

....« »

# ΜΑΡΙΟΣ Γ. ΦΟΥΡΛΑΣ

. .

2013

|   |   |    |   |   | μ |   |   |   |   | ,  |   |   |   |   |    |
|---|---|----|---|---|---|---|---|---|---|----|---|---|---|---|----|
|   |   | μ  |   |   |   |   |   | ł | l |    |   |   | μ | μ |    |
| μ |   |    |   |   |   |   | μ | , |   | μ  | μ |   |   |   | μμ |
|   |   |    |   | « |   | μ | μ |   |   | », |   |   |   |   |    |
| μ |   |    | μ |   |   |   |   | , |   |    |   |   |   |   |    |
|   |   | μ, |   |   |   |   |   |   |   |    |   |   |   |   |    |
|   |   |    |   |   |   |   | , |   |   | μ  | , |   |   |   |    |
| μ |   |    |   |   | , |   | μ |   | μ |    |   | , |   |   | μ  |
| μ |   |    |   |   |   |   | μ | μ |   |    |   |   |   | μ |    |
|   |   |    |   |   |   |   |   |   |   |    |   | μ |   |   |    |
|   |   |    |   |   |   |   |   |   |   |    |   |   |   |   |    |
|   |   | ,  |   |   |   |   |   |   |   |    | , |   |   |   |    |
|   | , | μ  |   |   |   |   |   |   | μ |    |   | ł | L |   |    |
| , |   | -  |   |   |   |   |   |   | - |    |   | - |   |   |    |
|   |   |    |   |   |   |   |   |   |   |    |   |   |   |   |    |

, µ, µ µ µ µ µ µ .



3

| 3.1   |    | ( , )  |     | 15 |
|-------|----|--------|-----|----|
| 3.2   |    |        | ( ) |    |
|       |    |        |     | 17 |
| 3.2.1 | μ  | Counto |     | 17 |
| 3.2.2 | μ  | Paul   |     |    |
| 3.3   | •  | μ      | μ   | 18 |
| 3.4   | μ  | μ      | μμ  |    |
|       | •  |        |     | 23 |
| 3.5 µ | μ  |        |     | 25 |
| 3.5.1 | μμ |        |     |    |
| 3.5.2 | μμ | μ      |     |    |
|       |    |        |     |    |

μ

i.....i

.....V

Abstract

| 3.5.3   | μ  | μ |         |                 |                                            | 33 |
|---------|----|---|---------|-----------------|--------------------------------------------|----|
| 3.6 µ   | •  | • |         |                 |                                            | 33 |
| 3.6.1   |    |   |         |                 |                                            | 34 |
| 3.6.1.1 |    |   | Broutma | n               |                                            | 34 |
| 3.6.1.2 |    | μ | μ       | (The power law) |                                            | 34 |
| 3.6.1.3 |    | • | Leidne  | er – Woodhams   |                                            | 35 |
| 3.6.1.4 |    | μ |         | μ               | μ                                          |    |
|         |    |   |         |                 |                                            | 37 |
| 3.6.2   | μ  |   |         |                 |                                            |    |
| 3.6.3   | μ. | μ |         |                 | μ                                          |    |
|         | μ  |   |         |                 | •<br>• • • • • • • • • • • • • • • • • • • |    |
| 3.6.4   | •  |   | _       |                 |                                            | 41 |

#### 4

#### μ

| 4.1 | _ | μ  | μ | (interphase | e)43 |
|-----|---|----|---|-------------|------|
| 4.2 |   | ·μ | • |             |      |
| 4.3 |   | μ  |   | μ           | 48   |

# 5



| 5.1                |   |   |   | 5  | 0  |
|--------------------|---|---|---|----|----|
| 5.2                |   | μ | 1 | 5  | 51 |
| 5.3                | μ | • | 2 | 5  | 5  |
| 5.4                | µ |   | 3 | 5  | 8  |
| 5.5 µ              | · | μ |   |    | 51 |
| 5.5.1 <sup>.</sup> |   | • | μ | 16 | 2  |
| 5.5.2              |   |   | μ | 26 | 3  |
| 5.5.3              |   |   | μ | 36 | 4  |
|                    |   |   |   |    |    |

6

μ

| 6.1   | μ  | μ  |   | μ   | 65  |
|-------|----|----|---|-----|-----|
| 6.2   |    | μ  |   |     | 73  |
| 6.2.1 | μμ |    |   |     | 74  |
| 6.2.2 |    | (2 | ) |     | 83  |
| 6.2.3 |    |    |   |     | 93  |
| 6.3   |    |    | = | = 1 | 102 |



μ μ , .

μ μ μ μ . ,

μ , μ μ μ μ , μ μ μ μ μ

, µµ µ µ

μ μ μ μ μ μ μ, μ.

μ μ μ

Poisson) (μ μ , μ . 'c (μ μ μ μ "<sub>c</sub>). μ μ μ μ μ μ μ μ

μ

, μ

.

#### Abstract

The study of composite materials is known as one of the most modern scopes of Engineering, which are in constant evolution in recent years. In this class of materials belong the granular materials, whose mechanical properties are affected by the adhesion between the inclusions and the matrix as well as the influence of adjacent inclusions.

Purpose of this thesis is to develop a theoretical model of interphase, which is created between the epoxy resin matrix and inclusions, based on the theory of elasticity and can determine approximately the static elastic moduli and dynamic elastic moduli of a composite granular material, considering the content of inclusions of iron grain.

The model we develop arises from viewing the cubic arrangement of inclusions in space and then, by the consideration of interphase between inclusions and matrix, evolves in a model which consists of seven phases.

Considering this model and using the theory of elasticity, the approximate expressions for the static elastic moduli (E-modulus, ratio Poisson v) of the composite were found. Then, using the correspondence principle, dynamic elastic moduli were calculated (storage modulus E'c and loss modulus E'c). The theoretical values obtained from the theoretical analysis were compared with those of other researchers and experimental results, which were obtained from static tensile tests and experiments in different oscillation frequencies and environmental conditions from specimens consisting of iron particles and epoxy resin.



1.1









,







1.2

μ , μ Poisson μ μ , ) μ ( μ μ μ , μ μ μ μ •

# 1.3 µ

μ μ : • μ μ ,

μ. μμ . • μ .

μ μ μ.

- , μ • μ μ . Poisson μ μ μ . μ μ μ ٠ Poisson •
- , µ µ µ µ µ .





•







•

#### 2.1.1 μ

.

, µ , μ μμ • μ μ , , μ μ , , , , μμ . μ μ μ

μ μ μ , ,

, :

1. μ , 2. , 3. , 4. ,

5. , 6. μ , 7. μ μ , 8. μ μ

9. μ .

,

μ , , μ μ μ μ ( . . ). μ μ μ μ μ

# 2.1.2 μ

|                       | μ | μ<br>μ     | :  | , |   |
|-----------------------|---|------------|----|---|---|
| $\blacktriangleright$ |   | μ          | μ  |   |   |
| $\triangleright$      |   | μ          |    |   |   |
|                       |   |            |    |   | μ |
|                       | μ | , ,        | :  |   |   |
| •                     |   | μ          | μ. |   |   |
| •                     |   | μ <b>μ</b> | μ. |   |   |

2.2

.

|    |    |   |     |     |     | μ   |
|----|----|---|-----|-----|-----|-----|
| μ  |    |   | μ   | μ   | ,   |     |
| μ. | ,  |   | , μ | μ   | μμ  |     |
|    |    |   | μ   | •   |     |     |
| •  | μμ |   | μ   | μμ  | μ   |     |
|    | μ  |   |     | μ ( |     | μ). |
|    | μ  |   |     | μμ  | μ   | μ   |
| μμ | μ  | , |     | ł   | u   |     |
|    |    | μ |     |     |     |     |
|    | μμ |   | ,   | μ   | , μ |     |
|    |    |   | μ   | μ   |     | μ   |
|    | μ  |   |     | 3   |     |     |

|   |     |    |      |        |    |     | μ   |    |   |
|---|-----|----|------|--------|----|-----|-----|----|---|
|   | μ   | μ  | ,    | μ      |    |     | μ   |    |   |
|   | μ   |    | μ    |        | μ  | ,   |     |    | μ |
|   | u   |    |      |        |    |     |     |    |   |
|   | u . |    |      | ,      |    |     | u   | U  |   |
|   | ٣   |    |      |        |    |     | P   | F. |   |
| ٣ |     | ٣  | •    |        |    |     |     |    |   |
| • | μ   |    |      | μ      | μ  |     | μ   |    |   |
|   |     |    |      |        |    |     |     |    |   |
|   |     |    |      |        | μ  | . μ |     | μ  |   |
| μ |     | μ  | μ    |        |    | μ   | μ   | ,  |   |
|   |     | μ. |      | μ      |    |     |     | μμ |   |
|   | μ   |    | μ    |        |    | μ   |     |    | , |
|   |     |    |      |        |    | μ   |     | μ  |   |
|   | μ   |    |      |        |    |     |     |    |   |
|   |     |    |      |        |    |     |     |    |   |
| • | μ   | μ  |      | μ      |    | μ   | μ   |    |   |
|   | μ   |    | μ    |        | μ  |     | μ   |    |   |
|   | μ   | μ  | μ    | μ      |    |     |     | μ  |   |
|   | μμ  |    | μμ   | μ      |    |     |     |    | μ |
|   | μ   |    |      |        | μμ | μ   |     |    | • |
| u | •   |    | u    | и      |    | ·   | и   |    |   |
| ľ |     |    | r    | r<br>U | ,  |     | u r |    |   |
|   |     |    |      | ٣      | п  |     | P   |    |   |
|   |     |    |      |        | ٣  |     |     |    |   |
|   | μμ  | μ  |      |        |    | м   | μ   | μ  |   |
| μ | •   |    |      |        | μ  | μ   | μ   |    |   |
|   | μ   |    | μμ μ |        |    |     | μ   |    |   |
|   |     |    |      | ,      |    |     | μ   |    |   |
|   |     | μ  |      |        |    |     |     |    |   |
|   |     | ·  |      |        |    | μ   | μ   |    |   |
|   | ,   | μ  |      |        |    | μ   |     | μ  | , |
|   |     |    | μ    | μ      |    |     |     |    |   |

μ

μ

μμ

μ

•

7

μμ μ μ

# 2.3

μ μ , μ μ μ , μ μ . , μ »μ « •

,

- µ . μ μ μ , μ μ . μ μ :

1. μ μ μ μ μ .

μ μ • 2. μ μ

μ μ • , .

μ μ μ μ μ μ μ μ . μ μ μ μ μ μ μ , , μ μ μ •

|   | μ | μ |   |   |   |    |     |   |   |     |
|---|---|---|---|---|---|----|-----|---|---|-----|
|   |   | μ |   |   |   |    |     | , |   | , µ |
|   |   |   | μ |   |   |    |     |   | μ |     |
| μ |   | μ |   |   | μ |    |     |   |   |     |
|   |   |   |   | μ |   | μ  |     |   |   |     |
|   | μ | μ |   |   |   |    | - µ |   |   |     |
|   | μ |   |   |   |   | μh |     |   | μ | μ   |
| μ |   |   | μ |   |   |    |     |   |   |     |

,

2.4

|   |   |   |  |   |   | μ | μ |   |   |   |
|---|---|---|--|---|---|---|---|---|---|---|
| μ |   | μ |  |   |   |   |   |   |   | μ |
|   | μ |   |  |   |   |   |   |   |   | μ |
| μ | μ |   |  |   |   | μ |   | , | μ | μ |
| μ |   | , |  | μ | μ | μ |   |   |   |   |



#### 2.4.1

μ
 μ
 μμμμμ
 μμμμ
 μ
 μ

- μ μ 5 C 150 C .
- µ µ.
- µ µ .
- µ µ .
- µ µ µ

.

# 2.4.2 µ

.

- μ μ μ. μ : • μ
- μ.
- µ µ .
- µ µµ
- (laminated resins)
- μ μ, , μ.
- ( ) µ
  - 10

. μ,, μμ, μμ, μ

μ (wetcome) . μμ μ

μ :

- µ, µ, µ,
- µ,,,,,.. • µ.
- •
- µ µ.

### 2.5 μ

μ μ μ μ , μ μ μμ μ 0,015μ. , μ,

μ μ μ.

μ μ , μ , μ μ μ . μ μ μ μ μ μ μ .

μ μ .

μ, μ μ μ , , μμ. μ. μ.

# 2.5.1 μ

μ μ , μ μ μ. μ μ.

•

•

μ μ . μ

μ , μ . • μ

ц .. ц ц ц , ц ц , ц

чц чц чц чц чц чц чц

μ , μ .

μ μ , μ , μ

.

μ , 13

- μ μ μ
- μ •

μ

- μ μ . μ μ μ
- μ , μ
- μ μ μ μ
- μ μ μ μ
- μ μ ,
- μ •

•

μ

•

μ

•

- μ μ
- μ μ •
- μ • μ ,
- μ μ μ μ

μ

μ

.

,

μμ

μ

μ

.

μ

μ

μμ

μ

μ

•

•

•

- μ .

μ . μ μ •

•

- μ μ μ μ . • -
- μ •







μ

**μ 3.2** μ



$$\oint = \frac{\mathsf{V}_x}{\mathsf{V}_z} = -\frac{\mathsf{V}_y}{\mathsf{V}_z} \tag{3.2}$$

:

,

Poisson  $v_c$ 

μ

μ U<sub>f</sub>





$$\frac{\Delta V}{V} = \frac{1 - 2v}{E} (\dagger_{t} + \dagger_{y} + \dagger_{z})$$
(3.3)

# 3.2.1 µ Counto

$$\frac{1}{E_c} = \frac{1 - U_f^{\frac{1}{2}}}{E_m} + \frac{1}{\left(1 - U_f^{\frac{1}{2}}\right)U_f E_m + E_f}$$
(3.4)

#### 3.2.2 Paul μ

:

$$E_{c} = E_{m} \left\{ \frac{1 + (m-1)U_{f}^{2/3}}{1 + (m-1)\left(U_{f}^{2/3} - U_{f}\right)} \right\}$$
(3.5)

3.3 μ μ

$$E_c = E_m \left( 1 + 2.5 U_f \right) \tag{3.6}$$

$$E_{c} = E_{m} \left( 1 + 2.5U_{f} + 14.1U_{f}^{2} \right)$$
(3.7)

Kerner [8] µ :

$$\frac{E_c}{E_m} = \frac{\frac{U_f G_f}{(7-5v_m)G_m + (8-10v_m)G_f} + \frac{U_m}{15(1-v_m)}}{\frac{U_f G_m}{(7-5v_m)G_m + (8-10v_m)G_f} + \frac{U_m}{15(1-v_m)}}$$
(3.8)

 $G, \mu \mu$ , Poisson.

μ μ (3.8)

$$\frac{E_c}{E_m} = 1 + \frac{U_f}{U_m} \frac{15(1 - v_m)}{8 - 10v_m}$$
(3.9)

Einstein [3, 4, 5],

,

,

:

1906

•

μ

$$E_c = E_m (1 + U_f)$$
 (3.10)

μ

μ

:

,

Kerner [8] :

 $\frac{1}{E_c} = \frac{1}{E_m} + \frac{U_f}{U_m} \frac{15(1 - v_m)}{7 - 5v_m}$ (3.11)р р - р - р - р μ μ μ μ μ. Sato Furukawa [9]  $E_{c} = E_{m} \left\{ \left[ 1 + \frac{1}{2} \frac{x^{2}}{1 - x} \right] \left[ 1 - \frac{x^{3}k}{3} \left( \frac{1 + x - x^{2}}{1 - x + x^{2}} \right) \right] - \frac{x^{2}k}{3(1 - x)} \left( \frac{1 + x - x^{2}}{1 - x + x^{2}} \right) \right\}$ (3.12)  $X = U_f^{1/3}$  k: ( μ −μ ), μ1 μ0 μ Voigt μ μ μ ,

$$E_c = \frac{E_f E_m}{E_m U_f + E_f U_m}$$
(3.13)

2

μ

Takahashi [10]

$$\frac{E_c}{E_m} = 1 + \frac{(1 - v_m)U_f \left[ E_f \left( 1 - 2v_m \right) - E_m \left( 1 - v_f \right) + 10 \left( 1 + v_m \right) - E_m \left( 1 + v_f \right) \right]}{E_f \left( 1 + v_m \right) + 2E_m (1 - 2v_f) + 2E_f \left( 4 - 5v_m \right) \left( 1 + v_m \right) + E_m \left( 7 - 5v_m \right) \left( 1 + v_f \right)}$$
(3.14)

μ

μμ

20

р р р . Р р р

μ μ Mooney [11]

 $\frac{E_c}{E_m} = \exp\left(\frac{2.5U_f}{1 - S \cdot U_f}\right)$ (3.15)

S

$$S = \frac{\{ rz \in \neg v \in g \ x \mid g \ vx \mid \} v \uparrow \neg r \downarrow g}{f \dots rx \neg r \downarrow z \mid g \ x \mid g \ vx \mid \} v \uparrow \neg r \downarrow g}$$

μ μ μ μ μ S μ 1.2 μ 2.

