consists in defining the desired optimisation
objectives, namely time, resource profile, robustness and cost and either generate a weight
vector reflecting the decision makers preferences on the objectives or handling all of them as
a single vector. To weight the objectives, the Analytic Network Process (ANP) (Saaty, 1996),
which is a generalisation of the Analytic Hierarchy Process (AHP), was used.
The reasons behind the selection of the specific method instead of other MCDA methods
reside on its basic characteristics: simplicity, handling of mixed qualitative and quantitative
inputs versus exclusively quantitative methods, no need of an analyst to support the process
and focus on the subjective perspective of the decision maker to the problem.
In this section the ANP method is described and a generic model for weighting project
scheduling objectives is provided. The result of this process is the definition of relative pref-
erences among the optimisation objectives, in the form of a normalised weight vector that
will be given as input to the next stage of the solution process. This a priori definition of the
preferences has been proven more efficient than the popular process of solving the problem,
computing the objective functions and then limiting the solution space based on the decision
maker’s preferences.
In this multi-criteria decision analysis method, the first step is the identification of the cri-
teria and the alternative solutions of the problem to be solved. Then, a graph structure, the
so-called network, is created and the decision maker is asked to pairwise compare the com-
ponents, in order to determine their priorities.
The decision about whether AHP or ANP should be used is based on the problem being
solved and the corresponding network structure. The network is a logical conceptualisation
of the problem that reduces it, to its essentials. When the elements and their connections are
easily located in levels of dominance with connections that transmit influence downwards,
a hierarchical structure is best fitted for the decision problem. On the other hand, if the
elements and their connections are complicated and can only be grouped in clusters that do
not fit well in defined levels, a network structure is more appropriate.



6.2 Decision Making using the Analytic Network Process 85

The process that was followed for structuring the under consideration system, described in
chapter 4, as a network consists of four phases:
1) Identification of the decision alternatives, goals and elements, where as elements are de-

fined the criteria used to rank the different alternatives based on the preferences of one
or more decision makers that constitute the decision making group. These criteria derive
from the purpose of each functional unit of the system in question.
The project scheduling problem has as alternative solutions the optimisation objectives
that have been chosen in the previous stage, therefore the elements:
· Duration that refers to the makespan of the schedule and respect of deadlines set for

certain activities or phases of the project
· Cost as the sum of resource and non resource related costs generated by a specific

schedule,
· Resource Profile, which refers to the smoothness of one or more renewable resource

types profiles as they are utilised in the schedule,
· Robustness that is about the total free slack in the generated schedule and it is used

to enhance the stability of the schedule in case of alterations: in the duration of one or
more tasks, the resource availabilities and/or requirements.

· Max Resource Usage, which is used to limit the maximum usage of expensive or rare
resource types.

Beside the alternative solutions of the problem, in the network are included all the criteria
that will be used to rank the objectives which are also defined as elements. The identifi-
cation of the criteria is an iterative process where all the decision makers related to this
problem need to discuss which are the factors that affect the definition of an objective
as more important than another taking into consideration the organisational strategy, the
current situation and characteristics related to the project itself and the customer related
to it. Therefore the criteria are subject to change from project to project and time to time.
However, here a generic set of criteria that can be widely used are provided. The selection
of the criteria is based on interviews with experts of the project management field. The
proposed set of criteria can be summarised in the following elements:
· Budget: the budget available for the project is a good indicator of how important will

be the cost factor in the decisions to be taken, as a tight budget will let small margins
for those makespan minimisations that require high level of resource availability and
usage, or expensive resource types. On the other hand it complies with the minimisa-
tion of the maximum resource usage and the smoothness of resource profiles however,
it is not strogly related to the objective of robustness.

· Cash Flows: timing of the inflows can affect the overall strategic decisions about
the project, for example when the inflows are attached to specific milestones, then
the deadlines, therefore the time objective, is critical for the whole project’s viabil-
ity. Similarly, the outflows affect the ranking of the objectives, as for example large
payments connected to specific activities can lead to right shifting those activities and
thus slowing down their execution.

· Resource Types- Cost, Contact type: the cost of the resource types to be used and
the type of contractual relation that they have with the company that is executing the
project affect a variety of decisions about the way that the project should be executed
and how the objectives should be ranked. Permanent contractual relations, ask for
very smooth resource profiles and enforce the need to be within the given resource
requirements as the need for new resources will call for hiring of probably, temporary
personnel, with unsure impact on the efficiency of the work team. Low daily rates
and extended usage of external contractors lead to flexibility of the resource related



86 6 Solution Process

constraints and low ranking of the resource profile objective. The existence of different
resource types and associated needs for their profile is handled using different weights
for each resource type within the resource profile objective.

· Penalties/Bonuses: in case of penalties and/or bonuses related to the completion time
of the project or specific milestones, the time objective is expected to be prioritised
and the cost objective needs to be balanced in relation to the time related loss or gain
of money.

· Project’s Contract: is related to specific clauses of the contract signed between the
organization and the customer which might affect the ranking of the objectives. For
example in case that there are clauses specifying quality levels of the generated project
outcome/product then the robustness objective’s value is elevated due to the need to
have extra time available to anticipate the need to rework part of some activities to
meet the required quality levels.

· Legislation: related to work hours, hiring and firing of personell, subcontracting,
defining wages, specialised personnel needed to execute specific activities, environ-
mentall issues, etc. affects the way that the project should be scheduled and thus the
ranking of the objectives.

· Synergies: existing projects, on going or already executed, can be combined to the
under examination project in terms of budget, human resource pool, equipment, etc.,
affecting this way the priorities set for the specific project, especially, the aspects of
cost and resource usage.

· Resource Availabilities: refers to the effort needed to find extra resources if needed,
the corresponding cost of using extra units of some resource type and when referring
to work force, the expected efficiency of the new resources when combined to the
existing ones. This data are always related to circumstantial factors as the specific
time period, the social and political situation, etc. Having low resource availabilities
makes the resource constraints less flexible and the possibility to use execution modes
of activities requiring large numbers of resources very expensive, thus unlikely.

· Risk: refer to scope risks, like ill defined scope, integration issues, scope creep, etc.
, schedule risks as delayed decisions, wrong estimations of duration and effort needs,
ommision of dependencies, etc. and resource related risks as delays caused by out-
sourcing, lack of cash flow, low quality and/or attrition of resources, loss of work
team balance by people joining the team late, scarcity of skills. The types and levels
of risk are strongly related to all the objectives and based on the probability of appear-
ance and the expected impact of each one, different objectives can be prioritised for
the mitigation of one or more risks.

· Expected Benefits: are related to factors like the project’s expected outcomes and the
customer’s importance for the organization. The expected benefits can balance high
costs and prioritize objectives like time and robustness.

2) Categorisation of the elements in suitable clusters, that is based on the similarity of the
previously identified element’s characteristics.
The criteria and alternative solutions composing the model for ranking the project schedul-
ing objectives, are grouped in three clusters: Organisational containing the criteria that are
strongly related to the specific organisation, its strategy and profile, Financial, containing
the cost and budget related factors and Other, containing the factors that could not fit in
the previous two categories. Finally, there is also the Alternatives cluster containing the
objectives to be ranked.



6.2 Decision Making using the Analytic Network Process 87

3) Definition of the influences: inner dependecies reffer to influences (social, political, tech-
nical, economic, etc.) between two elements of the same cluster and outter dependencies
between two different clusters.
In this model, the Alternatives cluster depends on all the other clusters and viceversa.
The Financial cluster influences and is influenced by the Organisational, as the resource
availability influences the rates, the budget is affected by the risk factors, the synergies
and the expected benefits, and there are risks related to the flows and the budget.The
Organisational cluster is influenced by the Others cluster and it has inner dependecies
among its components, as the legislative rules and the contract affect the risk factors, for
example having high penalties for exceeding the deadline or getting products below the
expected quality level raise the impact of the corresponding risks. The penalties along
with the specific project contract influence the expected benefits. As concerned to the
inner influence for the Organisational cluster, the synergies and the risks influence the
expected benefits, the more synergies that can be generated through the project and the
less risk the higher are the expected benefits. The final model is shown in Figure 6.3.

Alternatives

Duration
Cost

Resource Profile
Robustness

Max Resource Usage

Organisational

Synergies
Resource Availability

Risks
Expected Benefits

Financial

Budget
Cash Flows

Resource Types: Cost, 
Contract type

Other

Penalties/Bonuses
Project’s  Contract

Legislation

Fig. 6.3 ANP model

4) Forward and backward examination of the network by cluster, in order to make sure that
the generated network structure is complete and consistent. The decision makers check
that the network reflects the real problem to be solved, that the relationships among the
elements have the correct direction and no important aspects of the problem have been
ommited.
This process, for the generic model herein analysed, was effectuated by the same group of
project management experts, as to ensure its completeness and consistency. The goal was
to design a generic model that could fit in a variety of project scheduling cases and would
give a way to express those qualitative factors that affect the way that the project should



88 6 Solution Process

be scheduled without ommiting the quantitative data needed for the prioritisation of the
objectives.

After the generation of the network describing the problem, the decision makers are asked to
enter their judgments. The network is used as a starting point for the formulation of all the
pairwise comparisons and their conversion to meaningful questions. These questions have the
form: ”Which element A or B is more important in the context of cluster C?”, where A and B
are elements of the same cluster D and C is a cluster that influences the cluster D containing
the elements A and B. This step leads to filling a matrix having as lines and columns the
elements of cluster D, the so called comparison matrix. The same is done for the clusters
themselves. A comparison matrix is generated for each relationship between two clusters.
Then for each comparison matrix the consistency ratio is computed and in case that it exceeds
the predefined limit, the judgments responsible for this excess are located and corresponding
questions are redirected to the decision maker for reassessment until the desired level of
consistency is reached. As measure of deviation from consistency, the introduced by Saaty
1996 consistency index (C.I.) is used:

C.I.=
λmax−n

n−1
(6.1)

where λmax is the Perron eigenvalue of the positive reciprocal matrix being examined. The
consistency ratio (C.R.), of the pairwise comparison matrix is the ratio of its inconsistency
index C.I. to the corresponding random index value, C.R. = C.I.

R.I. . Random index (R.I.) val-
ues are computed using multiple simulations of randomly created comparison matrices and
calculating the average of the consistency index (Saaty and Sagir, 2009). If the C.R. of a
pairwise comparison matrix is larger than 10% then it is necessary to find which are the
most inconsistent judgments in that matrix and ask the decision maker to consider changing
his judgment to a value that will lead to an acceptable value of C.R. The most inconsistent
judgment can be computed using the formula:

Max(ai j ∗
w j

wi
∀ i, j ∈ 0,1, ..,n) (6.2)

where ai j is the (i, j) item of the comparison matrix and wi,w j are the corresponding weight
values.
The next step consists in the computation of the weight vector that corresponds to each
comparison matrix and the combination of the vectors to create the initial Cluster Matrix and
Supermatrix. To generate the Cluster Matrix from the pairwise comparison of the clusters
we calculate the limit priorities of the corresponding matrices. To do so, starting from the
matrices that were formed from the pairwise cluster comparisons, we compute the weight
vector, raise the matrix to n + 1 where n gets values [1,2, ...] and then compare the new
weight vector to the old one. When the old and new weight vectors are equal, we have
reached the goal of computing the weights for the specific cluster. Beforehand, is known
that in some point the weight vector will be stabilised because the initial weight vector was
column stochastic. This operation is repeated for all the clusters contained in the model. The
weight vectors are then put together to formulate the Cluster Matrix. The algorithm (O(n))
for this process is shown in Algorithm 6.11.



6.2 Decision Making using the Analytic Network Process 89

Algorithm 6.1: Cluster Matrix Calculation
foreach cluster C do

repeat
A[,] = Get (pairwise comparison results that have C as context cluster);
W[] = RowSum (A[,]);
TotalSum = Sum (A[,]);
W[] = W[]/TotalSum;
Wold =W ;
Anew = A∗Aold ;
Calculate (Wnew);
if Wnew =Wold then

Stop ( );
else

Aold = Anew;
end

until Wnew =Wold ;
end

When the weight vectors for all the clusters are computed, the Cluster Matrix can be formed
by setting as Cluster Matrix column the weight vector that corresponds to the column’s clus-
ter. In case of Group Decision, on this step before computing the limit priorities all group
members’ pairwise comparisons per context cluster are combined, using the geometric mean
and then the above process can be initiated.
The Supermatrix consists of the normalised pairwise comparisons on a node level. This ma-
trix is used to represent the flow of influence from each element of the network on all other
elements in the same network. It is composed of principal eigenvectors of all the model’s
elements. To compute the Supermatrix the same process used for computing Cluster Matrix
is used. The only point that needs attention is the handling of blocks, a block, consists of the
weight vectors of its child nodes. Elements that have zero value correspond to elements that
have no influence on the element in question.
The Weighted Supermatrix is nothing more than a stochastic Supermatrix. Indeed, from
the initial Supermatrix to get the Weighted Supermatrix, first the Supermatrix is trans-
formed to column stochastic and then the Hadamard product of the updated Supermatrix
with Cluster Matrix, is calculated. If needed the columns are again normalised to keep
summing to 1. Attention should be given to columns that are from the beginning stochas-
tic and thus should not take part in the transformations. Furthermore, in the case where
an entire vector but not all vectors in that component are zero then the weighted col-
umn must be renormalized. Last issue are sink components that need not to be included
in the above calculations and whose priorities will be used during the final synthesis of



90 6 Solution Process

the results. In Algorithm 6.12, a more formalised way of describing this process, is shown.

Algorithm 6.2: Weighted Supermatrix Calculation
foreach column of the Supermatrix S[,] do

if SumOfCol (S[,]) !=1 then
foreach item a in Col(S[,]) do

a = a* W[OwnerCluster];
end

end
end
foreach column of the Supermatrix S[,] do

if SumOfCol (S[,])!=1 then
foreach item a in Col(S[,]) do

a = a/SumOfCol (S[,]);
end

end
end

In the end, the Weighted Supermatrix is limited by raising it to a sufficiently large power
until it converges into a stable limit matrix and the weights of criteria and alternatives are
used to get the final priorities. Input is the stochastic matrix W , therefore, λmax = 1, because
the principal eigenvalue of a matrix lies between its largest and smallest column sums, and
all columns of a column stochastic matrix sum to 1. The idea is again to compute the limit
matrix by calculating powers of this matrix till the limit is reached, that is when W n+1 =W n.
At that point, all the columns of the matrix will be identical and priorities can be easily
computed for the elements of each cluster.
This is not always a straightforward calculation of matrix powers. The computational steps
differ based on the initial matrix’s morphology. There are three different computational paths:
the first one deals with irreducible and primitive matrices or reducible with no other unitary
roots besides the simple λmax = 1, root, the second deals with cyclic matrices and the third
one with hierarchies.
A matrix is reducible if it can be placed into block upper-triangular form by simultaneous
row/column permutations. Thus, a matrix is reducible(Muoneke, 1987; Mesnard and Diet-
zenbacher, 1995) when its associated digraph is not strongly connected. An easy way to
control if a square matrix is irreducible is based on the Perron–Frobenius theory of nonneg-
ative matrices where is proved that a square matrix is irreducible, if and only if for each i
and j, there exists some k such that (I +W )n−1 > 0. The corresponding model cannot have
source or sink nodes. Knowing that the matrix in question is irreducible, the next step is to
define if it is primitive or cyclic. A sufficient condition for a matrix to be primitive is to be a
nonnegative, irreducible matrix with a positive element on the main diagonal. In that case the
limit matrix calculation is given by raising the Weighted Supermatrix to large powers. On the
other hand, a square matrix A such that the matrix power Ak+n = An for a positive integer k is
called a cyclic matrix (Tan, 2013). If k is the least such integer, then the matrix is said to have
period k. If the matrix is reducible and cyclic then the result is calculated by averaging all
matrices belonging to a cycle and normalising the results by blocks. In the other case, when
the matrix in question is reducible we have to determine if λmax = 1, is simple or multiple
root and if there are other roots of unity or not. If there are other unitary roots then it is a
cyclic matrix and limit can be computed in the same way used for irreducible cyclic matrix.
If λmax = 1, is a simple root and the matrix is reducible the same computational steps with
those used for irreducible primitive matrix will give the desired result. If λmax = 1, is a multi-



6.2 Decision Making using the Analytic Network Process 91

ple root and the matrix is reducible then we are talking about hierarchies and the limit matrix
can be computed as the average of all powers of the matrix till the point that W k = 0, k ≤ n.
The idea behind the above calculations is simple, we initially have a graph, the ANP network,
which describes the one step transitions among the nodes and we need to calculate the overall
influence of all the transitions from any node of the graph to any other connected node, no
matter the path length. Each transition length is represented by the corresponding power of
the Weighted Supermatrix and the goal is to find that power of the Weighted Supermatrix
for which all columns are identical and next powers don’t add detail to the result. The fact
that the initial matrix is column stochastic guarantees the existence of such steady state. In
the proposed algorithm instead of having the conditions and then the path selection a unified
process (O(nk)) is proposed to avoid repetition of steps, as shown in Algorithm 6.13.
Summarising, the proposed multi-objective approach requires from the decision maker to se-
lect the desired optimisation objectives and the criteria and relationships among them, to be
able to prioritise the objectives. The ANP is used to generate the weight vector that reflects
the preferences of the decision makers. This weight vector, gives an a priori knowledge of the
decision makers preferences about the optimisation objectives. However, it is not a manda-
tory step, as the multi-objective optimisation process can be executed either using weights
generated through any other external method or the unweighted vector of the objectives.



92 6 Solution Process

Algorithm 6.3: Limit Matrix Calculation
A[,] = Weighted Supermatrix;
Ainit[,] = Weighted Supermatrix;
W[] = SumOfLines (A);
TotalSum = Sum (A[,]);
W[] = W[]/TotalSum;
// Calculate the first two powers of A
A[,] = A[,]*Ainit[,];
powerOfA++;
Add MemoryOfMatrices(A,1);
countOfMem++;
Add MemoryOfMatrices(A2,2);
countOfMem++;
repeat

// Check if A is cyclic
foreach matrix A’[,] in MemoryOfMatrices do

if A = A’ then
k = IndexOf(A’);
return (W(Average (A1,...Anodes−k));

else
countOfMem++;
MemoryOfMatrices = Add (A,powerOfA);

end
end
if countOfMem = Count (MemoryOfMatrices) then

Wold = W;
Anew= Ainit ∗Aold ;
powerOfA++; CalculateWnew;
// Simple ANP model
if Wnew = Wold then Stop;
;
// Hierarchy
else if Wnew = 0 then return (Average (W1,...,Wcur));
;
// Repeat the loop
else

Aold = Anew;
A=Anew;

end
end

until Wnew =Wold ;



6.3 Proposed Solution Algorithm 93

6.3 Proposed Solution Algorithm

6.3.1 Basic Scheme

The proposed solution algorithm is a flexible way of solving a variety of RCPSP problems. It
can be used both for the multi-objective and the single objective versions of project schedul-
ing. It is also adaptable to any combination of the existing RCPSP variations, therefore, it can
effectively and efficiently solve the simple RCPSP, the multi mode RCPSP, with or without
generalised precedence constraints, having or not variable renewable and/or non renewable
resource demands and requirements.
The backbone, of the whole process, is a Genetic Algorithm (GA) that acts as a moderator of
the solution process. The proposed process essentially lets the GA decide which algorithm
and decoding procedure is promising and work with it. This is achieved using additional
genes to enable the evolutionary process to decide which combination of solution algorithm
and decoding process is the best for the under examination problem. In other words, the
evolution is used not only to find a good solution for the problem but also a good algorithm
to solve the problem. The genetic algorithm adapts itself to the problem instance actually
solved. This way not only the list of activities to be scheduled but also the algorithm itself
and the decoding algorithm are subject to genetic optimisation.
Initially, the input data are analysed and transformed to a predefined form for ease of usage
and preprocessing is done to eliminate redundant data, like resource types that are abundant
and cannot affect the scheduling process, and ineffective or non executable modes. Then
an initial solution set is randomly generated and crossover and mutation operators are used
to generate the offspring population. At this point, the process is diversified based on the
problem type being solved: a) single objective, b) multi-objective with a priori preferences
(from the ANP) or c) multi-objective with a posteriori preferences (on the result set), as
shown in Figure 6.4.
Individuals (chromosomes) are composed of four parts: the ALGOgene representing the so-
lution algorithms that compete for survival, which are the best in class algorithms for project
scheduling (Kolisch and Hartmann, 2006): tabu search (TS), simulated annealing (SA), par-
ticle swarm optimisation (PSO) and genetic algorithm(GA), these algorithms herein will be
called auxiliary algorithms, the SGSgene denoting the usage of either the serial or the parallel
adapted SGS, to generate the schedule corresponding to the chromosme, the ActivityList that
is a permutation of the activities to be scheduled and the ModeList representing the selected
execution modes for each activity. The last pair of lists represents the initial solution or, when
grouped, the initial population that is fed to a solution algorithm defined by the ALGOgene
of the chromosome.
The proposed adaptive GA described in Algorithm 6.14, in order to generate the offspring
uses a two point crossover operator for the main body of the chromosome and a swap operator
for the auxiliary algorithm and the SGS genes. It also mutates the two genes and the activity
and mode lists with user defined probabilities (pmutALGO , pmutSGS , pmut).
Therefore, the moderator GA is responsible for mutation, crossover and selection of the next
generation and the auxiliary algorithms are responsible for the search of a sub-space of the
solution space, based on the individuals that were given as input, the update of the given
individuals in relation to the results found and the calculation of the fitness. As a result, the
auxiliary algorithms effectuate a parallel, local or global search, depending on the algorithm,
in the solution space of a chromosome or a group of chromosomes belonging to the current
generation and exchange the given chromosomes with better ones, having better fitness value,
as shown in Figure 6.5.



94 6 Solution Process

Current Population

Offspring Population

Current U Offspring

New Population

ActNumber

 crossover & mutation

ActNumber

POP

POP

ActNumber

1 6 2 3 8 7 4 5 9

1 2 6 4 8 7 5 3 9

1 2 6 4 8 7 3 5 9

1 3 6 4 8 7 5 2 9

1 4 6 2 8 7 5 3 9

1 2 6 4 8 7 5 3 9

1 0

0 2

0 3

0 2

0 3

1 1

Single 
Object.

VEGA 
ANP

PARETO

1 3 6 4 8 7 5 2 9

1 4 6 2 8 7 5 3 9

1 2 6 4 8 7 5 3 90 2

0 3

1 1

1 6 2 3 8 7 4 5 9

1 2 6 4 8 7 5 3 9

1 2 6 4 8 7 3 5 91 0

0 2

0 3 ActNumber

1 6 7 3 8 2 4 5 9

1 2 4 8 6 7 5 3 9

1 8 6 4 2 7 3 5 91 0

0 2

0 3

Fig. 6.4 Solution process moderator basic flow of events

Current U Offspring

Init POP - GA

Init solution - SA

Init sworm - PSO

Init solution - SA

Init solution - TS

Init solution - TS

Best found POP - GA

Best found solution - SA

Best found sworm - PSO

Best found solution - SA

Best found solution - TS

Best found solution  - TS

New Population

ActNumber

1 2 6 4 8 7 3 5 91 0

1 6 2 3 8 7 4 5 90 1

1 2 6 4 8 7 5 3 90 3

1 2 6 4 8 7 5 3 90 2

1 3 6 4 8 7 5 2 90 3

1 4 6 2 8 7 5 3 91 0

1 6 2 3 8 7 4 5 90 0

1 2 6 4 8 7 5 3 90 3

1 2 6 4 8 7 5 3 90 2

1 3 6 4 8 7 5 2 90 0

1 4 6 2 8 7 5 3 91 1

1 2 6 4 8 7 3 5 91 0

1 4 6 2 8 7 5 3 91 0

1 6 2 3 8 7 4 5 90 0

1 3 6 4 8 7 5 2 90 0

1 6 2 3 8 7 4 5 90 1

1 4 6 2 8 7 5 3 91 1

1 2 6 4 8 7 5 3 90 2

1 2 6 4 8 7 5 3 90 2

1 2 6 4 8 7 5 3 90 3

1 3 6 4 8 7 5 2 90 3

1 2 6 4 8 7 5 3 90 3

GA

SA

SA

TS

TS

PSO

1 7 6 4 8 2 3 5 91 0

1 6 4 2 8 7 5 3 91 0

1 3 2 6 8 7 4 5 90 0

1 2 6 7 8 3 5 2 90 0

1 2 3 6 8 7 4 5 90 1

1 6 8 2 4 7 5 3 91 1

1 3 5 4 8 7 2 6 90 2

1 3 6 4 8 7 5 2 90 2

1 2 8 4 6 7 5 3 90 3

1 3 7 4 8 6 5 2 90 3

1 2 3 4 8 7 5 6 90 3

T
w
o 
T
o
u
r
n
a
m
e
n
t

1 7 6 4 8 2 3 5 91 0

1 3 2 6 8 7 4 5 90 0

1 2 6 7 8 3 5 2 90 0

1 2 8 4 6 7 5 3 90 3

1 3 7 4 8 6 5 2 90 3

1 3 5 4 8 7 2 6 90 2

Fig. 6.5 Usage of auxiliary algorithms

The selection strategy and the fitness calculation is differentiated based on the specific prob-
lem type. In the case of single objective, fitness is calculated straightforward using the cor-
responding objective function on each decoded chromosome. If there are multiple objectives
and a priori preferences, then the population is split in sub-populations, each one corre-
sponding to one objective and the fitness is computed using the corresponding objective per
population, then the sorted chromosomes of both the initial and the offspring sub-populations



6.3 Proposed Solution Algorithm 95

Algorithm 6.4: Moderator GA
set populationSize= POP;
set problemType= UInput;
set crossoverType, probMutationALGO, probMutationSGS, probMutation;
set generation counter g = 0;
set AlgoNum= 4;
set emptySlots= POP;
set ObjNum= UInput;
// generate initial population P0
for i = 0 . . .POP do

P0 = P0∪GenerateRandomActList;
P0[i].Algo = imodAlgoNum;

end
for i = 0, . . . ,POP/2 do

P0[i].SGS =serialSGS;
P0[i+POP/2].SGS =parallelSGS;

end
Pg = P0;
while stopping criteria not met do

// generate offspring population Pgchildren
Pgchildren = Crossover Pg ;
Pgchildren = Mutate Pgchildren ;
// combine current and offspring population
Rg = Pg∪Pgchildren ;
// choose selection strategy based on input
switch problemType do

case singleObjective
for i = 0 . . .POP do

if Rg[i].Algo = SA then SA (Rg[i], out Fit (Rg[i]));
;
if Rg[i].Algo = T S then TS (Rg[i], out Fit (Rg[i]));
;
forall the Rg[i].Algo = GA do

GA (Rg[i], out Fit (Rg[i]))
end
forall the Rg[i].Algo = PSO do

PSO (Rg[i], out Fit (Rg[i]))
end

end
Pg =TwoTournamentSelection (Rg);

end
case ANPmultiObjective ANPMOGA ();
;
case ParetoOptimality ParetoGA ();
;

endsw
g = g+1

end

are used to fill the next generation in proportion to the given weights. In the third case, the
Pareto optimality concept is explicitly utilised and each chromosome is assigned a fitness
value based on its rank in the population and not on its actual objective function value. For
those solutions that belong to the same Pareto front, if sorting is needed, then the Chebycheff
metric, is used.



96 6 Solution Process

6.3.2 Preprocessing

In the herein modelled problem, generalised precedence constraints, preemptive activities,
variable resource requirements and availabilities co-exist in the same instance and therefore
a complex situation emerges when trying to generate a feasible schedule. To handle the com-
plexity a preprocessing procedure is applied over the project data to lower the complexity of
the process, by transforming the inputs in a more manageable form, prepare for the solution
process and limit the search space.
Preemption is internally handled by generating sub-activities. If the user has defined specific
split points, for example, as percentage of completion of the task, then these points are used
to split the task and for each split point finish to start relations with zero lag are added to
the list of constraints. In the second case, that splits can be randomly made over the duration
of the activity, unitary splits are set by generating subtasks with one time unit of duration
and connecting each part with the next one with start to finish relations with zero lag. After
these transformations the problem can be handled as non preemptable, as preemption has
been handled through splitting of the related tasks and the generation of additional finish to
start relationships between the consecutive parts.
The given set of non renewable resources may contain resources that their availability is
greater than the maximum demand, called redundant.These resource types do not constraint
the scheduling of the activities as they are abundant, therefore cannot affect the scheduling
process and can be omitted during the computational phase. A non renewable resource type
is defined as redundant when the sum of the maximum usage of this resource type for all the
activities, that is given by taking the mode that has the maximum resource usage, is less or
equal to the available amount, as shown in Algorithm 6.15. However, resource requirements
and availabilities are not constant over time, thus each time period should be examined sep-
arately and if the resource type is redundant in all the time periods then it can be eliminated.