:

:

:

Eilers Van – Dyck [12]

$$\frac{E_c}{E_m} = 1 + \frac{kU_f}{1 - S \cdot U_f}$$
(3.16)

.

k S μ μ 1.25 1.20

μ μ μ μ μ μ . μ μ μ μ. i k μ μ , μ μ : μ μ μ

$$E_{c} = E_{f}U_{f}k + E_{m}U_{m} + E_{i}U_{i}$$
(3.17)

μ

$$\frac{2(1-2v_c)}{E_c} = \frac{2{}^{2}U_f}{E_f} + \frac{1}{E_m} \frac{U_f(1-1)^2(1+v_m) + 2(1-1)^2(1-2v_m)}{1-U_f}$$
(3.18)

с

μ

μ

$$\frac{1}{v_c} = \frac{U_f}{v_f} + \frac{U_m}{v_m}$$
(3.19)

:

$$\} = \frac{3(1 - \mathcal{E}_m)E_f}{\left\{ \left[ 2U_f (1 - 2v_m) + 1 + v_m \right] E_f + 2(1 - 2v_f)(1 - U_f)E_m \right\}}$$
(3.20)

μ , Takayanaki [16] μμ μ μμ μ μ μ μ μ μ . .

$$\frac{1}{E_c} = \left[ \frac{\{ \{ (1-k) E_m + kE_f | \frac{1-\{}{E_m} \} \} }{(1-k) E_m + kE_f | E_m} \right]$$
(3.21)

k μ μ μ, μ μ :

$$k\{=U_f \tag{3.22}$$

|   |   |        | (3.21) |   |
|---|---|--------|--------|---|
|   |   | Kerner | (3.11) |   |
| μ | , |        | μ      | k |

μ:

$$k = \frac{2+3U_f}{5}$$
 ,  $\{=\frac{5U_f}{2+3U_f}$  (3.23 , )

| 3.4 |             | μ         |             | μ       |        |         |    | μ   | μ      |       |
|-----|-------------|-----------|-------------|---------|--------|---------|----|-----|--------|-------|
|     |             | h         |             |         |        |         |    |     |        | μ     |
|     | μ           |           |             |         |        | ,       | μ  |     |        | μ     |
|     | μ           | Н         | μ.<br>ashin | Hill [1 | 7, 18] | μ<br>]. |    |     |        |       |
|     |             |           | μ           |         |        |         | μ  |     |        |       |
|     | μ           | μ,        |             | μ       |        | μ       |    |     | μ<br>μ | μ     |
|     | μ           |           |             |         |        |         | ł  | μ   |        | ,     |
| (   | р<br>р<br>р | μ         | μμ          |         | ٢      |         | μμ |     | μ      |       |
|     |             |           | ł           | ı       | μ      |         | μ  |     |        |       |
| μ   |             |           | μ           |         | μ<br>μ | μ       |    | Ц   | μ      |       |
|     | . μ         |           | μ           |         | •      | μ       |    | ·   | μ      |       |
| L   | ewis N      | ielsen [' | 19]         |         |        |         | μ  |     |        |       |
| ٣   |             | h h       |             |         |        |         |    | μ   |        |       |
| (   | μμ          | ).        |             |         |        |         | μ  |     |        |       |
| μ   | 3           |           |             | μ       | (µ     | )       |    | ueo | che [2 | 0,21] |
|     | μ           |           |             | μ       |        | μ       | μ  |     |        | μ     |
| μ   |             | μ         |             | (µ      |        |         | )  |     |        |       |
|     | μμ          |           | μ           |         | μ      |         |    |     |        |       |
| μ   |             | μ         |             |         |        |         |    |     |        |       |
|     | Wu [22]     |           |             |         |        |         | μ  |     |        |       |
|     |             |           |             |         |        |         | μ  |     | ,      |       |

μ μ . Chow [23] μ μ μμ μ μ μ μ μ • μ μ . μ μ μ μ μ Chow μ • μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ , μ μ μ μ μ μ μ . μ μ μ . μ μ Ahmed Jones [24]. μμ , Kerner μ μ Dickie [25]. μ μ μ μ . Christensen [26] μ Kerner, , μ μ μ μ . Kerner μ μ μ μ μ μ .

Sato Furukawa [9].

μ

,

μ μ μ μ. μ μ μ . , μ μ μ μ μ , μ μ μ . μ μ μ μ μ • μ • μ μ μ μ μ μ μ . Spanoudakis Young [27] μ μ (coupling agent) μ μ μ -.

μ μ μ μ μ μ μ μ, .

### 3.5 μ μ

, , μ μ .

μ :

•

| • | μ. |  |  |
|---|----|--|--|
| • |    |  |  |
| • | μμ |  |  |

|   |   | μ | μ | μ |  |
|---|---|---|---|---|--|
| , | μ | μ | , | μ |  |

.

## 3.5.1 μμ

|          | μμ    |            |         | μ  |   | μ |    |    |       |
|----------|-------|------------|---------|----|---|---|----|----|-------|
|          | , μ   |            |         |    |   |   | μ  |    |       |
|          |       |            |         |    |   | μ |    | μμ |       |
|          |       | I          | μ       | ,  |   |   |    | μ  | (step |
| function | s),   | μ          |         |    |   |   |    |    |       |
|          | μ     | ιμ         | μ       | μμ |   |   | μ  |    |       |
|          |       |            |         |    |   |   |    |    |       |
|          | μ     | μ          | , µ     | μ  | μ |   |    |    |       |
|          |       |            | Ļ       | l  | μ |   | μ. |    | ,     |
|          | μ     | μ          |         |    |   |   | μ  |    |       |
| μ        |       |            |         |    |   | μ |    | μ  |       |
|          | μ     | μ          |         |    |   | μ |    | μ  |       |
|          | (mech | nanical da | mping). |    | μ | μ |    |    | μ     |
| μ        | , µ   |            | μ μ     |    |   | , | μ  |    | μ.    |
| μ        |       | μ          |         | μ  |   |   |    |    |       |
| μ        | μ     |            |         | μ  |   |   |    |    |       |
|          |       |            |         |    |   |   |    |    |       |

|    | μ | , |    | μ | μ |   |  |
|----|---|---|----|---|---|---|--|
|    |   |   |    | μ | μ | : |  |
| 1. |   |   | u. | • |   |   |  |

| 1. | μ. |   |  |
|----|----|---|--|
|    | μ  |   |  |
| μ  | μ  | μ |  |
| μ  |    |   |  |

μ

•

2. μ :







μ , ,μμ μ μ μ.

, µ µ µ µ µ µ. µ

 $\mu \qquad \qquad \mu \qquad (glass \ transitions),$ 

 $\mu$   $\mu$ ,  $\mu$   $\mu$   $\mu$  (molecular aggregation),  $\mu$   $\mu$ 

,

μ (polymer chains) μ μ. μ μ μ

μ μ.

μ μ μ μ μ μ μ . , μ μ μ μ μ μ μ μ μ μ , 1 Hz, μ μ , μ μ μ μ , μ μ μ .

3.5.2 μμ μ

μ Hooke: μ = μ μ , μ μ μ μ , μ : μ .

 $=_{0} \sin(t)$  (3.24)

 $=_{0} \sin(t)$  (3.25)
μ,

μ

:

$$\dagger^* = \dagger_{,} e^{i\tilde{S}t}$$
(3.26)

$$V^* = V_{,e} e^{i(\tilde{S}_{t-u})}$$
 (3.27)

μ

$$E^* = E' + iE'' = \frac{\dagger^*}{v^*}$$
(3.28)

$$E^* = E' + iE'' = \frac{\dagger}{v_{i}} e^{iu} = \frac{\dagger}{v_{i}} (\cos u + i \sin u)$$

μ, :

$$E' = \frac{\dagger}{V_{\mu}} \cos u \tag{3.29}$$

$$E'' = \frac{\dagger}{V} \sin U \tag{3.30}$$

μμ

,

,

,

,

/2. μ μ μ ". , μ , μ μ • μ μ μ μ μ μ μ μ , μ . μ μ μ , μ μ μ . μ μ μ μ μ ( μ , μ μ μ ) µ ,, • ,, μ μ μ /2 µ μ μ , μ ,, μ μ . μ μ μ μ . ,, μ μ μ , ,, μ. μ μ μ , ( ) . ( ) • ( ) μ μ μ μ:

 $E^{*} = E' + iE''$   $|E^{*}| = \sqrt{(E')^{2} + (E'')^{2}}$ (3.31)

μ, μ μ μ μ :

$$\frac{1}{V_{\mu}} = \sqrt{\left(E'\right)^2 + \left(E''\right)^2}$$
(3.32)

$$\tan \mathsf{u} = \frac{E''}{E'} \tag{3.33}$$



μ

:

**μ 3.5** μ μ

$$E' = \left| E^* \right| \cos u \tag{3.34}$$

.

$$E'' = \left| E^* \right| \sin u \tag{3.35}$$

μ

•

μ μ

 $D^* = \frac{1}{E^*} = D' - iD''$ (3.36)

D' µ µ µ D" µ

μ

μ μ

$$D^{*} = \frac{\frac{1}{E'} - i\frac{1}{E''} \tan u}{1 + \tan^{2} u}$$
(3.37)

.

$$D' = \frac{\frac{1}{E'}}{1 + \tan^2 u}$$
(3.38)

$$D'' = \frac{\frac{\tan u}{E''}}{1 + \tan^2 u}$$
(3.39)

μ μ, μ :μ μ **\***μμμ**G\*.** 

$$\in^* = \in' - i \in " = \frac{E^*}{2G^*} - 1$$
(3.40)

$$K^* = K' + K'' = \frac{E^*}{3} \frac{1}{1 - 2\nu}$$
(3.41)

### 3.5.3 μ μ

μμ μμ μ μ μ. :

- µ µ .
- µµ µ .
- µ.

μ , μ μ , μ μ μ , μ μ .

Dally Broutman  $\mu$  40Hz. Plunkett  $\mu$   $\mu$ 

μ Murayama μ μ . μ μ μ μ μ μ μ . μ μ μ , μ Schultz Tsai

р р р , р р р

.

3.6 µ

μ Nielsen [28] μ μ μ μ μ . (rubber) μ μ, μ μ.

#### 3.6.1

3.6.1.1 Broutman



3.6.1.2  $\mu$   $\mu$  (The power law)



|     | Nielsen [30                           | ]       |                               |                     |                    |              |   |   |    | ,    |
|-----|---------------------------------------|---------|-------------------------------|---------------------|--------------------|--------------|---|---|----|------|
| μ   | μ                                     | μ (     | ),5.                          |                     |                    | μ            |   |   | μ  |      |
|     | μ                                     | μ       |                               |                     | :                  |              |   |   |    |      |
|     |                                       |         | $\dagger_{cu} = \dagger_{cu}$ | $_{mu}(1-U_{j})$    | $\int_{f}^{2/3} K$ |              |   |   | (3 | .43) |
|     | Nicolais                              | Narkis  | [31]                          |                     | μ                  | μ            |   |   | μ  | μ    |
| μ   | μ                                     |         | μ                             |                     |                    |              |   |   |    |      |
|     |                                       | :       |                               | μ                   |                    |              | · |   |    |      |
|     |                                       | †       | $T_{cu} = \dagger_{mu}$       | , (1−1, 2           | $1U_{f}^{2/3}$ )   |              |   |   | (3 | .44) |
|     | Piggott                               | Leidner | [32]                          |                     |                    |              | μ | μ | μ  |      |
|     | μ                                     | μ       |                               |                     | μ                  |              | μ |   |    |      |
|     |                                       |         |                               | μ                   | μ                  |              | : |   |    |      |
|     | $\dagger_{cu} = K\dagger_{mu} - bU_f$ |         |                               |                     |                    |              |   |   | (3 | .45) |
|     | :                                     |         |                               |                     |                    | bμ           |   |   | μ  | I    |
|     |                                       |         | - µ                           |                     |                    |              |   |   |    |      |
|     | Landon [33]                           |         | μ                             | μ                   | :                  |              |   |   |    |      |
|     |                                       |         | † <sub>cu</sub> =             | $\dagger_{mu}(1-1)$ | $U_f)KU$           | $\int_{f} d$ |   |   | (3 | .46) |
|     | d                                     | h h     | ı                             |                     |                    |              |   |   | ļ  | μμ   |
|     | μ                                     | μ       | μ                             |                     |                    |              |   |   |    |      |
| 3.6 | .1.3                                  |         | Leid                          | ner – \             | Noodh              | ams          |   |   |    |      |
|     |                                       |         |                               | μ                   |                    |              |   |   |    |      |
|     | Leidner [34]                          | ]       | μ                             |                     |                    |              |   |   |    |      |

|   |   |   | μ | μ | μ | • | μ |   |
|---|---|---|---|---|---|---|---|---|
|   |   | μ |   |   |   |   |   | , |
|   | μ |   |   |   |   | μ |   | μ |
| μ |   |   |   |   |   |   |   |   |

$$\mu \qquad \mu \qquad :$$

$$\uparrow_{cu} = \uparrow_{mu} k d^{-1/2}$$

$$d \qquad \mu \qquad \mu \qquad .$$

(3.49)

$$\dagger_{cu} = 0.83 \dagger_{th} a U_f + k \dagger_{mu} (1 - U_f)$$
(3.48)

μ

μ

k

$$\dagger_{cu} = (\dagger_a + 0.83 \ddagger_m) + \dagger_a K (1 - U_f)$$
(3.47)

| Sc    | chrager [37] | μ                                                              |                 |   |        |
|-------|--------------|----------------------------------------------------------------|-----------------|---|--------|
|       | μ            | μ                                                              | :               |   |        |
|       |              | $\dagger_{cu} = \dagger_{mu} \exp(i\theta)$                    | $(-rU_f)$       |   | (3.50) |
| µ r=2 | .66          | μ.                                                             |                 |   |        |
|       | μ μ          | μ                                                              |                 |   |        |
|       | μ            | μ.                                                             | .(3.46)         |   | μ      |
|       |              | Passmore [38]                                                  |                 |   |        |
| μ     | :            |                                                                |                 |   |        |
|       |              | $\dagger_{cu} = \dagger_{fo} \exp (\frac{1}{2} - \frac{1}{2})$ | p( <i>-aP</i> ) |   | (3.51) |
| t     | fo           | μ                                                              | ,               | μ | 3      |
|       |              |                                                                |                 |   |        |

| 3.6.1.4 | μ | μ | μ |
|---------|---|---|---|
|         |   |   |   |

•



|   | μ | μ  | μ |   | μ | μ |    | μ |
|---|---|----|---|---|---|---|----|---|
|   |   |    |   |   | μ |   | μμ |   |
| μ | ( | μ) |   | μ | μ |   | μ  |   |
|   | μ |    |   |   | μ |   | μ. | μ |
| μ |   |    |   |   | μ | , |    |   |
|   | μ |    | μ |   | μ |   |    |   |
|   |   | μ  |   | μ |   |   | μ  | μ |
| μ | , |    |   |   |   |   | μ  |   |
| μ | μ | (  |   | ) |   |   |    |   |

μ

|   | μ                  | μ |         |                   |    |
|---|--------------------|---|---------|-------------------|----|
|   |                    |   |         | μ                 | μμ |
|   | μ                  | μ | μ       | (power law),<br>µ |    |
|   | μ                  | μ | μ.      |                   |    |
|   | μ                  | μ |         |                   |    |
|   | ,                  |   | Leidner | Woodhams [34],    | μ  |
|   | ( <sub>th</sub> )  |   | μμ      | — ,               |    |
| μ |                    | μ |         | μ                 |    |
|   | ' U <sub>f</sub> µ |   | μ       | μ                 | ,  |
|   |                    |   |         |                   |    |

Uf , μ μ .

3.6.2 μ

> μ μ μ<sub>c</sub> Smith [40,41] μ m μ  $V_c = V_m (1 - 1, 106 U_f^{1/3})$ (3.52)

•

Bueche [20,21] μ μ μ : μ  $\mathsf{V}_{c} = \mathsf{V}_{m} \left( 1 - U_{f}^{1/3} \right)$ (3.53) Nielsen [28,30] μ μ :  $\mathsf{V}_{c} = \mathsf{V}_{m} \left( 1 - U_{f}^{1/3} \right)$ (3.54) μ μ μ. μ μ , , μ μ μ μ μ , , μ μ μ μ μ μ . 3.6.3 μ μ μ μ . μ μ μ μ μ μ μ , μ μ , , μ , μ μ μ μ ( ) ( μ , ). μ μ μ μ μ , μ μ μ μ μ μ . , μ μ

μ μ μ. μ μ μ μ , µ μ μ μ μ μ μ μ • μ μ μ . - μ μ W μ μ .  $\mathsf{L}_\mathsf{b}$ μ μ μ μ  $L_0$ 

 $W = \int_{L_0}^{L_{bTo}} \dagger \, dL \tag{3.55}$ 

μ μ μ μ μ μ μ

, . μ μ. . μ

р., ч р., ч р., ч

μ μ μ μ μ μ μ μ μ (Optimum) μ, μ μ μ μ μ .

,

.

## 3.6.4 -

μ μ μ μ μ • μ μμ μ μ ( ). μ μ μ μ , • μ μ μ :

.

• μμ μ). • μμ μμ

μ μ μ, μ, μ, μ, μ,

μ.

μ μ. , μ μ μ



4.1 (interphase) μ μ μ μ μ μ μ μ μ μ , μ μ μ . μ μ μ μ μ • μ μ μ , μ μ μ μ μ μ μ μ . [41-48] μ μ • μ μ μ μ μ μ μ μ . μ μ μ , μ μ μ μ , μ μ μ μ μ . , μ μ μ μ , μ , μ μ μ •

4

,

μ

, T<sub>g</sub>, μ μ μ μ, μ . . . [49, 50]. μ μ μ μ μ, , , ,  $U_f$  , *T*<sub>g</sub> [51]. μ μ , µ  $T_g$  $T_{g}$ , μμ. [52, 53, 54]. μ [55] μ μμ  $T_g$ μ μ  $T_g$ μ , μ μμ μ μ μ μ μ , [56, 57, 58] , µ D.S.C, μ μ , H, μ μ μ 15°C μ μ μ . μ μ μ μ [53]. μ μ μ μ μ μ μ μ .  $T_g$ μ μ μ μ μ μ . , μ (µ ) µ μ μ μ μ μ μ , μ , μ,μ μ μ μ , μ ( μ 4.1), μ μ (µ ), µ Poisson, μ μ , ), μ



(

).

-µ ).

μ-

μ 4.1

rm

μ 4.2



(

μ-

μ

μ , μ

... µ

 $\begin{array}{ccccccc} & DGEBA & (Diglycidyl \ Ether \ of \\ Bisphenol \ A) \ \mu & \mu & 185 - 192, \ \mu \ \mu & \mu & 370 & 384, \\ & \mu & 15000 \ cP & 25^\circ C, & \mu \ \mu & \mu & 8\% \\ & \mu & . \end{array}$ 

|      |                | μ           |
|------|----------------|-------------|
| (mm) | $(cm^3/100gr)$ | $(gr/cm^3)$ |
| 0,15 | 38-41          | 2,60-2,40   |

4.1

μ μ

|         | μ |                      |                                           |                                              |
|---------|---|----------------------|-------------------------------------------|----------------------------------------------|
| Lame    | μ | / m²<br>/ m²         | 112×10 <sup>9</sup><br>81×10 <sup>9</sup> | 3,34×10 <sup>9</sup><br>1,30×10 <sup>9</sup> |
|         |   | / m <sup>2</sup>     | 210×10 <sup>9</sup>                       | 3,53×10°                                     |
|         |   | / m <sup>2</sup>     | 167×10 <sup>9</sup>                       | 4,21×10 <sup>9</sup>                         |
| Poisson |   |                      | 0,29                                      | 0,36                                         |
|         |   | gr / cm <sup>3</sup> | 7,80                                      | 1,19                                         |
| μ       |   | C <sup>-1</sup>      | 15,00×10 <sup>-6</sup>                    | 65,26×10 <sup>-6</sup>                       |

4.2

46

| μ    |     | μ    |   |   | μ  |      |   |         |
|------|-----|------|---|---|----|------|---|---------|
| μ    | μ   | 20°C |   |   | 15 | isec |   |         |
| μ.   |     |      | μ | a | μ  | μ    |   |         |
| μ    |     | μ    |   |   |    | μ    |   | $T_g$ . |
|      |     |      | μ | , | μ  | μ    |   | μ       |
| 30°C |     |      |   |   |    |      |   |         |
|      | μ   |      |   |   |    | μ    | μ |         |
| μ    | μμ, |      |   |   |    | μ    |   | μ,      |

| μ | μ | • |   |   |             |                |
|---|---|---|---|---|-------------|----------------|
|   |   |   |   |   | μμ          | 3              |
|   |   |   |   |   | plexiglass, | 250*250*50 mm, |
|   |   |   |   | μ | µ plexi     | glass,         |
|   |   |   | , |   | μμ          | μ              |
|   |   |   | μ |   | . µµµ       | μ              |
|   | μ |   |   |   | 24 .        | ,              |
|   |   |   | , |   | μ           | 7 μ            |
|   | : |   |   |   |             |                |

|                   | ,             | μμ | μ | , | μ     |
|-------------------|---------------|----|---|---|-------|
| $5^{\circ} C/h$ , |               |    |   | μ | 100°C |
|                   | 1° <i>C/h</i> |    |   | μ |       |

, µµµ,' µ µ

μ.

1 - 1,50mm 4mm μ μ μ μ. μ μ (DSC) Du-Pont 900. μ μ μ μ μ μ μ μ μ μ μ. μ μ (5,10 μ μ

205°*C*/min). µ µ 5% 25%.

### 4.3 μ μ



μ.



μ 4.3



μ



,

ррори, ррори, разрада, разрад Страна, страна, разрада, разрад Страна, страна, разрада, разрад  $μ μ T_g .$  μ μ μ μ μ μ μ,  $μ μ ΔC_p$  μ [59], :  $ΔC^f$ 

$$\} = 1 - \frac{\Delta C_p^{J}}{\Delta C_p^{0}} \tag{4.1}$$

$$\Delta C_p^f \Delta C_p^0 \qquad \mu (\mu \mu)$$
  
 $\mu \quad \mu \qquad \mu \quad \mu$   
 $\mu \quad , \quad \mu$   
 $\mu \quad U_f \qquad ,$ 

μ .

$$r_f, r_i, r_m \mu$$
,  $\mu$ ,  $\mu$ ,  $\mu$ ,

μ μ :

$$U_{f} = \frac{r_{f}^{3}}{r_{m}^{3}}$$
(4.2)

$$U_{i} = \frac{r_{i}^{3} - r_{f}^{3}}{r_{m}^{3}}$$
(4.3)

$$U_m = \frac{r_m^3 - r_i^3}{r_m^3}$$
(4.4)

$$U_{f} + U_{i} + U_{m} = 1$$
 (4.5)

Lipatov [60].

μ

$$\frac{\left(r_{f} + \Delta r_{i}\right)^{3}}{r_{f}^{3}} - 1 = \frac{U_{f}}{1 - U_{f}}$$
(4.6)

# и и и

5

## 5.1

,

| μ | μ | - | μ | μ |   | μ | μ |  |
|---|---|---|---|---|---|---|---|--|
|   |   |   | μ |   | μ | , |   |  |
|   | : |   |   |   |   |   |   |  |

| • | μ | μ |   | μ |
|---|---|---|---|---|
|   | μ |   | μ |   |
| • | п |   | п | П |

.

| • | μ | μ | μ | , |
|---|---|---|---|---|
| μ | μ |   |   |   |

| • | , | μ |
|---|---|---|
|   |   |   |

| ٠ |   | μ | μ | μ | μ |
|---|---|---|---|---|---|
| μ | μ | , |   | μ | μ |

• µ µ µµ







μ 5.1: μ 1.



|    |          | μ  | μ μ Ι,  | μ  |
|----|----------|----|---------|----|
| μ  |          |    | μ 2I, μ |    |
| «μ | <b>»</b> | μ  | μ       | μμ |
| μ  |          | μ. |         |    |



μ5.2: μ 1.

| μ          | μ | μ | 21               | μ |   |   |
|------------|---|---|------------------|---|---|---|
|            |   | μ |                  | 4 | μ | μ |
| a, b, c, d |   |   | (a < b < c < d). |   |   |   |



μ5.3: μ μ 1μ μ ( μ).

| μ | , |   |    |   | (µ | ), |    |
|---|---|---|----|---|----|----|----|
|   | μ |   |    | а |    |    | b, |
|   |   | μ |    |   | с  |    | d, |
|   |   | μ |    |   |    | μ  | а  |
| μ |   |   | b  |   |    | С, |    |
| μ | ( |   | ), |   |    |    |    |
|   | μ |   |    |   |    |    |    |

µ 2I :

,

,

:

$$V_{2l} = (2l)^3 \implies V_{2l} = 8l^3$$
 (5.1)

μ

μ' <sup>U</sup>f μ r<sub>f</sub>. μμ2l, ' U<sub>f</sub>

μ μ 2Ι,

$$U_{f} = \frac{8\frac{4}{3}fr_{f}^{3} + \frac{4}{3}fr_{f}^{3}}{(2l)^{3}} \implies U_{f} = \frac{36}{24l^{3}}fr_{f}^{3} \implies$$

$$l = r_{f}\sqrt[3]{\frac{3f}{2U_{f}}} \qquad (5.2)$$

$$(2l)^{3} = \frac{4}{3} d^{3} \implies d = l_{\sqrt{3}}^{3} \frac{8 \cdot 3}{4f} = l_{\sqrt{3}}^{3} \frac{6}{f}$$
 (5.3)

(5.2) µ :

.

$$d = r_{f} \sqrt[3]{\frac{3f}{2U_{f}}} \sqrt[3]{\frac{6}{f}} = r_{f} \sqrt[3]{\frac{9}{U_{f}}}$$
(5.4)

$$w = l \frac{\sqrt{3}}{2} \tag{5.5}$$

w, µ µ

:

$$a = r_f \tag{5.6}$$

•

$$\mu \qquad \mu \qquad b$$
c,  $\mu$ 
w. M , « »
  
:
$$\frac{4}{3}f(c^{3}-w^{3}) = \frac{4}{3}(w^{3}-b^{3}) \implies (c^{3}+b^{3}) = 2w^{3} \qquad (5.7)$$

$$\mu \qquad \mu \qquad 8$$

$$\mu \qquad . :$$

$$\frac{4}{3}f(c^3 - b^3) = 8\frac{4}{3}fr_f^3 \implies (c^3 - b^3) = 8r_f^3$$
(5.8)

(5.7) (5.8), 
$$\mu$$
  $\mu$ :

$$c = \sqrt[3]{w^3 + 4r_f^3}$$
(5.9)

$$b = \sqrt[3]{w^3 - 4r_f^3} \tag{5.10}$$

μ



μ 5.4: μ 2.





$$U_{f} = \frac{12\frac{4}{3}fr_{f}^{3} + \frac{4}{3}fr_{f}^{3}}{(2l)^{3}} \implies U_{f} = \frac{52}{24l^{3}}fr_{f}^{3} \implies$$

$$l = r_{f}\sqrt[3]{\frac{13f}{6U_{f}}} \qquad (5.11)$$

μ μ 2I, μ μ d, μ:

$$(2l)^{3} = \frac{4}{3} d^{3} \implies d = l_{3}^{3} \frac{8 \cdot 3}{4f} = l_{3}^{3} \frac{6}{f}$$
 (5.12)

(5.12) :

.

:

$$d = r_f \sqrt[3]{\frac{13f}{6U_f}} \sqrt[3]{\frac{6}{f}} = r_f \sqrt[3]{\frac{13}{U_f}}$$
(5.13)

μ μμί.

μ μ , μ μ μ μ :

$$w = l \frac{\sqrt{2}}{2} \tag{5.14}$$

μ

,

 $a = r_f \tag{5.15}$ 

μ

12 µ .

:

$$\frac{4}{3}f(c^3 - b^3) = 12\frac{4}{3}fr_f^3 \implies (c^3 - b^3) = 12r_f^3$$
(5.16)

,

$$\frac{4}{3}f(c^3 - w^3) = \frac{4}{3}(w^3 - b^3) \implies (c^3 + b^3) = 2w^3$$
(5.17)

$$c = \sqrt[3]{w^3 + 6r_f^3}$$
(5.18)

$$\mu \qquad \mu :$$

$$b = \sqrt[3]{w^3 - 6r_f^3} \tag{5.19}$$

|   | μ              |     | a, b, | c, d |  | μ |
|---|----------------|-----|-------|------|--|---|
| μ | U <sub>f</sub> | rf. |       |      |  |   |

| 5.4 |   |   | μ | 3 |   |   |
|-----|---|---|---|---|---|---|
|     | μ |   | μ | 6 | μ | μ |
|     |   | 1 | μ |   |   |   |



μ 5.6: μ 3

μμ μ μ,μ μ



$$U_{f} = \frac{6\frac{4}{3}fr_{f}^{3} + \frac{4}{3}fr_{f}^{3}}{(2l)^{3}} \implies U_{f} = \frac{28}{24l^{3}}fr_{f}^{3}$$
  
$$\Rightarrow l = r_{f}\sqrt[3]{\frac{7f}{6U_{f}}}$$
(5.20)

μμ2Ι μ, μd, μ:

$$(2l)^{3} = \frac{4}{3}fd^{3} \implies d = l\sqrt[3]{\frac{8\cdot 3}{4f}} = l\sqrt[3]{\frac{6}{f}}$$
 (5.21)

(5.20) :

$$d = r_f \sqrt[3]{\frac{f}{U_f}} \sqrt[3]{\frac{6}{f}} = r_f \sqrt[3]{\frac{6}{U_f}}$$
(5.22)

μ μ l. μ μ , μ μ , μ μ:

$$w = \frac{l}{2} \tag{5.23}$$

μ μ

:

$$a = r_f \tag{5.24}$$

μ.

$$\frac{4}{3}f(c^3 - b^3) = 6\frac{4}{3}fr_f^3 \implies (c^3 - b^3) = 6r_f^3$$
(5.25)



$$\frac{4}{3}f(c^3 - w^3) = \frac{4}{3}(w^3 - b^3) \implies (c^3 + b^3) = 2w^3$$
(5.26)

$$c = \sqrt[3]{w^3 + 3r_f^3}$$
(5.27)

,

μ μ:

$$b = \sqrt[3]{w^3 - 3r_f^3}$$
(5.28)

μ a, b, c, d μ μ **U<sub>f</sub> rf.** 

$$\begin{split} b > 0 &\Leftrightarrow \sqrt[3]{w^3 - 4r_f^3} > 0 \Leftrightarrow w^3 - 4r_f^3 > 0 \Leftrightarrow \\ \left(l\frac{\sqrt{3}}{2}\right)^3 - 4r_f^3 > 0 \Leftrightarrow \left(r_f\sqrt[3]{\frac{9f}{6U_f}}\frac{\sqrt{3}}{2}\right)^3 - 4r_f^3 > 0 \Leftrightarrow \frac{9f}{6U_f}\left(\frac{\sqrt{3}}{2}\right)^3 > 4 \Leftrightarrow \\ U_f < \frac{9f}{24}\left(\frac{\sqrt{3}}{2}\right)^3 \Leftrightarrow \end{split}$$

 $U_f < 0,765196$ 

$$a < b \Leftrightarrow a^{3} < b^{3} \Leftrightarrow r_{f}^{3} < w^{3} - 4r_{f}^{3} \Leftrightarrow$$
$$r_{f}^{3} < \frac{9f}{6U_{f}} \left(\frac{\sqrt{3}}{2}\right)^{3} r_{f}^{3} - 4r_{f}^{3} \Leftrightarrow U_{f} < \left(\frac{\sqrt{3}}{2}\right)^{3} \frac{9}{30}f \Leftrightarrow$$

$$U_f < 0,612157$$

$$c < d \Leftrightarrow c^{3} < d^{3} \Leftrightarrow w^{3} + 4r_{f}^{3} < r_{f}^{3} \frac{9}{U_{f}} \Leftrightarrow$$

$$\frac{9f}{6U_{f}} \left(\frac{\sqrt{3}}{2}\right)^{3} r_{f}^{3} + 4r_{f}^{3} < \frac{9}{U_{f}} r_{f}^{3} \Leftrightarrow U_{f} < \left[6 - f\left(\frac{\sqrt{3}}{2}\right)^{3}\right] \frac{9}{24} \Leftrightarrow$$

 $U_f < 1,48$ 

$$U_f < U_{f, \min}$$
,  $U_f < 0.612157$ .

$$\begin{split} b > 0 \Leftrightarrow \sqrt[3]{w^3 - 6r_f^{-3}} > 0 \Leftrightarrow w^3 - 6r_f^{-3} > 0 \Leftrightarrow \\ \left(l\frac{\sqrt{2}}{2}\right)^3 - 6r_f^{-3} > 0 \Leftrightarrow \left(r_f\sqrt[3]{\frac{13f}{6U_f}}\frac{\sqrt{2}}{2}\right)^3 - 6r_f^{-3} > 0 \Leftrightarrow \frac{13f}{6U_f}\left(\frac{\sqrt{2}}{2}\right)^3 > 6 \Leftrightarrow \\ U_f < \frac{13f}{36}\left(\frac{\sqrt{2}}{2}\right)^3 \Leftrightarrow U_f < 0,401093 \end{split}$$

$$a < b \Leftrightarrow a^{3} < b^{3} \Leftrightarrow r_{f}^{3} < w^{3} - 6r_{f}^{3} \Leftrightarrow$$
$$r_{f}^{3} < \frac{13f}{6U_{f}} \left(\frac{\sqrt{2}}{2}\right)^{3} r_{f}^{3} - 6r_{f}^{3} \Leftrightarrow U_{f} < \left(\frac{\sqrt{2}}{2}\right)^{3} \frac{13}{42}f \Leftrightarrow$$

 $U_f < 0,343794$ 

$$c < d \Leftrightarrow c^{3} < d^{3} \Leftrightarrow w^{3} + 6r_{f}^{3} < r_{f}^{3} \frac{13}{U_{f}} \Leftrightarrow$$

$$\frac{13f}{6U_{f}} \left(\frac{\sqrt{2}}{2}\right)^{3} r_{f}^{3} + 6r_{f}^{3} < \frac{13}{U_{f}} r_{f}^{3} \Leftrightarrow U_{f} < \left[6 - f\left(\frac{\sqrt{2}}{2}\right)^{3}\right] \frac{13}{36} \Leftrightarrow$$

 $U_f < 1,76$ 

$$U_f < U_{f, \min}$$
,  $U_f < 0,343794$ .

$$\begin{split} b > 0 &\Leftrightarrow \sqrt[3]{w^3 - 3r_f^{-3}} > 0 \Leftrightarrow w^3 - 3r_f^{-3} > 0 \Leftrightarrow \\ \left(l\frac{1}{2}\right)^3 - 3r_f^{-3} > 0 &\Leftrightarrow \left(r_f\sqrt[3]{\frac{7f}{6U_f}}\frac{1}{2}\right)^3 - 3r_f^{-3} > 0 \Leftrightarrow \frac{7f}{6U_f}\left(\frac{1}{2}\right)^3 > 3 \Leftrightarrow \\ U_f < \frac{7f}{18}\left(\frac{1}{2}\right)^3 \Leftrightarrow U_f < 0,152716 \end{split}$$

$$a < b \Leftrightarrow a^{3} < b^{3} \Leftrightarrow r_{f}^{3} < w^{3} - 3r_{f}^{3} \Leftrightarrow$$
$$r_{f}^{3} < \frac{7f}{6U_{f}} \left(\frac{1}{2}\right)^{3} r_{f}^{3} - 3r_{f}^{3} \Leftrightarrow U_{f} < \left(\frac{1}{2}\right)^{3} \frac{7}{24}f \Leftrightarrow$$

$$U_f < 0,\!114537$$

$$c < d \Leftrightarrow c^{3} < d^{3} \Leftrightarrow w^{3} + 3r_{f}^{3} < r_{f}^{3} \frac{7}{U_{f}} \Leftrightarrow$$

$$\frac{7f}{6U_{f}} \left(\frac{1}{2}\right)^{3} r_{f}^{3} + 3r_{f}^{3} < \frac{7}{U_{f}} r_{f}^{3} \Leftrightarrow U_{f} < \left[6 - f\left(\frac{1}{2}\right)^{3}\right] \frac{7}{18} \Leftrightarrow$$

 $U_{f} < 2,18$ 

μ :

$$U_f < U_{f, \min}$$
,

 $U_{\rm f}$  < 0,114537.