Algorithm 6.5: Redundant Modes
input : Activities, ResourceRequirements, ResourceAvailabilities,

NonRenewableResources, Modes
output: RedundantNonRewableResources
forall the i ∈ Activities do

forall the m ∈Modes[i] do
forall the k ∈ NonRenewableResources do

sum[k,m] = sum[k,m]+ResourceRequirements[i,k,m];
end

end
end
forall the m ∈Modes[i] do

forall the k ∈ NonRenewableResources do
if sum[k,m]> ResourceAvailabilities[k,m] then add (k,redundantRes);
;

end
end
return (redundantRes);

Given modes, can be non executable, however, we do not imply that the project manager
has entered a mode that cannot be executed, which is an easy to handle mistake, but that
the requirements set by a mode when combined to the rest of the activities and given spe-
cific resource availabilities cannot be satisfied by any combination of modes of all the other



6.3 Proposed Solution Algorithm 97

activities. A mode is defined as non executable when its resource demand for one or more re-
source types, when added to the minimal resource demands (per type) of all the other project
activities, exceeds the availability for at least one time period, as shown in Algorithm 6.16.

Algorithm 6.6: Non executable Modes
input : Activities, ResourceRequirements, ResourceAvailabilities,

NonRenewableResources, NonRenewableResources, Modes
output: NonExecutableModes
forall the k ∈ NonRenewableResources do

set minResUsage[k]=minResUsage (k,Modes,ResourceRequirements);
forall the i ∈ Activities do

forall the m ∈Modes[i] do
if ResourceRequirements[i,k,m]+minResUsage[k]> ResourceAvailabilities[k]
then

add (Modes[i],nonExecutableModes);
end

end
end

end
forall the k ∈ RenewableResources do

set minResUsage[k]=minResUsage (k,Modes,ResourceRequirements);
forall the i ∈ Activities do

forall the m ∈Modes[i] do
if ResourceRequirements[i,k,m]> ResourceAvailabilities[k] then

add (Modes[i],nonExecutableModes);
end

end
end

end
return (nonExecutableModes);

A mode beside not being possible to be executed can also be inefficient. A mode is called
inefficient, when duration, renewable and non renewable demands are higher than those of
all the other modes of the same activity, as shown in Algorithm 6.17. All inefficient modes
should be omitted from the scheduling process as they cannot lead to a good solution.



98 6 Solution Process

Algorithm 6.7: Inefficient Modes
input : Activities, ResourceRequirements, ResourceAvailabilities,Resources
output: Inefficient Modes
forall the i ∈ Activities do

forall the mi ∈Modes[i],m j ∈Modes[i],mi 6= m j do
if d[mi]≥ d[m j] then

forall the k ∈ Resources do
if ResourceRequirements[i,k,mi]≤ ResourceRequirements[i,k,m j] then
count ++;
;

end
if count=ResourceRequirements.length then add (mi, i,inefficientModes);
;

end
end

end
return (inefficientModes);

6.3.3 Proposed Schedule Generation Schemes for the extended RCPSP

The majority of heuristics for project scheduling problems are based on the schedule gen-
eration scheme (SGS) that is an algorithm which schedules one activity in each step until
a complete schedule is constructed. In this process, the set of activities that are eligible for
scheduling are calculated for each step and a start time for the selected activity is computed
in such a way that all resource and precedence constraints are fulfilled. The activity selection
itself is not part of the SGS and it can be done for example by a priority rule or a genetic
representation.
Two types of schedule generation schemes are available for the standard RCPSP, namely the
parallel SGS and the serial SGS (Kolisch and Hartmann, 1999). The parallel SGS is based
on activity incrementation, operates on the set of non-delay schedules and its search space
might not contain the optimal solution. In each step, it schedules all those activities whose
predecessors have already been scheduled and can be resource feasibly scheduled at that
time instant. The serial SGS is based on activity incrementation, constructs active schedules,
where no activity can be left shifted without delaying some other activity and its search space
will always contain the optimal solution (Sprecher, 1994). In each step, it selects an eligible
activity, whose predecessors have already been scheduled, and schedules it at the earliest
resource feasible time.
The behaviour of both serial and parallel SGS can be differentiated when the standard
RCPSP’s assumptions about preemption, execution mode, activities precedence and resource
types, requirements and availability, do not hold. Below, the most common schedule genera-
tion approaches for each case are summarised:
a) splittable activities: when the split points are known in advance an easy way to handle

splittable activities is by creating the corresponding sub-tasks and adding finish to start re-
lationships between each couple of parts. In case of random splits each random set of split
points would lead to a slightly different activity network and based on the optimisation



6.3 Proposed Solution Algorithm 99

objectives the most fitted would be selected through an iterative process. In any case, the
standard series/parallel SGS can be used in the generated network with no other changes.

b) multiple execution modes: usually the mode selection process is handled separately. After
fixing the activities modes the standard SGS can be used.

c) generalised temporal constraints: in this case even the process of finding a feasible sched-
ule is NP hard. Having to handle generalised precedence constraints elevates the complex-
ity of usually simple calculations as the ES and LS of the activities composing the project.
The existence of both maximal and minimal time lags leads in networks with cycles,
where at least one arc in each cycle corresponds to a maximal time lag. Cycles of positive
length do not make any sense as they correspond to constraints like: si ≥ si + l, l > 0. Cy-
cles, having all of their arcs zero weighted, correspond to a set of activities that should be
started at the same time. Early and Late Start of activities are calculated using the Floyd
Warshall algorithm (Neumann and Morlock, 1993), as shown in Algorithm6.18.
The goal is to find the longest path li j between all pair of activities (i, j) with i, j ∈ V . In
this algorithm, we start from the given generalised constraints and we convert all of them
to start-to-start precedence constraints with lags, using the formulas introduced in section
5.5.1. The resulting data are used to form the initial distance matrix, as shown in equation
6.3.

distMatrixi, j =


li j = lagi j, ∀(i, j) ∈ G
0, i = j
−∞, otherwise

(6.3)

The initial distance matrix shows the direct paths from node i to node j. Following an
iterative process takes place, where at each iteration k + 1, the longest path from i to j
such that any intermediate vertices on the path are chosen from the set {1,2,3..k}, is
calculated. There are two possibilities either k is not a vertex on the path and the longest
path has length l(k)i j or k is a vertex on the path and the longest path has length l(k)ik + l(k)k j .
The last iteration, k = (|V |+1) will give the longest path between each pair of activities
(i, j). In the final distance matrix, the first line, which corresponds to the dummy start
activity, gives the ES of all the activities in the network. Similarly, the LS of the activities
is calculated as LSn−LSi, where LSn is the latest start time of the dummy end activity and
can be equal either to ESn or an upper bound T of project total duration and LSi is the
length of the longest path from node i to node n, as it is given by the last column of the
final distance matrix, as shown in the example of Figure 6.6.
A precedence graph can be generated by creating edges for all li j > 0 or li j = 0 and l ji < 0
and eliminating redundant arcs (Neumann et al., 2002; Neumann and Zimmermann, 2002;
Neumann and Schwindt, 2002).



100 6 Solution Process

1 6

7

4

2

5

3
4

5

 -12
3

 -11

0

2

1
2

 -5 -11

2

5

23

(a) (b) (c)

Fig. 6.6 (a) Example of graph with generalised precedence constraints, (b) initial distance matrix and (c) final distance matrix

Algorithm 6.8: Floyd Warshall Calculations
input : Activities, actNum, GeneralisedPrecedenceRelations, Durations
output: ES[], LS[]
distMatrix[]=Calculate (GeneralisedPrecedenceRelations, dist[i, j]);
for k=1 to actNum do

for i=1 to actNum do
for j=1 to actNum do

distMatrix[i, j] =
max(distMatrixOld[i, j],distMatrixOld[i,k]+distMatrixOld[k, j]);

end
end
distMatrixOld = distMatrix;

end
// set ES as the 1st line’s values
for i=1 to actNum do ES[i]=distMatrix[0,i];
;
// set LS using the nth column’s values
LS[actNum]=ES[actNum];
for i=1 to actNum do LS[i]=LS[actNum]-distMatrix[i, actNum];
;

The corresponding SGS is an extension of the standard SGS where an unscheduling step
is added to handle the case when in some step the selected activity cannot be scheduled
without breaking either some precedence or resource constraint.

d) time dependent resource demands and availabilities: although the standard SGS might
ommit some active schedules and therefore the optimal solution, it has been used with
very good results with no modifications (Hartmann, 2013)

In order to accommodate the requirements slight variations of serial and parallel Schedule
Generation Scheme with unscheduling steps (Neumann et al., 2003) are used, as shown in
Algorithms 6.19-6.21.
In the serial SGS with unscheduling step (Algorithm 6.19), the inputs are: a specific activity
list, a fixed mode list, both defined by the chromosome, along with the precedence constraints
and the resource requirements for each activity and resource type. It is an iterative process
where at each step from all the activities that are not already scheduled, it is selected one,



6.3 Proposed Solution Algorithm 101

using the priority given by the activity list and it is scheduled at the earliest resource feasible
time. If the earliest resource feasible time is later than the latest start time of the selected
activity then we perform an unscheduling step, otherwise the activity is scheduled and the
ES and LS of the unscheduled activities are updated accordingly. To avoid infinite repetitions
a maximum number of unscheduling steps is defined.

Algorithm 6.9: serial SGS with unscheduling
input : Activities, GeneralisedPrecedenceRelations, ResourceRequirements,

ResourceAvailabilities, ModeList
output: FeasibleSchedule
set V = {Activities};
setC = {i ∈ Activities|i completed};
set E = {i ∈ Activities|i eligible};
set Si = start time of activity i ;
set A = {i ∈C|Si ≤ t < Si +di};
set di∗i = longest path from i∗ to i;
S0 = 0;
C = {0};
u = 0;
while C 6=V do

Select ( j∗ ∈ E);
t∗ = min{t ≥ {ESc

i∗ | rk(Sc,T )+ rik ≤ Rk}, ∀ t ≤ τ < t +di, ∀k ∈ R};
if t∗ > LS j∗ then

u=u+1;
Unschedule ( j∗, t∗−LS j∗);

else
// schedule j∗ at time t∗
S j∗ = t∗;
C =C∪{ j∗};
// update ES j,LS j
forall the j ∈V −C do

ESc
j∗ = max(ESc

j, S j∗+d j∗ j);
LSc

j∗ = min(LSc
j, S j∗−d j j∗);

end
end

end
S = Sc;
return Schedule S;

The unscheduling step (Algorithm 6.20) consists in unscheduling all the already scheduled
activities that are related to the under consideration activity j∗ and affect the value of LSc

j∗

and right shift these activities for an amount of time equal to the difference of LS j∗ from the
tested time instance t∗. If there are no activities to be unscheduled then no feasible schedule
can be found and the algorithm exits otherwise, all the activities that due to the right shift
could be now scheduled earlier, Si > minh∈U Sh, are also unscheduled. Finally, the ES and LS
of all the activities are re-calculated.



102 6 Solution Process

Algorithm 6.10: Unscheduling
input : j∗,∆
output: Schedule, ES, LS
setU = {i ∈C| LS j∗ = Si−d j∗i};
// no fs schedule is found
if 0 ∈U || u > umax then exit (0);
;
// right shift of activities i ∈U
forall the i ∈U do

ESi = Si +∆ ;
C =C−{i};
// no fs schedule is found
if ESi >−di0 then exit (0);
;

end
// unschedule all activities i with Si > minh∈U Sh
forall the j ∈V −{C} do

ES j = max[d0 j,maxh∈U dh j];
LS j =−d j0;
forall the i ∈C do

ES j = max(ES j, Si +di j);
LS j = min(LS j, Si−d ji);

end
end

The parallel SGS (Algorithm 6.21) uses the same input data as the serial SGS and again
it generates a feasible schedule if there is one for the given data. However, this time the
iterations are time based and during each iteration all activities that can be resource and
time feasibly scheduled will be scheduled instead of having one activity being scheduled per
iteration as it was the case in the serial SGS.
First, the eligible activities are defined as those whose all their ”predecessors” have already
been completed. A tentative time t+ is calculated as the minimum early start of the set of el-
igible activities. For all the eligible activities, the activity with the highest priority is selected
based on the given selection rule and a time, t∗, that it can be resource feasibly scheduled is
computed. If t∗ is greater than the LS of the selected activity, an unschedule step takes place
otherwise t∗ is compared to the tentative time t+, if it greater then the ES of all the activities
are updated otherwise, the activity is scheduled and ES, LS are updated accordingly.



6.3 Proposed Solution Algorithm 103

Algorithm 6.11: parallel SGS with unscheduling
input : Activities, GeneralisedPrecedenceRelations, ResourceRequirements,

ResourceAvailabilities, ModeList
output: FeasibleSchedule
set V = {Activities};
setC = {i ∈ Activities|i completed};
set Si = start time of activity i ;
S0 = 0;
C = {0};
u = 0;
while C 6=V do

set G = {i ∈V −{C}|GenPred(i)⊂C};
set t+ = mini∈GESi;
set E = {i ∈ G|ESi = t+};
while E 6= { /0} do

// try to schedule activities at t∗ ≤ t+
j∗ = Select{ j ∈ E};
t∗ = min{t ≥ ES j∗ |rk(Sc,τ)+ r j∗k ≤ Rk, t ≤ τ ≤ t +d j,k ∈ R};
if t∗ > LS j∗ then

Unschedule ( j∗, t∗−LS∗j );
E = { /0};

else
if t∗ > t+ then

forall the j ∈V −{C} do
ES j = max(ES j, t∗+d j∗ j)

end
else

// schedule j∗ at time t∗
S j∗ = t∗;
C =C∪{ j∗};
forall the j ∈V −{C} do

// update ES, LS of all the activities
ES j = max(ES j,S j∗+d j∗ j);
LS j = min(LS j,S j∗−d j j∗)

end
end

end
end

end
S = Sc;
return Schedule S ;

6.3.4 Chromosomes

The moderator GA is used to adapt the solution method and schedule generation scheme to
the specific instance being solved. This is achieved by adding two new genes to the activity



104 6 Solution Process

list representation. The one is used for controlling the solution algorithm (AlgoGene) and
the other for the schedule generation scheme selection (SGSGene), as shown in Figure 6.7.
Furthermore, having multiple modes of execution per activity, an addition list containing the
corresponding modes (ModeList), is needed.

1 1 2 6 4 8 7 5 3 9

0 1serial 
SGS

parallel 
SGS

0 1GA SA 2 3TS PSO

ActNumber

1
ActID

0         1         2        3         4       5       6        7       8
0 1 1 2 3 1 1 3 0

ActNumber
ModeID

0         1         2        3         4       5       6        7       8

  

  

Activity
 List  

1 Mode
List

Fig. 6.7 GA chromosome

Each individual (chromosome), is a composite class formed by:
· the SGSGene, defining which decoding procedure should be used,
· the AlgoGene, defining the solution algorithm that should be applied to the chromosome,
· the ActivityList, consisting of the ID’s of the project activities, where ActNumber is the

total number of activities including the dummy start and end and
· the ModeList containing the selected execution mode for each activity.
To obtain the schedule corresponding to a chromosome, serial or parallel schedule generation
scheme (SGS) with unscheduling is used, as described in section 6.3.3. The selection of
the SGS algorithm is based on the value of the SGSGene, 0 for serial and 1 for parallel
SGS. In these SGSs, instead of using priority rules to select which eligible activity should
be scheduled next, the activities are taken in the order given by the ActivityList. Attention
should be given to the fact that the SGS is used after applying the solution algorithm defined
in the AlgoGene and not straightforward as it usually happens.
The ActivityList is a precedence feasible permutation of the activities, meaning that each
activity is positioned after all its immediate predecessors. In the proposed process, the
ActivityList is created by setting the dummy start and end to the first and last position of
the vector and then randomly choosing the remaining activities. Afterwards, a time feasi-
bility check is used to purge those permutations that do not satisfy the given generalised
precedence constraints.
The ModeList defines for each activity which execution mode will be used, therefore it de-
fines the duration and variable renewable and non renewable resource requirements of the
corresponding activity. The ModeList is a vector of modes. The position of a mode in the
list represents the activity ID to which it is related. Each mode in ModeList identifies the
execution mode of the activity placed in the corresponding position of the ActivityList.

6.3.5 Initial Population

In the initial population, the special genes (AlgoGene and SGSGene) are given equal num-
ber of chromosomes, for example if the population size (POP) is 100 and we use 4 pos-
sible solution algorithms (GA,T S,SA,PSO) then we will have 25 chromosomes having



6.3 Proposed Solution Algorithm 105

AlgoGene = GA with half of them having SGSGene = 0 and the rest SGSGene = 1, as shown
in Figure 6.8.

0 1 2 6 4 8 7 5 3 90

0 1 6 2 4 8 7 5 3 90 0 1 2 6 7 8 5 4 3 92

0 1 2 6 7 8 4 5 3 92

POP/4
POP/4

POP/8

0 1 2 6 8 4 7 5 3 91

0 1 2 6 8 7 4 5 3 91

0 1 2 6 4 7 5 8 3 93

0 1 2 6 4 7 8 5 3 93

POP/4
1 1 7 6 8 4 2 5 3 91

1 1 7 6 8 2 4 5 3 91

POP/4

1 1 2 4 7 6 5 8 3 93

1 1 2 6 7 4 8 5 3 93

1 1 2 8 6 7 5 4 3 92

1 1 2 8 7 6 4 5 3 921 1 2 4 6 8 7 5 3 90

1 1 6 2 4 8 7 5 3 90

POP/8

POP/8

POP/8

POP/8

POP/8

POP/8

POP/8

GA TS

SA PSO

0 1 1 3 3 1 1 3 0

0 1 1 1 1 1 1 3 0

0 1 1 0 3 1 1 3 0

0 1 3 2 0 1 1 3 0

0 0 0 2 3 1 1 3 0 0 3 3 3 3 1 1 3 0

0 1 1 0 0 1 1 2 00 2 1 1 3 1 1 3 0

0 1 1 2 3 2 2 3 0 0 0 1 2 2 1 1 0 0

0 2 2 2 3 1 1 3 0 0 0 0 2 3 1 1 3 0

0 2 2 2 2 1 1 3 00 1 3 2 3 1 1 3 0

0 2 1 2 3 1 2 3 00 2 1 0 3 1 1 3 0

Fig. 6.8 Example of initial population

Activity and mode lists are randomly generated. In the case of activity list, positions 0 and
ActNum-1 are set to activity id numbers 1 and ActNumber and the rest are randomly gen-
erated unique numbers in the span from 2 to ActNumber-1. Each generated list is checked
against the generalised precedence constraints and if successful, the list is an ActivityList and
it is used to form a chromosome.
The ModeList is formed similarly. For each activity, a mode is selected randomly in the span
[0,modesNum[ActID]−1] and all of them form the list of modes. No constraints need to be
satisfied by the ModeList although a mode improvement process can be used to improve the
selected list.

6.3.6 Operators

6.3.6.1 Crossover

Based on the experimental results presented in Hartmann (1999), the two-point crossover
that is an extension of the one-point crossover, was selected for both the ActivityList and



106 6 Solution Process

the ModeList. We randomly choose two chromosomes from the current population, let X
(mother) and Y (father) be the parent chromosomes, then we randomly draw two integers, q1
and q2 with 1≤ q1 < q2 ≤ ActNumber and we form two new chromosomes, XY (daughter)
and Y X (son), as shown in Figure 6.9.

0 3 3 3 1 2 2 1 0

0 1 1 1 3 1 1 2 0

0 1 2 6 4 8 7 5 3 90

0 1 2 6 4 8 5 7 3 90

1 1 8 5 6 2 7 4 3 92

Mother

Father

Daughter

Son 1 1 8 5 6 2 4 7 3 92

q1 q1 q2q2

0 3 3 3 3 1 1 1 0 0 1 1 1 1 2 2 2 0

Fig. 6.9 Crossover operator

The XY chromosome will get from chromosome X the activities for the positions 1, . . . ,q1,
from Y the activities q1 +1, . . . ,q2 and again from X the remaining q2 +1, ...,ActNumber.
Note that for the second and third part of the chromosome each time we take the lowest
index from X(Y ) that is not already included in the list. The Y X chromosome is formed
analogously. This operator has been proven that in case of FS precedence constraints always
leads to precedence feasible lists (Hartmann, 1999). The additional genes (AlgoGene and
SGSGene) are inherited from X chromosome for the XY child and from Y for the Y X child.

6.3.6.2 Mutation

Mutation operators are used to diversify the population in ways that the crossover operator
cannot do. This usually is achieved by introducing new combinations in the population to
guarantee population diversity. There are three mutation operators, as shown in Figure 6.10.

1 1 8 5 6 2 7 4 3 92

0 1 7 5 6 2 8 4 3 90
1 1 7 5 6 2 8 4 3 92

0 1 7 5 6 2 8 4 3 92

pmut

q1 q2

pmutSGS

pmutALGO
random(0, #Algos)

0 3 3 3 3 1 1 1 0

0 1 3 3 3 3 1 1 0
0 3 3 3 3 1 1 1 0 0 3 3 3 3 1 1 1 0

Fig. 6.10 Mutation operator

The first one is applied to the ActivityList and the ModeList and leads to the exchange of
positions between activities jq1 and jq2 with a probability of pmut . The second one is applied
to the SGSGene where with a probability of pmutSGS the SGSGene will get its complementary



6.3 Proposed Solution Algorithm 107

value, therefore 0 changes to 1 and viceversa, this mutation operator is not very useful in the
initial iterations as the SGSGenes are quite balanced in the population but it is very effective
in latter stages where one of the two SGS algorithms has already dominated the population.
The last mutation operator is applied to the AlgoGene where with a probability of pmutALGO

the AlgoGene will get a random value, another solution algorithm, different from its current
value. The overall mutation is accepted only when the output results in a chromosome that
leads to a generalised precedence feasible schedule.

6.3.7 Selection Strategy

After applying the crossover and mutation operators we have a total population size of
2×POP and we want to keep only POP chromosomes. The selection of which chromo-
somes should pass to the next generation is done using the two tournament selection method.
It involves randomly choosing two candidates from the current population, comparing their
fitness values and removing from the population the less fit. Two randomly chosen individu-
als compete for survival. The one that has worse fitness value ”dies” and it is removed from
the population. The process is repeated until POP individuals remain ”alive”. A fixed pop-
ulation of size POP will require 2×POP tournaments. This selection strategy is used as is,
in case of single objective optimisation, otherwise, this selection strategy is embedded in a
more complex optimisation process.

6.3.8 Multi-Objective Optimisation Process

Although, resource constrained scheduling is an inherently multi-objective problem, it has
traditionally been solved considering only one objective, due to the difficulty of defining
good heuristics that will handle this multi-objective combinatorial optimisation problem in a
flexible and efficient way, leading to good approximations of the optimal solutions.
When constructing the pay off table P, k×k, where k the number of objectives to be pursued
and pi j the value of the objective i for the best schedule from the viewpoint of objective
j, the diagonal defines an ideal schedule which is infeasible in general, but can be used to
to calculate the distance of the computed solutions from the ideal. Since, usually there is
not a single solution that minimises all the objectives simultaneously, we aim at finding a
set of solutions where at least one of the objectives is better that the others, the so called
non dominated (Pareto) set. One solution y, a vector consisting of the values of the selected
objectives, dominates a solution x if its corresponding vector is worse or equal to the x vector.
A solution x is non dominated if there is no other feasible solution that dominates x.
The aim of meta-heuristics used to solve this kind of problems, is to obtain good approxi-
mations of the non dominated set of solutions, spread all over the frontier of those solutions.
More specifically, the main goal of any multi-objective optimisation approach is the detection
of the highest possible number of Pareto optimal solutions that correspond to an adequately
spread Pareto front with the smallest possible deviation from the actual Pareto front. Ide-
ally, the Pareto set found should be a subset of the Pareto optimal set, solutions should be
uniformly distributed and diverse in order to provide the project manager a true picture of
trade-offs, and the whole spectrum of the Pareto front should be captured, by investigating
solutions at the extreme ends of the search space.



108 6 Solution Process

In the proposed solution two different approaches are provided: a) a Pareto ranking method
where the solution set is ranked according to a predefined dominance rule that prioritises so-
lutions that are non dominated or dominated by a few other solutions and penalises solutions
located in regions of the objective functions space which are covered by densely populated
sections of the Pareto front, and b) an iterative vector evaluated approach where the objec-
tives are ranked using ANP and then the solution space is split in sub-spaces. Each sub-space
is evaluated with respect to a different objective and the weights are used to define the part of
each sub-space that will be used to form the aggregate solution space and move to the next
iteration.

6.3.8.1 Pareto Optimality

The proposed pareto-ranking approach is enfolded in the adaptive genetic algorithm that
moderates the solution process. It explicitly utilises the concept of Pareto dominance in eval-
uating the fitness of the solutions. The population is ranked according to a dominance rule,
and then each solution is assigned a fitness value based on its rank in the population, not its
actual objective function value. For those solutions that belong to the same Pareto front, if
sorting is needed, then the Chebycheff metric, is used. Therefore, the closeness of two solu-
tions x,x′ is calculated as || f (x)− f (y)||= maxk| fk(x)− fk(x′)|, where k are the optimisation
objectives and fk the objective function corresponding to objective k.
The proposed approach, takes from NSGA II (Non dominated Sorting Genetic Algorithm)
proposed by Deb et al. (2002) but instead of using the ”crowding distance” to sort solutions
belonging to the same Pareto front, the Chebycheff metric, is used. The initial population Pg
as well as the offspring population are externally handled and the union of these populations,
Rg is given by the moderator GA. This population is sorted according to non domination
level and the best solutions of the combined population are passed to the next generation, as
shown in Figure 6.11.

Current U Offspring

Calculate Solutions

Non Dominated 
Sorting

New Population

ActNumber

1 6 2 3 8 7 4 5 9

1 2 6 4 8 7 5 3 9

1 2 6 4 8 7 3 5 9

2POP

1 3 6 4 8 7 5 2 9

1 4 6 2 8 7 5 3 9

1 2 6 4 8 7 5 3 9

1 0

0 2

0 3

0 2

0 3

1 1

SGS: 1
Algo: 0

SGS:0
Algo:3

SGS:0
Algo:2

SGS:0
Algo: 1

5
10
..
3

0
1
...
0
2

Fitness= Rank

#solutions 
dominating it

DC

3
10
..
3

5
9
..
3

5
10
..
1

Values

c’(0)

c(0)

c’(1)

c’(1)
c’(2)

c’(2)

POP

Sort by
Closeness

c(2)
c’(2)

c’(2)

c’(3)

c’(4)
c’(5)

c’(5)

c(6)

c’(0)

c(0)

c’(1)

c’(1)
c’(2)

c’(2)

POP

Obj1
…
ObjN

Obj1
…
ObjN

Obj1
…
ObjN

Obj1
…
ObjN

Fig. 6.11 Pareto GA



6.3 Proposed Solution Algorithm 109

Each chromosome corresponds to a solution, which is assigned a fitness value based on its
non domination level Fi, i= 1,2, . . ., where F1 is the best level. During the selection, solutions
are taken with the non domination level order and if there is place in the next generation for
the entire set of solutions corresponding to a non domination level then it is passed as it is
otherwise, the solutions of the non domination level that will be partially copied to the next
generation, are sorted based on their closeness, as it is given by the Chebycheff metric, and
the most disperse solutions are kept, as shown in Algorithms 6.22 and 6.23.