•

μ

|                | 1      | 2      | 3      |
|----------------|--------|--------|--------|
| U <sub>f</sub> | 61,22% | 34,38% | 11,45% |
| 5.1 :          | •      |        | μ      |


<sub>3</sub> = <sub>7</sub> = <sub>m</sub> = 3,5 GPa

| μ <b>U</b> f μ       | μ |   | , |   |   |
|----------------------|---|---|---|---|---|
| μ , μ <b>U</b> i     |   | , |   |   | μ |
| $\mu$ U <sub>m</sub> |   | , |   | μ |   |
| :                    |   |   |   |   |   |

$$U_{f} = U_{1} + U_{5}$$
  
 $U_{i} = U_{2} + U_{4} + U_{6}$ 

 $Um = U_3 + U_7$ 

 $: Um = 1 - U_f - U_i$ 

μ μ μ μ μ μ μ ,

$$\frac{U_{i,1}}{U_{m,1}} = \frac{U_{i,2}}{U_{m,1}} = \frac{U_{i,3}}{U_{m,2}} = \frac{U_{i,1} + U_{i,2} + U_{i,3}}{U_{m,1} + U_{m,2}} = \frac{U_i}{U_m} = \frac{U_i}{1 - U_f - U_i} = k \quad (6.1)$$

$$U_{i,2} = kU_{m,1} \Rightarrow \frac{\frac{4}{3}f\left(r_{4}^{3} - r_{3}^{3}\right)}{\frac{4}{3}f\left(r_{7}^{3}\right)} = k\frac{\frac{4}{3}f\left(r_{3}^{3} - r_{2}^{3}\right)}{\frac{4}{3}f\left(r_{7}^{3}\right)} \Rightarrow \left(r_{4}^{3} - r_{3}^{3}\right) = k\left(r_{3}^{3} - r_{2}^{3}\right) \Rightarrow$$

$$r_{4} = \sqrt[3]{(k+1)r_{3}^{3} - kr_{2}^{3}} \qquad (6.3)$$

$$U_{i,3} = kU_{m,2} \Rightarrow \frac{\frac{4}{3}f\left(r_{6}^{3} - r_{5}^{3}\right)}{\frac{4}{3}f\left(r_{7}^{3}\right)} = k\frac{\frac{4}{3}f\left(r_{7}^{3} - r_{6}^{3}\right)}{\frac{4}{3}f\left(r_{7}^{3}\right)} \Rightarrow \left(r_{6}^{3} - r_{5}^{3}\right) = k\left(r_{7}^{3} - r_{6}^{3}\right) \Rightarrow$$

$$r_{6} = \sqrt[3]{\frac{kr_{7}^{3} + r_{5}^{3}}{k+1}} \qquad (6.4)$$

$$1, 3, 5, 7 \qquad 4$$

µ a, b, c d μ μ. **r**<sub>1</sub>, **r**<sub>3</sub>, **r**<sub>5</sub> **r**<sub>7.</sub>

,

$$U_{f,1} = U_1 = \frac{\frac{4}{3}fr_1^3}{\frac{4}{3}fr_7^3} = \frac{r_1^3}{r_7^3}$$
(6.5)

:

$$U_{i,1} = U_2 = \frac{\frac{4}{3}f\left(r_2^3 - r_1^3\right)}{\frac{4}{3}fr_7^3} = \frac{r_2^3 - r_1^3}{r_7^3}$$
(6.6)

$$U_{m,1} = U_3 = \frac{\frac{4}{3}f\left(r_3^3 - r_2^3\right)}{\frac{4}{3}fr_7^3} = \frac{r_3^3 - r_2^3}{r_7^3}$$
(6.7)

$$U_{i,2} = U_4 = \frac{\frac{4}{3}f\left(r_4^3 - r_3^3\right)}{\frac{4}{3}f\,r_7^3} = \frac{r_4^3 - r_3^3}{r_7^3}$$
(6.8)

$$U_{f,2} = U_5 = \frac{\frac{4}{3}f\left(r_5^3 - r_4^3\right)}{\frac{4}{3}f\,r_7^3} = \frac{r_5^3 - r_4^3}{r_7^3}$$
(6.9)

$$U_{i,3} = U_6 = \frac{\frac{4}{3}f\left(r_6^3 - r_5^3\right)}{\frac{4}{3}f\,r_7^3} = \frac{r_6^3 - r_5^3}{r_7^3}$$
(6.10)

$$U_{m,2} = U_7 = \frac{\frac{4}{3}f\left(r_7^3 - r_6^3\right)}{\frac{4}{3}f\,r_7^3} = \frac{r_7^3 - r_6^3}{r_7^3}$$
(6.11)

• µ 1

$$r_1 = a = r_f \tag{6.12}$$

$$r_{2} = \sqrt[3]{\frac{kr_{3}^{3} + r_{1}^{3}}{k+1}} = \sqrt[3]{\frac{k\left(w^{3} - 4r_{f}^{3}\right) + r_{f}^{3}}{k+1}}$$
(6.13)

$$r_3 = b = \sqrt[3]{w^3 - 4r_f^3} \tag{6.14}$$

$$r_4 = \sqrt[3]{(k+1)r_3^3 - kr_2^3}$$
(6.15)

$$r_5 = c = \sqrt[3]{w^3 + 4r_f^3}$$
(6.16)

$$r_6 = \sqrt[3]{\frac{kr_7^3 + r_6^3}{k+1}}$$
(6.17)

$$r_7 = d = r_f \sqrt[3]{\frac{f}{U_f}} \sqrt[3]{\frac{6}{f}} = r_f \sqrt[3]{\frac{6}{U_f}}$$
 (6.18)

μ

•

•

2

$$r_1 = a = r_f \tag{6.19}$$

$$r_2 = \sqrt[3]{\frac{kr_3^3 + r_1^3}{k+1}}$$
(6.20)

$$r_3 = b = \sqrt[3]{w^3 - 6r_f^3} \tag{6.21}$$

$$r_4 = \sqrt[3]{(k+1)r_3^3 - kr_2^3}$$
(6.22)

$$r_5 = c = \sqrt[3]{w^3 + 6r_f^3} \tag{6.23}$$

$$r_6 = \sqrt[3]{\frac{kr_7^3 + r_5^3}{k+1}}$$
(6.24)

$$r_{7} = d = r_{f} \sqrt[3]{\frac{f}{U_{f}}} \sqrt[3]{\frac{6}{f}} = r_{f} \sqrt[3]{\frac{13}{U_{f}}}$$
(6.25)

μ 3

$$r_1 = a = r_f \tag{6.26}$$

$$r_2 = \sqrt[3]{\frac{kr_3^3 + r_1^3}{k+1}}$$
(6.27)

$$r_3 = b = \sqrt[3]{w^3 - 3r_f^3} \tag{6.28}$$

$$r_4 = \sqrt[3]{(k+1)r_3^3 - kr_2^3}$$
(6.29)

$$r_5 = c = \sqrt[3]{w^3 + 3r_f^3}$$
(6.30)

$$r_6 = \sqrt[3]{\frac{kr_7^3 + r_5^3}{k+1}}$$
(6.31)

$$r_{7} = d = r_{f} \sqrt[3]{\frac{f}{U_{f}}} \sqrt[3]{\frac{6}{f}} = r_{f} \sqrt[3]{\frac{7}{U_{f}}}$$
(6.32)

6.1,

.

۲

μ

. μ

μ

,

,

**U**f μ μ μ **U**i :

μ

| U <sub>f</sub> | Ui     |
|----------------|--------|
| 0,05           | 0,0013 |
| 0,1            | 0,004  |
| 0,15           | 0,013  |
| 0,2            | 0,028  |
| 0,25           | 0,05   |

6.1

μ (**U**f,

U<sub>i</sub>)

μ

70

•

μm.

| - |
|---|
| 4 |
|   |
|   |

| U <sub>f</sub> | Ui     | r <sub>1</sub> (μm) | r₂ (μm) | r <sub>3</sub> (μm) | r₄ (μm)  | r₅ (µm)  | r <sub>6</sub> (μm) | r <sub>7</sub> (μm) |
|----------------|--------|---------------------|---------|---------------------|----------|----------|---------------------|---------------------|
| 0,05           | 0,0013 | 75                  | 76,8747 | 288,9399            | 289,0694 | 301,8315 | 301,9472            | 369,9318            |
| 0,1            | 0,004  | 75                  | 77,7418 | 223,8543            | 224,173  | 244,3674 | 244,6331            | 293,6151            |
| 0,15           | 0,013  | 75                  | 80,4760 | 190,5234            | 191,4311 | 217,5122 | 218,2194            | 256,4964            |
| 0,2            | 0,028  | 75                  | 83,1014 | 168,2756            | 170,0463 | 201,16   | 202,4537            | 233,0424            |
| 0,25           | 0,05   | 75                  | 85,5163 | 151,4599            | 154,3611 | 189,9123 | 191,9094            | 216,3374            |

•

6.2

:

| U <sub>f</sub> | Ui     | U1       | U2       | U <sub>3</sub> | U4       | U <sub>5</sub> | U <sub>6</sub> | U7       |
|----------------|--------|----------|----------|----------------|----------|----------------|----------------|----------|
| 0,05           | 0,0013 | 0,008333 | 0,000641 | 0,46752        | 0,000641 | 0,041667       | 0,000018       | 0,48118  |
| 0,1            | 0,004  | 0,016667 | 0,001896 | 0,424599       | 0,001896 | 0,083333       | 0,000208       | 0,471401 |
| 0,15           | 0,013  | 0,025    | 0,005886 | 0,378942       | 0,005886 | 0,125          | 0,001228       | 0,458058 |
| 0,2            | 0,028  | 0,033333 | 0,012011 | 0,33115        | 0,012011 | 0,166667       | 0,003978       | 0,44085  |
| 0,25           | 0,05   | 0,041667 | 0,022    | 0,281395       | 0,022    | 0,208333       | 0,006          | 0,418605 |

6.3

2

| U <sub>f</sub> | Ui     | r <sub>1</sub> (μm) | r₂ (μm)  | r <sub>3</sub> (μm) | r₄ (µm)  | r₅ (µm)  | r <sub>6</sub> (μm) | r <sub>7</sub> (μm) |
|----------------|--------|---------------------|----------|---------------------|----------|----------|---------------------|---------------------|
| 0,05           | 0,0013 | 75                  | 76,37999 | 260,8778            | 260,994  | 283,631  | 284,1227            | 478,6878            |
| 0,1            | 0,004  | 75                  | 76,84772 | 196,7103            | 196,9851 | 233,1525 | 234,2961            | 379,9348            |
| 0,15           | 0,013  | 75                  | 78,3043  | 161,7351            | 162,4741 | 210,2432 | 213,3424            | 331,9036            |
| 0,2            | 0,028  | 75                  | 79,15874 | 136,4448            | 137,7596 | 196,633  | 202,44              | 301,5544            |
| 0,25           | 0,05   | 75                  | 79,13007 | 115,1272            | 116,9492 | 187,468  | 196,7103            | 279,9383            |

| U <sub>f</sub> | Ui     | U1       | U2       | U <sub>3</sub> | U4       | U <sub>5</sub> | U <sub>6</sub> | U <sub>7</sub> |
|----------------|--------|----------|----------|----------------|----------|----------------|----------------|----------------|
| 0,05           | 0,0013 | 0,004062 | 0,000216 | 0,157803       | 0,000216 | 0,045938       | 0,000868       | 0,790897       |
| 0,1            | 0,004  | 0,008275 | 0,000583 | 0,130514       | 0,000583 | 0,091725       | 0,002834       | 0,765486       |
| 0,15           | 0,013  | 0,013132 | 0,001593 | 0,10258        | 0,001593 | 0,136868       | 0,009814       | 0,73442        |
| 0,2            | 0,028  | 0,018088 | 0,002704 | 0,074546       | 0,002704 | 0,181912       | 0,022592       | 0,697454       |
| 0,25           | 0,05   | 0,022586 | 0,003355 | 0,046972       | 0,003355 | 0,227414       | 0,04329        | 0,653028       |

:

6.5

3

| U <sub>f</sub> | Ui     | r <sub>1</sub> (μm) | r₂ (μm)  | r <sub>3</sub> (μm) | r₄ (μm)  | r₅ (µm)  | r <sub>6</sub> (μm) | r <sub>7</sub> (μm) |
|----------------|--------|---------------------|----------|---------------------|----------|----------|---------------------|---------------------|
| 0,05           | 0,0013 | 75                  | 75,17606 | 137,4724            | 137,525  | 172,459  | 173,2822            | 389,4371            |
| 0,1            | 0,004  | 75                  | 75,0643  | 87,33814            | 87,38556 | 147,3223 | 149,0983            | 309,0964            |
| 0,15           | 0,013  | 75                  | 74,63606 | 28,13271            | 25,27898 | 136,6825 | 141,2067            | 270,0206            |
| 0,2            | 0,028  | 75                  | 73,47249 | -66,9215            | -68,7508 | 130,6778 | 138,7341            | 245,33              |
| 0,25           | 0,05   | 75                  | 71,19648 | -78,9921            | -82,1241 | 126,7925 | 139,075             | 227,7442            |

6.6

:

| U <sub>f</sub> | Ui     | U1       | U2       | U <sub>3</sub> | U₄       | U <sub>5</sub> | U <sub>6</sub> | U7       |
|----------------|--------|----------|----------|----------------|----------|----------------|----------------|----------|
| 0,05           | 0,0013 | 0,007143 | 5,04E-05 | 0,036795       | 5,04E-05 | 0,042857       | 0,0011992      | 0,911905 |
| 0,1            | 0,004  | 0,014286 | 3,68E-05 | 0,008237       | 3,68E-05 | 0,085714       | 0,0039264      | 0,887763 |
| 0,15           | 0,013  | 0,021429 | -0,00031 | -0,01999       | -0,00031 | 0,128571       | 0,01331        | 0,8573   |
| 0,2            | 0,028  | 0,028571 | -0,00171 | -0,04716       | -0,00171 | 0,173139       | 0,02971        | 0,81916  |
| 0,25           | 0,05   | 0,035714 | -0,00516 | -0,07228       | -0,00516 | 0,219448       | 0,055163       | 0,772275 |

3 μ , μ μ 0,15, μ μ μ μ • μ μ μ 3 **U**<sub>f, max</sub> = 0,1145. μ μ , , µ µ , μ μ , **0,1145**. μ μ

6.2 μ

μ μ, μ μ, . μ μ , μ μ

μμ μ . , μ  $E_i$  Poisson  $v_i$  μ

 $E_{i}(r) = Ar^{n} + Br^{n-1} + Cr^{n-2} + \dots, \quad v_{i}(r) = A r^{n} + B r^{n-1} + C r^{n-2} + \dots$  $r_{f,1} \le r \le r_{i,1}, \ r_{m,1} \le r \le r_{i,2} \qquad r_{f,2} \le r \le r_{i,3} \qquad \mu \qquad .$ 

μ , μ μ ' μμ , μ  $E_i(r)$  $v_i(r)$ .

 $\mu \qquad E_m \leq E_i(r) \leq E_f \qquad v_f \leq v_i(r) \leq v_m, \qquad r_{f,1} \leq r \leq r_{i,1},$  $r_{m,1} \le r \le r_{i,2}$   $r_{f,2} \le r \le r_{i,3}$ μ. μ μ3 μ μ μ : , μ ( 2, µ 6.1): •  $r = r_{f,1}: E_i(r) = yE_f$   $v_i(r) = \langle v_f$  $r = r_{i,1}: E_i(r) = E_m$   $v_i(r) = v_m$ 4, μ 6.1): • µ (  $r = r_{m,1}$ :  $E_i(r) = E_m$   $v_i(r) = v_m$  $r = r_{i,2}$ :  $E_i(r) = Y E_f$   $v_i(r) = \langle v_f$ •  $\mu$  (  $r = r_{f,2}: E_i(r) = \forall E_f \quad v_i(r) = \langle v_f$ 6, µ 6.1):  $r = r_{i,3}: E_i(r) = E_m$   $v_i(r) = v_m$ , **i (r) ν<sub>i</sub> (r)** μ μ μ μ<sub>m m</sub> , μ μ μμ , , μ μμ <sub>f</sub> <sub>f</sub> , μ , μ μ μ μ , **μ ι(r) ν<sub>i</sub>(r)** μμ μ μ μ μ , μ i**(r)** μ μ<sub>f f</sub> , μ = = 1.

6.2.1 μμ

μ μ μμ μ  $E_i(r)$   $v_i(r)$ μ :

$$E_{i}(r) = A + Br \qquad v_{i}(r) = A + Br \quad \mu \quad r_{f,1} \le r \le r_{i,1}, \ r_{m,1} \le r \le r_{i,2}$$
$$r_{f,2} \le r \le r_{i,3} \qquad \mu \qquad .$$
$$\mu \qquad \qquad \mu$$

$$A = y E_{f} - \frac{y E_{f} - E_{m}}{r_{f,1} - r_{i,1}} r_{f,1} , \quad B = \frac{y E_{f} - E_{m}}{r_{f,1} - r_{i,1}}$$
$$A = \langle \mathfrak{E}_{f} - \frac{\langle \mathfrak{E}_{f} - \mathfrak{E}_{m}}{r_{f,1} - r_{i,1}} r_{f,1} , \quad B = \frac{\langle \mathfrak{E}_{f} - \mathfrak{E}_{m}}{r_{f,1} - r_{i,1}}$$

$$\mu :$$

$$A = y E_{f} - \frac{y E_{f} - E_{m}}{r_{i,2} - r_{m,1}} r_{i,2} , \quad B = \frac{y E_{f} - E_{m}}{r_{i,2} - r_{m,1}}$$

$$A = \langle \xi_{f} - \frac{\langle \xi_{f} - \xi_{m}}{r_{i,2} - r_{m,1}} r_{i,2} , \quad B = \frac{\langle \xi_{f} - \xi_{m}}{r_{i,2} - r_{m,1}}$$

$$\mu :$$

$$A = y E_{f} - \frac{y E_{f} - E_{m}}{r_{f,2} - r_{i,3}} r_{f,2} , \quad B = \frac{y E_{f} - E_{m}}{r_{f,2} - r_{i,3}}$$

$$A = \langle \epsilon_{f} - \frac{\langle \epsilon_{f} - \epsilon_{m}}{r_{f,2} - r_{i,3}} r_{f,2} , \quad B = \frac{\langle \epsilon_{f} - \epsilon_{m}}{r_{f,2} - r_{i,3}}$$

Poisson

•

•

•

•

μ

•

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} E_{i}(r) dV = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} (A + Br) 4f r^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{3}}{3} + B \frac{r^{4}}{4} \right]_{r_{f,1}}^{r_{i,1}}$$
$$\overline{\in_{i}} = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} \overline{\epsilon_{i}}(r) dV = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} (A + Br) 4f r^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{3}}{3} + B \frac{r^{4}}{4} \right]_{r_{f,1}}^{r_{i,1}}$$

μ:

$$\mu \qquad \mu :$$

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} E_{i}(r) dV = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} (A + Br) 4f r^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{3}}{3} + B \frac{r^{4}}{4} \right]_{r_{m,1}}^{r_{i,2}}$$

$$\overline{\varepsilon_{i}} = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} \varepsilon_{i}(r) dV = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} (A + Br) 4f r^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{3}}{3} + B \frac{r^{4}}{4} \right]_{r_{m,1}}^{r_{i,2}}$$

$$\mu \qquad \mu :$$

$$\mu \qquad \mu :$$

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} E_{i}(r) dV = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} (A + Br) 4f r^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{3}}{3} + B \frac{r^{4}}{4} \right]_{r_{f,2}}^{r_{i,3}}$$

$$\overline{\in_{i}} = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} \varepsilon_{i}(r) dV = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} (A + Br) 4f r^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{3}}{3} + B \frac{r^{4}}{4} \right]_{r_{f,2}}^{r_{i,3}}$$

:

μ

$$V = \frac{4}{3}f r^3 \Longrightarrow dV = 4f r^2 dr$$

μ

μ

•

•

•

dV

μ:

•

•

$$\mu \qquad \mu :$$

$$\overline{E_{i}} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,1}^{3} - r_{f,1}^{3} \right) + \frac{B}{4} \left( r_{i,1}^{4} - r_{f,1}^{4} \right) \right]$$

$$\overline{\epsilon_{i}} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,1}^{3} - r_{f,1}^{3} \right) + \frac{B}{4} \left( r_{i,1}^{4} - r_{f,1}^{4} \right) \right]$$

$$\mu \qquad \mu :$$

$$\overline{E_{i}} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,2}^{3} - r_{m,1}^{3} \right) + \frac{B}{4} \left( r_{i,2}^{4} - r_{m,1}^{4} \right) \right]$$

$$\overline{\in_{i}} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,2}^{3} - r_{m,1}^{3} \right) + \frac{B}{4} \left( r_{i,2}^{4} - r_{m,1}^{4} \right) \right]$$

76

μ:

$$\overline{E_i} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,3}^3 - r_{f,2}^3 \right) + \frac{B}{4} \left( r_{i,3}^4 - r_{f,2}^4 \right) \right]$$
  
$$\overline{\epsilon_i} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,3}^3 - r_{f,2}^3 \right) + \frac{B}{4} \left( r_{i,3}^4 - r_{f,2}^4 \right) \right]$$



μ μ:

•

| r (um)  |         |         | 1 µ     | l       | (GPa)   |
|---------|---------|---------|---------|---------|---------|
| ι (μπ)  | = 0,2   | = 0,4   | = 0,6   | = 0,8   | = 1     |
| 75      | 42      | 84      | 126     | 168     | 210     |
| 75,188  | 38,1421 | 75,9301 | 113,718 | 151,506 | 189,294 |
| 75,376  | 34,2841 | 67,8602 | 101,436 | 135,012 | 168,589 |
| 75,564  | 30,4262 | 59,7904 | 89,1545 | 118,519 | 147,883 |
| 75,752  | 26,5682 | 51,7205 | 76,8727 | 102,025 | 127,177 |
| 75,94   | 22,7103 | 43,6506 | 64,5909 | 85,5312 | 106,471 |
| 76,128  | 18,8524 | 35,5807 | 52,3091 | 69,0374 | 85,7658 |
| 76,316  | 14,9944 | 27,5108 | 40,0273 | 52,5437 | 65,0601 |
| 76,504  | 11,1365 | 19,441  | 27,7454 | 36,0499 | 44,3544 |
| 76,692  | 7,27856 | 11,3711 | 15,4636 | 19,5561 | 23,6487 |
| 76,8747 | 3,53    | 3,53    | 3,53    | 3,53    | 3,53    |



μμ 6.1

| r (um)  | Poisson v |
|---------|-----------|
| r (µm)  | = 1       |
| 75      | 0,29      |
| 75,188  | 0,297     |
| 75,376  | 0,304     |
| 75,564  | 0,311     |
| 75,752  | 0,318     |
| 75,94   | 0,325     |
| 76,128  | 0,332     |
| 76,316  | 0,339     |
| 76,504  | 0,346     |
| 76,692  | 0,353     |
| 76,8747 | 0,36      |

6.9



μμ 6.2

• µ µ:

| r (um)  |         |         | 2 µ     | l       | (GPa)   |
|---------|---------|---------|---------|---------|---------|
| r (µm)  | = 0,2   | = 0,4   | = 0,6   | = 0,8   | = 1     |
| 288,94  | 3,53    | 3,53    | 3,53    | 3,53    | 3,53    |
| 288,953 | 7,40682 | 11,6394 | 15,8719 | 20,1045 | 24,3371 |
| 288,966 | 11,2836 | 19,7488 | 28,2139 | 36,679  | 45,1441 |
| 288,979 | 15,1605 | 27,8581 | 40,5558 | 53,2535 | 65,9512 |
| 288,992 | 19,0373 | 35,9675 | 52,8978 | 69,828  | 86,7582 |
| 289,005 | 22,9141 | 44,0769 | 65,2397 | 86,4025 | 107,565 |
| 289,018 | 26,7909 | 52,1863 | 77,5816 | 102,977 | 128,372 |
| 289,031 | 30,6678 | 60,2957 | 89,9236 | 119,551 | 149,179 |
| 289,044 | 34,5446 | 68,405  | 102,266 | 136,126 | 169,986 |
| 289,057 | 38,4214 | 76,5144 | 114,607 | 152,7   | 190,793 |
| 289,069 | 42      | 84      | 126     | 168     | 210     |



μμ 6.3

| r (um)  | Poisson v |
|---------|-----------|
| т (µш)  | = 1       |
| 288,94  | 0,36      |
| 288,953 | 0,353     |
| 288,966 | 0,346     |
| 288,979 | 0,339     |
| 288,992 | 0,332     |
| 289,005 | 0,325     |
| 289,018 | 0,318     |
| 289,031 | 0,311     |
| 289,044 | 0,304     |
| 289,057 | 0,297     |
| 289,069 | 0,29      |

6.11



μμ 6.4

• µ µ:

| r (um)  |          |          | 3 µ      | l        | (GPa)    |
|---------|----------|----------|----------|----------|----------|
| r (µm)  | = 0,2    | = 0,4    | = 0,6    | = 0,8    | = 1      |
| 301,831 | 42       | 84       | 126      | 168      | 210      |
| 301,843 | 38,02034 | 75,67552 | 113,3307 | 150,9859 | 188,641  |
| 301,855 | 34,04069 | 67,35103 | 100,6614 | 133,9717 | 167,2821 |
| 301,867 | 30,06103 | 59,02655 | 87,99207 | 116,9576 | 145,9231 |
| 301,879 | 26,08138 | 50,70207 | 75,32276 | 99,94345 | 124,5641 |
| 301,891 | 22,10172 | 42,37759 | 62,65345 | 82,92931 | 103,2052 |
| 301,903 | 18,12207 | 34,0531  | 49,98414 | 65,91517 | 81,84621 |
| 301,915 | 14,14241 | 25,72862 | 37,31483 | 48,90103 | 60,48724 |
| 301,927 | 10,16276 | 17,40414 | 24,64552 | 31,8869  | 39,12828 |
| 301,939 | 6,183103 | 9,079655 | 11,97621 | 14,87276 | 17,76931 |
| 301.947 | 3.53     | 3.53     | 3.53     | 3.53     | 3.53     |



μμ 6.5

| r (um)   | Poisson v |
|----------|-----------|
| i (µiii) | = 1       |
| 301,831  | 0,29      |
| 301,843  | 0,297241  |
| 301,855  | 0,304483  |
| 301,867  | 0,311724  |
| 301,879  | 0,318966  |
| 301,891  | 0,326207  |
| 301,903  | 0,333448  |
| 301,915  | 0,34069   |
| 301,927  | 0,347931  |
| 301,939  | 0,355172  |
| 301,947  | 0,36      |

6.13



μμ 6.6

6.2.2 (2 )

 $\mu$   $\mu$   $\mu$   $E_i(r)$   $v_i(r)$   $\mu$ 

 $E_{i}(r) = Ar^{2} + Br + C \qquad v_{i}(r) = Ar^{2} + Br + C \qquad \mu \qquad r_{f,1} \le r \le r_{i,1},$  $r_{m,1} \le r \le r_{i,2} \qquad r_{f,2} \le r \le r_{i,3} \qquad \mu \qquad .$ 

$$\mu \quad A, B, C \quad A, B, C, \\ \mu \quad E_i(r) \\ v_i(r) \quad \mu \quad r = r_{i,1}, r = r_{m,1}$$

 $r = r_{i,3}$  :

:

$$\mu \qquad r = r_{i,1} \qquad \mu :$$

$$\frac{dE_{i}(r)}{dr} = 0 \quad \mu \quad \frac{d^{2}E_{i}(r)}{dr^{2}} > 0$$

$$\frac{dv_{i}(r)}{dr} = 0 \quad \mu \quad \frac{d^{2}v_{i}(r)}{dr^{2}} < 0$$

$$\mu \qquad r = r_{m,1} \quad \mu :$$

$$\frac{dE_{i}(r)}{dr} = 0 \quad \mu \quad \frac{d^{2}E_{i}(r)}{dr^{2}} > 0$$

$$\frac{dv_{i}(r)}{dr} = 0 \quad \mu \quad \frac{d^{2}v_{i}(r)}{dr^{2}} < 0$$

$$r = r_{i,3} \quad \mu :$$

$$\frac{dE_i(r)}{dr} = 0 \quad \mu \quad \frac{d^2 E_i(r)}{dr^2} > 0$$

$$\frac{dv_i(r)}{dr} = 0 \quad \mu \quad \frac{d^2v_i(r)}{dr^2} < 0$$

μ

μ

:

μ

$$A = \frac{YE_{f} - E_{m}}{\left(r_{f,1} - r_{i,1}\right)^{2}} , A = \frac{\langle \epsilon_{f} - \epsilon_{m}}{\left(r_{f,1} - r_{i,1}\right)^{2}}$$

$$B = -\frac{2r_i(yE_f - E_m)}{(r_{f,1} - r_{i,1})^2} , \quad B = -\frac{2r_i(\langle e_f - e_m)}{(r_{f,1} - r_{i,1})^2}$$

$$C = \frac{Y E_{f} r_{i,1}^{2} + E_{m} r_{f,1}^{2} - 2E_{m} r_{f,1} r_{i,1}}{\left(r_{f,1} - r_{i,1}\right)^{2}} , \quad C = \frac{\langle \xi_{f} r_{i,1}^{2} + \xi_{m} r_{f,1}^{2} - 2\xi_{m} r_{f,1} r_{i,1}}{\left(r_{f,1} - r_{i,1}\right)^{2}}$$

:

$$A = \frac{YE_{f} - E_{m}}{(r_{i,2} - r_{m,1})^{2}} , A = \frac{\langle e_{f} - e_{m}}{(r_{i,2} - r_{m,1})^{2}}$$

$$B = -\frac{2r_{m,1}(yE_f - E_m)}{(r_{i,2} - r_{m,1})^2} , \quad B = -\frac{2r_{m,1}(\langle e_f - e_m)}{(r_{i,2} - r_{m,1})^2}$$

$$C = \frac{\mathsf{Y}E_{f}r_{m,1}^{2} + E_{m}r_{i,2}^{2} - 2E_{m}r_{i,2}r_{m,1}}{\left(r_{i,2} - r_{m,1}\right)^{2}} \quad , \quad C = \frac{\langle \epsilon_{f}r_{m,1}^{2} + \epsilon_{m}r_{i,2}^{2} - 2\epsilon_{m}r_{i,2}r_{m,1}}{\left(r_{i,2} - r_{m,1}\right)^{2}}$$

$$A = \frac{YE_{f} - E_{m}}{(r_{f,2} - r_{i,3})^{2}} , A = \frac{\langle \epsilon_{f} - \epsilon_{m}}{(r_{f,2} - r_{i,3})^{2}}$$

$$B = -\frac{2r_{i,3}(yE_f - E_m)}{(r_{f,2} - r_{i,3})^2} , \quad B = -\frac{2r_{i,3}(\langle e_f - e_m)}{(r_{f,2} - r_{i,3})^2}$$

$$C = \frac{Y E_{f} r_{i,3}^{2} + E_{m} r_{f,2}^{2} - 2E_{m} r_{f,2} r_{i,3}}{\left(r_{f,2} - r_{i,3}\right)^{2}} , \quad C = \frac{\langle \mathcal{E}_{f} r_{i,3}^{2} + \mathcal{E}_{m} r_{f,2}^{2} - 2\mathcal{E}_{m} r_{f,2} r_{i,3}}{\left(r_{f,2} - r_{i,3}\right)^{2}}$$

•

•

μ

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} E_{i}(r) dV = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} (Ar^{2} + Br + C) 4f r^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{5}}{5} + B \frac{r^{4}}{4} + C \frac{r^{3}}{3} \right]_{r_{f,1}}^{r_{i,1}}$$
$$\overline{\varepsilon_{i}} = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} \varepsilon_{i}(r) dV = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} (A r^{2} + B r + C) 4f r^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{5}}{5} + B \frac{r^{4}}{4} + C \frac{r^{3}}{3} \right]_{r_{f,1}}^{r_{i,1}}$$

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} E_{i}(r) dV = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} \left(Ar^{2} + Br + C\right) 4f r^{2} dr = \frac{1}{V} 4f \left[A\frac{r^{5}}{5} + B\frac{r^{4}}{4} + C\frac{r^{3}}{3}\right]_{r_{m,1}}^{r_{i,2}}$$
$$\overline{\varepsilon_{i}} = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} \varepsilon_{i}(r) dV = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} \left(A r^{2} + B r + C\right) 4f r^{2} dr = \frac{1}{V} 4f \left[A \frac{r^{5}}{5} + B \frac{r^{4}}{4} + C \frac{r^{3}}{3}\right]_{r_{m,1}}^{r_{i,2}}$$

μ:

μ

•

•

•

• 
$$\mu \qquad \mu :$$

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} E_{i}(r) dV = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} (Ar^{2} + Br + C) 4fr^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{5}}{5} + B \frac{r^{4}}{4} + C \frac{r^{3}}{3} \right]_{r_{f,2}}^{r_{i,3}}$$

$$\overline{\varepsilon_{i}} = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} \varepsilon_{i}(r) dV = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} (Ar^{2} + Br + C) 4fr^{2} dr = \frac{1}{V} 4f \left[ A \frac{r^{5}}{5} + B \frac{r^{4}}{4} + C \frac{r^{3}}{3} \right]_{r_{f,2}}^{r_{i,3}}$$

$$\begin{array}{l}
\overline{E_{i}} = \frac{4f}{V} \left[ \frac{A}{5} \left( r_{z,1}^{5} - r_{f,1}^{5} \right) + \frac{B}{4} \left( r_{z,1}^{4} - r_{f,1}^{4} \right) + \frac{C}{3} \left( r_{z,1}^{3} - r_{f,1}^{3} \right) \right] \\
\overline{\varepsilon_{i}} = \frac{4f}{V} \left[ \frac{A}{5} \left( r_{z,1}^{5} - r_{f,1}^{5} \right) + \frac{B}{4} \left( r_{z,1}^{4} - r_{f,1}^{4} \right) + \frac{C}{3} \left( r_{z,1}^{3} - r_{f,1}^{3} \right) \right]
\end{array}$$

:

μ

:

$$\overline{E_{i}} = \frac{4f}{V} \left[ \frac{A}{5} \left( r_{2,2}^{5} - r_{m,1}^{5} \right) + \frac{B}{4} \left( r_{2,2}^{4} - r_{m,1}^{4} \right) + \frac{C}{3} \left( r_{2,2}^{3} - r_{m,1}^{3} \right) \right]$$
  
$$\overline{\epsilon_{i}} = \frac{4f}{V} \left[ \frac{A}{5} \left( r_{2,2}^{5} - r_{m,1}^{5} \right) + \frac{B}{4} \left( r_{2,2}^{4} - r_{m,1}^{4} \right) + \frac{C}{3} \left( r_{2,2}^{3} - r_{m,1}^{3} \right) \right]$$

$$\mu :$$

$$\overline{E_{i}} = \frac{4f}{V} \left[ \frac{A}{5} \left( r_{2,3}^{5} - r_{f,2}^{5} \right) + \frac{B}{4} \left( r_{2,3}^{4} - r_{f,2}^{4} \right) + \frac{C}{3} \left( r_{2,3}^{3} - r_{f,2}^{3} \right) \right]$$

$$\overline{\epsilon_{i}} = \frac{4f}{V} \left[ \frac{A}{5} \left( r_{2,3}^{5} - r_{f,2}^{5} \right) + \frac{B}{4} \left( r_{2,3}^{4} - r_{f,2}^{4} \right) + \frac{C}{3} \left( r_{2,3}^{3} - r_{f,2}^{3} \right) \right]$$



•

| r (um)  |        |        | 1 µ    | I      | (GPa)   |
|---------|--------|--------|--------|--------|---------|
| r (µm)  | = 0,2  | = 0,4  | = 0,6  | = 0,8  | = 1     |
| 75      | 42     | 84     | 126    | 168    | 210     |
| 75,188  | 34,671 | 68,67  | 102,67 | 136,67 | 170,665 |
| 75,376  | 28,116 | 54,958 | 81,799 | 108,64 | 135,483 |
| 75,564  | 22,334 | 42,864 | 63,394 | 83,924 | 104,454 |
| 75,752  | 17,327 | 32,389 | 47,452 | 62,515 | 77,5777 |
| 75,94   | 13,093 | 23,533 | 33,974 | 44,414 | 54,8544 |
| 76,128  | 9,6328 | 16,296 | 22,958 | 29,621 | 36,284  |
| 76,316  | 6,9465 | 10,677 | 14,407 | 18,137 | 21,8666 |
| 76,504  | 5,034  | 6,676  | 8,318  | 9,96   | 11,602  |
| 76,692  | 3,8953 | 4,294  | 4,6928 | 5,0916 | 5,49039 |
| 76,8747 | 3,53   | 3,53   | 3,53   | 3,53   | 3,53    |



μμ 6.7

| r (um)  | Poisson v |
|---------|-----------|
| ι (μπ)  | = 1       |
| 75      | 0,29      |
| 75,188  | 0,30334   |
| 75,376  | 0,31526   |
| 75,564  | 0,32578   |
| 75,752  | 0,3349    |
| 75,94   | 0,3426    |
| 76,128  | 0,3489    |
| 76,316  | 0,35378   |
| 76,504  | 0,35726   |
| 76,692  | 0,35934   |
| 76.8747 | 0.36      |