Algorithm 6.12: Multi-objective Pareto Selection Strategy
InputFinput set(input Rg) set(output Pg+1) // calculate non dominated

sets for population Rg
Non-Dominated-Sort (Rg, out Fi, out rank[ ]);
// select chromosomes to pass to the next generation
foreach Fi do

set sizeF = count(Fi);
if emptySlots ≥ sizeF then

forall the solutions j ∈ Fi do
Copy (chromo( j), Pg+1);
emptySlots=emptySlots - sizeF;

end
else

SortClosenessDesc (Fi);
while emptySlots> 0 do

Take chromosome in desc order of closeness;
Copy (chromo( j), Pg+1);
emptySlots = emptySlots−1;
j = j+1;

end
end
set emptySlots=POP;

end



110 6 Solution Process

Algorithm 6.13: Non dominated sorting of vector of solutions R
// Calculate non dominated sets Fi
foreach chromo i ∈ R do

// Dominated Solutions by chromosome i
set DSi = /0 ;
// Domination Counter of chromosome i
set DCi = 0;
foreach chromosome j ∈ R do

if i dominates j then
DSi = DSi∪ j

else
DCi = DCi +1;

end
end
if DCi = 0 then

// rank is the fittness of chromosome i
rank[i] = 1;
// Fi is the i-th non dominated front
F1 = F1∪ i;

end
set counter=1;
while Fcounter 6= /0 do

// define set Q to temporary store members of the next
front

set Q = /0;
foreach chromosome i ∈ Fcounter do

foreach chromosome j ∈ DSi do
DC j = DC j−1;
if DC j = 0 then

rank[ j] = counter+1;
Q = Q∪{ j}

end
end

end
end
counter = counter+1;
Fcounter = Q;

end

6.3.8.2 ANP based Optimality

In the case that we have already calculated the weights corresponding to each objective, using
ANP or some other MCDA method, then a weight vector is formed and used during this pro-
cess. To approximate the Pareto optimal set by a set of non dominated solutions, a selection
algorithm inspired by the the vector evaluated genetic algorithm (VEGA) is used, as shown in
Algorithm 6.24. In this algorithm, the input is the union of parent and offspring populations
generated by the moderator GA. This population Pg, with size 2×POP is randomly divided



6.3 Proposed Solution Algorithm 111

into K equal sized, Ns = 2POP/K, sub-populations; P1,P2, . . . ,Pk. Then, each solution in
subpopulation Pi is assigned a fitness value based on the corresponding objective function fi.

Algorithm 6.14: Multi-objective ANP weighted Selection Strategy
input : Pg, ANPweights=[w1,. . . ,wk], K = total number of objectives, Ns = 2POP/K
output: Pg+1
// for each objective k
for k = 1. . . K do

// for each chromosome i
for i = 1+(k−1)Ns. . . kNs do

Fitness (i) =ObjectiveFunction (k,i);
end
Psubk =FormSubPopulation (Pg, 1+(k−1)Ns. . . kNs);

end
Select from Pg by subpopulations;
Pg+1=Form (w1×P′sub1

,. . . ,wk×P′subk
);

Crossover and mutation are performed by the moderator GA but the fitness and the final
formulation of the next generation are effectuated by this algorithm. The process of splitting
in subpopulations and using different objective functions for each one, is repeated to calculate
the fitness of all the given chromosomes. Solutions are selected by comparing subpopulations
corresponding to the same objective and keeping the best. The next generation’s population
is formed from the subpopulations, using proportional selection based on the given weight
vector, as sketched in Figure6.12.

Subpopulation k = 1

Subpopulation k = K

New 
Population

Current U Offspring

1 7 6 2 8 7 5 3 9Chromo Ns

1 2 6 4 8 7 3 5 9Chromo 1

1 2 6 4 8 7 5 3 9Chromo KNs

1 8 6 3 2 7 5 4 9Chromo 
1+(K-1)Ns

Obj 
Function 1

Obj 
Function K

5
10
20
3
4

11
17
13
19
22

2
3
4
4
5

9
10
11
13
16

c’(1)
c(4)
c(5)
c’(4)
c(1)

c’(2)
c’(3)
c(1)
c(3)
c’(5)

Fitness
Selected 

Chromosomes

Fitness
Selected 

Chromosomes

w1%

wK%

c’(1)
c(4)

c’(2)
c’(3)
c(1)

ActNumber

1 6 2 3 8 7 4 5 9

1 2 6 4 8 7 5 3 9

1 2 6 4 8 7 3 5 9

1 3 6 4 8 7 5 2 9

1 4 6 2 8 7 5 3 9

1 2 6 4 8 7 5 3 9

1 0

0 2

0 3

0 2

0 3

1 1

Fig. 6.12 ANP weighted multi-objective optimisation

6.3.9 Auxiliary Solution Algorithms

The proposed moderator GA uses chromosomes with embedded a solution algorithm, called
auxiliary solution algorithm. These auxiliary algorithms are used only during the fitness cal-
culation. More specifically, each time a fitness value is required instead of using the given
by the SGSGene schedule generation scheme to produce the schedule corresponding to the
chromosome, a more complex process is initialised. The given chromosome, or a group of



112 6 Solution Process

chromosomes that have the same AlgoGene, depending on the auxiliary algorithm’s type,
whether it needs a single initial solution or a group of them, is fed to the auxiliary algo-
rithm along with the objective function and after an evolutionary solution process an updated
chromosome or group of chromosomes along with their fitness is returned. However, in the
auxiliary’s algorithm body, the decoding process is effectuated using the SGS defined by the
SGSGene.
Following, a set of best in class evolutionary algorithms of proven efficiency and effective-
ness (Kolisch and Hartmann, 2006; Hartmann and Briskorn, 2010) in solving the single ob-
jective RCPSP, M-RCPSP and/or M-RCPSP/max are presented and used as auxiliary solu-
tion algorithms. The idea behind all these auxiliary algorithms concept is to use the modera-
tor GA to handle the evolution of which algorithm will be used and diversify the population
in a vast search space and use the auxiliary algorithms to try different meta-heuristic meth-
ods to search sub-sets of the search space, having a parallel search of different types done by
algorithms that are generally good but each type reacts better than the rest in some specific
instances.

6.3.9.1 Simulated Annealing

The Simulated Annealing (SA) approach proposed by Bouleiman and Lecocq (2003) as it
was adapted to the herein described chromosome type and auxiliary algorithms concept, is
shown in Algorithm 6.25.The moderator GA feeds this auxiliary algorithm with single chro-
mosomes. All the chromosomes of the current and offspring population of the moderator GA
having AlgoGene value equal to the SA’s ID are used as initial solutions. The chromosome
is the same as in the moderator GA but only the ActivityList and ModeList parts are handled
within this algorithm. Each one causes a separate execution of the SA algorithm having one
of the chromosomes as starting solution. This solution is used as basis to generate a so-called
neighbourhood by slightly perturbing it. The new solution will be accepted and used to pro-
ceed the search when it is better than the current one or with a parametrisable probability
(cooling temperature) even when it is worse. This parameter initially is set at such value to
allow the acceptance of a large proportion of the generated solutions and it is gradually de-
creased to reduce the acceptance rate of less promising solutions. This prevents the algorithm
from getting trapped in a local optimum at early stages. The algorithm is stopped as soon as
a stopping criterion reaches a predetermined value.
Neighbourhood generation begins with the current solution and a randomly selected activity.
The positions of this activity’s latest predecessor l p and earliest successor es are calculated.
Then the new position of the activity is randomly chosen within [l p, es]. The neighbour is
obtained by a cyclical (left/right) shift of all the activities placed between the old and the new
positions.



6.3 Proposed Solution Algorithm 113

Algorithm 6.15: Simulated Annealing
input : Activities, GeneralisedPrecedenceRelations, ResourceRequirements,

ResourceAvailabilities, Chromosome, ObjectiveFunction
output: Chromosome, Value
// define SA parameters
set N0,h,T0max ,steps,cycles;
// compute ES and LS times using Floyd-Warshall
Calculate-ES-LS (Activities, GeneralisedPrecedenceRelations);
// calculate initial solution’s value using SGS
set x0 =Chromosome, fx0 = SGS(Chromosome);
set xcurrent = x0, fxcurrent = fx0 ;
set xbest = x0, fxbest = fx0 ;
// cooling chain
for C Chains do

// set cooling temperature
T = T0max = 20% fx0 ;
// set number of moves for the 1st step
Ns = N0;
for S Steps do

// set cooling scheme
Ns = Ns× (1+h× steps);
for Np Neighborhoods do

x′ =Generate-Neighborhood (xcurrent);
fx′ = SGS(x′) ;
∆ = fx′− fxcurrent ;
if ∆ < 0 then

xcurrent = x′, fxcurrent = fx′ ;
if fx′ < fxbest then xbest = x′, fxbest = fx′ ;
;
if fxbest =ValueO fCP then exit;
;

else
if e−∆/T > yrandom then xcurrent = x′, fxcurrent = fx′ ;
;

end
end
// update cooling temperature
T = a×T ;

end
end
return (xbest , fxbest );

6.3.9.2 Genetic Algorithm

The Genetic Algorithms (GA) used is based on (Hartmann, 1998) genetic algorithm as shown
in Algorithm 6.26. In this GA, chromosomes are the same as in the moderator GA but only
the ActivityList and ModeList parts are handled within this algorithm. To obtain the cor-



114 6 Solution Process

responding schedule a form of serial schedule generation scheme (SGS) is used as defined
by the (unchangeable within this GA) SGSGene. Two-point crossover and mutation on the
ActivityList and ModeList are performed as usual. To compute the fitness of a chromosome,
first, the related schedule is found and then the value of the objective function of that schedule
gives the fitness.

Algorithm 6.16: Simple Genetic Algorithm
input : Activities, GeneralisedPrecedenceRelations, ResourceRequirements,

ResourceAvailabilities, Chromosomes[], ObjectiveFunction, NumOfMoves,
populationSize,crossoverType,probMutation, maxGenerations

output: Pg, Values[]
set generation counter g=0 ;
set POP=populationSize;
set Pg=Chromosomes[];
while g < maxGenerations do

// two-point crossover operator
Pgchildren =2p-Crossover Pg ;
// one-point random mutation with probMutation
Pgchildren =1p-Mutate Pgchildren ;
Rg = Pg∪Pgchildren ;
// calculate fitness based on ObjectiveFunction
Valuesg=ObjectiveFunction (Rg);
Pg=TwoTournament (Rg,Valuesg);
g = g+1;

end

6.3.9.3 Particle Swarm Optimisation

The PSO algorithm used as auxiliary solution algorithm is a new implementation as there
were very limited implementation for the RCPSP and all of them had not optimal results. In
the proposed approach the moderator GA, provides the initial population, called swarm, of
individuals, called particles, that will be iteratively updated using information from both the
local and the global search. This initial swarm is formed, as in the case of the GA, by all the
chromosomes with AlgoGene value equal to the PSO’s ID, in the current population of the
moderator GA along with its offspring. The particles are the same as in the moderator GA
but only the ActivityList and ModeList parts are handled within this algorithm. Each parti-
cle represents a solution, that for PSO is a candidate position. The particle is characterised
by its position and velocity. In PSO each iteration’s improvement is obtained by adjusting
the particle’s position and velocity based on it’s overall best position (local best) and the
best position ever found by all particles (global best). In Algorithm 6.27 is shown the PSO
algorithm’s formulation.



6.3 Proposed Solution Algorithm 115

Algorithm 6.17: Particle Swarm Optimisation
input : Activities, GeneralisedPrecedenceRelations, ResourceRequirements,

ResourceAvailabilities, Chromosomes[], ObjectiveFunction, NumOfMoves,
swarmSize, maxIterations

output: Swarmg, Values[]
set generation counter g=0 ;
set Swarmg=Chromosomes[];
set weight=1 // inertia weight
set c1= 0.45 // individual memory
set c2= 0.45 // global memory
EvaluateLocalBest (ObjectiveFunction (Swarmg));
EvaluatGlobalBest (ObjectiveFunction (Swarmg));
while g < maxIterations do

forall the i ∈ Swarmg do
set r1=random(0,1);
set r2= random(0,1);
// calculate velocity
velocityg[i] =
c1U(0,1)(LocalBest[i]−Swarmg[i])+ c2U(0,1)(GlobalBest[i]−Swarmg[i]));
// calculate new positions
Swarmg+1[i] = Swarmg[i]+ velocityg[i];
// calculate fitness based on ObjectiveFunction
Valuesg[i]=ObjectiveFunction (Swarmg[i]);

end
EvaluateLocalBest (ObjectiveFunction (Swarmg));
EvaluatGlobalBest (ObjectiveFunction (Swarmg));
g = g+1;

end

6.3.9.4 Tabu Search

Tabu Search (TS) starts with a single solution used to create a neighbourhood and then all the
generated solutions are evaluated and the best one is chosen and used in the next iteration.
This process can very easily lead to cyclic moves around a local optimum. In order to avoid
this problem a number of previous moves are stored in a memory like data-structure, the
so-called tabu list, which is used to reject repeating moves that could lead back to a recently
visited solution. Usually, a tabu status can be ignored only in the case that the proposed move
would lead to a new overall best solution, based on the so called aspiration rule (Nonobe and
Ibaraki, 2002b).



116 6 Solution Process

Algorithm 6.18: Tabu Search
input : Activities, GeneralisedPrecedenceRelations, ResourceRequirements,

ResourceAvailabilities, Chromosome, ObjectiveFunction, NumOfMoves,
MaxTryAdmissible, MaxTryBetter

output: fxbest ,xbest
// define TS parameters

set TabuListC = TabuListNC = 0 setTabuTenC = TabuTenNC =
√

N/2;
// calculate initial solution’s value using SGS
set x0 =Chromosome, fx0 = Value(SGS(Chromosome));
set xcurrent = x0, fxcurrent = fx0 ; set xbest = x0, fxbest = fx0 ;
// critical CPact and non critical nCPact activities
Calculate-ES-LS (Activities, GeneralisedPrecedenceRelations);
foreach i ∈ Activities do

if ES(i) = LS(i) then CPact =CPact ∪{i};
else nCPact = nCPact ∪{i};

end
while NotFoundAdm≤MaxTryAdmissible & NotFoundBetter≤MaxTryBetter do

// create list of candidate moves
while cnt < NumO f Moves do

tempActList=ActList;
random Q1,Q2;
tempActList= MoveAct (ActList,Q1,Q2);
if CheckFeasible (ActList)=TRUE then

SaveMove (Q1,Q2, CandidateList);
cnt = cnt +1;

end
end
// choose the best admissible move
set FindAdmissable= FindBetter=FALSE;
foreach move(Q1,Q2) ∈CandidateList do

tempActList=MoveAct (ActList,Q1,Q2);
if value(SGS (tempActList)< fxcurrent then

if CheckTabuStatus =TRUE then
move(Q1,Q2) tabu-restricted

else
if CheckAspirationTest =TRUE then

set BestMove=move(Q1,Q2);
FindAdmissable=TRUE;
NotFoundAdm=0;

end
end

end
end
// make the best admissable move
ActList= MoveAct (ActList, BestMove);
if value(SGS(ActList)< fxbest ) then

fxbest = value(SGS(ActList);
FindBetter=TRUE;

end
if FindAdmissable=FALSE then NotFoundAdm=NotFoundAdm+1;
;
if FindBetter=FALSE then NotFoundBetter=NotFoundBetter+1;
;
UpdateTabuLists();

end



6.3 Proposed Solution Algorithm 117

The Tabu Search algorithm implemented here takes from the algorithm proposed by Nonobe
and Ibaraki (2002b) with the difference that the moderator GA feeds this auxiliary algorithm
with single chromosomes representing initial solutions. All the chromosomes of the current
and offspring population of the moderator GA having AlgoGene value equal to the TS’s
ID are used for this purpose and each of them causes an independent execution of the TS
algorithm, which is presented in Algorithm 6.28





Chapter 7
Computational Results and Evaluation

7.1 Implementation

The proposed system, consisting of the model, the preprocessing algorithms and the mod-
erator algorithm along with the auxiliary solution algorithms described in chapter 6, was
implemented using the C#.NET programming language. C# is an object-oriented program-
ming language from Microsoft that aims to combine the computing power of C++ with the
programming ease of Visual Basic. C# is based on C++ and contains features similar to those
of Java.
The generated code provides a simple console application used for the experiments following
described. Furthermore, the same routines were used in a Microsoft Project Add-In that
provides the end-user with an easy to use interface from where project data in a predefined
format can be converted to MS-Project files, the proposed algorithms along with the best in
class algorithms from the literature can be applied to a specific data set and the results can
be visualised in the same environment, as shown in Figure 7.1.

119



120 7 Computational Results and Evaluation

Fig. 7.1 EMO-RCPSP: a Ms Project Add-In

The Microsoft Project Add-In, called EMO-RCPSP, has been developed as an outcome of
this Thesis. The idea was to enhance an existing application, which is widely used by project
managers as MS Project, to provide a simple way to apply the proposed model and algo-
rithms in real cases. EMO-RCPSP’s functionality (in detail presented in Appendix C) can be
grouped in two categories of new features:
· Input data handling features that provide the user ways to add information about the tasks,

like multiple modes of execution, variable usage of resources on each task, handling of
non renewable resources, etc.

· Scheduling features, which include the proposed algorithms along with other best in class
algorithms for project scheduling, ways of handling multi-objective optimisation and vi-
sualising the resulting solution scenarios.

More specifically, the user can either import data from text files or create a project using the
well known environment of MS Project. The first option is usually used by researchers as it
supports all the common formats provided by PSP Lib (Kolisch et al., 1995). In the second
case the project manager creates a project in MS Project by adding tasks, phases, resources
and precedence relationships, in the usual way. Then the tasks that can have multiple modes
of execution are selected and the modes are either automatically generated using the formula
e f f ort = work ∗duration and calculating all the possible integer combinations or the man-
ager manually enter specific modes. Similarly are defined which activities are splittable and
whether it is an automatic unitary split or splits can be done on specific user defined points (as
percentage of execution). In cases that maximal lags should be added, the tasks and amount
of lag in time units is manually entered as MS Project doesn’t support this feature. The non
renewable resources are added using a custom resource type and for each one a calendar
setting the available amounts per time period is defined. Finally, resource demands that vary
over time are also defined at a task level using a calendar like matrix to enter the resource
requirements per time period of execution.



7.3 Experimental Comparison to best in class algorithms 121

After having set up the project tasks, precedence relationships, resource requirements and
availabilities, it is the time of the optimisation objectives set up and optional definition of
weights for the selected objectives. Weights can either be entered directly or using ANP, that
is externally implemented. Finally, the optimisation algorithm to be used is selected along
with related options about the algorithm and the number of solution scenarios that should be
generated.

7.2 Experiments design

Two different experiments were designed and implemented: a) a comparison of the results
given by the proposed holistic model and algorithm to each specific problem that was inte-
grated in our model, as to prove that the proposed method leads to at least as good results as
the best known for each variation. In other words this experiment has as its goal to validate
that the proposed algorithm solves efficiently each of the problem variations that were in-
corporated in the model without loss in quality of results or execution time. b) a comparison
of the multi-objective approach to the single-objective results given on the above test cases
adapted for the multi-objective case to illustrate the differentiation of the results based on the
objectives that were set and which of the two multi-objective approaches was used.
As far as the algorithm parameters are concerned, we have defined their range of values
through some rough computational tests. However, it should be noted that a precise tuning
of these parameters would be needed to achieve the best performance of the algorithms, but
as the scope of both experiments is the validation this is not of major concern.

7.3 Experimental Comparison to best in class algorithms

Five different standard sets of benchmark instances from the literature have been used, one
for each RCPSP variation that was integrated in the proposed model. Therefore, bench-
mark instances for the RCPSP, PRCPSP, MRCPSP, RCPSP/max and RCPSP/t were used.
These instances are all available in the project scheduling problem library PSPLIB except the
RCPSP/t instances (for detailed information the reader is referred to Kolisch and Sprecher
1997 and were constructed by the project generator ProGen. In this study, for RCPSP, MR-
CPSP,RCPSP/max and RCPSP-t, problem instances were used. For RCPSP, PRCPSP and
RCPSP/t the first set consists of 480 instances and the second set consists of 600 instances
that have been generated by varying three parameters: network complexity (NC), resource
factor (RF), and resource strength (RS). The network complexity reflects the average num-
ber of immediate successors of an activity or in other words the average of non-redundant
precedence relations per activity. The resource factor is a measure of the number of resources
requested per job. The resource strength describes the scarceness of the resource capacities
as the ratio of available amount of resources of a specific type minus the minimum demand
for this resource type to the difference of the minimum resource demand from the corre-
sponding max resource demand when activities are scheduled at their critical path earliest
start. For MRCPSP, the c15, c21 and j10 PSPLIB datasets were used. For MRCPSP/max the
test set MM30 with 270 instances with 30 activities, 3, 4, or 5 execution modes, 3 renewable
resources, and 3 nonrenewable resources consisting of 270 instances with 100 activities, 3,
4, or 5 execution modes, 3 renewable resources, and 3 nonrenewable resources, were used.



122 7 Computational Results and Evaluation

Following, the average percentage deviation from the optimal makespan or from the best
lower and upper bounds (for instances for which only heuristic solutions are known) as stated
in the PSPLIB library at the time this research was performed, is reported and compared to
the best known results for each instance. The goal is to validate the proposed holistic model
by giving at least the same results with each problem type specific solution method and with
the same or better accuracy.
For each instance 100 repetitions of the experiment were performed to get the average values.
The experiments were executed using a computer with the following characteristics: Intel(R)
Core(TM) 2 Duo CPU P8600 at 2.40 GHz and RAM 8.00 GB. An excerpt of the results
obtained from this experiment for RCPSP, MRCPSP and MRCPSP/max are shown in Figures
A.1 - A.3.
An excerpt of the results of the experiment is shown in Figures A.1 - A.3. The results gained
from the execution of the proposed algorithm are compared to the optimum value, when it
is known or the best value reached by any other heuristic in all other cases. Furthermore, the
frequency of the optimum value is counted as to prove the effectiveness of the algorithm. In
some cases the values calculated by this algorithm are lower than the known best values.



7.3 Experimental Comparison to best in class algorithms 123

Filename Min Dur Max Dur Optimal Aver.Dev. OptimumFrequency of Opt

J301_1.RCP 43 45 43 0,0% 70%

J301_2.RCP 47 51 47 0,0% 90%

J301_3.RCP 47 47 47 0,0% 100%

J301_4.RCP 62 62 62 0,0% 50%

J301_10.RCP 45 46 45 0,0% 60%

J303_1.RCP 72 72 72 0,0% 100%

J303_2.RCP 40 40 40 0,0% 100%

J303_3.RCP 57 57 57 0,0% 100%

J303_4.RCP 98 98 98 0,0% 100%

J303_5.RCP 53 53 53 0,0% 100%

J303_6.RCP 54 54 54 0,0% 100%

J303_7.RCP 48 48 48 0,0% 100%

J303_8.RCP 54 54 54 0,0% 100%

J303_9.RCP 65 65 65 0,0% 100%

J303_10.RCP 59 59 59 0,0% 100%

J304_1.RCP 49 49 49 0,0% 100%

… … … … … …

J3033_1.RCP 65 65 65 0,0% 100%

J3033_2.RCP 60 60 60 0,0% 100%

J3033_3.RCP 55 56 55 0,0% 90%

J3033_4.RCP 77 78 77 0,0% 80%

J3033_5.RCP 53 53 53 0,0% 100%

J3033_6.RCP 59 59 59 0,0% 100%

J3033_7.RCP 58 58 58 0,0% 100%

J3033_8.RCP 61 61 61 0,0% 100%

J3033_9.RCP 65 68 65 0,0% 20%

J3033_10.RCP 53 53 53 0,0% 100%

J3034_1.RCP 68 68 68 0,0% 100%

J3034_2.RCP 44 44 44 0,0% 100%

J3034_3.RCP 69 69 69 0,0% 100%

J3034_4.RCP 67 67 67 0,0% 100%

J3034_5.RCP 63 63 63 0,0% 100%

J3034_6.RCP 52 52 52 0,0% 100%

J3034_7.RCP 58 58 58 0,0% 100%

… … … … … …

J3048_1.RCP 63 63 63 0,0% 100%

J3048_2.RCP 54 54 54 0,0% 100%

J3048_3.RCP 50 50 50 0,0% 100%

J3048_4.RCP 57 57 57 0,0% 100%

J3048_5.RCP 58 58 58 0,0% 100%

J3048_6.RCP 58 58 58 0,0% 100%

J3048_7.RCP 55 55 55 0,0% 100%

J3048_8.RCP 44 44 44 0,0% 100%

J3048_9.RCP 59 59 59 0,0% 100%

J3048_10.RCP 54 54 54 0,0% 100%

Fig. 7.2 Single objective execution of j30 instances



124 7 Computational Results and Evaluation

Filename Min Dur Max Dur Optimal Aver.Dev. OptimumFrequency of Opt

c154_3.mm 34 34 34 0,00% 100%

c158_3.mm 25 25 25 0,00% 100%

c158_4.mm 32 32 32 0,00% 100%

c159_1.mm 18 21 18 0,00% 99%

c159_2.mm 25 26 29 -13,79% 97%

c159_3.mm 22 24 22 0,00% 100%

c159_4.mm 17 21 17 0,00% 100%

c159_5.mm 21 22 21 0,00% 100%

c159_6.mm 20 22 20 0,00% 100%

c159_7.mm 24 28 24 4,17% 84%

c159_8.mm 34 40 34 0,00% 100%

c159_9.mm 28 29 28 0,00% 100%

c159_10.mm 32 32 32 0,00% 90%

c1510_1.mm 21 21 21 0,00% 100%

c1510_2.mm 17 18 17 0,00% 100%

c1510_3.mm 23 25 23 0,00% 100%

c1510_4.mm 39 42 39 0,00% 98%

c1510_5.mm 13 13 13 0,00% 100%

c1510_6.mm 32 32 32 0,00% 100%

… … … … … …

c214_6.mm 36 36 36 0,00% 100%

c216_8.mm 36 36 36 0,00% 100%

c217_1.mm 40 41 40 0,00% 98%

c219_1.mm 28 30 30 0,00% 99%

c219_2.mm 29 32 29 0,00% 96%

c219_3.mm 26 28 26 0,00% 99%

c219_4.mm 26 28 26 0,00% 98%

c219_5.mm 29 30 29 0,00% 97%

c219_6.mm 22 24 22 4,55% 88%

c219_7.mm 25 28 29 0,00% 98%

c219_8.mm 21 24 21 0,00% 99%

c219_9.mm 28 33 28 0,00% 98%

c219_10.mm 21 21 21 0,00% 100%

c2110_1.mm 21 23 21 0,00% 99%

… … … … … …

j102_2.mm 18 21 20 0,00% 98%

j102_4.mm 17 17 18 0,00% 100%

j102_5.mm 16 17 16 0,00% 99%

j102_6.mm 16 16 16 0,00% 100%

j102_7.mm 25 25 25 0,00% 100%

j102_9.mm 15 15 17 0,00% 100%

j102_10.mm 33 33 33 0,00% 100%

j103_2.mm 13 13 13 0,00% 100%

j103_3.mm 19 19 19 0,00% 100%

j103_4.mm 23 23 23 0,00% 100%

j103_5.mm 19 21 21 0,00% 100%

Fig. 7.3 Single objective execution of MRCPSP instances



7.3 Experimental Comparison to best in class algorithms 125

Filename Min Dur Max Dur UB Aver.Dev. Optimum Frequency of Opt

psp1.sch 42 49 42 0,0% 70%

psp2.sch 33 38 33 0,0% 90%

psp3.sch 46 46 46 0,0% 100%

psp4.sch 33 36 33 0,0% 50%

psp5.sch 25 29 25 0,0% 60%

psp6.sch 33 33 33 0,0% 100%

psp8.sch 39 39 39 0,0% 100%

psp9.sch 33 33 33 0,0% 100%

psp10.sch 32 32 32 0,0% 100%

psp11.sch 28 28 28 0,0% 100%

psp12.sch 25 25 25 0,0% 100%

psp13.sch 30 30 30 0,0% 100%

psp14.sch 35 35 35 0,0% 100%

psp15.sch 28 28 28 0,0% 100%

psp16.sch 26 26 26 0,0% 100%

psp17.sch 42 42 42 0,0% 100%

… … … … … …

psp47.sch 26 26 26 0,0% 100%

psp48.sch 31 31 31 0,0% 100%

psp49.sch 18 18 18 0,0% 100%

psp50.sch 24 24 24 0,0% 100%

psp51.sch 26 26 26 0,0% 100%

psp52.sch 30 30 30 0,0% 100%

psp53.sch 28 28 28 0,0% 100%

psp54.sch 25 25 25 0,0% 100%

psp55.sch 38 38 38 0,0% 100%

psp56.sch 37 37 37 0,0% 100%

psp57.sch 30 30 30 0,0% 100%

psp58.sch 26 26 26 0,0% 100%

psp59.sch 24 24 24 0,0% 100%

psp60.sch 29 29 29 0,0% 100%

psp61.sch 40 40 40 0,0% 100%

psp62.sch 38 38 38 0,0% 100%

psp63.sch 30 30 30 0,0% 100%

psp64.sch 36 36 36 0,0% 100%

psp65.sch 25 25 25 0,0% 100%

psp66.sch 30 30 30 0,0% 100%

psp67.sch 38 38 38 0,0% 100%

psp68.sch 31 31 31 0,0% 100%

psp69.sch 32 32 32 0,0% 100%

psp70.sch 22 22 22 0,0% 100%

psp71.sch 33 33 33 0,0% 100%

psp72.sch 20 20 20 0,0% 100%

psp73.sch 34 34 34 0,0% 100%

psp74.sch 39 39 39 0,0% 100%

psp75.sch 33 33 33 0,0% 100%

Fig. 7.4 Single objective execution of MRCPSP/max instances



126 7 Computational Results and Evaluation

In Table 7.1, a summary of the experimental results is shown (see Appendix B for the ana-
lytical results). More specifically, the first column is the instance name, the second column
shows the minimum duration calculated, the third the maximum duration calculated, the
given optimum value is shown in the fourth columna and then the average deviation from
optimum and the frequency of appearance of the optimum values are shown. These results
reveal that in all cases the proposed algorithm gives the same optimal or lower bound results
with those that are published in PSPLib and in most cases has a higher accuracy with a per-
centage of deviation from the best known value lower than 2% for each category of cases.
Therefore, the aim to be at least as good as the best known algorithm has been achieved.

Table 7.1 Comparative results for single-objective instance

Instances Average Deviation Max Deviation Optimal/UB)

RCPSP J30 0.25% 3% 96.7%
RCPSP J120 1.42% 8% 34.46%
PRCPSP J30 0.12% 2.5% 98.7%
PRCPSP J120 1.21% 5% 42.73%
MRCPSP C15 0.23% 1% 98.9%
MRCPSP C21 0.01% 1% 99.9%
MRCPSP J10 0.01% 0% 99.9%
RCPSP-t J30 0.05% 1% 99.7%
RCPSP-t J120 0.22% 1.5% 99.5%
RCPSPmax J30 0.12% 1.8% 90.12%

7.4 Experimental results for multi-objective optimisation

The problem instances used in this work for the multi-objective experiment were based on
some of the instance sets used for the previous experiment. All instances consider the ex-
istence of two renewable and two nonrenewable resources and a maximum of three direct
successors. The number of activities is 30 and 120 and each set consists of 10 instances.
Each activity has a maximum of three alternative modes and minimal and maximal lags as
well as generalised precedence constraints have been added based on the RCPSP-GPR in-
stances. Furthermore, variable resource demand and availability is taken from the RCPS/t
instances used in the previous experiment. The original instances have been modified due to
the introduction of multiple objectives. Due dates and penalty factors for overconsumption
of resources have been defined for each problem along with maximum resource related cost.
It should be noted that the definition of the extra parameters may change considerably the
difficulty of the initial problems. The resulting problems will be referred here as P30 and
P120, according to the number of activities in each group of instances.
For each instance 10 repetitions of the experiment were effectuated to get the best values. The
implementation of the algorithm was made in C#.NET programming language. The experi-
ments were executed using a computer with the following characteristics: Intel(R) Core(TM)
2 Duo CPU P8600 at 2.40 GHz and RAM 8.00 GB.
In Table 8.1, an excerpt of the experimental results is shown, as the results cannot be com-
pared to any other data set of the literature due to differences both on input data and objectives
being pursued. More specifically, the results for the multi-objective cases are strongly related
to the selected objectives and the used weights, even more in our case that the problem itself
is also different as it is an extended version of the existing ones. Therefore, the comparison



7.4 Experimental results for multi-objective optimisation 127

to similar approaches would not provide additional information about the proposed solution
approach.

Table 7.2 Comparative results for multi-objective instances

Instance Algorithm Makespan RLI Cost Robustness

J301 1 1 Pareto 43 124.10 4900 30
J301 1 1 ANP 45 133.10 4500 32
J301 1 1 Single Obj. 43 124.10 4900 30

J301 2 2 Pareto 47 176.18 5500 32
J301 2 2 ANP 47 173.28 5600 30
J301 2 2 Single Obj. 47 176.18 5500 32

J301 3 6 Pareto 47 153.02 5200 46
J301 3 6 ANP 47 158.65 5300 48
J301 3 6 Single Obj. 47 161.65 5600 42

J301 4 7 Pareto 62 185.10 6600 35
J301 4 7 ANP 64 187.63 5800 28
J301 4 7 Single Obj. 62 185.09 6800 21

J3034 9 3 Pareto 60 207.33 5400 40
J3034 9 3 ANP 60 208.32 5400 40
J3034 9 3 Single Obj. 60 207.82 5300 37

The results show that the combined usage of the two multi-objective approaches showcases
more efficiently the available alternative schedules giving to the project manager more op-
tions to choose from. Furthermore, when comparing the results of the multi-objective ap-
proach to the single objective we see that often (57% of the cases) the multi-objective ap-
proach enhanced the solution given by the single-objective in relation to the other objec-
tives without great loss (more than 5%)on the primary objective. It would be proper to com-
pare the above results to other multi-objective approaches recently proposed, however shared
datasets, are not available.





Chapter 8
Case Study

8.1 Introduction

In this section we focus on the multi-objective solution processes. Main goal is to show that
the proposed model is usable, covers a great variety of different situations and returns a set
of schedules that cover the goals set by the project manager.
To illustrate the process we take the phase of preliminary design of an actual project for the
development of large scale spatial data infrastructure for terrestrial areas network, aiming at
an accurate marking-out of the outer limits of terrestrial sites, updating, describing and delin-
eating of terrestrial habitat types and complementing and correcting the existing databases.
This project from now on will be referred as GIS-project. The preliminary sketch of activ-
ities and their interrelations, along with resource availabilities, resource needs by task and
time period and types of relations among the activities are the initial inputs. Based on the
proposed model and after interviewing the project manager the constraints, objectives and
their weighting and degrees of freedom on the given constraints are decided. These degrees
of freedom represent those constraints that can be translated in penalty functions to simplify
the solution process and raise the possibilities to get feasible solutions and the hard limits on
them. For example, after the discussion we know that although the cost should be minimised
and there is a budget for the specific project, it is not a hard limit as it can vary between an
upper and lower bound and even if it is outside these limits the proposed schedule can still be
acceptable if it has very good resource profiles and makespan, as these two are the objectives
with primary importance. Having modelled the project and defined all the needed inputs, we
run the proposed algorithm with three different settings: a) as a single objective, b)using the
given weights for the requested objectives and c) looking for pareto-optimal schedules and
the three best schedules got by each method, are presented to the project manager. In case
that the results are not satisfactory, the number of returned results per type would be changed
and more scenarios with the same or even different priority settings would be generated until
a solution that would fit to the precise needs of the specific company and project would be
generated.

8.2 Initial data

The process begins with the definition of the activities, their precedence relationships, du-
ration and resource requirements. This step is executed using for example the MS Project

129



130 8 Case Study

software, as shown in Figure 8.1. However, this draft cannot give a complete picture of the
situation as it does not include information about the alternative ways that some of the tasks
can be executed, minimal and maximal lags have not been defined and resource availabilities
and demands are considered stable over time. Some of these issues can be handled within
the selected software tool, e.g. the definition of calendars for the definition of the resource
availabilities but others require the usage of EMO-RCPSP (the proposed add in), as in the
case of the multiple execution modes or the definition of maximal lags. The initial data show

Fig. 8.1 Initial data of the GIS project

that even in the simplest approach there are issues related to the availability of the resources,
especially in the case of junior lawyers and surveyor engineers, as shown in Figure 8.2.
Therefore, the next step consists in discussing with the project manager in order to gather
more details about the project at hand, its characteristics and all those environment param-
eters that can affect the way that the tasks will be executed or even the goals of the project
itself. This discussion will lead to decisions about: a) the components of the project, b) the
goals to be pursued and c) existing constraints, soft and hard limits.

8.2.1 Execution modes

The majority of tasks can be executed in different modes that can be automatically defined
by keeping the total work unchanged and modifying the number of resource used and the
duration of the task. Furthermore, the existence of similar types of resources having different
performance rate and correspondingly different cost (e.g. Civil Engineer and junior Civil
Engineer) leads to another group of different execution modes. Additionaly, there are a few
tasks that can be executed using a different combination of resources e.g. administrative
work can be done by administrative staff but if needed can also be executed by a junior



8.2 Initial data 131

Fig. 8.2 Overallocated resources

lawyer or the digitilization process can be done by a resource and a low cost scanner or be
almost automated using a more efficient professional scanner and an IT person to monitor
the process, as shown in Figure 8.3
On the other hand, having a project consisting of almost 200 tasks makes the definition
of multiple modes for each and every task a tedious process. Therefore, the most effective
solution is to set automated multiple execution modes on all the tasks and then for tasks
that have substantially big duration when compared to the total project duration or tasks that
cause delays to the project due to their resource requirements, specific alternative execution
modes can be defined. The definition of multiple execution modes should be an iterative
process starting from the simplest cases and adding more alternatives as the resulting solution
scenarios don’t fit the specific situation.



132 8 Case Study

Fig. 8.3 Defining multiple execution modes

8.2.2 Preemption

Generally, preemption allows activities to be stopped and restarted later on at no additional
cost. Some activities can be preempted at any time without creating any problem in their
execution, other activities can be preempted only at specific time instances that define the
completion of a sub-task and a few other activities cannot be preempted at any stage of their
execution otherwise either the cost will be critically raised or the quality of the end product
will be raised. For example, in this GIS-project all tasks requiring external measurements on
specific locations would not be sensible to be preempted as this would lead to send at different
times at the same location, sometimes far away from the land offices, the same team, raising
the cost and multiplying the set up times for the needed equipment. Furthermore, there are
tasks that although can be split, it does not make sense to split them before the completion
of a specific sub-task, e.g. the ”Installation of hardware and software” can be split on the
completion of each hardware part but not in the middle of the installation of a software
component, as shown in Figure 8.4

Fig. 8.4 Defining task preemption



8.2 Initial data 133

8.2.3 Variability of resource availabilities and requirements

The variability of resource availabilities is defined using the resource calendars. In this GIS
project the definition of the non renewable resource availabilities e.g. equipment, hardware,
office supplies was more important than that of human resources, as at this stage, there are
not named resources but just generic resource types with unknown work schedules. The only
renewable resources that their availabilities could and were defined in detail, were the GIS
expert, that is only one for all the project and the senior IT staff, Civil Engineers, Topogra-
phers and Lawyers, due to their pre-existing commitments on other projects.
Furthermore, there were specific tasks that required different type of resources at different
stages of the task, e.g. the task to correct the data base entries based on the results of duplicate
entries check and then identify the correct entry and update the entries can be handled as a
three steps process that does not require all the resource types available from the begging of
the task to its completion, as shown in Figure 8.5. In this kind of situations the variability
of resource requirements comes at hand as it is quite is to define in which period of the task
each resource type is required and in what extend, e.g. the IT resource as soon as provides the
lists of the duplicate entries can be dismissed from that task, likewise the lawyer is minimally
needed during the phase of updating the entries.

Fig. 8.5 Defining task resource requirements per step

Another way of handling this type of situations would be to split each task in this category,
in subtasks and arrange accordingly the resource requirements. In small projects the latter
method would be preferred but on medium and large projects it would add unnecessary
complexity.

8.2.4 Constraints

The GIS Project is characterised by deadlines attached to the completion of each phase (there
are three phases in total) of the project. The deadlines are set by the Greek Registry Office



134 8 Case Study

and are considered hard limits. Furthermore, tasks related to the land offices operation and
the submission of statements by the landowners have very well defined start and end dates
related to the requirements set by the contracting authority. The set of deadlines are modelled
as time based soft constraints, therefore schedules missing the deadlines will not be omitted
but a penalty factor weighted by the criticality of the corresponding deadline will be added
to the value of the time objective (project duration).
The rest of the constraints originate from the precedence relations, the resource availabili-
ties and requirements and the additional relations generated by allowing the split of specific
activities.

8.2.5 Objectives

The project manager selected three optimisation objectives: the total project duration, the
cost and the smoothness of the resource profiles based on the company’s requirements and
the specifics of this GIS project. The reasoning behind this choice was based on the following
facts:
· the project duration, although difficult to minimise due to the existence of inflexible dates

for the execution of specific tasks, e.g. the gathering of statements cannot be done earlier
than the required dates, is very important because it can be considered as a competitive
advantage for the customer,

· the project cost which is related to the number of resources used, the type of contracts
signed by each resource type (salaries, work based contracts, temporary contracts), the
work time of each resource and its cost, should be minimised as to make the project
profitable for the company

· smoothness of resource profile, to avoid unwanted hiring and firing of staff during the
project execution that could lead to lowering the performance of the project team.

These objectives were weighted by the project manager using the ANP method and the model
described in chapter 6 and using the ANP Solver software tool (http://kkiry.simor.mech.ntua.gr/Rokou/ANPWEB/),
shown in Figure 8.6.



8.3 Solution scenarions 135

Fig. 8.6 Weighting the objectives using the ANP Solver

The final weights of the objectives as were given by the limit matrix were: project duration
0.23, cost 0.45 and RLI 0.37.

8.3 Solution scenarions

Based on the above preferences and input data a set of 9 solution scenarios were generated
using the three proposed approaches: a) single objective optimisation of project duration,
b) pareto-optimal solutions taking into consideration the project managers preferences over
the objectives and c) classic pareto-optimal approach. In Table 8.1 the results got by each
approach are shown. Due to the existence of deadlines on basic activities there are very
limited differences on the project duration of the tasks related to the land offices receival of
statements. However, the other phases of the project can be executed in a variety of ways
giving a total project duration that ranges from 1024 days which was the initial duration
given by the MS Project tool to 589 days that is a high cost but very quick solution, that is
the best schedule based on the time objective and it is shown in Figure 8.7.



136 8 Case Study

Table 8.1 Comparative results for GIS project

Algorithm Makespan RLI Cost

Pareto 598 3.221 32.000
ANP 780 2.930 29.000
Single Obj. 598 3.221 32.000

Pareto 610 3.890 30.000
ANP 780 2.480 24.000
Single Obj. 600 3.870 28.700

Pareto 600 3.760 29.000
ANP 1000 2.100 15.000
Single Obj. 890 2.560 17.000

Fig. 8.7 Best schedule found by pareto optimal approach - 598 days

Summarising, the preliminary design of an actual project for the development of large scale
spatial data infrastructure for terrestrial areas network was presented to illustrate the pro-
posed approach. Based on the proposed model and after interviewing the project manager the
constraints, objectives and their weighting and degrees of freedom on the given constraints
were decided. Having modelled the project and defined all the needed inputs, the proposed
algorithm with three different settings: a) as a single objective, b)using the given weights for
the requested objectives and c) looking for pareto-optimal schedules was executed. The best
schedules got by each method, were presented to the project manager, in order to choose the
best fitting schedule for the situation at hand.



Chapter 9
General Discussion & Conclusions

Abstract In this chapter, potential impact and significance of the conducted study, impli-
cations for researchers and practitioners and possible directions for further research on this
subject, are discussed.

9.1 Summary of PhD Thesis contribution

Project scheduling involves the development of a project baseline schedule which specifies
for each activity the precedence and resource feasible start and completion dates, the amounts
of the various resource types that will be needed during each time period and as a result the
corresponding budget required for the execution of the project.
Scheduling problems are been investigated since the late fifties, stimulated by the need to
improve and facilitate project management. Project scheduling is a complex problem that
every project manager faces in the beginning of each project and the consequences of an ill
designed schedule can seriously endanger the successful project execution and completion.
Applications can be found in diverse industries such as construction, software development,
etc. In addition, project scheduling is very attractive for researchers, mainly those related to
operational re- search, because the models in this area are rich and, hence, difficult to solve.
In this Thesis, a new holistic conceptual and mathematical formulation integrating the stan-
dard RCPSP with its most common variations, namely preemption of activities, multiple
modes, generalised precedence constraints with minimal and maximal lags and variable re-
source needs and availabilities, was also proposed. Based on this model an adaptive algorithm
handling single objective and multi-objective cases either with prioritisation of the objectives
or pareto optimality, was proposed. The moderator algorithm has as main role to manage the
process and select the best auxiliary solution algorithm to be used based on the instance
currently being solved. It was experimentally proven that the usage of the moderator algo-
rithm raises the accuracy of the results without harming the execution time. Therefore we
can have a reliable way for solving any scheduling problem having features spanning from
the standard RCPSP to any of the above mentioned variations. This way project managers
have a way of modelling their project in a single step and transparent process. Therefore,
we have a unified model, that is reliable and accommodates the needs of project scheduling
in practice, keeping at the same time great flexibility on what kind of solutions and at what
degree each objective should be pursued. Summarising, this PhD Thesis has the following
innovative parts:

137



138 9 General Discussion & Conclusions

· a holistic mathematic model integrating all the known extensions and variations of the
resource constrained project scheduling problem, namely, preemption, multiple modes
of execution, generalised precedence constraints, variable resources availabilities and re-
quests over time and its binary formulation,

· an adaptive hybrid algorithm that handles the selection of the auxiliary algorithms that
will be used for the solution of each problem’s instance and the ways that the schedules
will be generated (s-GS or p-SGS) both for single and multi-objective cases,

· achievement of good optimisation results as the proposed moderator algorithm always
gives results at least as good as the best known methods and in some cases best values
than those currently reported in the literature,

· a ready to use Add In for MS Project including the proposed algorithm, tools for setting
up the project in a more flexible manner (i.e. adding details about the activities execution
modes, points of preemption, resource types and time dependent availabilities, objectives
and their priorities, etc.) and generating solution scenarios,

· takes into consideration systemic factors that affect project scheduling for the model gen-
eration and Add In development.

The next step on this research is to enhance it by adding a mechanism for automatically
dealing with infeasibilities instead of interactively doing it. Further experimentation on the
multi-objective side of the problem focusing on the comparison with the existing approaches
is expected to give valuable insights.

9.2 Potential Impact and Significance

9.2.1 Implications for researchers

The proposed work consists of two parts, first a model that proposes a holistic view of the
project scheduling problem and second, an adaptive solution algorithm to solve it more effi-
ciently.
The holistic model is meant to cover the majority of cases encountered in practical situations
and give a central reference point for the resource constrained project scheduling problem.
This way researchers either trying to develop better exact or heuristics for the problem will
not need to refer or re-apply to each facet of the problem but can directly work on all the
facets.
Additionally, by using this holistic model the new solution methods will be ready to use
and easily comparable one to another instead of checking each method against the different
variations and often having very good methods for ”research-wise” interesting facets and
very few for those situations that are encountered more often in practice.
Furthermore, by generating of a conceptual and mathematical model of the problem having
as a basis the resource constrained project scheduling problem and including all the determin-
istic extensions and variations of this problem, a new more practical approach of the project
scheduling is proposed. Hopefully, this will lead to the development of solution methods that
can be easily applied in practice and correspond to a realistic problem instead of having very
good solutions for just a part of the problem.
In the end the idea is to have a generic model fitting more or less complex situations and
leading to a joint research effort for the development of better solution methods that will
actually cover the most significant aspects of the project scheduling problem.



9.2 Potential Impact and Significance 139

On the other hand, the solution method it is also inspired by the holistic approach, as it does
not provide single solutions with specific predefined objectives. Instead, it provides a set of
tools that can be used to generate a mix of different solution scenarios and lets the project
manager to make all the decisions. It is more of a support tool than a problem solver.
Furthermore, acknowledging the fact that a variety of good solution algorithms already exist
but no way to choose the best for each instance being solved, the logic of the evolutionary
algorithms is put on service to handle the algorithm selection. It is a simple but very effective
way of handling a complex problem whose solution mechanics are not well defined yet.
However, it would be interesting to gather usage data and create a knowledge data base
containing the best fitted algorithms and try to extract patterns relating the problem instance
characteristics to the optimal solution algorithm.
Additionally, the mixing of single and multi-objective approaches, with or without weights
of the objectives gives a less mathematical but more practical look at how a problem should
be solved. Maybe, having a good understanding of how to solve problems on well defined
situations, the next step is to respond to the demand of solving less well-defined and without
clear goals problems or even better propose solution scenarios without giving unique and
inflexible solutions, as problems actually are more than the sum of inputs and outputs.
Summarising, the proposed work is a first step toward flexible models of complicated sit-
uations, adaptable solution methods and results aiming at supporting the decision makers
without giving aphorisms about which solution is the best one and which is not.

9.2.2 Implications for practitioners

It is known that project scheduling is a multi-facet problem affected by a plethora of systemic
parameters that cannot be easily taken into consideration in a quantitative model. This study
aims at giving a tool to support the project manager on scheduling the project by providing
a number of alternative solution scenarios to select the one that best fits the situation and not
just a unique solution that can act as ”one size fits all”. It is expected that the inputs and ob-
jectives are set based on the current situation, taking into consideration all those uncountable
parameters that are not part of the model but play a role on how the schedule should be. Even
so, the provision of tools for ranking the objectives using quantitative and qualitative criteria
(through an ANP model) and the ability to have mixed solution scenarios are valuable tools
in handling the complexity of this problem.
In this Thesis, we proposed a solution process able to appropriately handle any situation
from small and every day projects to large scale problems with complex activity relations,
splittable activities, multiple execution modes, time windows and variability on the resource
requirements and availability. And a solution algorithm capable of adapting itself and pro-
viding different ways of handling the specific instance of the problem at hand, based on:
· the number of objectives to be pursued,
· the type of the problem: simple, multi-mode, with generalised precedence constraints,

minimal and maximal time lags, preemption or any mix of these features and
· the number and type of solution scenarios that are desired: from single objective optimi-

sation of a range of objectives to multi-objective optimisation using weighted sum and/or
pareto-optimal solutions, or a mix of the above,

The idea is to provide a model that works as a bunch of LEGO bricks, you can use it to model
from the simplest problem to the most complicated without need of deep mathematical or
other knowledge beside, the notions related to the project to be scheduled.



140 9 General Discussion & Conclusions

The practitioner gets to use a simple interface to set up the problem by defining the various
inputs, like the tasks and their precedence relations, the different ways that some important
(under the specific circumstances) tasks can be executed and which are the objectives and
the role that should have in finding the optimal solutions. No decision is irreversible, on the
contrary the project manager has a great amount of freedom to experiment on the effect of
his/her changes on the final results and choose the solution that best fits the situation at hand.
Summarising, the proposed work provides a unified approach of the project scheduling prob-
lems and provides the practitioner with an easy to use and flexible decision support tool,
where the decision to take is how to schedule the project given specific circumstances. Mov-
ing a pass forward from existing partial approaches where the objective is to optimise the way
a specific aspect of the problem is solved, we show that it is possible without affecting the
quality of the results to have a holistic approach of the problem overcoming the raised com-
plexity through the flexibility on the constraints and the generation of several good solutions
that cover different needs and show off the trade offs between the selected objectives.

9.3 Future Work

Due to the complexity of the project scheduling problem and the difficulties encountered
when solving even simple instances and much more when handling its various extensions
and variations, even today, there is a lack of generic models that integrate all the different
facets of a project that should be scheduled and provide a solution process. However, in
practice projects often fail to fall precisely in one of the existing cases. For example a project
can have some tasks that are splittable but not all and at the same time some activities with
variable resource demands and a few tasks with hard deadlines. In such a case either some
of the features should be omitted to fall in one of the existing problem types or a multi-phase
approach, handling each situation separately, should be followed. Furthermore, there is the
issue of whether a single or multi-objective approach can be followed, that even if it seems
a straightforward decision, it is not, as managers are used to ”what-if” scenarios and would
prefer to have both options and evaluate the different results against the case at hand using
just one or two objectives.
To fill in this research gap, a holistic model was proposed in this Thesis in order to provide a
way to define all the desired characteristics, and provide a solution process that will generate
project schedules adaptable to different project settings, organisational sizes and strategies
and scalable according to the size and criticality of the undergoing project. Furthermore, a
solution process that is simple and quick enough to permit immediate re-runs for the gen-
eration of alternative scenarios, is proposed to give the opportunity to the project manager
(and/or the group of decision makers) responsible for the definition and final selection of
the baseline schedule to have a satisfactory number of alternatives to discuss on and choose
from.
The next step on this research is to enhance it by adding a mechanism for automatically
dealing with infeasibilities instead of interactively doing it. Further experimentation on the
multi-objective side of the problem focusing on the comparison with the existing approaches
it is expected to give valuable insight. Beside these very concise next steps, there are a few
short-term and long-term goals to be achieved. Starting from the specific proposed approach,
a less deterministic approach could greatly enhance the quality of the given inputs as they
could be more realistic, affecting the quality of the results.



9.3 Future Work 141

Furthermore, more objectives and not only quantitative but also qualitative could be incorpo-
rated as to embrace the environmental parameters that affect project scheduling in practice.
Although, qualitative objectives should be in some way, even approximatively, quantified, it
would be a step toward the right direction.
On the other hand, the are a lot of technical issues that would be interesting to work at.
For example, a multi-project approach to handle multiple project scheduling and gather data
from the withstanding IT system about the other ongoing projects and those that are being
planned to be executed on the same time span. An other interesting extension, would be to
provide a model that handles both reactive and proactive scheduling as to support the project
manager not only during scheduling but also when the schedule should be updated due to
internal or external changes.
Summarising, the proposed approach is a first step on handling optimisation problems in a
more practical and less mathematical manner without denying the need of quantification and
specific solution generation. However, there are a lot of issues that should be handled and
aspects of this and similar problems that should be examined before reaching a stable point
where the models and the solution methods provided by the researcher’s community match
the practical problems as they are without compromises, assumptions and simplifications.
This is the ultimate goal.





References

ISO 21500. Iso 21500:2012 project management. Technical report, International Organization for Standardization,
2012.

B. Abbasi, S. Shadrokh, and J. Arkat. Bi-objective resource-constrained project scheduling with robustness and
makespan criteria. Applied Mathematics and Computation, 180(1):146–152, 2006.

Russell Lincoln Ackoff, Shiv K Gupta, and J Sayer Minas. Scientific method: Optimizing applied research decisions,
volume 41. Wiley New York, 1962.

M. A. Al-Fawzan and M. Haouari. A bi-objective model for robust resource-constrained project scheduling. Interna-
tional Journal of Production Economics, 96(2):175–187, 2005.

R. Alvarez-Valdes and J.M. Tamarit. Heuristic Algorithm for Resource Constrained Project Scheduling: A Review and
An Empirical Analysis, pages 114–134. Elsevier, Amsterdam, 1989.

Haldun Aytug, Mark A. Lawley, Kenneth McKay, Shantha Mohan, and Reha Uzsoy. Executing production schedules
in the face of uncertainties: A review and some future directions. European Journal of Operational Research, 161
(1):86–110, 2005.

Ray Ball, SP Kothari, and Charles E Wasley. Can we implement research on stock trading rules? The Journal of
Portfolio Management, 21(2):54–63, 1995.

F. Ballestin. A genetic algorithm for the resource renting problem with minimum and maximum time lags. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 4446 LNCS:25–35, 2007.

F. Ballestin, V. Valls, and S. Quintanilla. Pre-emption in resource-constrained project scheduling. European Journal of
Operational Research, 189(3):1136–1152, 2008.

Carlos A Bana e Costa, Leonardo Ensslin, Émerson C Cornêa, and Jean-Claude Vansnick. Decision support systems
in action: integrated application in a multicriteria decision aid process. European Journal of Operational Research,
113(2):315–335, 1999.