6.15



μμ 6.8

μ μ:

| r (um)  | 2 µ (GPa) |        |        |        |        |
|---------|-----------|--------|--------|--------|--------|
| r (µm)  | = 0,2     | = 0,4  | = 0,6  | = 0,8  | = 1    |
| 288,94  | 3,53      | 3,53   | 3,53   | 3,53   | 3,53   |
| 288,953 | 3,9207    | 4,3472 | 4,7738 | 5,2003 | 5,6268 |
| 288,966 | 5,0927    | 6,7989 | 8,505  | 10,211 | 11,917 |
| 288,979 | 7,0462    | 10,885 | 14,724 | 18,563 | 22,402 |
| 288,992 | 9,781     | 16,606 | 23,43  | 30,255 | 37,079 |
| 289,005 | 13,297    | 23,961 | 34,624 | 45,287 | 55,951 |
| 289,018 | 17,595    | 32,95  | 48,305 | 63,661 | 79,016 |
| 289,031 | 22,674    | 43,574 | 64,474 | 85,375 | 106,27 |
| 289,044 | 28,534    | 55,832 | 83,131 | 110,43 | 137,73 |
| 289,057 | 35,176    | 69,725 | 104,27 | 138,82 | 173,37 |
| 289,069 | 42        | 84     | 126    | 168    | 210    |



μμ 6.9

| r (um)  | Poisson v |
|---------|-----------|
| ι (μπ)  | = 1       |
| 288,94  | 0,36      |
| 288,953 | 0,3593    |
| 288,966 | 0,3572    |
| 288,979 | 0,3536    |
| 288,992 | 0,3486    |
| 289,005 | 0,3422    |
| 289,018 | 0,3344    |
| 289,031 | 0,3252    |
| 289,044 | 0,3145    |
| 289,057 | 0,3024    |
| 289.069 | 0.29      |

6.17



μμ 6.10

• µ µ:

| r (um)  |          |          | 3 µ      | l        | (GPa)    |
|---------|----------|----------|----------|----------|----------|
| ι (μπ)  | = 0,2    | = 0,4    | = 0,6    | = 0,8    | = 1      |
| 301,831 | 42       | 84       | 126      | 168      | 210      |
| 301,843 | 34,45238 | 68,21219 | 101,972  | 135,7318 | 169,4916 |
| 301,855 | 27,72813 | 54,14668 | 80,56523 | 106,9838 | 133,4023 |
| 301,867 | 21,82727 | 41,80348 | 61,7797  | 81,75592 | 101,7321 |
| 301,879 | 16,74977 | 31,18259 | 45,61541 | 60,04823 | 74,48105 |
| 301,891 | 12,49566 | 22,28401 | 32,07235 | 41,8607  | 51,64905 |
| 301,903 | 9,064923 | 15,10773 | 21,15053 | 27,19334 | 33,23615 |
| 301,915 | 6,457562 | 9,653757 | 12,84995 | 16,04615 | 19,24234 |
| 301,927 | 4,673579 | 5,922093 | 7,170606 | 8,41912  | 9,667633 |
| 301,939 | 3,712973 | 3,912735 | 4,112497 | 4,312259 | 4,512021 |
| 301,947 | 3,53     | 3,53     | 3,53     | 3,53     | 3,53     |



μμ 6.11

| r (um)  | Poisson v |
|---------|-----------|
| ι (μπ)  | = 1       |
| 301,831 | 0,29      |
| 301,843 | 0,303734  |
| 301,855 | 0,315969  |
| 301,867 | 0,326706  |
| 301,879 | 0,335945  |
| 301,891 | 0,343686  |
| 301,903 | 0,349929  |
| 301,915 | 0,354673  |
| 301,927 | 0,357919  |
| 301,939 | 0,359667  |
| 301.947 | 0.36      |

6.19



μμ 6.12

,

## 6.2.3

 $\mu \quad \mu \quad \mu \quad \mu \quad E_{i}(r) \quad v_{i}(r) \quad \mu$ :  $E_{i}(r) = A + \frac{B}{r} \quad v_{i}(r) = A + \frac{B}{r}$   $\mu \quad , , , ,$   $3 \quad \mu \quad :$ 

•  $\mu$   $\mu$ :  $A = yE_f - \frac{r_{i,1}}{r_{i,1} - r_{f,1}} (yE_f - E_m)$ ,  $A = \langle \epsilon_f - \frac{r_{i,1}}{r_{i,1} - r_{f,1}} (\langle \epsilon_f - \epsilon_m \rangle)$ 

$$B = \frac{r_{i,1}r_{f,1}}{r_{i,1} - r_{f,1}} \left( y E_f - E_m \right) \quad , \quad B = \frac{r_{i,1}r_{f,1}}{r_{i,1} - r_{f,1}} \left( \langle \epsilon_f - \epsilon_m \right) \right)$$

μ:

μ

μ

μ

μ

μ

$$A = y E_{f} - \frac{r_{m,1}}{r_{m,1} - r_{i,2}} (y E_{f} - E_{m}) , \quad A = \langle \mathfrak{E}_{f} - \frac{r_{m,1}}{r_{m,1} - r_{i,2}} (\langle \mathfrak{E}_{f} - \mathfrak{E}_{m}) \rangle$$
$$B = \frac{r_{m,1} r_{i,2}}{r_{m,1} - r_{i,2}} (y E_{f} - E_{m}) , \quad B = \frac{r_{m,1} r_{i,2}}{r_{m,1} - r_{i,2}} (\langle \mathfrak{E}_{f} - \mathfrak{E}_{m}) \rangle$$

$$A = yE_{f} - \frac{r_{i,3}}{r_{i,3} - r_{f,2}} (yE_{f} - E_{m}) , A = \langle \mathbf{e}_{f} - \frac{r_{i,3}}{r_{i,3} - r_{f,2}} (\langle \mathbf{e}_{f} - \mathbf{e}_{m}) \rangle$$
$$B = \frac{r_{i,3}r_{f,2}}{r_{i,3} - r_{f,2}} (yE_{f} - E_{m}) , B = \frac{r_{i,3}r_{f,2}}{r_{i,3} - r_{f,2}} (\langle \mathbf{e}_{f} - \mathbf{e}_{m}) \rangle$$

μ

.

μ

Poisson

•

•

•

•

μ

μ

μ:

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} E_{i}(r) dV = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} \left(A + \frac{B}{r}\right) 4f r^{2} dr = \frac{4f}{V} \int_{r_{f,1}}^{r_{i,1}} \left(Ar^{2} + Br\right) dr$$
$$\overline{\varepsilon_{i}} = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} \varepsilon_{i}(r) dV = \frac{1}{V} \int_{r_{f,1}}^{r_{i,1}} \left(A + \frac{B}{r}\right) 4f r^{2} dr = \frac{4f}{V} \int_{r_{f,1}}^{r_{i,1}} \left(A r^{2} + Br\right) dr$$

μ:

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} E_{i}(r) dV = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} \left(A + \frac{B}{r}\right) 4f r^{2} dr = \frac{4f}{V} \int_{r_{m,1}}^{r_{i,2}} \left(Ar^{2} + Br\right) dr$$
$$\overline{\epsilon_{i}} = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} \epsilon_{i}(r) dV = \frac{1}{V} \int_{r_{m,1}}^{r_{i,2}} \left(A + \frac{B}{r}\right) 4f r^{2} dr = \frac{4f}{V} \int_{r_{m,1}}^{r_{i,2}} \left(A r^{2} + B r\right) dr$$

$$\overline{E_{i}} = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} E_{i}(r) dV = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} \left(A + \frac{B}{r}\right) 4f r^{2} dr = \frac{4f}{V} \int_{r_{f,2}}^{r_{i,3}} \left(Ar^{2} + Br\right) dr$$
$$\overline{\epsilon_{i}} = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} \epsilon_{i}(r) dV = \frac{1}{V} \int_{r_{f,2}}^{r_{i,3}} \left(A + \frac{B}{r}\right) 4f r^{2} dr = \frac{4f}{V} \int_{r_{f,2}}^{r_{i,3}} \left(A r^{2} + B r\right) dr$$

μ:

μ:

μ

•

•

•

•

μ :

$$\overline{E_i} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,1}^3 - r_{f,1}^3 \right) + \frac{B}{2} \left( r_{i,1}^2 - r_{f,1}^2 \right) \right]$$
  
$$\overline{\epsilon_i} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,1}^3 - r_{f,1}^3 \right) + \frac{B}{2} \left( r_{i,1}^2 - r_{f,1}^2 \right) \right]$$

μ

$$\overline{E_i} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{m,1}^3 - r_{i,2}^3 \right) + \frac{B}{2} \left( r_{m,1}^2 - r_{i,2}^2 \right) \right]$$
  
$$\overline{\epsilon_i} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{m,1}^3 - r_{i,2}^3 \right) + \frac{B}{2} \left( r_{m,1}^2 - r_{i,2}^2 \right) \right]$$

:

:

μ

$$\overline{E_i} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,3}^3 - r_{f,2}^3 \right) + \frac{B}{2} \left( r_{i,3}^2 - r_{f,2}^2 \right) \right]$$
  
$$\overline{\epsilon_i} = \frac{4f}{V} \left[ \frac{A}{3} \left( r_{i,3}^3 - r_{f,2}^3 \right) + \frac{B}{2} \left( r_{i,3}^2 - r_{f,2}^2 \right) \right]$$



| • | μ | μ: |
|---|---|----|
|   |   |    |

| r (um)  |        |        | 1 µ    |        | (GPa)   |
|---------|--------|--------|--------|--------|---------|
| r (µm)  | = 0,2  | = 0,4  | = 0,6  | = 0,8  | = 1     |
| 75      | 42     | 84     | 126    | 168    | 210     |
| 75,188  | 38,056 | 75,749 | 113,44 | 151,14 | 188,83  |
| 75,376  | 34,131 | 67,539 | 100,95 | 134,36 | 167,765 |
| 75,564  | 30,225 | 59,37  | 88,515 | 117,66 | 146,805 |
| 75,752  | 26,34  | 51,242 | 76,145 | 101,05 | 125,95  |
| 75,94   | 22,473 | 43,154 | 63,835 | 84,516 | 105,197 |
| 76,128  | 18,625 | 35,106 | 51,586 | 68,067 | 84,5473 |
| 76,316  | 14,797 | 27,097 | 39,398 | 51,698 | 63,999  |
| 76,504  | 10,987 | 19,128 | 27,269 | 35,411 | 43,5518 |
| 76,692  | 7,1959 | 11,198 | 15,2   | 19,203 | 23,2048 |
| 76,8747 | 3,53   | 3,53   | 3,53   | 3,53   | 3,53    |



μμ 6.13

| r (um)   | Poisson v |  |  |  |
|----------|-----------|--|--|--|
| i (piii) | = 1       |  |  |  |
| 75       | 0,29      |  |  |  |
| 75,188   | 0,297177  |  |  |  |
| 75,376   | 0,304319  |  |  |  |
| 75,564   | 0,311425  |  |  |  |
| 75,752   | 0,318496  |  |  |  |
| 75,94    | 0,325532  |  |  |  |
| 76,128   | 0,332533  |  |  |  |
| 76,316   | 0,339499  |  |  |  |
| 76,504   | 0,346431  |  |  |  |
| 76,692   | 0,35333   |  |  |  |
| 76,8747  | 0,36      |  |  |  |

6.21



μμ 6.14

μ

•

μ:

| r (um)  | 2 µ (GPa) |        |        |        |        |  |
|---------|-----------|--------|--------|--------|--------|--|
| r (µm)  | = 0,2     | = 0,4  | = 0,6  | = 0,8  | = 1    |  |
| 288,94  | 3,53      | 3,53   | 3,53   | 3,53   | 3,53   |  |
| 288,953 | 7,4084    | 11,643 | 15,877 | 20,111 | 24,345 |  |
| 288,966 | 11,286    | 19,755 | 28,223 | 36,691 | 45,159 |  |
| 288,979 | 15,164    | 27,866 | 40,567 | 53,269 | 65,971 |  |
| 288,992 | 19,041    | 35,976 | 52,911 | 69,846 | 86,78  |  |
| 289,005 | 22,918    | 44,086 | 65,253 | 86,421 | 107,59 |  |
| 289,018 | 26,795    | 52,195 | 77,595 | 102,99 | 128,39 |  |
| 289,031 | 30,671    | 60,303 | 89,935 | 119,57 | 149,2  |  |
| 289,044 | 34,547    | 68,411 | 102,27 | 136,14 | 170    |  |
| 289,057 | 38,423    | 76,517 | 114,61 | 152,71 | 190,8  |  |
| 289.069 | 42        | 84     | 126    | 168    | 210    |  |



μμ 6.15

| r (um)   | Poisson v |  |  |
|----------|-----------|--|--|
| i (µiii) | = 1       |  |  |
| 288,94   | 0,36      |  |  |
| 288,953  | 0,353     |  |  |
| 288,966  | 0,346     |  |  |
| 288,979  | 0,339     |  |  |
| 288,992  | 0,332     |  |  |
| 289,005  | 0,325     |  |  |
| 289,018  | 0,318     |  |  |
| 289,031  | 0,311     |  |  |
| 289,044  | 0,304     |  |  |
| 289,057  | 0,297     |  |  |
| 289,069  | 0,29      |  |  |

6.23



μμ 6.16

• µ µ:

| r (um)  | 3 µ (GPa) |          |          |          |          |  |
|---------|-----------|----------|----------|----------|----------|--|
| r (µm)  | = 0,2     | = 0,4    | = 0,6    | = 0,8    | = 1      |  |
| 301,831 | 42        | 84       | 126      | 168      | 210      |  |
| 301,843 | 38,01897  | 75,67265 | 113,3263 | 150,98   | 188,6337 |  |
| 301,855 | 34,03826  | 67,34596 | 100,6537 | 133,9614 | 167,269  |  |
| 301,867 | 30,05787  | 59,01993 | 87,982   | 116,9441 | 145,9061 |  |
| 301,879 | 26,07779  | 50,69457 | 75,31134 | 99,92812 | 124,5449 |  |
| 301,891 | 22,09803  | 42,36987 | 62,6417  | 82,91353 | 103,1854 |  |
| 301,903 | 18,11859  | 34,04582 | 49,97306 | 65,90029 | 81,82753 |  |
| 301,915 | 14,13946  | 25,72244 | 37,30543 | 48,88841 | 60,47139 |  |
| 301,927 | 10,16065  | 17,39973 | 24,6388  | 31,87788 | 39,11696 |  |
| 301,939 | 6,182154  | 9,07767  | 11,97319 | 14,8687  | 17,76422 |  |
| 301,947 | 3,53      | 3,53     | 3,53     | 3,53     | 3,53     |  |


μμ 6.17

| r (um)  | Poisson v |
|---------|-----------|
| r (µm)  | = 1       |
| 301,831 | 0,29      |
| 301,843 | 0,297244  |
| 301,855 | 0,304487  |
| 301,867 | 0,31173   |
| 301,879 | 0,318972  |
| 301,891 | 0,326214  |
| 301,903 | 0,333455  |
| 301,915 | 0,340695  |
| 301,927 | 0,347935  |
| 301,939 | 0,355174  |
| 301,947 | 0,36      |

6.25









$$\mu \mu$$
 .  $\mu$  .  $\mu$  .  $\mu$  . = = 1.

• µ

1

μ:

| r (µm)   |         | 1 μ<br>(GPa) | = 1      |
|----------|---------|--------------|----------|
|          | μμ      |              |          |
| 75       | 210     | 210          | 210      |
| 75,188   | 189,294 | 170,665      | 188,8298 |
| 75,376   | 168,589 | 135,483      | 167,7652 |
| 75,564   | 147,883 | 104,454      | 146,8055 |
| 75,752   | 127,177 | 77,5777      | 125,9497 |
| 75,94    | 106,471 | 54,8544      | 105,1973 |
| 76,128   | 85,7658 | 36,284       | 84,54728 |
| 76,316   | 65,0601 | 21,8666      | 63,99905 |
| 76,504   | 44,3544 | 11,602       | 43,55181 |
| 76,692   | 23,6487 | 5,49039      | 23,20481 |
| 76,87467 | 3,53    | 3,53         | 3,53     |

6.26

μ

• µ

2

μ:

| r (µm)  |         | 2 μ<br>(GPa) | = 1     |
|---------|---------|--------------|---------|
|         | μμ      |              |         |
| 288,94  | 3,53    | 3,53         | 3,53    |
| 288,953 | 24,3371 | 5,62683      | 24,3454 |
| 288,966 | 45,1441 | 11,9173      | 45,1589 |
| 288,979 | 65,9512 | 22,4015      | 65,9706 |
| 288,992 | 86,7582 | 37,0794      | 86,7804 |
| 289,005 | 107,565 | 55,9509      | 107,588 |
| 289,018 | 128,372 | 79,0161      | 128,394 |
| 289,031 | 149,179 | 106,275      | 149,199 |
| 289,044 | 169,986 | 137,727      | 170,001 |
| 289,057 | 190,793 | 173,374      | 190,801 |
| 289.069 | 210     | 210          | 210     |

6.27

•

| r (µm)  |           | 3 μ<br>(GPa) | = 1      |
|---------|-----------|--------------|----------|
|         | μμ        |              |          |
| 301,831 | 210       | 210          | 210      |
| 301,843 | 188,64103 | 169,4916     | 188,6337 |
| 301,855 | 167,28207 | 133,4023     | 167,269  |
| 301,867 | 145,9231  | 101,7321     | 145,9061 |
| 301,879 | 124,56414 | 74,48105     | 124,5449 |
| 301,891 | 103,20517 | 51,64905     | 103,1854 |
| 301,903 | 81,846207 | 33,23615     | 81,82753 |
| 301,915 | 60,487241 | 19,24234     | 60,47139 |
| 301,927 | 39,128276 | 9,667633     | 39,11696 |
| 301,939 | 17,76931  | 4,512021     | 17,76422 |
| 301,947 | 3,53      | 3,53         | 3,53     |