M. Bartusch, R. H. Mahring, and F. J. Radermacher. Scheduling project networks with resource constraints and time
windows. Annals of Operations Research, 16(1):199–240, 1988.

Arthur Battram. Navigating complexity: The essential guide to complexity theory in business and management. Spiro
Pr, 1998.

Colin E. Bell and Kwangho Park. Solving resource-constrained project scheduling problems by a* search. Naval
Research Logistics, 37(1):61–84, 1990. Cited By (since 1996): 31 Export Date: 7 September 2011 Source: Scopus.

L. Bianco, P. Dell’Olmo, and M. G. Speranza. Heuristics for multimode scheduling problems with dedicated resources.
European Journal of Operational Research, 107(2):260–271, 1998.

J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan. Scheduling subject to resource constraints: classification and com-
plexity. Discrete Applied Mathematics, 5(1):11–24, 1983.

F. F. Boctor. Some efficient multi-heuristic procedures for resource-constrained project scheduling. European Journal
of Operational Research, 49(1):3–13, 1990.

F. F. Boctor. Resource-constrained project scheduling by simulated annealing. International Journal of Production
Research, 34(8):2335–2351, 1996. Cited By (since 1996): 50 Export Date: 5 October 2011 Source: Scopus.

F. Bomsdorf and U. Derigs. A model, heuristic procedure and decision support system for solving the movie shoot
scheduling problem. OR Spectrum, 30(4):751–772, 2008.

K. Bouleimen and H. Lecocq. A new efficient simulated annealing algorithm for the resource-constrained project
scheduling problem and its multiple mode version. European Journal of Operational Research, 149(2):268–281,
2003.

143



144 References

Peter Brucker. Scheduling algorithms. Springer, 2007.
Peter Brucker, Andreas Drexl, Rolf Mahring, Rolf Hhring, Klaus Neumann, and Erwin Pesch. Resource-constrained

project scheduling: Notation, classification, models, and methods. European Journal of Operational Research, 112
(1):3–41, 1999.

K. M. Calhoun, R. F. Deckro, J. T. Moore, J. W. Chrissis, and J. C. Van Hove. Planning and re-planning in project and
production scheduling. Omega, 30(3):155–170, 2002.

C. C. B. Cavalcante, C. Carvalho De Souza, M. W. P. Savelsbergh, Y. Wang, and L. A. Wolsey. Scheduling projects
with labor constraints. Discrete Applied Mathematics, 112(1-3):27–52, 2001.

M. Cervantes, A. Lova, P. Tormos, and F. Barber. A dynamic population steady-state genetic algorithm for the resource-
constrained project scheduling problem. volume 5027 LNAI, pages 611–620. 2008. Export Date: 7 October 2011
Source: Scopus.

A. P. Chassiakos and S. P. Sakellaropoulos. Time-cost optimization of construction projects with generalized activity
constraints. Journal of Construction Engineering and Management, 131(10):1115–1124, 2005.

Peter Checkland. Soft systems methodology: a thirty year retrospective. Systems Research and Behavioral Science, 17:
11–58, 2000.

Peter Checkland and Mark Winter. Process and content: two ways of using ssm. Journal of the Operational Research
Society, 57(12):1435–1441, 2005.

W. N. Chen, J. Zhang, H. S. H. Chung, R. Z. Huang, and O. Liu. Optimizing discounted cash flows in project scheduling-
an ant colony optimization approach. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications
and Reviews, 40(1):64–77, 2010. Cited By (since 1996): 5 Export Date: 7 October 2011 Source: Scopus Art. No.:
5196736.

N. Christofides, R. Alvarez-Valdes, and J. M. Tamarit. Project scheduling with resource constraints: A branch and
bound approach. European Journal of Operational Research, 29(3):262–273, 1987.

C West Churchman. The x of x*+. Management Science, 9(6):351–357, 1963.
Dale F Cooper. Heuristics for scheduling resource-constrained projects: An experimental investigation. Management

Science, 22(11):1186–1194, 1976.
Kenneth G Cooper. The rework cycle: benchmarks for the project manager. Project Management Journal, 24(1):17–21,

1993.
Kerry Costello, Lynn Crawford, Lesley Bentley, and Julien Pollack. Connecting soft systems thinking with project

management practice: An organizational change casestudy. Systems Theory and Practice in the Knowledge Age,
pages 47–54, 2002.

J. Damay, A. Quilliot, and E. Sanlaville. Linear programming based algorithms for preemptive and non-preemptive
rcpsp. European Journal of Operational Research, 182(3):1012–1022, 2007.

David W Daniel. Hard problems in a soft world. International Journal of Project Management, 8(2):79–83, 1990.
Thomas H Davenport, Jeanne G Harris, and Susan Cantrell. Enterprise systems and ongoing process change. Business

Process Management Journal, 10(1):16–26, 2004.
Edward W. Davis. Project scheduling under resource constraints - historical review and categorization of procedures.

AIIE Trans, 5(4):297–313, 1973. Cited By (since 1996): 55 Export Date: 7 September 2011 Source: Scopus.
Edward W. Davis and James H. Patterson. Comparison of heuristic and optimum solutions in resource-constrained

project scheduling. Management Science, 21(8):944–955, 1975. Cited By (since 1996): 150 Export Date: 5 October
2011 Source: Scopus.

Bert De Reyck and Willy Herroelen. The multi-mode resource-constrained project scheduling problem with generalized
precedence relations. European Journal of Operational Research, 119(2):538–556, 1999.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. Evolu-
tionary Computation, IEEE Transactions on, 6(2):182–197, 2002.

Dieter Debels and Mario Vanhoucke. A bi-population based genetic algorithm for the resource-constrained project
scheduling problem. In Osvaldo Gervasi, MarinaL. Gavrilova, Vipin Kumar, Antonio Laganá, HeowPueh Lee,
Youngsong Mun, David Taniar, and ChihJengKenneth Tan, editors, Computational Science and Its Applications
– ICCSA 2005, volume 3483 of Lecture Notes in Computer Science, pages 378–387. Springer Berlin Heidelberg,
2005. ISBN 978-3-540-25863-6.

E. Demeulemeester and W. Herroelen. A branch-and-bound procedure for the multiple resource-constrained project
scheduling problem. Management Science, 38(12):1803–1818, 1992.

E. Demeulemeester, W. Herroelen, W. P. Simpson, S. Baroum, J. H. Patterson, and K. K. Yang. On a paper by
christofides et al. for solving the multiple-resource constrained, single project scheduling problem. European Jour-
nal of Operational Research, 76(1):218–228, 1994. Cited By (since 1996): 11 Export Date: 7 September 2011
Source: Scopus.

E. Demeulemeester, B. De Reyck, B. Foubert, W. Herroelen, and M. Vanhoucke. New computational results on the
discrete time/cost trade-off problem in project networks. Journal of the Operational Research Society, 49(11):
1153–1163, 1998.



References 145

E. L. Demeulemeester and W. S. Herroelen. An efficient optimal solution procedure for the preemptive resource-
constrained project scheduling problem. European Journal of Operational Research, 90(2):334–348, 1996.

E. L. Demeulemeester and W. S. Herroelen. A branch-and-bound procedure for the generalized resource-constrained
project scheduling problem. Operations Research, 45(2):201–212, 1997. Cited By (since 1996): 23 Export Date: 7
September 2011 Source: Scopus.

Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems. European Journal of
Operational Research, 109(1):137–141, 1998.

L. Deng, Y. Lin, W. Zheng, and Y. Xi. Incorporating justification in the particle swarm optimization for the rcpsp.
International Journal of Innovative Computing, Information and Control, 4(9):2315–2324, 2008. Cited By (since
1996): 4 Export Date: 7 October 2011 Source: Scopus.

Robert H. Doersch and James H. Patterson. Scheduling a project to maximize its present value: A zero-one program-
ming approach. Management Science, 23(8):882–889, 1977. Cited By (since 1996): 49 Export Date: 7 September
2011 Source: Scopus.

U. Dorndorf, E. Pesch, and T. Phan-Huy. Time-oriented branch-and-bound algorithm for resource-constrained project
scheduling with generalized precedence constraints. Management Science, 46(10):1365–1384, 2000.

Ulrich Dorndorf and Erwin Pesch. Evolution based learning in a job shop scheduling environment. Computers &
Operations Research, 22(1):25–40, 1995.

A. Drexl and A. Kimms. Optimization guided lower and upper bounds for the resource investment problem. Journal
of the Operational Research Society, 52(3):340–351, 2001.

L. E. Drezet and J. C. Billaut. A project scheduling problem with labour constraints and time-dependent activities
requirements. International Journal of Production Economics, 112(1):217–225, 2008.

Deborah Duarte, Andrea Lewis, Edward J Hoffman, and Dale Crossman. A career development model for project
management workforces. Journal of Career Development, 22(2):149–164, 1995.

S. E. Elmaghraby. An algebra for the analysis of generalized activity networks. Management Science, 10(3):494–514,
1964.

S.E. Elmaghraby. Activity networks: project planning and control by network models. Wiley-Interscience publication.
Wiley, 1977. ISBN 9780471238614.

S. S. Erenguc, T. Ahn, and D. G. Conway. Resource constrained project scheduling problem with multiple crashable
modes: an exact solution method. Naval Research Logistics, 48(2):107–127, 2001.

Jay W Forrester. Industrial dynamics after the first decade. Management Science, 14(7):398–415, 1968.
Jay W Forrester. Principles of systems, 2nd preliminary edition, 1980.
Jay Wright Forrester. Industrial dynamics, volume 2. MIT press Cambridge, MA, 1961.
B. Franck, K. Neumann, and C. Schwindt. Project scheduling with calendars. OR Spektrum, 23(3):325–334, 2001.
Delbert R Fulkerson. A network flow computation for project cost curves. Management Science, 7(2):167–178, 1961.
Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman New York, 1979.
Eliyahu M Goldratt. Critical chain. Gower Publishing Company, Limited, 1997.
R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimisation and approximation in deterministic

sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:236–287, 1979.
M. Hapke, A. Jaszkiewicz, and R. Slowinski. Interactive analysis of multiple-criteria project scheduling problems.

European Journal of Operational Research, 107(2):315–324, 1998.
S. Hartmann. Project scheduling under limited resources: Models, methods and applications. Project Scheduling under

Limited Resources, 1999.
S. Hartmann. Project scheduling with multiple modes: A genetic algorithm. Annals of Operations Research, 102(1-4):

111–135, 2001. Cited By (since 1996): 69 Export Date: 9 January 2012 Source: Scopus.
S. Hartmann. A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Research

Logistics, 49(5):433–448, 2002.
S. Hartmann. Project scheduling with resource capacities and requests varying with time: A case study. Flexible

Services and Manufacturing Journal, 25(1-2):74–93, 2013. Export Date: 14 March 2013 Source: Scopus.
S. Hartmann and A. Drexl. Project scheduling with multiple modes: A comparison of exact algorithms. Networks, 32

(4):283–297, 1998. Cited By (since 1996): 35 Export Date: 9 January 2012 Source: Scopus.
S. Hartmann and R. Kolisch. Experimental evaluation of state-of-the-art heuristics for the resource-constrained project

scheduling problem. European Journal of Operational Research, 127(2):394–407, 2000.
SÃ¶nke Hartmann. A competitive genetic algorithm for resource-constrained project scheduling. Naval Research

Logistics (NRL), 45(7):733–750, 1998.
SÃ¶nke Hartmann and Dirk Briskorn. A survey of variants and extensions of the resource-constrained project schedul-

ing problem. European Journal of Operational Research, 207(1):1–14, 2010.
W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey and research potentials. European Journal of

Operational Research, 165(2):289–306, 2005.



146 References

W. Herroelen, B. De Reyck, and E. Demeulemeester. Resource-constrained project scheduling: A survey of recent
developments. Computers and Operations Research, 25(4):279–302, 1998.

W. S. Herroelen, P. Van Dommelen, and E. L. Demeulemeester. Project network models with discounted cash flows a
guided tour through recent developments. European Journal of Operational Research, 100(1):97–121, 1997.

Willy Herroelen and Roel Leus. The construction of stable project baseline schedules. European Journal of Operational
Research, 156(3):550–565, 2004.

Willy Herroelen, Erik Demeulemeester, and Bert De Reyck. A classification scheme for project scheduling. Springer,
1999.

Willy S. Herroelen and Erik L. Demeulemeester. Project management and scheduling. European Journal of Operational
Research, 90(2):197–199, 1996.

John H Holland. Adaption in natural and artificial systems. 1975.
O. Icmeli and S. S. Erenguc. A tabu search procedure for the resource constrained project scheduling problem with

discounted cash flows. Computers and Operations Research, 21(8):841–853, 1994.
O. Icmeli and S. S. Erenguc. A branch and bound procedure for the resource constrained project scheduling problem

with discounted cash flows. Management Science, 42(10):1395–1408, 1996a.
O. Icmeli and S. S. Erenguc. The resource constrained time/cost tradeoff project scheduling problem with discounted

cash flows. Journal of Operations Management, 14(3):255–275, 1996b.
Oya Icmeli and S Selcuk Erenguc. A branch and bound procedure for the resource constrained project scheduling

problem with discounted cash flows. Management Science, 42(10):1395–1408, 1996c.
B. Jarboui, N. Damak, P. Siarry, and A. Rebai. A combinatorial particle swarm optimization for solving multi-mode

resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1):299–308, 2008.
R. Jin, W. Chen, and T. W. Simpson. Comparative studies of metamodelling techniques under multiple modelling

criteria. Structural and Multidisciplinary Optimization, 23(1):1–13, 2001.
L. Kaplan. Resource-constrained project scheduling with preemption of jobs. Unpublished Phd Dissertation University

of Michigan (1988), 1988.
Honoring Dr Richard M Karp. On the computational complexity. Networks, 5:45–68, 1975.
JB Kelley Jr and Pa Fort Washington. Cpm present and future. in New Horizons in Industrial Engineering, Spartan

Books, Inc., Baltimore, Maryland, 1963.
JAGM Kerbosh and HJ Schell. Network planning by the extended metra potential method. Report KS-1.1, University

of Technology, Eindhoven, Department of Industrial Engineering, 1975.
J. L. Kim and R. D. Ellis. Comparing schedule generation schemes in resource-constrained project scheduling using

elitist genetic algorithm. Journal of Construction Engineering and Management, 136(2):160–169, 2010.
K. W. Kim, M. Gen, and G. Yamazaki. Hybrid genetic algorithm with fuzzy logic for resource-constrained project

scheduling. Applied Soft Computing Journal, 2(3):174–188, 2003. Cited By (since 1996): 24 Export Date: 7
October 2011 Source: Scopus.

A. Kimms. Maximizing the net present value of a project under resource constraints using a lagrangian relaxation based
heuristic with tight upper bounds. Annals of Operations Research, 102(1-4):221–236, 2001.

R. Klein. Project scheduling with time-varying resource constraints. International Journal of Production Research, 38
(16):3937–3952, 2000.

R. Klein and A. Scholl. Progress: Optimally solving the generalized resource-constrained project scheduling problem.
Mathematical Methods of Operations Research, 52(3):467–488, 2000.

P. Kobylanski and D. Kuchta. A note on the paper by m. a. al-fawzan and m. haouari about a bi-objective problem for
robust resource-constrained project scheduling. International Journal of Production Economics, 107(2):496–501,
2007.

R. Kolisch. Efficient priority rules for the resource-constrained project scheduling problem. Journal of Operations
Management, 14(3):179–192, 1996.

R. Kolisch. Integrated scheduling, assembly area- and part-assignment for large-scale, make-to-order assemblies. In-
ternational Journal of Production Economics, 64(1):127–141, 2000.

R. Kolisch and A. Drexl. Local for multi-mode resource-constrained project. IIE Transactions (Institute of Industrial
Engineers), 29(11):987–999, 1997.

R. Kolisch and S. Hartmann. Experimental investigation of heuristics for resource-constrained project scheduling: An
update. European Journal of Operational Research, 174(1):23–37, 2006. Cited By (since 1996): 196 Export Date:
14 March 2013 Source: Scopus.

R. Kolisch and R. Padman. An integrated survey of deterministic project scheduling. Omega, 29(3):249–272, 2001.
R. Kolisch and A. Sprecher. Psplib - a project scheduling problem library. European Journal of Operational Research,

96(1):205–216, 1997. Cited By (since 1996): 244 Export Date: 13 January 2012 Source: Scopus.
R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation of a general class of resource-constrained

project scheduling problems. Management Science, 41(10):1693–1703, 1995.



References 147

Rainer Kolisch and Sönke Hartmann. Heuristic algorithms for the resource-constrained project scheduling problem:
Classification and computational analysis. In Project Scheduling, pages 147–178. Springer US, 1999.

Ailsa H Land and Alison G Doig. An automatic method of solving discrete programming problems. Econometrica:
Journal of the Econometric Society, pages 497–520, 1960.

V. J. Leon and R. Balakrishnan. Strength and adaptability of problem-space based neighborhoods for resource-
constrained scheduling. OR Spektrum, 17(2-3):173–182, 1995. Cited By (since 1996): 19 Export Date: 7 September
2011 Source: Scopus.

James P Lewis. Mastering project management: Applying advanced concepts of systems thinking, control and evalua-
tion, resource allocation. McGraw-Hill, 1998.

Ming Li, Yuanbiao Zhang, Weigang Jiang, and Jianwen Xie. A particle swarm optimization algorithm with crossover
for resource constrained project scheduling problem. In Proceedings of the 2009 IITA International Conference
on Services Science, Management and Engineering, SSME ’09, pages 69–72, Washington, DC, USA, 2009. IEEE
Computer Society. ISBN 978-0-7695-3729-0.

Ting-Peng Liang, Jason Chia-Hsien Wu, James J. Jiang, and Gary Klein. The impact of value diversity on information
system development projects. International Journal of Project Management, 30(6):731 – 739, 2012. ISSN 0263-
7863. ¡ce:title¿European Academy of Management (EURAM 2011) Conference¡/ce:title¿.

Xiaoxiang Liu, Weigang Jiang, Jianwen Xie, and Yitian Jia. A new resource constrained project scheduling problem.
In Information Processing, 2009. APCIP 2009. Asia-Pacific Conference on, volume 1, pages 476–480, 2009.

L. L. Lorenzoni, H. Ahonen, and A. G. d Alvarenga. A multi-mode resource-constrained scheduling problem in the
context of port operations. Computers and Industrial Engineering, 50(1-2):55–65, 2006.

Rolf H Mahring. Minimizing costs of resource requirements in project networks subject to a fixed completion time.
Operations Research, 32(1):89–120, 1984.

V. Maniezzo and A. Mingozzi. Project scheduling problem with irregular starting time costs. Operations Research
Letters, 25(4):175–182, 1999.

Mike McMaster. Foresight: Exploring the structure of the future. Long Range Planning, 29(2):149–155, 1996.
J. J. M. Mendes, J. F. GonÃ§alves, and M. G. C. Resende. A random key based genetic algorithm for the resource

constrained project scheduling problem. Computers and Operations Research, 36(1):92–109, 2009. Cited By
(since 1996): 29 Export Date: 7 October 2011 Source: Scopus.

Louis Mesnard and Erik Dietzenbacher. On the interpretation of fixed input coefficients under aggregation*. Journal
of Regional Science, 35(2):233–243, 1995.

M. Mika, G. Waligora, and J. Weglarz. Simulated annealing and tabu search for multi-mode resource-constrained
project scheduling with positive discounted cash flows and different payment models. European Journal of Opera-
tional Research, 164(3 SPEC. ISS.):639–668, 2005.

A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for the resource-constrained project
scheduling problem based on a new mathematical formulation. Management Science, 44(5):714–729, 1998. Cited
By (since 1996): 97 Export Date: 5 September 2011 Source: Scopus.

J. R. Montoya-Torres, E. Gutierrez-Franco, and C. PirachicÃ!’n-Mayorga. Project scheduling with limited resources
using a genetic algorithm. International Journal of Project Management, 28(6):619–628, 2010. Export Date: 7
October 2011 Source: Scopus.

E Muoneke. On the stochastic powers of nonnegative reducible matrices. LINEAR ALGEBRA APPLIC., 90:57–63,
1987.

Jaroslaw Nabrzyski and Jan Weglarz. Knowledge-based multiobjective project scheduling problems. In Jan Weglarz,
editor, Project Scheduling, volume 14 of International Series in Operations Research & Management Science, pages
383–411. Springer US, 1999. ISBN 978-1-4613-7529-6.

K. Neumann and M. Morlock. Operations Research. Hanser, 1993.
K. Neumann and C. Schwindt. Project scheduling with inventory constraints. Mathematical Methods of Operations

Research, 56(3):513–533, 2002.
K. Neumann and J. Zimmermann. Procedures for resource leveling and net present value problems in project scheduling

with general temporal and resource constraints. European Journal of Operational Research, 127(2):425–443, 2000.
K. Neumann and J. Zimmermann. Exact and truncated branch-and-bound procedures for resourceconstrained project

scheduling with discounted cash flows and general temporal constraints. Cent Eur J Oper Res, 10:357–380, 2002.
K. Neumann, C. Schwindt, and J. Zimmermann. Recent results on resource-constrained project scheduling with time

windows: Model, solution methods, and applications. Central European Journal of Operations Research, 10(1):
113–148, 2002.

K. Neumann, C. Schwindt, and J. Zimmermann. Project Scheduling with Time Windows and Scarce Resources: Tem-
poral and Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions. Springer,
2003. ISBN 9783540401254.

Richard D. Noble. Mathematical modelling in the context of problem solving. Mathematical Modelling, 3(3):215–219,
1982.



148 References

K. Nonobe and T. Ibaraki. Formulation and tabu search algorithm for the resource constrained project scheduling
problem. Essays and Surveys in Metaheuristics, pages 557–588, 2002a.

Koji Nonobe and Toshihide Ibaraki. Formulation and tabu search algorithm for the resource constrained project
scheduling problem, pages 557–588. Springer, 2002b.

Semih Onut, Umut R. Tuzkaya, and ErÃ§in Torun. Selecting container port via a fuzzy anp-based approach: A case
study in the marmara region, turkey. Transport Policy, 18(1):182–193, 2011.

Linet Ozdamar and Gunduz Ulusoy. Survey on the resource-constrained project scheduling problem. IIE Transactions
(Institute of Industrial Engineers), 27(5):574–586, 1995.

James H. Patterson and Walter D. Huber. Horizon-varying, zero-one approach to project scheduling. Management
Science, 20(6):990–998, 1974.

JH Patterson, R Slowinski, FB Talbot, and J Weglarz. An algorithm for a general class of precedence and resource
constrained scheduling problems. Advances in project scheduling, (Part I):3–28, 1989.

Vincent Van Peteghem and Mario Vanhoucke. A genetic algorithm for the preemptive and non-preemptive multi-mode
resource-constrained project scheduling problem. European Journal of Operational Research, 201(2):409–418,
2010.

E Pinson, C Prins, and F Rullier. Using tabu search for solving the resource-constrained project scheduling problem.
In Proceedings of the 4th international workshop on project management and scheduling, pages 102–106, 1994.

PMI. A guide to the project management body of knowledge: Pmbok guide. Project Management Institute, 2012.
Alan Pritsker, Lawrence Watters, and P. M. Wolfe. Multiproject scheduling with limited resources-a zero- one pro-

gramming approach. Mgmt Science, 16(1):93–108, 1969.
S. Proon and M. Jin. A genetic algorithm with neighborhood search for the resource-constrained project scheduling

problem. Naval Research Logistics, 58(2):73–82, 2011.
Alexandre Rodrigues and John Bowers. The role of system dynamics in project management. International Journal of

Project Management, 14(4):213–220, 1996.
E. Rokou and K. Kirytopoulos. Project resource leveling and robustness optimization using anp, 8 - 11 July 2012.
J Rosenhead and J Mingers. Rational analysis for a problematic world revisited: Problem structuring methods for

complexity. Uncertainty and Conflict: Wiley and Sons, 2001.
Bernard Roy. Multicriteria methodology for decision aiding, volume 12. Springer, 1996.
Bernard Roy and Daniel Vanderpooten. An overview on the european school of mcda: Emergence, basic features and

current worksâ? European Journal of Operational Research, 99(1):26–27, 1997.
T. L. Saaty. Decision making with dependence and feedback: the analytic network process. RWS Publications, Pitts-

burgh, 1996.
T. L. Saaty and M. Sagir. An essay on rank preservation and reversal. Mathematical and Computer Modelling, 49(5-6):

1230–1243, 2009. Cited By (since 1996): 3 Export Date: 14 March 2013 Source: Scopus.
SE Sampson and EN Weiss. Local search techniques for the generalized resource constrained project scheduling

problem. Naval Res Logist, 40:665–675, 1993.
M. Sevaux and S. Dauzere-Peres. Genetic algorithms to minimize the weighted number of late jobs on a single machine.

European Journal of Operational Research, 151(2):296–306, 2003. Cited By (since 1996): 39 Export Date: 10
January 2012 Source: Scopus.

David B Shmoys and Eva Tardos. An approximation algorithm for the generalized assignment problem. Mathematical
Programming, 62(1-3):461–474, 1993.

R. Slowinski. Multiobjective network scheduling with efficient use of renewable and nonrenewable resources. European
Journal of Operational Research, 7(3):265–273, 1981.

Jerome Spanier. Thoughts about the essentials of mathematical modelling. Mathematical Modelling, 1(1):99–108,
1980.

A. Sprecher. Resource-constrained project scheduling: exact methods for the multi-mode case. Lecture notes in eco-
nomics and mathematical systems. Springer-Verlag, 1994. ISBN 9783540578345.

A. Sprecher, S. Hartmann, and A. Drexl. An exact algorithm for project scheduling with multiple modes. OR Spectrum,
19(3):195–203, 1997. Cited By (since 1996): 52 Export Date: 9 January 2012 Source: Scopus.

International Organization for Standardization. ISO 8402: 1994: Quality Management and Quality Assurance-
Vocabulary. International Organization for Standardization, 1994.

Joel P. Stinson, Edward W. Davis, and Basheer M. Khumawala. Multiple resource-constrained scheduling using branch
and bound. AIIE Trans, 10(3):252–259, 1978.

F. Brian Talbot. Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. MAN-
AGE SCI, V 28(N 10):1197–1210, 1982. Cited By (since 1996): 121 Export Date: 7 September 2011 Source:
Scopus.

F. Brian Talbot and James H. Patterson. Efficient integer programming algorithm with network cuts for solving resource-
constrained scheduling problems. Management Science, 24(11):1163–1174, 1978.



References 149

Chunqiao Tan. A multi-criteria interval-valued intuitionistic fuzzy group decision making with choquet integral-based
topsis. Expert Systems with Applications, In Press, Corrected Proof, 2013. group decision making expanding
TOPSIS by new fuzzy operation for geom.mean calculation.

L. V. Tavares. A review of the contribution of operational research to project management. European Journal of
Operational Research, 136(1):1–18, 2002.

P. R. Thomas and S. Salhi. A tabu search approach for the resource constrained project scheduling problem. Journal
of Heuristics, 4(2):123–139, 1998. Cited By (since 1996): 39 Export Date: 21 February 2012 Source: Scopus.

L. Y. Tseng and S. C. Chen. A hybrid metaheuristic for the resource-constrained project scheduling problem. European
Journal of Operational Research, 175(2):707–721, 2006. Cited By (since 1996): 31 Export Date: 7 October 2011
Source: Scopus.

G. Ulusoy and L. Ozdamar. Constraint-based perspective in resource constrained project scheduling. International
Journal of Production Research, 32(3):693–705, 1994.

M. Vanhoucke, E. Demeulemeester, and W. Herroelen. Maximizing the net present value of a project with linear
time-dependent cash flows. International Journal of Production Research, 39(14):3159–3181, 2001.

M. Vanhoucke, E. Demeulemeester, and W. Herroelen. Discrete time/cost trade-offs in project scheduling with time-
switch constraints. Journal of the Operational Research Society, 53(7):741–751, 2002.

M. Vanhoucke, E. Demeulemeester, and W. Herroelen. Progress payments in project scheduling problems. European
Journal of Operational Research, 148(3):604–620, 2003.

M. Vanhoucke, J. Coelho, D. Debels, B. Maenhout, and L. V. Tavares. An evaluation of the adequacy of project
network generators with systematically sampled networks. European Journal of Operational Research, 187(2):
511–524, 2008.

V. A. Varma, R. Uzsoy, J. Pekny, and G. Blau. Lagrangian heuristics for scheduling new product development projects
in the pharmaceutical industry. Journal of Heuristics, 13(5):403–433, 2007.

Ana Viana and Jorge Pinho de Sousa. Using metaheuristics in multiobjective resource constrained project scheduling.
European Journal of Operational Research, 120(2):359–374, 2000.

Guilherme Ernani Vieira, Fabio Favaretto, and Paulo Cesar Ribas. Comparing genetic algorithms and simulated an-
nealing in master production scheduling problems. In Proceeding of 17th International Conference on Production
Research, Blacksburg, Virginia, USA, 2003.

H. Wang, T. Li, and D. Lin. Efficient genetic algorithm for resource-constrained project scheduling problem. Transac-
tions of Tianjin University, 16(5):376–382, 2010.

J. Weglarz. On certain models of resource allocation problems. Kybernetes, 9(1):61–66, 1980.
Charles Raymond White. An algorithm for finding optimal or near optimal solutions to the production scheduling

problem. PhD thesis, Purdue University, 1963.
Margaret M Wiecek, Matthias Ehrgott, Georges Fadel, and Jose Rui Figueira. Multiple criteria decision making for

engineering. Omega, 36(3):337–339, 2008.
Jerome D Wiest. A heuristic model for scheduling large projects with limited resources. Management Science, 13(6):

B–359, 1967.
M Winter. Problem structuring in project management: an application of soft systems methodology (ssm). Journal of

the Operational Research Society, 57(7):802–812, 2006.
Eric F Wolstenholme. Qualitative vs quantitative modelling: the evolving balance. Journal of the Operational Research

Society, pages 422–428, 1999.
S. Xie, B. Bao, and J. Chen. Genetic algorithm based on activities resource competition relation for the rcpsp. volume

6377 LNCS, pages 350–356. 2010.
Cheng Xu and Wu Cheng. Hybrid algorithm for project scheduling with capacity constraint*. Journal of Systems

Engineering and Electronics, 19(5):1041–1046, 2008.
H. Zhang, X. Li, H. Li, and F. Huang. Particle swarm optimization-based schemes for resource-constrained project

scheduling. Automation in Construction, 14(3):393–404, 2005. Cited By (since 1996): 56 Export Date: 21 February
2012 Source: Scopus.

H. Zhang, H. Li, and C. M. Tam. Permutation-based particle swarm optimization for resource-constrained project
scheduling. Journal of Computing in Civil Engineering, 20(2):141–149, 2006. Cited By (since 1996): 10 Export
Date: 7 October 2011 Source: Scopus.





Appendix A
Experimental Results

A.1 Exerpt of analytical results RCPSP

For each instance 100 repetitions of the experiment were effectuated to get the average val-
ues. The implementation of the algorithm was made in C#.NET programming language.
The experiments were executed using a computer with the following characteristics: Intel(R)
Core(TM) 2 Duo CPU P8600 at 2.40 GHz and RAM 8.00 GB.

151



152 A Experimental Results

Fi
g.

A
.1

Si
ng

le
ob

je
ct

iv
e

ex
ec

ut
io

n
of

j3
0

in
st

an
ce

s
-p

ar
tI



A.1 Exerpt of analytical results RCPSP 153

Fi
g.

A
.2

Si
ng

le
ob

je
ct

iv
e

ex
ec

ut
io

n
of

j3
0

in
st

an
ce

s
-p

ar
tI

I



154 A Experimental Results

Fi
g.

A
.3

Si
ng

le
ob

je
ct

iv
e

ex
ec

ut
io

n
of

j3
0

in
st

an
ce

s
-p

ar
tI

II



A.1 Exerpt of analytical results RCPSP 155

Fi
g.

A
.4

Si
ng

le
ob

je
ct

iv
e

ex
ec

ut
io

n
of

j3
0

in
st

an
ce

s
-p

ar
tI

V



156 A Experimental Results

Fi
g.

A
.5

Si
ng

le
ob

je
ct

iv
e

ex
ec

ut
io

n
of

j3
0

in
st

an
ce

s
-p

ar
tV



A.1 Exerpt of analytical results RCPSP 157



158 A Experimental Results

A.2 Exerpt of analytical results MRCPSP

Filename Min Dur Max Dur Optimal Aver.Dev. OptimumFrequency of Opt

c154_3.mm 34 34 34 0,00% 100%

c158_3.mm 25 25 25 0,00% 100%

c158_4.mm 32 32 32 0,00% 100%

c159_1.mm 18 21 18 0,00% 99%

c159_2.mm 25 26 29 -13,79% 97%

c159_3.mm 22 24 22 0,00% 100%

c159_4.mm 17 21 17 0,00% 100%

c159_5.mm 21 22 21 0,00% 100%

c159_6.mm 20 22 20 0,00% 100%

c159_7.mm 24 28 24 4,17% 84%

c159_8.mm 34 40 34 0,00% 100%

c159_9.mm 28 29 28 0,00% 100%

c159_10.mm 32 32 32 0,00% 90%

c1510_1.mm 21 21 21 0,00% 100%

c1510_2.mm 17 18 17 0,00% 100%

c1510_3.mm 23 25 23 0,00% 100%

c1510_4.mm 39 42 39 0,00% 98%

c1510_5.mm 13 13 13 0,00% 100%

c1510_6.mm 32 32 32 0,00% 100%

… … … … … …

c214_6.mm 36 36 36 0,00% 100%

c216_8.mm 36 36 36 0,00% 100%

c217_1.mm 40 41 40 0,00% 98%

c219_1.mm 28 30 30 0,00% 99%

c219_2.mm 29 32 29 0,00% 96%

c219_3.mm 26 28 26 0,00% 99%

c219_4.mm 26 28 26 0,00% 98%

c219_5.mm 29 30 29 0,00% 97%

c219_6.mm 22 24 22 4,55% 88%

c219_7.mm 25 28 29 0,00% 98%

c219_8.mm 21 24 21 0,00% 99%

c219_9.mm 28 33 28 0,00% 98%

c219_10.mm 21 21 21 0,00% 100%

c2110_1.mm 21 23 21 0,00% 99%

… … … … … …

j102_2.mm 18 21 20 0,00% 98%

j102_4.mm 17 17 18 0,00% 100%

j102_5.mm 16 17 16 0,00% 99%

j102_6.mm 16 16 16 0,00% 100%

j102_7.mm 25 25 25 0,00% 100%

j102_9.mm 15 15 17 0,00% 100%

j102_10.mm 33 33 33 0,00% 100%

j103_2.mm 13 13 13 0,00% 100%

j103_3.mm 19 19 19 0,00% 100%

j103_4.mm 23 23 23 0,00% 100%

j103_5.mm 19 21 21 0,00% 100%

Fig. A.6 Single objective execution of MRCPSP instances



A.3 Exerpt of analytical results MRCPSP/max 159

A.3 Exerpt of analytical results MRCPSP/max

Filename Min Dur Max Dur UB Aver.Dev. Optimum Frequency of Opt

psp1.sch 42 49 42 0,0% 70%

psp2.sch 33 38 33 0,0% 90%

psp3.sch 46 46 46 0,0% 100%

psp4.sch 33 36 33 0,0% 50%

psp5.sch 25 29 25 0,0% 60%

psp6.sch 33 33 33 0,0% 100%

psp8.sch 39 39 39 0,0% 100%

psp9.sch 33 33 33 0,0% 100%

psp10.sch 32 32 32 0,0% 100%

psp11.sch 28 28 28 0,0% 100%

psp12.sch 25 25 25 0,0% 100%

psp13.sch 30 30 30 0,0% 100%

psp14.sch 35 35 35 0,0% 100%

psp15.sch 28 28 28 0,0% 100%

psp16.sch 26 26 26 0,0% 100%

psp17.sch 42 42 42 0,0% 100%

… … … … … …

psp47.sch 26 26 26 0,0% 100%

psp48.sch 31 31 31 0,0% 100%

psp49.sch 18 18 18 0,0% 100%

psp50.sch 24 24 24 0,0% 100%

psp51.sch 26 26 26 0,0% 100%

psp52.sch 30 30 30 0,0% 100%

psp53.sch 28 28 28 0,0% 100%

psp54.sch 25 25 25 0,0% 100%

psp55.sch 38 38 38 0,0% 100%

psp56.sch 37 37 37 0,0% 100%

psp57.sch 30 30 30 0,0% 100%

psp58.sch 26 26 26 0,0% 100%

psp59.sch 24 24 24 0,0% 100%

psp60.sch 29 29 29 0,0% 100%

psp61.sch 40 40 40 0,0% 100%

psp62.sch 38 38 38 0,0% 100%

psp63.sch 30 30 30 0,0% 100%

psp64.sch 36 36 36 0,0% 100%

psp65.sch 25 25 25 0,0% 100%

psp66.sch 30 30 30 0,0% 100%

psp67.sch 38 38 38 0,0% 100%

psp68.sch 31 31 31 0,0% 100%

psp69.sch 32 32 32 0,0% 100%

psp70.sch 22 22 22 0,0% 100%

psp71.sch 33 33 33 0,0% 100%

psp72.sch 20 20 20 0,0% 100%

psp73.sch 34 34 34 0,0% 100%

psp74.sch 39 39 39 0,0% 100%

psp75.sch 33 33 33 0,0% 100%

Fig. A.7 Single objective execution of MRCPSP instances



160 A Experimental Results

A.4 Case Study

A.4.1 Activities



WBS Task Name Duration Start Finish Resource Names

Project: GIS database update 1024 days 5/3/2012 9/3/2016
0    Project Management 1023 days 5/3/2012 8/3/2016 Project Manager

1
   1st Stage: Creation of initial countrywide basemap - Establish GIS land 

registry offices
131 days 5/3/2012 5/9/2012

1.0       Contracts 0 days 5/3/2012 5/3/2012
1.1       Phase 1.1. Preparation activitis 31 days 5/3/2012 17/4/2012
1.1.1          Project Initialisation 5 days 5/3/2012 9/3/2012
1.1.1.2             Project analysis 5 days 5/3/2012 9/3/2012 GIS,Surveyor Engineer1

1.1.1.3             Kick-off meeting 1 day 5/3/2012 5/3/2012 Civil Engineer1,Surveyor Engineer1,Lawyer1

1.1.1.4             Data receivals from Greek Land Registry 0 days 5/3/2012 5/3/2012

1.1.2
         Preparation- Supply of equipment - Hardware and Software 

installations - Quality control
23 days 5/3/2012 4/4/2012

1.1.2.1             Hardware and software supply 15 days 5/3/2012 23/3/2012 Surveyor Engineer1,IT 1,Civil Engineer1,GIS

1.1.2.2             Installations of equipment, hardware and software 15 days 14/3/2012 3/4/2012 IT 1,GIS

1.1.2.3             Hire additional personnal 9 days 5/3/2012 15/3/2012 Civil Engineer1

1.1.2.4             Training of new hires 14 days 16/3/2012 4/4/2012 GIS,IT 1,Surveyor Engineer1,Surveyor Engineer Junior1[21]

1.1.3          Quality Control Programme (Q.C.P) 31 days 5/3/2012 17/4/2012
1.1.3.1             Timeschedule activities 9 days 5/3/2012 15/3/2012 Civil Engineer1,Surveyor Engineer1

1.1.3.2             Quality Plan 12 days 16/3/2012 2/4/2012 Civil Engineer1,Surveyor Engineer1,Lawyer1

1.1.3.3             Quality Plan Approval 1 day 3/4/2012 3/4/2012 Civil Engineer1

1.1.3.4             Submission of Q.C.P. 0 days 3/4/2012 3/4/2012
1.1.3.5             Corrections (if required) 9 days 4/4/2012 17/4/2012 Civil Engineer1,Surveyor Engineer1,Lawyer1

1.1.3.6             Resubmission (if required) 0 days 17/4/2012 17/4/2012
1.2       Phase 1.2 Initial countrywide basemap 131 days 5/3/2012 5/9/2012
1.2.1           Collection and evaluation of pre-existing material 23 days 5/3/2012 4/4/2012
1.2.1.1             Data collection 23 days 5/3/2012 4/4/2012 Lawyer1[4],Surveyor Engineer1[2]

1.2.1.2             Data evaluation 17 days 12/3/2012 3/4/2012 Lawyer1[3],Surveyor Engineer1[5]

1.2.2          City and country limits definitions 66 days 5/3/2012 5/6/2012
1.2.2.1             Representation of collected data in vlso and lso 3 days 5/3/2012 7/3/2012 GIS,Surveyor Engineer1[2]

1.2.2.2             Corrections based on administrative and legal data 33 days 5/4/2012 22/5/2012 Lawyer1[4],Surveyor Engineer1[2]

1.2.2.3             Compare results with existing from the Greek Land Registry 9 days 5/3/2012 15/3/2012 GIS,Surveyor Engineer1

1.2.2.4             Add limits based on land use classification 19 days 5/4/2012 2/5/2012 GIS,Surveyor Engineer1,Surveyor Engineer Junior1[3]

1.2.2.5             Add limits of settlements 14 days 5/4/2012 25/4/2012 GIS,Surveyor Engineer1,Surveyor Engineer Junior1[3]

1.2.2.6             Add limits within the cities' Plan 19 days 5/4/2012 2/5/2012 GIS,Surveyor Engineer1,Surveyor Engineer Junior1[3]

1.2.2.7             Check polygonal topologies 3 days 23/5/2012 25/5/2012 GIS,Surveyor Engineer1[2]

1.2.2.8             Technical Report 7 days 28/5/2012 5/6/2012 Surveyor Engineer1,GIS,IT 1,Civil Engineer1,OTHER1

1.2.2.9             Submission of deliverable 0 days 5/6/2012 5/6/2012
1.2.2.10             Receive corrections and update report and gis data 0 days 5/6/2012 5/6/2012
1.2.3          Creation of initial countrywide basemap 128 days 8/3/2012 5/9/2012
1.2.3.1             Update basemap with locality names, rivers, lakes, etc. 29 days 8/3/2012 18/4/2012 Surveyor Engineer1[3]

1.2.3.2             Surface measurements of urban and rural sections peaks 27 days 5/4/2012 14/5/2012 Surveyor Engineer1,Surveyor Engineer Junior1[4],OTHER1

1.2.3.3             Mapping the road network and points of interest 27 days 5/4/2012 14/5/2012 Surveyor Engineer Junior1[3]

1.2.3.4
            Capture and edit existing cartographic material (administrative 

acts, cadastral / topographic basemap)
59 days 5/4/2012 27/6/2012 Surveyor Engineer Junior1[3],OTHER1

1.2.3.5             Define cadastral areas and units on the basemap 50 days 3/5/2012 11/7/2012 Surveyor Engineer1,Surveyor Engineer Junior1[6]

1.2.3.6
            Draft land registration and digitization for urban areas and tables 

of alleged owners
76 days 8/5/2012 22/8/2012 Surveyor Engineer1[2],Lawyer1[2],Surveyor Engineer Junior1[4]

1.2.3.7
            Draft land registration and digitization for rural areas and tables of 

alleged owners
76 days 8/5/2012 22/8/2012 Surveyor Engineer1,Lawyer1,Surveyor Engineer Junior1[5]

1.2.3.8
            Pairing of temporary codes to land parcels and pairing of these 

numbers to the related street 
76 days 11/5/2012 27/8/2012 Surveyor Engineer1,Surveyor Engineer Junior1,OTHER1



WBS Task Name Duration Start Finish Resource Names

1.2.3.9             Control of topology polygons 10 days 14/8/2012 28/8/2012 GIS,Surveyor Engineer1[2],Surveyor Engineer Junior1

1.2.3.10             Technical report of initial countrywide basemap 6 days 29/8/2012 5/9/2012 Surveyor Engineer1,GIS,Civil Engineer1,OTHER1

1.2.3.11             Submission of technical report 0 days 5/9/2012 5/9/2012
1.3       Phase 1.3 Preparation of land offices & operation 76 days 5/3/2012 19/6/2012
1.3.1          Preparation of land offices 55 days 5/3/2012 21/5/2012
1.3.1.1             Receive offices and post orthophotomaps 10 days 5/3/2012 16/3/2012 Surveyor Engineer1

1.3.1.2             Hardware supplies 5 days 19/3/2012 23/3/2012 Surveyor Engineer1,GIS,Civil Engineer1,IT 1

1.3.1.3             New hires 20 days 19/3/2012 13/4/2012 Civil Engineer1

1.3.1.4             Set up infrastructure 19 days 19/3/2012 12/4/2012 Surveyor Engineer1

1.3.1.5             Cabling and network connectivity 20 days 13/4/2012 11/5/2012 IT 1

1.3.1.6             Installations of equipment, hardware and software 20 days 13/4/2012 11/5/2012 GIS,IT 1

1.3.1.7             Installation of Fire and Security systems 15 days 13/4/2012 4/5/2012 Surveyor Engineer1,Civil Engineer1

1.3.1.8             New hires training 25 days 17/4/2012 21/5/2012 Lawyer1[3],Surveyor Engineer1[4]

1.3.1.9             Preparation of hard copy material 20 days 5/3/2012 30/3/2012 Surveyor Engineer1,OTHER1

1.3.1.10             Technical control of IT systems 4 days 14/5/2012 17/5/2012 GIS,IT 1

1.3.1.11
            Checking readiness for the smooth operation of the land offices 

and receival of approval
1 day 18/5/2012 18/5/2012 GIS,IT 1,Surveyor Engineer1

1.3.3          Operation of land offices 22 days 21/5/2012 19/6/2012
1.3.3.1             Start of operation 0 days 21/5/2012 21/5/2012

1.3.3.2             Compliance with the observations of the Greek Land Registry 20 days 21/5/2012 15/6/2012 Surveyor Engineer1,GIS,IT 1

1.3.3.3             Support services 22 days 21/5/2012 19/6/2012
Lawyer Junior1[5],IT Junior1[7],Surveyor Engineer1[2],Lawyer1[8],OTHER1[3],Surveyor 

Engineer Junior1[9]
1.3.3.4             Approval of Greek Land Registry 0 days 19/6/2012 19/6/2012
1.4       Completion of Stage 1 0 days 5/9/2012 5/9/2012

2    2nd Stage - Development of GIS data base 398 days 5/3/2012 20/9/2013
2.0       Stage 2- Start 0 days 7/11/2012 7/11/2012
2.1       Phase 2.1: Operation of land offices 175 days 5/3/2012 7/11/2012
2.1.0          Statements collection 0 days 7/11/2012 7/11/2012

2.1.1
         Collection and preprocessing of statements of land owners living in 

Greece
1 day 5/3/2012 5/3/2012

2.1.2
         Collection and preprocessing of statements of land owners living 

abroad
1 day 5/3/2012 5/3/2012

2.1.3
         Collection and preprocessing of overdue statements of land owners 

living abroad
1 day 5/3/2012 5/3/2012

2.1.4          Completion of stage 2 data collection 0 days 5/3/2012 5/3/2012
2.2       Phase 2.2: Generate GIS data base 398 days 5/3/2012 20/9/2013
2.2.1          Preparation and submission of 1st intermediate database 209 days 5/3/2012 24/12/2012
2.2.1.1             Process and input all data to the central database 164 days 5/3/2012 22/10/2012 Lawyer1[3],Lawyer Junior1[3],OTHER1

2.2.1.2             Data retrieval and migration of data of locked entries 164 days 15/3/2012 1/11/2012 Lawyer1[2],OTHER1[2],Lawyer Junior1[3]

2.2.1.3
            Correct and add notes to data entries based on the results of legal 

control and cross verification of data using sampling methods
20 days 2/11/2012 29/11/2012 Lawyer Junior1[3],OTHER1[3]

2.2.1.4

            Correct and add notes to data entries based on the results of legal 

control and cross verification of data using automated validation 

algorithms

20 days 2/11/2012 29/11/2012 IT 1,Lawyer Junior1[2],OTHER1[4],IT Junior1[2],Surveyor Engineer Junior1[5]

2.2.1.5             Cross check and validate duplicate entries referring to land owners 14 days 30/11/2012 19/12/2012 IT 1,Lawyer Junior1[3],OTHER1[3],IT Junior1,Surveyor Engineer1

2.2.1.6
            Define land limits and owners of each building and pair it to unique 

KAEK code
164 days 5/3/2012 22/10/2012 Surveyor Engineer1,Surveyor Engineer Junior1[3],OTHER1[4]



WBS Task Name Duration Start Finish Resource Names

2.2.1.7
            Define land boundaries where no data have been given by the 

owners 
20 days 23/10/2012 19/11/2012 Surveyor Engineer1,Surveyor Engineer Junior1[3],OTHER1

2.2.1.8             Enumerate buildings and geographically position them 20 days 23/10/2012 19/11/2012 Surveyor Engineer Junior1[4]

2.2.1.9
            Topological validation of polygon based spatial data and update of 

the digital cadastral spatial data base
14 days 20/11/2012 7/12/2012 GIS,Surveyor Engineer1[2],Surveyor Engineer Junior1

2.2.1.10             Generate description and geospatial data bases 3 days 20/12/2012 24/12/2012 GIS,IT 1

2.2.1.11             Submission of 1st intermediate data base 0 days 24/12/2012 24/12/2012

2.2.1.12
            Cross check and validate duplicate entries referring to land 

boundaries
14 days 5/3/2012 22/3/2012 IT 1,Lawyer Junior1[3],OTHER1[3],IT Junior1,Surveyor Engineer Junior1

2.2.2          Preparation and submission of 2nd intermediate database 109 days 23/10/2012 27/3/2013
2.2.2.1             Process and input all data to the central database 96 days 23/10/2012 7/3/2013 Lawyer1[3],Lawyer Junior1[4],OTHER1

2.2.2.2             Data retrieval and migration of data of locked entries 87 days 2/11/2012 6/3/2013 Lawyer1,OTHER1[2],Lawyer Junior1[3]

2.2.2.3
            Correct and add notes to data entries based on the results of legal 

control and cross verification of data using sampling methods
7 days 7/3/2013 15/3/2013 Lawyer Junior1[4],OTHER1[3],Surveyor Engineer Junior1

2.2.2.4

            Correct and add notes to data entries based on the results of legal 

control and cross verification of data using automated validation 

algorithms

7 days 7/3/2013 15/3/2013 Lawyer Junior1[3],OTHER1

2.2.2.5 7 days 7/3/2013 15/3/2013 IT 1,OTHER1[4],Lawyer Junior1[2],IT Junior1[2],Surveyor Engineer Junior1[4]

2.2.2.6
            Cross check and validate duplicate entries referring to land 

boundaries
5 days 18/3/2013 22/3/2013 IT 1,Surveyor Engineer Junior1,OTHER1[3],Lawyer Junior1[3]

2.2.2.7
            Define land limits and owners of each building and pair it to unique 

KAEK code
94 days 23/10/2012 5/3/2013 Surveyor Engineer1,Surveyor Engineer Junior1[4],OTHER1[4]

2.2.2.8
            Define land boundaries where no data have been given by the 

owners 
7 days 6/3/2013 14/3/2013 Surveyor Engineer1,OTHER1,Surveyor Engineer Junior1[3]

2.2.2.9             Enumerate buildings and geographically position them 7 days 6/3/2013 14/3/2013 Surveyor Engineer Junior1[4]

2.2.2.10
            Topological validation of polygon based spatial data and update of 

the digital cadastral spatial data base
5 days 15/3/2013 21/3/2013 GIS,Surveyor Engineer1[2],Surveyor Engineer Junior1

2.2.2.11             Generate description and geospatial data bases 2 days 26/3/2013 27/3/2013 GIS,IT 1

2.2.2.12             Submission of 2nd intermediate data base 0 days 27/3/2013 27/3/2013
2.2.3          Preparation and submission of 3rd intermediate database 94 days 8/3/2013 19/7/2013
2.2.3.1             Process and input all data to the central database 79 days 8/3/2013 28/6/2013 Lawyer1[3],OTHER1,Lawyer Junior1[2]

2.2.3.2             Data retrieval and migration of data of locked entries 73 days 15/3/2013 27/6/2013 Lawyer1,OTHER1[2],Lawyer Junior1[3]

2.2.3.3
            Correct and add notes to data entries based on the results of legal 

control and cross verification of data using sampling methods
10 days 28/6/2013 11/7/2013 Lawyer Junior1[3],OTHER1[3]

2.2.3.4

            Correct and add notes to data entries based on the results of legal 

control and cross verification of data using automated validation 

algorithms

10 days 28/6/2013 11/7/2013 Lawyer Junior1[3],OTHER1,Surveyor Engineer Junior1

2.2.3.5             Cross check and validate duplicate entries referring to land owners 10 days 28/6/2013 11/7/2013 IT 1,Lawyer Junior1[2],OTHER1[4],IT Junior1,Surveyor Engineer Junior1[4]

2.2.3.6
            Cross check and validate duplicate entries referring to land 

boundaries
5 days 12/7/2013 18/7/2013 IT 1,Lawyer1,Lawyer Junior1[2],OTHER1[3],Surveyor Engineer Junior1

2.2.3.7
            Define land limits and owners of each building and pair it to unique 

KAEK code
73 days 8/3/2013 20/6/2013 Surveyor Engineer1,Surveyor Engineer Junior1[4],OTHER1

2.2.3.8
            Define land boundaries where no data have been given by the 

owners 
10 days 21/6/2013 4/7/2013 Surveyor Engineer1,OTHER1,Surveyor Engineer Junior1[3]

2.2.3.9             Enumerate buildings and geographically position them 10 days 21/6/2013 4/7/2013 Surveyor Engineer Junior1[4]

2.2.3.10
            Topological validation of polygon based spatial data and update of 

the digital cadastral spatial data base
6 days 5/7/2013 12/7/2013 GIS,Surveyor Engineer1[2],Surveyor Engineer1,Surveyor Engineer Junior1

2.2.3.11             Generate description and geospatial data bases 1 day 19/7/2013 19/7/2013 GIS,IT 1



WBS Task Name Duration Start Finish Resource Names

2.2.3.12             Submission of 3rd intermediate data base 0 days 19/7/2013 19/7/2013
2.2.4          Preparation for final submission 59 days 1/7/2013 20/9/2013

2.2.4.1
            Edit entries and enter to the central database. Check legal issues 

related to the landowners
58 days 1/7/2013 19/9/2013 Lawyer1[3],Lawyer Junior1[4],OTHER1

2.2.4.2
            Migrate data from local data bases to Greek Land Registry central 

database
37 days 8/7/2013 28/8/2013 Lawyer1[2],OTHER1[2],Lawyer Junior1[2]

2.2.4.3             Correct and complete missing data based on owners statements 7 days 29/8/2013 6/9/2013 Lawyer Junior1[3],OTHER1[3]

2.2.4.4             Update data base based on comments by the Greek Land Registry 7 days 29/8/2013 6/9/2013 Lawyer Junior1[3],OTHER1,IT Junior1

2.2.4.5             Correct data base based on the results of sampling 7 days 29/8/2013 6/9/2013 IT 1,OTHER1[4],Lawyer Junior1[2],IT Junior1,Surveyor Engineer Junior1[4]

2.2.4.6             Remove duplicate entries 5 days 9/9/2013 13/9/2013 IT 1,Lawyer Junior1[3],OTHER1[3]

2.2.4.7

            Validate data tracking and delineation of properties. Validate 

geometric compatibility of parcels included in the database. Assign 

specific codes to the properties of all the registred landowners 

44 days 1/7/2013 30/8/2013 Surveyor Engineer1[2],Surveyor Engineer Junior1[4],OTHER1[4]

2.2.4.8
            Define land boundaries where no data have been given by the 

owners 
7 days 2/9/2013 10/9/2013 Surveyor Engineer1,OTHER1,Surveyor Engineer Junior1[3]

2.2.4.9             Enumerate buildings and geographically position them 7 days 2/9/2013 10/9/2013 Surveyor Engineer Junior1[4]

2.2.4.10
            Topological validation of polygon based spatial data and update of 

the digital cadastral spatial data base
4 days 11/9/2013 16/9/2013 GIS,Surveyor Engineer1[2],Surveyor Engineer Junior1