6.28



μμ 6.19



μμ 6.20



μμ 6.21

,



• Poisson v 1 μ μ :

| r (um)   | Poisso | on 1 µ  | = 1      |
|----------|--------|---------|----------|
| r (µm)   | μμ     |         |          |
| 75       | 0,29   | 0,29    | 0,29     |
| 75,188   | 0,297  | 0,30334 | 0,297177 |
| 75,376   | 0,304  | 0,31526 | 0,304319 |
| 75,564   | 0,311  | 0,32578 | 0,311425 |
| 75,752   | 0,318  | 0,3349  | 0,318496 |
| 75,94    | 0,325  | 0,3426  | 0,325532 |
| 76,128   | 0,332  | 0,3489  | 0,332533 |
| 76,316   | 0,339  | 0,35378 | 0,339499 |
| 76,504   | 0,346  | 0,35726 | 0,346431 |
| 76,692   | 0,353  | 0,35934 | 0,35333  |
| 76,87467 | 0,36   | 0,36    | 0,36     |

6.29

106

| <ul> <li>Poisson v</li> </ul> | 2 | μ | μ: |
|-------------------------------|---|---|----|
|-------------------------------|---|---|----|

| r (um)  | Poisso | on 2 µ | = 1   |
|---------|--------|--------|-------|
| r (µm)  | μμ     |        |       |
| 288,94  | 0,36   | 0,36   | 0,36  |
| 288,953 | 0,353  | 0,3593 | 0,353 |
| 288,966 | 0,346  | 0,3572 | 0,346 |
| 288,979 | 0,339  | 0,3536 | 0,339 |
| 288,992 | 0,332  | 0,3486 | 0,332 |
| 289,005 | 0,325  | 0,3422 | 0,325 |
| 289,018 | 0,318  | 0,3344 | 0,318 |
| 289,031 | 0,311  | 0,3252 | 0,311 |
| 289,044 | 0,304  | 0,3145 | 0,304 |
| 289,057 | 0,297  | 0,3024 | 0,297 |
| 289,069 | 0,29   | 0,29   | 0,29  |

6.30

Poisson v 3 µ

•

μ:

| r (um)  | Poisso   | on1 μ    | = 1      |
|---------|----------|----------|----------|
| r (µm)  | μμ       |          |          |
| 301,831 | 0,29     | 0,29     | 0,29     |
| 301,843 | 0,297241 | 0,303734 | 0,297244 |
| 301,855 | 0,304483 | 0,315969 | 0,304487 |
| 301,867 | 0,311724 | 0,326706 | 0,31173  |
| 301,879 | 0,318966 | 0,335945 | 0,318972 |
| 301,891 | 0,326207 | 0,343686 | 0,326214 |
| 301,903 | 0,333448 | 0,349929 | 0,333455 |
| 301,915 | 0,34069  | 0,354673 | 0,340695 |
| 301,927 | 0,347931 | 0,357919 | 0,347935 |
| 301,939 | 0,355172 | 0,359667 | 0,355174 |
| 301,947 | 0,36     | 0,36     | 0,36     |

6.31



μμ 6.22



μμ 6.23



μμ 6.24







μ 7.1: μ

$$\Phi = \frac{k_1}{r} + k_2 r^2 \tag{7.1}$$

μ μ μ :

•

,

$$\Phi_1 = \frac{A}{r} + Br^2 \tag{7.2}$$

$$\Phi_2 = \frac{C}{r} + Dr^2 \tag{7.3}$$

$$\Phi_3 = \frac{F}{r} + Hr^2 \tag{7.4}$$

$$\Phi_4 = \frac{K}{r} + Lr^2 \tag{7.5}$$

$$\Phi_5 = \frac{M}{r} + Nr^2 \tag{7.6}$$

$$\Phi_6 = \frac{P}{r} + Qr^2 \tag{7.7}$$

$$\Phi_{7} = \frac{S}{r} + Tr^{2} \tag{7.8}$$

.

$$r = 0,$$
  $\mu$   $\mu$   
 $r = 0$   $= 0.$  (7.2) :

$$\Phi_1 = Br^2 \tag{7.9}$$

μ

$$u = \frac{1}{2G} grad\Phi \tag{7.10}$$

 $u_{\Phi} = u_{\mu} = 0$ 

μ

$$u_{r,1} = \frac{Br}{G_1} = \frac{2Br(1+v_1)}{E_1}$$
(7.11)

:

$$u_{r,2} = \frac{-\frac{C}{r^2} + 2Dr}{2G_2} = \left(-\frac{C}{r^2} + 2Dr\right) \left(\frac{1 + v_2}{E_2}\right)$$
(7.12)

$$u_{r,3} = \frac{-\frac{F}{r^2} + 2Hr}{2G_3} = \left(-\frac{F}{r^2} + 2Hr\right)\left(\frac{1+v_3}{E_3}\right)$$
(7.13)

$$u_{r4} = \frac{-\frac{K}{r^2} + 2Lr}{2G_4} = \left(-\frac{K}{r^2} + 2Lr\right)\left(\frac{1+v_4}{E_4}\right)$$
(7.14)

$$u_{r,5} = \frac{-\frac{M}{r^2} + 2Nr}{2G_5} = \left(-\frac{M}{r^2} + 2Nr\right)\left(\frac{1 + v_5}{E_5}\right)$$
(7.15)

$$u_{r,6} = \frac{-\frac{P}{r^2} + 2Qr}{2G_6} = \left(-\frac{P}{r^2} + 2Qr\right)\left(\frac{1+v_6}{E_6}\right)$$
(7.16)

$$u_{r,7} = \frac{-\frac{S}{r^2} + 2Tr}{2G_7} = \left(-\frac{S}{r^2} + 2Tr\right)\left(\frac{1 + v_7}{E_7}\right)$$
(7.17)

$$V_r = \frac{\partial u_r}{\partial r}$$
(7.18)

:

$$V_{r} = \frac{u_{r}}{r} + \frac{1}{r} \frac{\partial u_{r}}{\partial_{r}} = \frac{u_{r}}{r} + \frac{1}{r} 0 = \frac{u_{r}}{r}$$
(7.19)

$$V_{\{} = \frac{u_r}{r} + \frac{1}{r} \frac{\partial u_{\{}}{\partial \{} = \frac{u_r}{r} + \frac{1}{r} 0 = \frac{u_r}{r}$$
(7.20)

$$G = \frac{E}{2(1+\nu)} \tag{7.21}$$

$$V_{r,1} = V_{r,1} = V_{\{,1\}} = \frac{2B(1+v_1)}{E_1}$$
(7.22)

$$V_{r,2} = \left(\frac{2C}{r^3} + 2D\right) \left(\frac{1 + v_2}{E_2}\right)$$
(7.23)

$$V_{s,2} = V_{\{,2\}} = \left(-\frac{C}{r^3} + 2D\right) \left(\frac{1+v_2}{E_2}\right)$$
(7.24)

$$V_{r,3} = \left(\frac{2F}{r^3} + 2H\right) \left(\frac{1+v_3}{E_3}\right)$$
(7.25)

$$V_{I,3} = V_{\{,3\}} = \left(-\frac{F}{r^3} + 2H\right) \left(\frac{1+v_3}{E_3}\right)$$
 (7.26)

$$V_{r,4} = \left(\frac{2K}{r^3} + 2L\right) \left(\frac{1 + v_4}{E_4}\right)$$
(7.27)

$$V_{*,4} = V_{\{,4} = \left(-\frac{K}{r^3} + 2L\right) \left(\frac{1+v_4}{E_4}\right)$$
(7.28)

$$V_{r,5} = \left(\frac{2M}{r^{3}} + 2N\right) \left(\frac{1 + v_{5}}{E_{5}}\right)$$
(7.29)

$$V_{s,5} = V_{\{,5} = \left(-\frac{M}{r^3} + 2N\right) \left(\frac{1+v_5}{E_5}\right)$$
(7.30)

$$V_{r,6} = \left(\frac{2P}{r^3} + 2Q\right) \left(\frac{1 + v_6}{E_6}\right)$$
(7.31)

$$V_{a,6} = V_{\{,6\}} = \left(-\frac{P}{r^3} + 2Q\right) \left(\frac{1+v_6}{E_6}\right)$$
(7.32)

$$V_{r,7} = \left(\frac{2S}{r^3} + 2T\right) \left(\frac{1 + v_7}{E_7}\right)$$
(7.33)

$$V_{x,7} = V_{\{,7\}} = \left(-\frac{S}{r^3} + 2T\right) \left(\frac{1+v_7}{E_7}\right)$$
(7.34)

- µ

,

[61]:

$$\dagger_{r} = \frac{E}{1+\nu} \vee_{r} + \frac{E\nu}{(1+\nu)(1-2\nu)}$$
(7.35)

$$_{''} = V_{r} + V_{\{} + V_{_{i'}}$$
(7.36)

μ:

$$\begin{aligned} & \dagger_{r,1} = \frac{E_1}{1+v_1} \mathsf{v}_{r,1} + \frac{E_1 v_1}{(1+v_1)(1-2v_1)} \, " = \frac{E_1}{1+v_1} \mathsf{v}_{r,1} + \frac{E_1 v_1}{(1+v_1)(1-2v_1)} (\mathsf{v}_{r,1} + \mathsf{v}_{\{,1} + \mathsf{v}_{\{,1\}}) \\ & = \frac{E_1}{1+v_1} 2B \frac{1+v_1}{E_1} + 3 \frac{E_1 v_1}{(1+v_1)(1-2v_1)} 2B \frac{1+v_1}{E_1} = 2B + \frac{6B v_1}{1-2v_1} \Longrightarrow \dagger_{r,1} = \frac{2B(1+v_1)}{1-2v_1} \end{aligned}$$

$$\dagger_{r,1} = \dagger_{r,1} = \dagger_{\{,1\}} = \frac{2B(1+v_1)}{1-2v_1}$$
(7.37)

$$\begin{aligned} & \dagger_{r,2} = \frac{E_2}{1+v_2} \mathsf{V}_{r,2} + \frac{E_2 v_2}{(1+v_2)(1-2v_2)} (\mathsf{V}_{r,2} + \mathsf{V}_{\{,2} + \mathsf{V}_{r,2}) \Rightarrow \\ & \dagger_{r,2} = \frac{E_2}{1+v_2} \left( \frac{2C}{r^3} + 2D \right) \frac{1+v_2}{E_2} + \frac{E_2 v_2}{(1+v_2)(1-2v_2)} \left[ \left( \frac{2C}{r^3} + 2D \right) \frac{1+v_2}{E_2} + 2 \left( -\frac{C}{r^3} + 2D \right) \frac{1+v_2}{E_2} \right] \Rightarrow \\ & \dagger_{r,2} = \frac{2C}{r^3} + 2D + \frac{v_2}{1-2v_2} \left[ \frac{2C}{r^3} + 2D - \frac{2C}{r^3} + 4D \right] \Rightarrow \\ & \dagger_{r,2} = \frac{2C}{r^3} + 2D + \frac{v_2}{1-2v_2} 6D \Rightarrow \dagger_{r,2} = \frac{2C}{r^3} + 2D \frac{(1+v_2)}{1-2v_2} \end{aligned}$$

$$\dagger_{r,2} = \frac{2C}{r^3} + \frac{2D(1+v_2)}{1-2v_2}$$
(7.38)

$$\begin{aligned} & \dagger_{..2} = \frac{E_2}{1 + v_2} \mathsf{v}_{..2} + \frac{E_2 v_2}{(1 + v_2)(1 - 2v_2)} (\mathsf{v}_{r,2} + 2\mathsf{v}_{..2}) \Rightarrow \\ & \frac{E_2}{1 + v_2} \left( -\frac{C}{r^3} + 2D \right) \frac{1 + v_2}{E_2} + \frac{E_2 v_2}{(1 + v_2)(1 - 2v_2)} \left[ \left( \frac{2C}{r^3} + 2D \right) \frac{1 + v_2}{E_2} + 2 \left( -\frac{C}{r^3} + 2D \right) \frac{1 + v_2}{E_2} \right] \Rightarrow \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D + \frac{v_2}{1 - 2v_2} \left[ 2D + 4D \right] \Rightarrow \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} + \frac{v_2}{1 - 2v_2} 6D \Rightarrow \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} + \frac{v_2}{1 - 2v_2} 6D \Rightarrow \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} + \frac{v_2}{1 - 2v_2} 6D \Rightarrow \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} + \frac{v_2}{1 - 2v_2} 6D \Rightarrow \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} + \frac{v_2}{1 - 2v_2} 6D \Rightarrow \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{..2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} + \frac{v_2}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -\frac{C}{r^3} + 2D \frac{(1 - 2v_2)}{1 - 2v_2} = \\ & \dagger_{.2} = -$$

$$\dagger_{r,2} = -\frac{C}{r^3} + \frac{2D(1+v_2)}{1-2v_2} = \dagger_{\{,2\}}$$
(7.39)

$$\dagger_{r,3} = \frac{2F}{r^3} + \frac{2H(1+v_3)}{1-2v_3}$$
(7.40)

:

$$\dagger_{s,3} = -\frac{F}{r^3} + \frac{2H(1+v_3)}{1-2v_3} = \dagger_{\{3\}}$$
(7.41)

$$\dagger_{r,4} = \frac{2K}{r^3} + \frac{2L(1+v_4)}{1-2v_4}$$
(7.42)

$$\dagger_{x,4} = -\frac{K}{r^3} + \frac{2L(1+v_4)}{1-2v_4} = \dagger_{\{,4\}}$$
(7.43)

$$\dagger_{r,5} = \frac{2M}{r^3} + \frac{2N(1+v_5)}{1-2v_5}$$
(7.44)

$$\dagger_{s,5} = -\frac{M}{r^3} + \frac{2N(1+v_5)}{1-2v_5} = \dagger_{s,5}$$
(7.45)

$$\dagger_{r,6} = \frac{2P}{r^3} + \frac{2Q(1+v_6)}{1-2v_6}$$
(7.46)

$$\dagger_{r,6} = -\frac{P}{r^3} + \frac{2Q(1+v_6)}{1-2v_6} = \dagger_{\{,6\}}$$
(7.47)

$$\dagger_{r,7} = \frac{2S}{r^3} + \frac{2T(1+v_7)}{1-2v_7}$$
(7.48)

$$\dagger_{r,7} = -\frac{S}{r^3} + \frac{2T(1+v_7)}{1-2v_7} = \dagger_{\{,7\}}$$
(7.49)

μ . μ μ :  $r = r_{f.1} = r_1$   $\mu$   $E_i(r) = E_f$  $v_i(r) = f$  $\mu E_i(r) = E_m$  $v_i(r) = m$  $\mathbf{r}=\mathbf{r}_{i.1}=\mathbf{r}_2$  $\mu E_i(r) = E_m$  $v_i(r) = m$  $r = r_{m.1} = r_3$  $v_i(r) = f$  $\mu E_i(r) = E_f$  $\mathbf{r}=\mathbf{r}_{i.2}=\mathbf{r}_4$  $\mu \quad \mathsf{E}_{i}(r) = \quad \mathsf{E}_{f}$  $v_i(r) = f$  $\mathbf{r}=\mathbf{r}_{\mathrm{f.2}}=\mathbf{r}_{5}$  $v_i(r) = m$  $\mu E_i(r) = E_m$  $r=r_{i.3}=r_6$ 



μ μ μ (7.11 - 7.17 7.37 - 7.49):

•  $\mathbf{r} = \mathbf{r}_{f,1} = \mathbf{r}_1$  :  $_{r,1} = _{r,2}$   $\mathbf{u}_{r,1} = \mathbf{u}_{r,2}$ 

$$\frac{2B(1+v_1)}{1-2v_1} = \frac{2C}{r^3} + \frac{2D(1+v_2)}{1-2v_2} \Longrightarrow$$

$$\frac{2B(1+v_f)}{1-2v_f} = \frac{2C}{r_1^3} + \frac{2D(1+v_f)}{1-2v_f}$$
(7.50)

 $G = \frac{E}{2(1+v)},$ 

$$\frac{2Br(1+v_1)}{E_1} = \left(-\frac{C}{r^2} + 2Dr\right) \frac{(1+v_2)}{E_2} \Longrightarrow$$

$$\frac{2Br_1(1+v_f)}{E_f} = \left(-\frac{C}{r^2} + 2Dr_1\right) \left(\frac{1+v_f}{E_f}\right)$$
(7.51)

•  $r = r_{i,1} = r_2$  :  $r_{,2} = r_{,3}$   $u_{r,2} = u_{r,3}$ 

$$\frac{2C}{r^{3}} + \frac{2D(1+v_{2})}{1-2v_{2}} = \frac{2F}{r^{3}} + \frac{2H(1+v_{3})}{1-2v_{3}} \Longrightarrow$$

$$\frac{2C}{r_{2}^{3}} + \frac{2D(1+v_{m})}{1-2v_{m}} = \frac{2F}{r_{2}^{3}} + \frac{2H(1+v_{m})}{1-2v_{m}}$$
(7.52)

$$\left(-\frac{C}{r^{2}}+2Dr\right)\left(\frac{1+v_{2}}{E_{2}}\right) = \left(-\frac{F}{r^{2}}+2Hr\right)\left(\frac{1+v_{3}}{E_{3}}\right) \Rightarrow$$

$$\left(-\frac{C}{r_{2}^{2}}+2Dr_{2}\right)\left(\frac{1+v_{m}}{E_{m}}\right) = \left(-\frac{F}{r_{2}^{2}}+2Hr_{2}\right)\left(\frac{1+v_{m}}{E_{m}}\right)$$
(7.53)

$$\mathbf{r} = \mathbf{r}_{m,1} = \mathbf{r}_3$$
 :  $_{r,3} = _{r,4}$   $\mathbf{u}_{r,3} = \mathbf{u}_{r,4}$ 