2.2.4.11             Generate description and geospatial data bases 4 days 17/9/2013 20/9/2013 GIS,IT 1

2.2.4.12             Technical report of implementation process 5 days 16/9/2013 20/9/2013 GIS,IT 1,OTHER1

2.2.4.13             Final submission of scanned land owners statements 0 days 20/9/2013 20/9/2013
2.2.4.14             Report for internal control 0 days 20/9/2013 20/9/2013
2.2.4.15             Submit final report of the implementation process 0 days 20/9/2013 20/9/2013
2.5       Completion of Stage 2 0 days 20/9/2013 20/9/2013

3    3rd Stage: Final Submission 446 days 10/6/2014 9/3/2016
3.0       Stage 3 -Start 0 days 10/6/2014 10/6/2014

3.7       Finalise elaboration of the collected data and resulting tables 4 days 10/6/2014 13/6/2014
IT 1,Lawyer1[2],Surveyor Engineer1[2],GIS,Lawyer Junior1[3],OTHER1[4],IT 

Junior1[2],Surveyor Engineer Junior1
3.8       Final submission of collected data and resulting tables 0 days 8/3/2016 8/3/2016
3.9       Final technical report 12 days 10/6/2014 3/7/2014 Civil Engineer1,Surveyor Engineer1,Lawyer Junior1,OTHER1

3.10       Submission of final technical report 0 days 3/7/2014 3/7/2014
3.13       Completion of Stage 3 0 days 8/3/2016 8/3/2016



A.4 Case Study 165

A.4.2 Gantt chart



SS SSS

0

1 0

2 1

3 100

4 101

5 10101

6 1010102

7 1010103

8 1010104

9 10102

10 1010201

11 1010202

12 1010203

13 1010204

14 10103

15 1010301

16 1010302

17 1010303

18 1010304

19 1010305

20 1010306

21 102

22 10201

23 1020101

24 1020102

25 10202

26 1020201

325212 328216

325212

100

325212 329212

1010102325212 325212

1010103325212

1010104

325212 3223212

10102013214212 423212

1010202325212 3215212

10102033216212 424212

1010204

325212 3215212

10103013216212 422212

1010302423212 423212

1010303423212

1010304424212 4217212

10103054217212

1010306

325212 424212

10201013212212 423212

1020102

325212 327212

1020201

vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll

lnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrln

1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf



SS SSS

27 1020202

28 1020203

29 1020204

30 1020205

31 1020206

32 1020207

33 1020208

34 1020209

35 10202010

36 10203

37 1020301

38 1020302

39 1020303

40 1020304

41 1020305

42 1020306

43 1020307

44 1020308

45 1020309

46 10203010

47 10203011

48 103

49 10301

425212 5222212

1020202325212 3215212

1020203

425212 522212

1020204425212 4225212

1020205425212 522212

10202065223212 5225212

10202075228212 625212

1020208625212

1020209625212

10202010

328212 4218212

1020301425212 5214212

1020302425212 5214212

1020303425212 6227212

1020304

523212 7211212

1020305528212 8222212

1020306

528212 8222212

1020307

5211212 8227212

1020308

8214212 8228212

10203098229212 925212

10203010925212

10203011

vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll

lnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrln

1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf



SS SSS

50 1030101

51 1030102

52 1030103

53 1030104

54 1030105

55 1030106

56 1030107

57 1030108

58 1030109

59 10301010

60 10301011

61 10303

62 1030301

63 1030302

64 1030303

65 1030304

66 555

67 2

68 050

69 201

70 20100

71 20101

72 20102

73 20103

74 05554

75 202

325212 3216212

10301013219212 3223212

10301023219212 4213212

10301033219212 4212212

10301044213212 5211212

10301054213212 5211212

10301064213212 524212

10301074217212 5221212

1030108325212 3230212

10301095214212 5217212

103010105218212 5218212

10301011

5221212

10303015221212 6215212

1030302

5221212 6219212

10303036219212

1030304 925212

105

1127212

200

1127212

20100325212 325212

20101325212 325212

20102325212 325212

20103325212

20104

vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll

lnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrln

1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf



SS SSS

76 20201

77 2020101

78 2020102

79 2020103

80 2020104

81 2020105

83 2020106

84 2020107

85 2020108

86 2020109

87 20201010

88 20201011

82 20201012

89 20202

90 2020201

91 2020202

92 2020203

325212 10222212

20201013215212 1121212

20201021122212 11229212

2020103

1122212 11229212

2020104

11230212 12219212

2020105

325212 10222212

2020106

10223212 11219212

2020107

10223212 11219212

202010811220212 1227212

2020109

12220212 12224212

2020101012224212

20201011325212 3222212

20201012

10223212 327213

20202011122212 326213

2020202327213 3215213

2020203

vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll

lnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrln

1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf



SS SSS

93 2020204

94 2020205

95 2020206

96 2020207

97 2020208

98 2020209

99 20202010

100 20202011

101 20202012

102 20203

103 2020301

104 2020302

105 2020303

106 2020304

107 2020305

108 2020306

327213 3215213

2020204

327213 3215213

20202053218213 3222213

2020206

10223212 325213

2020207

326213 3214213

2020208

326213 3214213

20202093215213 3221213

20202010

3226213 3227213

202020113227213

20202012

328213 6228213

20203013215213 6227213

20203026228213 7211213

2020303

6228213 7211213

2020304

6228213 7211213

2020305

7212213 7218213

2020306

vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll

lnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrln

1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf



SS SSS

109 2020307

110 2020308

111 2020309

112 20203010

113 20203011

114 20203012

115 20204

116 2020401

117 2020402

118 2020403

119 2020404

120 2020405

121 2020406

122 2020407

123 2020408

124 2020409

125 20204010

328213 6220213

2020307

6221213 724213

2020308

6221213 724213

2020309725213 7212213

20203010

7219213 7219213

202030117219213

20203012

721213 9219213

2020401

728213 8228213

2020402

8229213 926213

2020403

8229213 926213

2020404

8229213 926213

2020405929213 9213213

2020406721213 8230213

2020407

922213 9210213

2020408

922213 9210213

20204099211213 9216213

20204010

vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll

lnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrln

1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf



SS SSS

126 20204011

127 20204012

128 20204013

129 20204014

130 20204015

131 055

132 3

133 050

134 307

135 308

136 309

137 3010

138 0550

9217213 9220213

202040119216213 9220213

202040129220213

202040139220213

202040149220213

202040159220213

205

6210214

3006210214 6213214

307 328216

3086210214 723214

309 723214

3010 328216

3013

vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll Spp vvv nnn rnr rny nll

lnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrlnrrpr 1rrrrlnrrpr 3rrrrln

1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf 1rrrfnlf



knrk

Spltr

rtlprrvnp

Slyynry

yrvypyrrSlyynry

ssrprnnlrknrkr

ssrprnnlrrtlprrvnp

Snnyrtvprknrk

Snnyrtvprrtlprrvnp

SnnyrtvprSlyynry

rnnlnlrknrk

Slrnrtvnyvnly

rnnlnlrSlyynryrpvlllp

rnnlnlrSlyynry

Srnrryvnly

ytntryyvnly

Spnrltnp

lrtrtynl

lrtrtynlrSpltr

yrvsrprr





Appendix B
Implemented Code – Main Modules

175



class ModeratorGA 
    { 
        public List<CommonVars.schedule> ModGA(CommonVars.EmoData inputData, 
CommonVars.problemParams probParams) 
        { 
            Functions.AuxiliaryFunctions AuxFuns = new AuxiliaryFunctions(); 
            SingleObjectiveGA soGA = new SingleObjectiveGA(); 
            MOGA moGA = new MOGA(); 
            Pareto parGA = new Pareto(); 
 
            List<CommonVars.schedule> resultSchedules = new List<CommonVars.schedule>(); 
            int jobNum = inputData.jobNum; 
            int GEN = probParams.GEN; 
            int numOfRepetitions = probParams.numOfRepetitions; 
 
            //Repetition 
            for (int repetitions = 0; repetitions < numOfRepetitions; repetitions++) 
            { 
                Stopwatch stopWatch = new Stopwatch(); 
                stopWatch.Start(); 
                Console.WriteLine("Repetition {0}------------", repetitions + 1); 
 
                // Initial Population 
 
                CommonVars.adaptiveChromosome[] InPopulation = 
AuxFuns.InitialPopulation(inputData, probParams); 
 
 
                // Generation 
 
                int NumOfGenerations = 0; 
                CommonVars.adaptiveChromosome[] CurrentPopulation = InPopulation; 
 
                while (NumOfGenerations < GEN) 
                { 
                    NumOfGenerations++; 
 
                    // Crossover 
                    CommonVars.adaptiveChromosome[] ChildrenPopulation = 
AuxFuns.CrossoverM_act(CurrentPopulation, probParams,inputData); 
                    // Mutation 
                    ChildrenPopulation = AuxFuns.MutationM(ChildrenPopulation, 
probParams, inputData); 
 
                    //Mode repair and improvement 
                     
                    // Current Union Offspring 
                    CommonVars.adaptiveChromosome[] UnionPopulation = new 
CommonVars.adaptiveChromosome[2 * probParams.POP]; 
                    for (int i = 0; i < probParams.POP; i++) 
                    { 
                        UnionPopulation[i] = CurrentPopulation[i]; 
                        UnionPopulation[i + probParams.POP] = ChildrenPopulation[i]; 
                    } 
                    for (int i = 0; i < UnionPopulation.Length; i++) 
                    { 
                        if (AuxFuns.checkModeNonRenFS(UnionPopulation[i].modeList, 
inputData, probParams) == false) 



                            AuxFuns.ModeRepair(ref UnionPopulation[i], inputData); 
                    } 
 
                    
                    switch (probParams.caseType) 
                    { 
                        case 0: CurrentPopulation=soGA.SingleObjGA(inputData, probParams, 
UnionPopulation); 
                            break; 
                        case 1: CurrentPopulation=moGA.moGA(inputData, probParams, 
UnionPopulation); 
                            break; 
                        case 2: CurrentPopulation=parGA.ParetoGA(inputData, probParams, 
UnionPopulation); 
                            break; 
                        default: 
                            Console.WriteLine("Not acceptable case type option"); 
                            break; 
                    } 
                    
                    Console.WriteLine("-------------------------------------------------
"); 
                    for (int i = 0; i < CurrentPopulation.Length; i++) 
                        Console.WriteLine("{0}\t--{1:N2}--{2}", 
CurrentPopulation[i].fit.makespan, CurrentPopulation[i].fit.RLI, 
CurrentPopulation[i].Algo); 
                    Console.WriteLine("-------------------------------------------------
"); 
                    stopWatch.Stop(); 
                    // Get the elapsed time as a TimeSpan value. 
                    TimeSpan ts1 = stopWatch.Elapsed; 
 
                    string elapsedTime1 = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", 
                 ts1.Hours, ts1.Minutes, ts1.Seconds, 
                 ts1.Milliseconds / 10); 
                    Console.WriteLine("RunTime " + elapsedTime1); 
 
                } 
               // Console.WriteLine("Min of repetition: " + generMin); 
               // int minSchDuration = generMin; 
 
 
                //////////////////////////////////////////////// 
 
 
 
 
                stopWatch.Stop(); 
                // Get the elapsed time as a TimeSpan value. 
                TimeSpan ts = stopWatch.Elapsed; 
 
                string elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", 
             ts.Hours, ts.Minutes, ts.Seconds, 
             ts.Milliseconds / 10); 
                Console.WriteLine("RunTime " + elapsedTime); 
                
                Array.Sort(CurrentPopulation, 



    delegate(CommonVars.adaptiveChromosome x, CommonVars.adaptiveChromosome y) { return 
x.fit.makespan.CompareTo(y.fit.makespan); }); 
                 
                AuxFuns.HandleExcelFile(repetitions, CurrentPopulation[0], probParams, 
elapsedTime); 
 
                //AuxFuns.HandleExcelFile(repetitions, filename, elapsedTime, 
minSchDuration); 
              for(int i=0;i<jobNum;i++) 
                  Console.Write(CurrentPopulation[0].SGSstat.startTimes[i]+"--"); 
                Console.WriteLine(); 
 
                for (int i = 0; i < jobNum; i++) 
                    Console.Write(CurrentPopulation[0].modeList[i] + "--"); 
                Console.WriteLine(); 
            } 
 
            return resultSchedules; 
        } 
    } 

  



  public  class SingleObjectiveGA 
    { 
        
        public CommonVars.adaptiveChromosome[] SingleObjGA(CommonVars.EmoData inputData, 
CommonVars.problemParams probParams, CommonVars.adaptiveChromosome[] UnionPopulation) 
        { 
            Functions.AuxiliaryFunctions AuxFuns = new AuxiliaryFunctions(); 
            CommonVars.adaptiveChromosome[] CurrentPopulation = new 
CommonVars.adaptiveChromosome[probParams.POP]; 
            try{ 
            int[] Fitness = CalcFitness(inputData, probParams, ref UnionPopulation); 
           
            //Extension.Shuffle(UnionPopulation); 
            int POP = probParams.POP; 
            int newPopSize = 0; 
            int[] FitnessFinal = new int[POP]; 
            Objectives obj = new Objectives(); 
            
                for (int i = 0; i < UnionPopulation.Length; i++) 
                    obj.calcRLI(ref inputData, probParams, ref UnionPopulation[i]); 
 
             //   for (int i = 0; i < UnionPopulation.Length; i++) 
               //     Console.WriteLine("{0} -- {1}", UnionPopulation[i].fit.makespan, 
UnionPopulation[i].Algo); 
                 
                Array.Sort(UnionPopulation, 
     delegate(CommonVars.adaptiveChromosome x, CommonVars.adaptiveChromosome y) { return 
x.fit.makespan.CompareTo(y.fit.makespan); }); 
                Array.Sort(Fitness); 
                //do 
                //{ 
 
                //    int minFit = Fitness.Min(); 
                //    int individual = Array.IndexOf(Fitness, minFit); 
                //    CurrentPopulation[newPopSize] = new 
CommonVars.adaptiveChromosome(); 
                //    CurrentPopulation[newPopSize].activityList = new 
int[inputData.jobNum]; 
                //    
UnionPopulation[individual].activityList.CopyTo(CurrentPopulation[newPopSize].activityLis
t, 0); 
                //    FitnessFinal[newPopSize] = Fitness[individual]; 
                //    CopyChromo(inputData, CurrentPopulation[newPopSize].activityList, 
ref CurrentPopulation[newPopSize], UnionPopulation[individual]); 
                //    Fitness[individual] = Fitness.Max(); 
                //    newPopSize++; 
 
                //} while (newPopSize < POP); 
                int individual = 0; 
                do 
                { 
                    CurrentPopulation[newPopSize] = new CommonVars.adaptiveChromosome(); 
                    CurrentPopulation[newPopSize].activityList = new 
int[inputData.jobNum]; 
                    
UnionPopulation[individual].activityList.CopyTo(CurrentPopulation[newPopSize].activityLis
t, 0); 
                    FitnessFinal[newPopSize] = Fitness[individual]; 



                    CopyChromo(inputData, CurrentPopulation[newPopSize].activityList, ref 
CurrentPopulation[newPopSize], UnionPopulation[individual]); 
                    newPopSize++; 
                    individual++; 
 
                } while (newPopSize < POP); 
            E_MO_RCPSP.OthersAlgos.RCPSP.SerialSGS_unscheduling schedule = new 
OthersAlgos.RCPSP.SerialSGS_unscheduling(); 
            
           
            //int min = FitnessFinal.Min(); 
 
            
            //calc other objectives just to know... 
        } 
             catch (Exception ex) 
            { 
                Console.WriteLine(ex.Message); 
            } 
             return CurrentPopulation; 
        } 
        public class SortByMakespan : IComparer<CommonVars.adaptiveChromosome> 
        { 
            public int Compare(CommonVars.adaptiveChromosome x, 
CommonVars.adaptiveChromosome y) 
            { 
                return x.fit.makespan.CompareTo(y.fit.makespan); 
            } 
        } 
        public int[] CalcFitness(CommonVars.EmoData inputData, CommonVars.problemParams 
probParams, ref CommonVars.adaptiveChromosome[] Population) 
        { 
            int[] Fitness = new int[Population.Length]; 
            try 
            { 
                Functions.AuxiliaryFunctions AuxFuns = new AuxiliaryFunctions(); 
                List<CommonVars.adaptiveChromosome> PSOPopulationList = new 
List<CommonVars.adaptiveChromosome>(); 
                List<CommonVars.adaptiveChromosome> GAPopulationList = new 
List<CommonVars.adaptiveChromosome>(); 
                for (int i = 0; i < Population.Length; i++) 
                { 
                    //calculate ES,LS mode specific therefore is executed after mode 
assignment 
 
                    //for (int q = 0; q < inputData.jobNum; q++) 
                    //    for (int j = 0; j < 
inputData.activities[q].relationships.Count(); j++) 
                    //        Console.WriteLine(q +"--"+ 
inputData.activities[q].relationships[j].ID +" -- "+ 
inputData.activities[q].relationships[j].lag[0].lag); 
                    AuxFuns.FloydWarshall(inputData, ref Population[i]); 
 
                    switch (Population[i].Algo) 
                    { 
                        case 0: 
                            { 



                                Fitness[i] = SA4Adaptive(inputData, probParams, ref 
Population[i]); 
                                break; 
                            } 
                        case 1: PSOPopulationList.Add(Population[i]); 
                            break; 
                        case 2: GAPopulationList.Add(Population[i]); 
                            break; 
                        case 3: 
                            { 
                                Fitness[i] = SA4Adaptive(inputData, probParams, ref 
Population[i]);// TS 
                                break; 
                            } 
                        default: Fitness[i] = -1; 
                            break; 
                    } 
 
                } 
                CommonVars.adaptiveChromosome[] PSOPopulation = 
PSOPopulationList.ToArray(); 
                CommonVars.adaptiveChromosome[] GAPopulation = 
GAPopulationList.ToArray(); 
                int[] PSOFitness = new int[PSOPopulation.Length]; 
                if (PSOPopulation.Length >= 2) 
                    PSOFitness = PSOAdaptive(ref PSOPopulation, inputData, probParams); 
                else 
                { 
                    for (int count = 0; count < PSOPopulation.Count(); count++) 
                        PSOFitness[count] = SA4Adaptive(inputData, probParams, ref 
PSOPopulation[count]); 
                } 
                int[] GAFitness = new int[GAPopulation.Length]; 
                if (GAPopulation.Length >= 2) 
                    GAFitness = GA4Adaptive(ref GAPopulation, inputData, probParams); 
                else 
                { 
                    for (int count = 0; count < GAPopulation.Count(); count++) 
                        GAFitness[count] = SA4Adaptive(inputData, probParams, ref 
GAPopulation[count]); 
                } 
                int PSOcount = 0; 
                int GAcount = 0; 
                for (int i = 0; i < Population.Length; i++) 
                { 
                    if (Population[i].Algo == 1) 
                    { 
                        Fitness[i] = PSOFitness[PSOcount]; 
                        Array.Copy(PSOPopulation[PSOcount].activityList, 
Population[i].activityList, Population[i].activityList.Length); 
                        Population[i].fit = new CommonVars.Fitness(); 
                        Population[i].fit.makespan = Fitness[i]; 
                        PSOcount++; 
                    } 
                    if (Population[i].Algo == 2) 
                    { 
                        Fitness[i] = GAFitness[GAcount]; 



                        Array.Copy(GAPopulation[GAcount].activityList, 
Population[i].activityList, Population[i].activityList.Length); 
                        Array.Copy(GAPopulation[GAcount].modeList, 
Population[i].modeList, Population[i].activityList.Length); 
                        CopyChromo(inputData, GAPopulation[GAcount].activityList, ref 
Population[i], GAPopulation[GAcount]); 
                        GAcount++; 
                    } 
                } 
            } 
            catch (Exception ex) 
            { 
                Console.WriteLine(ex.Message); 
            } 
            return Fitness; 
        } 
 
        #region SA 4 Adaptive 
 
        public int SA4Adaptive(CommonVars.EmoData inputData, CommonVars.problemParams 
probParams, ref CommonVars.adaptiveChromosome chromo) 
        { 
            int Fitness_xbest = -1; 
            try 
            { 
            Console.WriteLine("SA"); 
                int jobNum = inputData.jobNum; 
                Functions.AuxiliaryFunctions AuxFuns = new 
Functions.AuxiliaryFunctions(); 
 
                #region setup parameters 
                int Neighborhoods = probParams.SAparams.Neighborhoods; 
                int Chains = probParams.SAparams.Chains; 
                int Steps = probParams.SAparams.Steps; 
                int N0 = probParams.SAparams.N0; 
                int h = probParams.SAparams.h; 
                double T0max = probParams.SAparams.T0max; 
                double a = probParams.SAparams.a; 
 
                #endregion 
 
 
                #region step 1: compute cp finish time 
 
                int CP_FinishTime = inputData.activities[jobNum - 1].LS; 
 
                //help print 
                // Console.WriteLine("CP Finish Time: " + CP_FinishTime); 
                #endregion 
 
                #region step3 and 4 initialize variables - set best and current solutions 
 
                int[] actList = new int[chromo.activityList.Length]; 
                Array.Copy(chromo.activityList, actList, chromo.activityList.Length); 
                CommonVars.adaptiveChromosome actListChromo = new 
CommonVars.adaptiveChromosome(); 
                CopyChromo(inputData, actList, ref actListChromo, chromo); 
 



                SerialSGS_unscheduling schedule = new SerialSGS_unscheduling(); 
                int FinishTimeSerial = schedule.serialSGSu(inputData, probParams, ref 
actListChromo); 
 
                int[] xbest = new int[jobNum]; 
                Array.Copy(actList, xbest, jobNum); 
                CommonVars.adaptiveChromosome xbestChromo = new 
CommonVars.adaptiveChromosome(); 
                CopyChromo(inputData, xbest, ref xbestChromo, actListChromo); 
                ///////////////////////////////// 
                int[] xcurrent = new int[jobNum]; 
                Array.Copy(actList, xcurrent, jobNum); 
                CommonVars.adaptiveChromosome xcurrentChromo = new 
CommonVars.adaptiveChromosome(); 
                CopyChromo(inputData, xcurrent, ref xcurrentChromo, actListChromo); 
 
                Fitness_xbest = FinishTimeSerial; //fitness of initial chromo 
 
                int Fitness_xcurrent = FinishTimeSerial;  //fitness of initial chromo 
 
 
                #endregion 
 
 
                #region step 6 ...main component 
                int Ntotal = 0; 
                for (int i = 0; i < Chains; i++) 
                { 
                    //help print 
                    //Console.WriteLine("Chain: " + i); 
                    //proposed value of param ToMax 
                    T0max = 0.2 * Fitness_xcurrent; 
                    double T = T0max; 
                    int Ns = N0; 
                    //    int Ntot=0; 
                    for (int j = 0; j < Steps; j++) 
                    { 
                        //Console.WriteLine("Step: " + j); 
                        Ns = Ns * (1 + h * j); //h*s where s the step in the algo 
                        //Ntot += Ns; // dont look for more than Neighborhoods total 
solutions 
 
                        if (Ntotal < Neighborhoods) //stopping criterion max number of 
generated neighborhoods 
                        { 
                            for (int k = 0; k < Ns; k++) 
                            { 
                                Ntotal++; 
                                //Console.WriteLine("Neighborhood: " + k); 
                                //generate neighborhood of x0 
 
 
                                AuxFuns.GenerateNeighborhood(inputData, ref 
actListChromo); 
 
                                //help print 
                                //for (int m = 0; m < jobNum; m++) 
                                //    Console.WriteLine((actList[m])); 



                                //Console.WriteLine(""); 
                                //calculate fitness of generated act List 
 
                                int Fitness_xnew = schedule.serialSGSu(inputData, 
probParams, ref actListChromo); 
                                //help print 
                                //Console.WriteLine("Finish time: " + Fitness_xnew); 
                                //calculate D= fitness of new solution - fitness of 
current 
                                int D = Fitness_xnew - Fitness_xcurrent; 
                                if (D < 0) 
                                { 
                                    Array.Copy(actList, xcurrent, jobNum); 
 
                                    CopyChromo(inputData, xcurrent, ref xcurrentChromo, 
actListChromo); 
                                    Fitness_xcurrent = Fitness_xnew; 
 
                                    if (Fitness_xnew < Fitness_xbest) 
                                    { 
                                        Array.Copy(actList, xbest, jobNum); 
 
                                        CopyChromo(inputData, xbest, ref xbestChromo, 
actListChromo); 
                                        Fitness_xbest = Fitness_xnew; 
                                        if (Fitness_xbest == CP_FinishTime) 
                                            break; 
 
                                    } 
                                } 
                                else 
                                { 
                                    double P = Math.Pow(Math.E, -D / T); 
                                    double Xrandom = GlobalVars.rand.NextDouble(); 
                                    //help print 
                                    //Console.WriteLine("Value of P: " + P + " Value of 
Xrandom: " + Xrandom); 
                                    if (P > Xrandom) 
                                    { 
                                        Array.Copy(actList, xcurrent, jobNum); 
                                        CopyChromo(inputData, xcurrent, ref 
xcurrentChromo, actListChromo); 
                                        Fitness_xcurrent = Fitness_xnew; 
                                    } 
                                } 
                            } 
                        } 
 
                        T = a * T; 
                    } 
                } 
 
                #endregion 
 
                #region step 7 explore neighborhood of x best 
                //    Console.WriteLine("Exploring neighborhood of currently best 
solution"); 
 



                int Naverage = 10; 
                Array.Copy(xbest, actList, jobNum); 
                CopyChromo(inputData, actList, ref actListChromo, xbestChromo); 
 
                Array.Copy(actList, xcurrent, jobNum); 
                CopyChromo(inputData, xcurrent, ref xcurrentChromo, actListChromo); 
 
                Fitness_xcurrent = Fitness_xbest; 
 
                for (int k = 0; k < Naverage; k++) 
                { 
 
                    //          Console.WriteLine("Neighborhood: " + k); 
                    //generate neighborhood of x0 
 
                    AuxFuns.GenerateNeighborhood(inputData, ref actListChromo); 
                    //help print 
                    //for (int m = 0; m < jobNum; m++) 
                    //    Console.WriteLine((activityList[m])); 
                    //Console.WriteLine(""); 
                    //calculate fitness of generated act List 
                    int Fitness_xnew = schedule.serialSGSu(inputData, probParams, ref 
actListChromo); 
                    //help print 
                    //Console.WriteLine("Finish time: " + Fitness_xnew); 
                    //calculate D= fitness of new solution - fitness of current 
                    int D = Fitness_xnew - Fitness_xcurrent; 
                    if (D < 0) 
                    { 
                        Array.Copy(actList, xcurrent, jobNum); 
                        CopyChromo(inputData, xcurrent, ref xcurrentChromo, 
actListChromo); 
                        Fitness_xcurrent = Fitness_xnew; 
 
                        if (Fitness_xnew < Fitness_xbest) 
                        { 
                            Array.Copy(actList, xbest, jobNum); 
                            CopyChromo(inputData, xbest, ref xbestChromo, actListChromo); 
                            Fitness_xbest = Fitness_xnew; 
                            if (Fitness_xbest == CP_FinishTime) 
                                break; 
 
                        } 
                    } 
 
                } 
 
            } 
            catch (Exception ex) 
            { 
                Console.WriteLine(ex.Message); 
            } 
 
            //help print 
            //Console.WriteLine("Best Solution"); 
            //for (int j = 0; j < jobNum; j++) 
            //    Console.WriteLine((xbest[j])); 
            //Console.WriteLine(""); 



        //    Console.WriteLine("Finish time: " + Fitness_xbest); 
            chromo.fit = new CommonVars.Fitness(); 
            chromo.fit.makespan = Fitness_xbest; 
            return Fitness_xbest; 
            #endregion 
        } 
        //copy all data from chromo except actList that is given using the xbest array 
        public void CopyChromo(CommonVars.EmoData inputData, int[] xbest, ref 
CommonVars.adaptiveChromosome xbestChromo, CommonVars.adaptiveChromosome chromo) 
        { 
            try 
            { 
                xbestChromo.activityList = new int[inputData.jobNum]; 
                Array.Copy(xbest, xbestChromo.activityList, xbest.Length); 
 
                xbestChromo.modeList = new int[chromo.modeList.Length]; 
                Array.Copy(chromo.modeList, xbestChromo.modeList, 
chromo.modeList.Length); 
 
                xbestChromo.Algo = chromo.Algo; 
                xbestChromo.SGS = chromo.SGS; 
 
                xbestChromo.SGSstat = new CommonVars.SGSstatus(); 
                xbestChromo.SGSstat.uStep = chromo.SGSstat.uStep; 
 
                xbestChromo.SGSstat.startTimes = new int[inputData.jobNum]; 
                if (chromo.SGSstat.startTimes != null) 
                    Array.Copy(chromo.SGSstat.startTimes, xbestChromo.SGSstat.startTimes, 
chromo.SGSstat.startTimes.Length); 
 
                xbestChromo.SGSstat.finishTimes = new int[inputData.jobNum]; 
                if (chromo.SGSstat.finishTimes != null) 
                    Array.Copy(chromo.SGSstat.finishTimes, 
xbestChromo.SGSstat.finishTimes, chromo.SGSstat.finishTimes.Length); 
                if (chromo.SGSstat.scheduledSet != null) 
                { 
                    List<int> scheduledSet = new List<int>(chromo.SGSstat.scheduledSet); 
                    xbestChromo.SGSstat.scheduledSet = scheduledSet; 
                } 
                xbestChromo.SGSstat.resAvailDynamic = new 
Commons.CommonVars.resourceAvail(); 
                xbestChromo.SGSstat.resAvailDynamic.renResAvail = new 
System.Collections.Generic.List<Commons.CommonVars.resource>(); 
 
                if (chromo.SGSstat.resAvailDynamic != null) 
                { 
                    if (chromo.SGSstat.resAvailDynamic.renResAvail != null) 
                        foreach (Commons.CommonVars.resource res in 
chromo.SGSstat.resAvailDynamic.renResAvail) 
                        { 
                            Commons.CommonVars.resource copyres = new 
Commons.CommonVars.resource(); 
                            copyres.resID = res.resID; 
                            copyres.resCalMatrix = new int[res.resCalMatrix.Length]; 
                            if (res.resCalMatrix != null) 
                                Array.Copy(res.resCalMatrix, copyres.resCalMatrix, 
res.resCalMatrix.Length); 
                            xbestChromo.SGSstat.resAvailDynamic.renResAvail.Add(copyres); 



                        } 
 
                    xbestChromo.SGSstat.resAvailDynamic.nonrenResAvail = new 
System.Collections.Generic.List<Commons.CommonVars.resource>(); 
                    if (chromo.SGSstat.resAvailDynamic.nonrenResAvail != null) 
                        foreach (Commons.CommonVars.resource res in 
chromo.SGSstat.resAvailDynamic.nonrenResAvail) 
                        { 
                            Commons.CommonVars.resource copyres = new 
Commons.CommonVars.resource(); 
                            copyres.resID = res.resID; 
                            copyres.resCalMatrix = new int[res.resCalMatrix.Length]; 
                            Array.Copy(res.resCalMatrix, copyres.resCalMatrix, 
res.resCalMatrix.Length); 
                            
xbestChromo.SGSstat.resAvailDynamic.nonrenResAvail.Add(copyres); 
                        } 
                    xbestChromo.SGSstat.resAvailDynamic.dbResAvail = new 
System.Collections.Generic.List<Commons.CommonVars.resource>(); 
                    if (chromo.SGSstat.resAvailDynamic.dbResAvail != null) 
                        foreach (Commons.CommonVars.resource res in 
chromo.SGSstat.resAvailDynamic.dbResAvail) 
                        { 
                            Commons.CommonVars.resource copyres = new 
Commons.CommonVars.resource(); 
                            copyres.resID = res.resID; 
                            copyres.resCalMatrix = new int[res.resCalMatrix.Length]; 
                            if (res.resCalMatrix != null) 
                                Array.Copy(res.resCalMatrix, copyres.resCalMatrix, 
res.resCalMatrix.Length); 
                            xbestChromo.SGSstat.resAvailDynamic.dbResAvail.Add(copyres); 
                        } 
                } 
 
                xbestChromo.SGSstat.ES = new int[inputData.jobNum]; 
                if (chromo.SGSstat.ES != null) 
                    Array.Copy(chromo.SGSstat.ES, xbestChromo.SGSstat.ES, 
chromo.SGSstat.ES.Length); 
                xbestChromo.SGSstat.LS = new int[inputData.jobNum]; 
                if (chromo.SGSstat.LS != null) 
                    Array.Copy(chromo.SGSstat.LS, xbestChromo.SGSstat.LS, 
chromo.SGSstat.LS.Length); 
 
                if (chromo.SGSstat.strongPredsSet != null) 
                { 
                    System.Collections.Generic.List<List<int>> strongPreds = new 
List<List<int>>(chromo.SGSstat.strongPredsSet); 
                    xbestChromo.SGSstat.strongPredsSet = strongPreds; 
                } 
                if (chromo.SGSstat.strongSucsSet != null) 
                { 
                    System.Collections.Generic.List<List<int>> strongSucs = new 
List<List<int>>(chromo.SGSstat.strongSucsSet); 
                    xbestChromo.SGSstat.strongSucsSet = strongSucs; 
                } 
 
 
                xbestChromo.SGSstat.jSelected = chromo.SGSstat.jSelected; 



                xbestChromo.SGSstat.tSelected = chromo.SGSstat.tSelected; 
 
                xbestChromo.SGSstat.initialDistanceMatrix = new int[inputData.jobNum, 
inputData.jobNum]; 
                if (chromo.SGSstat.initialDistanceMatrix != null) 
                    Array.Copy(chromo.SGSstat.initialDistanceMatrix, 
xbestChromo.SGSstat.initialDistanceMatrix, chromo.SGSstat.initialDistanceMatrix.Length); 
 
                xbestChromo.SGSstat.distanceMatrix = new int[inputData.jobNum, 
inputData.jobNum]; 
                if (chromo.SGSstat.distanceMatrix != null) 
                    Array.Copy(chromo.SGSstat.distanceMatrix, 
xbestChromo.SGSstat.distanceMatrix, chromo.SGSstat.distanceMatrix.Length); 
 
                //added for fitnes 
                xbestChromo.fit = new CommonVars.Fitness(); 
                if (chromo.fit != null) 
                { 
                    xbestChromo.fit.rank = chromo.fit.rank; 
                    xbestChromo.fit.makespan = chromo.fit.makespan; 
                    xbestChromo.fit.RLI = chromo.fit.RLI; 
                    xbestChromo.fit.Cost = chromo.fit.Cost; 
                    xbestChromo.fit.Robustness = chromo.fit.Robustness; 
                } 
            } 
            catch (Exception ex) 
            { 
                Console.WriteLine(ex.Message); 
            } 
        } 
        #endregion 
        #region PSO 4 Adaptive 
        private int[] PSOAdaptive(ref CommonVars.adaptiveChromosome[] PSO_Swarm, 
CommonVars.EmoData inputData, CommonVars.problemParams probParams) 
        { 
           Console.WriteLine("PSO"); 
 
            int jobNum = PSO_Swarm[0].activityList.Length; 
 
            SerialSGS_unscheduling schedule = new SerialSGS_unscheduling(); 
 
            Functions.AuxiliaryFunctions AuxFuns = new Functions.AuxiliaryFunctions(); 
 
            #region parameters 
            double[][] bestOfparticle = new  double[PSO_Swarm.Length][]; //Swarm Size 
Lines x JobNum cols 
            double[] bestOfswarm = new double[jobNum]; // the best chromo converted to 
double in [0,1] 
 
            int[] FitnessSwarm = new int[PSO_Swarm.Length]; 
            double weight = probParams.PSOparams.weight; 
            double c1 = probParams.PSOparams.c1; 
            double c2 = probParams.PSOparams.c2; 
 
            double r1 = -1;//random value uniformely drawn from [0,1] --> already uniform 
in C# Random 
            double r2 = -1; //random value uniformely drawn from [0,1] 
 



            double[][] velocity = new double[PSO_Swarm.Length][]; 
            double[][] x = new double[PSO_Swarm.Length][]; //particles corresponding to 
initial chromos 
            int[] FitBestOfParticle = new int[PSO_Swarm.Length]; 
            int FitBestOfSwarm = -1; 
 
            BestOfPSO_InitialValues( PSO_Swarm, ref bestOfparticle, ref bestOfswarm, ref 
FitBestOfParticle, ref FitBestOfSwarm, inputData, probParams); 
 
            //initialize particles with current chromos converted to particles by 
normalization 
            for (int i = 0; i < PSO_Swarm.Length; i++) 
            { 
                x[i] = new double[jobNum]; 
                Array.Copy(bestOfparticle[i], x[i], jobNum); 
            } 
            //initialize velocity to ??? 
            for (int i = 0; i < PSO_Swarm.Length; i++) 
            { 
                velocity[i] = new double[jobNum]; 
                for (int j = 0; j < jobNum; j++) 
                    velocity[i][j] = GlobalVars.rand.NextDouble(); 
            } 
 
            #endregion 
             
            #region PSO repetitive process 
            int GlobalCount = 0; 
            int TotalCount = 0; 
            do 
            { 
                for (int part = 0; part < PSO_Swarm.Length; part++) 
                { 
                    int[] actList = PSO_Swarm[part].activityList; 
                    // velocity=w ∗ vi + c1 ∗ U(0 , 1) ∗ (pi − xi) + c2 ∗ U(0 , 1) ∗ (g − 
xi) where pi is the best previous position of the particle and g is the best found 
position within the swarm so far 
                    for (int i = 0; i < jobNum; i++) 
                    { 
                        r1 = GlobalVars.rand.NextDouble(); 
                        r2 = GlobalVars.rand.NextDouble(); 
 
                        velocity[part][i] = weight * velocity[part][i] + c1 * r1 * 
(bestOfparticle[part][i] - x[part][i]) + c2 * r2 * (bestOfswarm[i] - x[part][i]); 
                        x[part][i] = x[part][i] + velocity[part][i]; 
                    } 
 
                    #region mapping 
                    //x vector is ordered and KEYS are ordered accordingly this way we 
get the new actList 
                    int[] chromoList = new int[jobNum]; 
                    double[] xTemp = new double[jobNum]; 
                    Array.Copy(x[part], xTemp, jobNum); 
 
                    for (int i = 0; i < jobNum; i++) 
                        chromoList[i] = i; 
 
                    Array.Sort(xTemp, chromoList); 



                    int temp = chromoList[0]; 
                    int pos = Array.IndexOf(chromoList, 0); 
                    chromoList[pos] = temp; 
                    chromoList[0] = 0; 
                    temp = chromoList[jobNum - 1]; 
                    pos = Array.IndexOf(chromoList, jobNum - 1); 
                    chromoList[pos] = temp; 
                    chromoList[jobNum - 1] = jobNum - 1; ; 
                    //addition for modes  
 
 
                    //send back updated chromo 
                    Array.Copy(chromoList, PSO_Swarm[part].activityList, jobNum); 
                    CopyChromo(inputData, PSO_Swarm[part].activityList, ref 
PSO_Swarm[part], PSO_Swarm[part]); 
                    //addition for modes 
 
                    //calculate fitness 
                    int Fitness_xnew = schedule.serialSGSu(inputData, probParams, ref 
PSO_Swarm[part]); 
 
                    //update Local Best 
                    if (FitBestOfParticle[part] > Fitness_xnew) 
                    { 
                        Array.Copy(x[part], bestOfparticle[part], jobNum); 
                        
                        FitBestOfParticle[part] = Fitness_xnew; 
                    } 
                    //update Global Best 
                    if (FitBestOfSwarm > Fitness_xnew) 
                    { 
                        Array.Copy(x[part], bestOfswarm, jobNum); 
                        FitBestOfSwarm = Fitness_xnew; 
 
                    } 
                    else GlobalCount++; 
 
                } 
                TotalCount++; 
                    #endregion 
            #endregion 
            } while (GlobalCount < 100 * PSO_Swarm.Length && TotalCount < 1000); 
 
            //help print 
          //  Console.WriteLine("Best of Swarm:{0}", FitBestOfSwarm); 
            return (FitBestOfParticle); 
        } 
 
        public void BestOfPSO_InitialValues( CommonVars.adaptiveChromosome[] PSO_Swarm, 
ref double[][] BestOfParticle,ref double[] BestOfSwarm, ref int[] FitBestOfParticle, ref 
int FitBestOfSwarm, CommonVars.EmoData inputData, CommonVars.problemParams probParams) 
        { 
            int jobNum = PSO_Swarm[0].activityList.Length; 
            SerialSGS_unscheduling schedule = new SerialSGS_unscheduling(); 
            Functions.AuxiliaryFunctions AuxFuns = new Functions.AuxiliaryFunctions(); 
 
 
            for (int i = 0; i < PSO_Swarm.Length; i++) //for each particle 



            { 
                int[] chromo = new int[jobNum]; 
                chromo = PSO_Swarm[i].activityList; 
                CommonVars.adaptiveChromosome actListChromo = new 
CommonVars.adaptiveChromosome(); 
                CopyChromo(inputData, chromo, ref actListChromo, PSO_Swarm[i]); 
 
                //mapping to particle 
                BestOfParticle[i] = new double[jobNum]; 
                for (int j = 0; j < jobNum; j++)  //convert chromo to particle by 
normalizing in [0,1] 
                    BestOfParticle[i][j] = Convert.ToDouble(chromo[j]) / 
Convert.ToDouble((jobNum - 1)); 
 
                FitBestOfParticle[i] = schedule.serialSGSu(inputData, probParams, ref 
actListChromo); 
 
                if (i == 0) 
                { 
                    FitBestOfSwarm = FitBestOfParticle[i]; 
                    Array.Copy(BestOfParticle[i], BestOfSwarm, jobNum); 
                } 
                if (FitBestOfParticle[i] <= FitBestOfSwarm) 
                { 
                    Array.Copy(BestOfParticle[i], BestOfSwarm, jobNum); 
                    FitBestOfSwarm = FitBestOfParticle[i]; 
 
                } 
 
            } 
 
 
        } 
        
        #endregion 4 Adaptive 
        #region GA 4 Adaptive 
        private int[] GA4Adaptive(ref CommonVars.adaptiveChromosome[] 
GAPopulation,CommonVars.EmoData inputData, CommonVars.problemParams probParams) 
        { 
           Console.WriteLine("GA"); 
            int[] Fitness = new int[GAPopulation.Length]; 
 
            Fitness = ActList_M_GA(ref GAPopulation, inputData, probParams); 
 
            return (Fitness); 
 
        } 
        private int[] ActList_M_GA(ref CommonVars.adaptiveChromosome[] GAPopulation, 
CommonVars.EmoData inputData, CommonVars.problemParams probParams) 
        { 
            int POP = 0; 
            if (GAPopulation.Length % 2 == 0) 
                POP = GAPopulation.Length; 
            else POP = GAPopulation.Length - 1; 
            probParams.sGAparams.POP = POP; 
            int numOfRepetitions = probParams.sGAparams.numOfRepetitions; 
 
            Functions.AuxiliaryFunctions AuxFuns = new Functions.AuxiliaryFunctions(); 



            SerialSGS_unscheduling schedule = new SerialSGS_unscheduling(); 
 
            int[] Fitness = new int[GAPopulation.Length]; 
            try 
            { 
                
                // Console.WriteLine("GA"); 
                for (int repetitions = 0; repetitions < numOfRepetitions; repetitions++) 
                { 
                    CommonVars.adaptiveChromosome[] InPopulation = new 
CommonVars.adaptiveChromosome[GAPopulation.Length]; 
                    Array.Copy(GAPopulation, InPopulation, GAPopulation.Length); 
 
                    //calculate fitness 
 
                    int i = 0; 
                    for (int pop = 0; pop < GAPopulation.Length; pop++) 
                    { 
                        Fitness[i] = schedule.serialSGSu(inputData, probParams, ref 
GAPopulation[pop]); 
                        i++; 
                    } 
 
                    ///////////////////////////////////////////////// 
 
                    int NumOfGenerations = 0; 
                    int generMin = 0; 
                    int jobNum = inputData.jobNum; 
                    while (NumOfGenerations < probParams.GEN) 
                    { 
                        NumOfGenerations++; 
 
                        //Crossover  
                        CommonVars.adaptiveChromosome[] ChildrenPopulation = new 
CommonVars.adaptiveChromosome[POP]; 
                        ChildrenPopulation = AuxFuns.CrossoverM_act4Ad(InPopulation, 
probParams, inputData); 
                        //Mutation 
                        ChildrenPopulation = AuxFuns.MutationM4Ad(ChildrenPopulation, 
probParams, inputData); 
 
                        //Fitness of children 
                        int[] FitnessChildren = new int[probParams.sGAparams.POP]; 
                        int j = 0; 
                        foreach (CommonVars.adaptiveChromosome chromo in 
ChildrenPopulation) 
                        { 
 
                            if (ChildrenPopulation[j] != null) 
                            { 
                                FitnessChildren[j] = schedule.serialSGSu(inputData, 
probParams, ref ChildrenPopulation[j]); 
                            } 
                            else FitnessChildren[j] = FitnessChildren.Max() + 1000; 
                            j++; 
                        } 
 
                        //Selection 



 
                        CommonVars.adaptiveChromosome[] NewGeneration = new 
CommonVars.adaptiveChromosome[POP]; 
                        int[] FitnessFinal = new int[POP]; 
                        AuxFuns.SelectionM(InPopulation, ChildrenPopulation, Fitness, 
FitnessChildren, ref NewGeneration, ref FitnessFinal, probParams, inputData); 
 
 
                        //Set new generation as current population and repeat 
                        NewGeneration.CopyTo(InPopulation, 0); 
                        NewGeneration.CopyTo(GAPopulation, 0); 
                        if (GAPopulation.Length % 2 != 0) 
                            GAPopulation[GAPopulation.Length - 1] = GAPopulation[0]; 
 
                        FitnessFinal.CopyTo(Fitness, 0); 
 
                        //help step 
 
                        int min = FitnessFinal.Min(); 
 
                        if (NumOfGenerations == 1) generMin = min; 
                        if (generMin > min) generMin = min; 
 
                    } 
                    int minSchDuration = generMin; 
 
 
                    //////////////////////////////////////////////// 
 
                } 
            } 
            catch (Exception ex) 
            { 
                Console.WriteLine(ex.Message); 
            } 
            
            return (Fitness); 
 
        } 
         
        #endregion 
    } 

  



class Pareto 
    { 
        public CommonVars.adaptiveChromosome[] ParetoGA(CommonVars.EmoData inputData, 
CommonVars.problemParams probParams, CommonVars.adaptiveChromosome[] UnionPopulation) 
        { 
            Functions.AuxiliaryFunctions AuxFuns = new AuxiliaryFunctions(); 
            E_MO_RCPSP.OthersAlgos.RCPSP.SerialSGS_unscheduling schedule = new 
OthersAlgos.RCPSP.SerialSGS_unscheduling(); 
            E_MO_RCPSP.OurAlgos.SingleObjectiveGA single = new SingleObjectiveGA(); 
            Objectives obj = new Objectives(); 
            NodDominatedSort nonDomSort =new NodDominatedSort(); 
 
            CommonVars.adaptiveChromosome[] CurrentPopulation = new 
CommonVars.adaptiveChromosome[probParams.POP]; 
 
            int K = probParams.objectives.Count(); 
 
            //CALCULATE FITNESS VECTOR 
            for (int i = 0; i < UnionPopulation.Length; i++) 
            { 
                CommonVars.adaptiveChromosome tempChromo = new 
CommonVars.adaptiveChromosome(); 
                tempChromo = UnionPopulation[i]; 
                obj.calcRLI(ref inputData, probParams, ref tempChromo); 
                UnionPopulation[i] = tempChromo; 
                //add the rest of the objectives calculations HERE 
            } 
 
            //NON DOMINATED SORT 
             
            List<CommonVars.adaptiveChromosome>[] 
tempDomLevel=nonDomSort.calcNonDominatedSort(inputData, probParams, ref UnionPopulation); 
            List<CommonVars.adaptiveChromosome>[] DomLevel = new 
List<CommonVars.adaptiveChromosome>[tempDomLevel.Length]; 
            Array.Copy(tempDomLevel, DomLevel, tempDomLevel.Length); 
             
            int emptySlots = CurrentPopulation.Length; 
            int cur = 0; 
            int dom = 0; 
            do 
            { 
 
                
                    for (int k = 0 + cur; k < cur + DomLevel[dom].Count; k++) 
                    { 
                        CurrentPopulation[k] = new CommonVars.adaptiveChromosome(); 
 
                        CurrentPopulation[k].activityList = new int[DomLevel[dom][k - 
cur].activityList.Length]; 
                        Array.Copy(DomLevel[dom][k - cur].activityList, 
CurrentPopulation[k].activityList, DomLevel[dom][k - cur].activityList.Length); 
                        single.CopyChromo(inputData, CurrentPopulation[k].activityList, 
ref CurrentPopulation[k], DomLevel[dom][k - cur]); 
                    } 
                    cur += DomLevel[dom].Count; 
                    emptySlots -= DomLevel[dom].Count; 
                 
                dom++; 



            } while (DomLevel[dom].Count <= emptySlots && dom<DomLevel.Length) ; 
 
            //CLOSENESS 
          //get the domination level that didnt fit in Current Population and sort it 
using Closeness function then add it to current population 
            if (emptySlots > 0) 
            { 
                CommonVars.adaptiveChromosome[] BigCurPopulation = new 
CommonVars.adaptiveChromosome[DomLevel[dom].Count]; 
                for (int k = 0; k < DomLevel[dom].Count; k++) 
                { 
                    BigCurPopulation[k] = new CommonVars.adaptiveChromosome(); 
                    BigCurPopulation[k].activityList = new 
int[DomLevel[dom][k].activityList.Length]; 
                    Array.Copy(DomLevel[dom][k].activityList, 
BigCurPopulation[k].activityList, DomLevel[dom][k].activityList.Length); 
                    single.CopyChromo(inputData, BigCurPopulation[k].activityList, ref 
BigCurPopulation[k], DomLevel[dom][k]); 
                } 
                CommonVars.adaptiveChromosome[] toBeAddedPop = 
nonDomSort.SortByCloseness(BigCurPopulation, probParams, emptySlots); 
 
                for (int k = 0; k < emptySlots; k++) 
                { 
                    CurrentPopulation[k + cur] = new CommonVars.adaptiveChromosome(); 
 
                    CurrentPopulation[k + cur].activityList = new 
int[toBeAddedPop[k].activityList.Length]; 
                    Array.Copy(toBeAddedPop[k].activityList, CurrentPopulation[k + 
cur].activityList, toBeAddedPop[k].activityList.Length); 
                    single.CopyChromo(inputData, CurrentPopulation[k + cur].activityList, 
ref CurrentPopulation[k + cur], toBeAddedPop[k]); 
                } 
            } 
            return CurrentPopulation; 
        } 
        public class SortByRank : IComparer<CommonVars.adaptiveChromosome> 
        { 
            public int Compare(CommonVars.adaptiveChromosome x, 
CommonVars.adaptiveChromosome y) 
            { 
                return x.fit.rank.CompareTo(y.fit.rank); 
            } 
        } 
    } 

 





Appendix C
Ms Project 2013 – Add In for Multi-Objective Resource
Constrained Project Scheduling

(

)

Fig. C.1 Ribbon styled toolbox for EMO- RCPSP

Fig. C.2 Import text files formatted as in PSPLib to run experiments

197



198 C Ms Project 2013 – Add In for Multi-Objective Resource Constrained Project Scheduling

Fig. C.3 Set up additional properties to handle multiple modes of execution, non renewable resource type and maximal time
lags

Fig. C.4 Define one or more optimisation objectives

Fig. C.5 Select execution algorithm to generate solutions - schedules



C Ms Project 2013 – Add In for Multi-Objective Resource Constrained Project Scheduling 199

Fig. C.6 Set up parameters for the genetic algorithm (auxiliary algorithm)

Fig. C.7 Set up parameters for the simulated annealing algorithm (auxiliary algorithm)



200 C Ms Project 2013 – Add In for Multi-Objective Resource Constrained Project Scheduling

Fi
g.

C
.8

T
he

gi
ve

n
sc

he
du

le
d

as
w

as
im

po
rt

ed
fr

om
J3

01
1.

rc
p

fil
e

fr
om

PS
PL

ib



C Ms Project 2013 – Add In for Multi-Objective Resource Constrained Project Scheduling 201

Fi
g.

C
.9

Sc
he

du
le

ge
ne

ra
te

d
by

th
e

pr
op

os
ed

al
go

ri
th

m
-n

ot
e

th
at

th
e

”A
s

So
on

A
s

Po
ss

ib
le

”
co

ns
tr

ai
nt

ha
s

be
en

ch
an

ge
d

to
”M

us
tS

ta
rt

O
n”

Fi
g.

C
.1

0
R

es
ou

rc
e

av
ai

la
bi

lit
ie

s
-t

he
ov

er
al

lo
ca

te
d

re
so

ur
ce

s
ar

e
m

ar
ke

d
w

ith
re

d



202 C Ms Project 2013 – Add In for Multi-Objective Resource Constrained Project Scheduling

Fig. C.11 Duration of proposed scheduled compared to the results of MS Project’s levelling option



Glossary

Feasible Schedule A schedule that satisfies all the given constraints, like precedence rela-
tionships and resource availabilities.

Regular Objective The objective functions is monotone non-decreasing

Non regular Objective Theobjective functions is not monotone non-decreasing.

Schedule Generation Scheme (SGS) Constructive heuristics consisting of two major com-
ponents, the scheduling scheme and the priority rule. The scheduling scheme determines the
way in which a feasible schedule is constructed by assigning starting times to the different
activities.

Serial Schedule Generation Scheme (s-SGS) A SGS that sequentially adds activities to the
schedule until a feasible complete schedule is obtained. In each iteration, the next activity in
the priority list is chosen and for that activity the first possible starting time is assigned such
that no precedence or resource constraint is violated.

Parallel Schedule Generation Scheme (p-SGS) The parallel scheduling scheme iterates
over the different decision points at which activities can be added to the schedule, thus it does
time incrementation. These decision points correspond with the completion times of already
scheduled activities and thus at most n decision points need to be considered in the parallel
scheduling scheme. At each decision point, the unscheduled activities whose predecessors
have completed are considered in the order of the priority list and are scheduled on the
condition that no resource conflict originates at that time instant.

Baseline schedule The baseline schedule specifies for each activity the precedence and re-
source feasible start and completion dates, the amounts of the various resource types that will
be needed during each time period and as a result the corresponding budget required for the
execution of the project. It is a snapshot of how the project should be executed.

Proactive schedule It is a baseline schedule developed before starting the project’s execu-
tion. It is also called preschedule, predictive schedule, etc.

Reactive schedule Reactive scheduling is about the revision and re-optimisation of the base-
line schedule after one or more unexpected events have occurred. The goal is generate a new
optimal schedule that will be as close as possible to the baseline.

Semi-active schedule Feasible schedules obtained by sequencing activities as early as pos-
sible. In a semi-active schedule no activity can be started earlier without altering the prece-
dences.

203



204 Glossary

Active schedule Feasible schedules in which no activity could be started earlier without
delaying some other activity or breaking a precedence constraint.

Non-delay schedules Feasible schedules in which no resource is kept idle when it could
start processing some activity.

Makespan The project’s duration calculated as the finish time of the dummy sink activity
that represents the project’s finish.

Preemption Activity splitting, implies that the processing of an activity may be interrupted
and resumed at a later time (preempt-resume). are available on a period-by-period basis.
Only the total amount of resource used within each period is constrained.

Nonrenewable resources are available on a total project basis, with a limited consumption
availability for the entire project.

Doubly-constrained resources are constrained per period as well as for the whole project.

Partially (non)renewable resources are resources whose availability is defined for a spe-
cific time interval (subset of periods). It is a generalisation of the above resource types and
can be used to define both renewable and non renewable resources using a single resource
type.

Minimal and maximal lags Minimal time lags in a FS relation introduce a time period
t between the finish time of activity i and the start time of activity j. Allowing negative
minimal time lags implies that the corresponding activities may overlap. Similarly maximal
time lags in a FS relation, introduce a maximum time period t between the finish time of
activity i and the starting time of activity j. A release date is a minimal finish to start time
lag between the dummy source and the under question activity j and a deadline is a maximal
finish to finish time lag between the dummy source activity and activity j.