•

•

$$\frac{2F}{r^{3}} + \frac{2H(1+v_{3})}{1-2v_{3}} = \frac{2K}{r^{3}} + \frac{2L(1+v_{4})}{1-2v_{4}} \Longrightarrow$$

$$\frac{2F}{r_{3}^{3}} + \frac{2H(1+v_{m})}{1-2v_{m}} = \frac{2K}{r_{3}^{3}} + \frac{2L(1+v_{m})}{1-2v_{m}}$$
(7.54)

$$\left(-\frac{F}{r^{2}}+2Hr\right)\left(\frac{1+v_{3}}{E_{3}}\right) = \left(-\frac{K}{r^{2}}+2Lr\right)\left(\frac{1+v_{4}}{E_{4}}\right) \Longrightarrow$$

$$\left(-\frac{F}{r_{3}^{2}}+2Hr_{3}\right)\frac{(1+v_{m})}{E_{m}} = \left(-\frac{K}{r_{3}^{2}}+2Lr_{3}\right)\frac{(1+v_{m})}{E_{m}}$$
(7.55)

$$r = r_{i.2} = r_4$$
 :  $r_{.4} = r_{.5}$   $u_{r,4} = u_{r,5}$ 

$$\frac{2K}{r^{3}} + \frac{2L(1+v_{4})}{1-2v_{4}} = \frac{2M}{r^{3}} + \frac{2N(1+v_{5})}{1-2v_{5}} \Longrightarrow$$

$$\frac{2K}{r_{4}^{3}} + \frac{2L(1+v_{f})}{1-2v_{f}} = \frac{2M}{r_{4}^{3}} + \frac{2N(1+v_{f})}{1-2v_{f}}$$
(7.56)

$$\left(-\frac{K}{r^{2}}+2Lr\right)\left(\frac{1+v_{4}}{E_{4}}\right)=\left(-\frac{M}{r^{2}}+2Nr\right)\left(\frac{1+v_{5}}{E_{5}}\right)\Longrightarrow$$

$$\left(-\frac{K}{r_{4}^{2}}+2Lr_{4}\right)\left(\frac{1+v_{f}}{E_{f}}\right)=\left(-\frac{M}{r_{4}^{2}}+2Nr_{4}\right)\left(\frac{1+v_{f}}{E_{f}}\right)$$
(7.57)

• 
$$r = r_{f.2} = r_5$$
 :  $r_{,5} = r_{,6}$   $u_{r,5} = u_{r,6}$ 

$$\frac{2M}{r^{3}} + \frac{2N(1+v_{5})}{1-2v_{5}} = \frac{2P}{r^{3}} + \frac{2Q(1+v_{6})}{1-2v_{6}} \Longrightarrow$$

$$\frac{2M}{r_{5}^{3}} + \frac{2N(1+v_{f})}{1-2v_{f}} = \frac{2P}{r_{5}^{3}} + \frac{2Q(1+v_{f})}{1-2v_{f}}$$
(7.58)

$$\left(-\frac{M}{r^{2}}+2Nr\right)\left(\frac{1+v_{5}}{E_{5}}\right) = \left(-\frac{P}{r^{2}}+2Qr\right)\left(\frac{1+v_{6}}{E_{6}}\right) \Rightarrow$$

$$\left(-\frac{M}{r_{5}^{2}}+2Nr_{5}\right)\left(\frac{1+v_{f}}{E_{f}}\right) = \left(-\frac{P}{r_{5}^{2}}+2Qr_{5}\right)\left(\frac{1+v_{f}}{E_{f}}\right)$$
(7.59)

• 
$$\mathbf{r} = \mathbf{r}_{i.3} = \mathbf{r}_6$$
 :  $_{r,6} = _{r,7}$   $\mathbf{u}_{r,6} = \mathbf{u}_{r,7}$ 

$$\frac{2P}{r^{3}} + \frac{2Q(1+v_{6})}{1-2v_{6}} = \frac{2S}{r^{3}} + \frac{2S(1+v_{7})}{1-2v_{7}} \Longrightarrow$$

$$\frac{2P}{r_{6}^{3}} + \frac{2Q(1+v_{m})}{1-2v_{m}} = \frac{2S}{r_{6}^{3}} + \frac{2T(1+v_{m})}{1-2v_{m}}$$
(7.60)

$$\left(-\frac{P}{r^{2}}+2Qr\right)\left(\frac{1+v_{6}}{E_{6}}\right) = \left(-\frac{S}{r^{2}}+2Tr\right)\left(\frac{1+v_{7}}{E_{7}}\right) \Longrightarrow$$

$$\left(-\frac{P}{r_{6}^{2}}+2Qr_{6}\right)\left(\frac{1+v_{m}}{E_{m}}\right) = \left(-\frac{S}{r_{6}^{2}}+2Tr_{6}\right)\left(\frac{1+v_{m}}{E_{m}}\right)$$
(7.61)

$$r = r_{m.2} = r_7$$
 :  $r_{,6} = -P$  ,  $P_o$   
 $\mu$  .

$$\frac{2S}{r_7^3} + \frac{2T(1+v_m)}{1-2v_m} = -P_0$$
(7.62)

B, D, H , L, N, Q, T = 
$$\frac{-P_0(1-2v_m)}{2(1+v_m)}$$

(7.63)

$$\dagger_{r,2} = \dagger_{r,2} = \dagger_{\{,2\}} = \frac{2(1+v_{i,1})}{(1-2v_{i,1})} \left( -P_0 \frac{(1-2v_m)}{2(1+v_m)} \right)$$
(7.64)

$$\dagger_{r,3} = \dagger_{s,3} = \dagger_{s,3} = \frac{2(1+v_m)}{(1-2v_m)} \left( -P_0 \frac{(1-2v_m)}{2(1+v_m)} \right) = -P_0$$
(7.65)

$$\dagger_{r,4} = \dagger_{r,4} = \dagger_{r,4} = \frac{2(1+v_{i,2})}{(1-2v_{i,2})} \left( -P_0 \frac{(1-2v_m)}{2(1+v_m)} \right)$$
(7.66)

$$\dagger_{r,5} = \dagger_{r,5} = \dagger_{\{,5\}} = \frac{2(1+v_f)}{(1-2v_f)} \left( -P_0 \frac{(1-2v_m)}{2(1+v_m)} \right)$$
(7.67)

$$\dagger_{r,6} = \dagger_{s,6} = \dagger_{\{,6\}} = \frac{2(1+v_{i,3})}{(1-2v_{i,3})} \left( -P_0 \frac{(1-2v_m)}{2(1+v_m)} \right)$$
(7.68)

$$\dagger_{r,7} = \dagger_{r,7} = \dagger_{r,7} = \frac{2(1+v_m)}{(1-2v_m)} \left( -P_0 \frac{(1-2v_m)}{2(1+v_m)} \right) = -P_0$$
(7.69)

μ

μ:

$$V_{r,1} = V_{r,1} = V_{r,1} = -P_0 \frac{(1 - 2v_m)}{(1 + v_m)} \frac{(1 + v_f)}{E_f}$$
(7.70)

$$V_{r,2} = V_{r,2} = V_{r,2} = -P_0 \frac{(1 - 2v_m)(1 + v_{i,1})}{E_{i,1}(1 + v_m)}$$
(7.71)

$$V_{r,3} = V_{s,3} = V_{s,3} = -P_0 \frac{(1 - 2v_m)}{E_m}$$
(7.72)

$$V_{r,4} = V_{r,4} = V_{r,4} = -P_0 \frac{(1 - 2v_m)(1 + v_{r,2})}{E_{r,2}(1 + v_m)}$$
(7.73)

$$V_{r,5} = V_{r,5} = V_{r,5} = -P_0 \frac{(1 - 2v_m)}{(1 + v_m)} \frac{(1 + v_f)}{E_f}$$
(7.74)

$$V_{r,6} = V_{s,6} = V_{s,6} = -P_0 \frac{(1 - 2v_m)(1 + v_{i,3})}{E_{i,3}(1 + v_m)}$$
(7.75)

$$V_{r,7} = V_{r,7} = V_{r,7} = -P_0 \frac{(1 - 2v_m)}{E_m}$$
(7.76)

μ μ μ c , μ μ μ , μ μ μ , μ μ:

$$\int_{0}^{r_{1}} 3 \frac{P_{0}^{2}}{K_{c}} \frac{(1-2v_{c})}{E_{c}} r^{2} dr = \int_{0}^{r_{1}} (\dagger_{r,1} v_{r,1} + \dagger_{s,1} v_{s,1} + \dagger_{s,1} v_{s,1}) r^{2} dr + \int_{r_{1}}^{r_{2}} (\dagger_{r,2} v_{r,2} + \dagger_{s,2} v_{s,2} + \dagger_{s,2} v_{s,2}) r^{2} dr + \int_{r_{2}}^{r_{3}} (\dagger_{r,3} v_{r,3} + \dagger_{s,3} v_{s,3} + \dagger_{s,3} v_{s,3}) r^{2} dr + \int_{r_{3}}^{r_{4}} (\dagger_{r,4} v_{r,4} + \dagger_{s,4} v_{s,4} + \dagger_{s,4} v_{s,4}) r^{2} dr + \int_{r_{4}}^{r_{5}} (\dagger_{r,5} v_{r,5} + \dagger_{s,5} v_{s,5} + \dagger_{s,5} v_{s,5}) r^{2} dr + \int_{r_{5}}^{r_{6}} (\dagger_{r,6} v_{r,6} + \dagger_{s,6} v_{s,6} + \dagger_{s,6} v_{s,6}) r^{2} dr + \int_{r_{6}}^{r_{7}} (\dagger_{r,7} v_{r,7} + \dagger_{s,7} v_{s,7} + \dagger_{s,7} v_{s,7}) r^{2} dr$$

:

$$\int_{0}^{r_{1}} \frac{3P_{0}^{2}(1-2v_{c})}{E_{c}} r^{2} dr = \frac{3P_{0}^{2}(1-2v_{c})}{E_{c}} \int_{0}^{r_{1}} r^{2} dr = \frac{3P_{0}^{2}(1-2v_{c})}{E_{c}} \frac{r_{1}^{3}}{3} = \frac{P_{0}^{2}(1-2v_{c})r_{1}^{3}}{E_{c}}$$

$$\int_{0}^{n} (\dagger_{r,1} \mathsf{v}_{r,1} + \dagger_{r,1} \mathsf{v}_{r,1} + \dagger_{r,1} \mathsf{v}_{r,1}) r^{2} dr = 3 \int_{0}^{n} (-P_{0}) \frac{2(1+v_{f})}{(1-2v_{f})} \frac{(1-2v_{m})}{2(1+v_{m})} \left[ \frac{1-2v_{m}}{(1+v_{m})} \frac{1+v_{f}}{E_{f}} (-P_{0}) \right] r^{2} dr = \frac{P_{0}^{2} (1+v_{f})^{2} (1-2v_{m})^{2} r_{1}^{3}}{(1-2v_{f})(1+v_{m})^{2} E_{f}}$$

$$\int_{r_{1}}^{r_{2}} (\dagger_{r,2} \mathsf{v}_{r,2} + \dagger_{*,2} \mathsf{v}_{*,2} + \dagger_{\{,2} \mathsf{v}_{\{,2\}}) r^{2} dr = 3 \int_{r_{1}}^{r_{2}} \frac{2(1+v_{i,1})}{(1-2v_{i,1})} \left[ -P_{0} \frac{1-2v_{m}}{2(1+v_{m})} \right] \left[ -P_{0} \frac{(1+v_{i,1})(1-2v_{m})}{E_{i,1}(1+v_{m})} \right] r^{2} dr$$

$$= 3P_{0}^{2} \frac{(1-2v_{m})^{2}}{(1+v_{m})^{2}} \int_{r_{1}}^{r_{2}} \frac{(1+v_{i,1})^{2}}{E_{i,1}(1-2v_{i,1})} r^{2} dr$$

$$\int_{r_2}^{r_3} (\dagger_{r,3} \mathsf{V}_{r,3} + \dagger_{*,3} \mathsf{V}_{*,3} + \dagger_{\{,3} \mathsf{V}_{\{,3\}}) r^2 dr = 3 \int_{r_2}^{r_3} P_o^2 \frac{(1 - 2v_m)}{E_m} r^2 dr$$
$$= P_0^2 \frac{(1 - 2v_m)}{E_m} (r_3^3 - r_2^3)$$

$$\int_{r_{3}}^{r_{4}} (\dagger_{r,4} \mathsf{v}_{r,4} + \dagger_{r,4} \mathsf{v}_{r,4} + \dagger_{r,4} \mathsf{v}_{r,4}) r^{2} dr = 3 \int_{r_{3}}^{r_{4}} \frac{2(1+v_{i,2})}{(1-2v_{i,2})} \left[ -P_{0} \frac{1-2v_{m}}{2(1+v_{m})} \right] \left[ -P_{0} \frac{(1+v_{i,2})(1-2v_{m})}{E_{i,2}(1+v_{m})} \right] r^{2} dr$$

$$= 3P_{0}^{2} \frac{(1-2v_{m})^{2}}{(1+v_{m})^{2}} \int_{r_{3}}^{r_{4}} \frac{(1+v_{i,2})^{2}}{E_{i,2}(1-2v_{i,2})^{2}} r^{2} dr$$

$$\int_{r_4}^{r_5} (\dagger_{r,5} \mathsf{V}_{r,5} + \dagger_{*,5} \mathsf{V}_{*,5} + \dagger_{*,5} \mathsf{V}_{*,5}) r^2 dr = 3 \int_{r_4}^{r_5} (-P_0) \frac{(1 - 2v_m)}{(1 + v_m)} \frac{(1 + v_f)}{E_f} \left[ \frac{(1 - 2v_m)}{2(1 + v_m)} \frac{2(1 + v_f)}{(1 - 2v_f)} (-P_0) \right] r^2 dr = P_0^2 \frac{(1 - 2v_m)^2 (1 + v_f)^2}{(1 + v_m)^2 (1 - 2v_f) E_f} \left( r_5^3 - r_4^3 \right)$$

$$\int_{r_{5}}^{r_{6}} (\dagger_{r,6} \mathsf{v}_{r,6} + \dagger_{*,6} \mathsf{v}_{*,6} + \dagger_{\{,6} \mathsf{v}_{\{,6\}}) r^{2} dr = 3 \int_{r_{5}}^{r_{6}} \frac{2(1+v_{i,3})}{(1-2v_{i,3})} \bigg[ -P_{0} \frac{1-2v_{m}}{2(1+v_{m})} \bigg] \bigg[ -P_{0} \frac{(1+v_{i,3})(1-2v_{m})}{E_{i,3}(1+v_{m})} \bigg] r^{2} dr$$

$$= 3P_{0}^{2} \frac{(1-2v_{m})^{2}}{(1+v_{m})^{2}} \int_{r_{5}}^{r_{6}} \frac{(1+v_{i,3})^{2}}{E_{i,3}(1-2v_{i,3})} r^{2} dr$$

$$\int_{r_6}^{r_7} (\dagger_{r,7} \mathsf{V}_{r,7} + \dagger_{r,7} \mathsf{V}_{r,7} + \dagger_{r,7} \mathsf{V}_{r,7} + \dagger_{r,7} \mathsf{V}_{r,7}) r^2 dr = 3 \int_{r_6}^{r_7} P_o^2 \frac{(1 - 2v_m)}{E_m} r^2 dr = P_o^2 \frac{(1 - 2v_m)}{E_m} (r_7^3 - r_6^3)$$

μ:

$$\frac{P_0^2 (1-2v_c)r_7^3}{E_c} = \frac{P_0^2 (1+v_f)^2 (1-2v_m)^2 r_1^3}{(1-2v_f)(1+v_m)^2 E_f} + 3P_0^2 \frac{(1-2v_m)^2}{(1+v_m)^2} \int_{r_1}^{r_2} \frac{(1+v_{i,1})^2}{E_{i,1}(1-2v_{i,1})} r^2 dr + P_0^2 \frac{(1-2v_m)}{E_m} (r_3^3 - r_2^3) + 3P_0^2 \frac{(1-2v_m)^2}{(1+v_m)^2} \int_{r_3}^{r_4} \frac{(1+v_{i,2})^2}{E_{i,2}(1-2v_{i,2})^2} r^2 dr + P_0^2 \frac{(1-2v_m)^2 (1+v_f)^2}{(1+v_m)^2 (1-2v_f) E_f} (r_5^3 - r_4^3) + 3P_0^2 \frac{(1-2v_m)^2}{(1+v_m)^2} \int_{r_5}^{r_6} \frac{(1+v_{i,3})^2}{E_{i,3}(1-2v_{i,3})} r^2 dr + P_0^2 \frac{(1-2v_m)}{E_m} (r_7^3 - r_6^3)$$

$$(7.78)$$

$$U_{f,1} = U_1 = \frac{\frac{4}{3}f(r_1^3)}{\frac{4}{3}f(r_7^3)} = \frac{r_1^3}{r_7^3}$$

$$U_{i,1} = U_2 = \frac{\frac{4}{3}f(r_2^3 - r_1^3)}{\frac{4}{3}f(r_7^3)} = \frac{r_2^3 - r_1^3}{r_7^3}$$

$$U_{m,1} = U_3 = \frac{\frac{4}{3}f(r_3^3 - r_2^3)}{\frac{4}{3}f(r_7^3)} = \frac{r_3^3 - r_2^3}{r_7^3}$$

$$U_{i,2} = U_4 = \frac{\frac{4}{3}f(r_4^3 - r_3^3)}{\frac{4}{3}f(r_7^3)} = \frac{r_4^3 - r_3^3}{r_7^3}$$

$$U_{f,2} = U_5 = \frac{\frac{4}{3}f(r_5^3 - r_4^3)}{\frac{4}{3}f(r_7^3)} = \frac{r_5^3 - r_4^3}{r_7^3}$$

$$U_{i,3} = U_6 = \frac{\frac{4}{3}f(r_6^3 - r_5^3)}{\frac{4}{3}f(r_7^3)} = \frac{r_6^3 - r_5^3}{r_7^3}$$

$$U_{m,2} = U_7 = \frac{\frac{4}{3}f(r_7^3 - r_6^3)}{\frac{4}{3}f(r_7^3)} = \frac{r_7^3 - r_6^3}{r_7^3}$$

$$U_1 + U_2 + U_3 + U_4 + U_5 + U_6 + U_7 = 1$$

,

$$\mu$$
  $\mu P_0^2 r_7^3 \mu$ :

$$\frac{(1-2v_{c})}{E_{c}} = \frac{(1+v_{f})^{2}(1-2v_{m})^{2}U_{1}}{(1-2v_{f})(1+v_{m})^{2}E_{f}} + 3\frac{(1-2v_{m})^{2}U_{2}}{(1+v_{m})^{2}(r_{2}^{3}-r_{1}^{3})}\int_{r_{1}}^{r_{2}}\frac{(1+v_{i,1})^{2}}{E_{i,1}(1-2v_{i,1})}r^{2}dr + \frac{(1-2v_{m})^{2}U_{4}}{(1+v_{m})^{2}(r_{4}^{3}-r_{3}^{3})}\int_{r_{3}}^{r_{4}}\frac{(1+v_{i,2})^{2}}{E_{i,2}(1-2v_{i,2})^{2}}r^{2}dr + \frac{(1-2v_{m})^{2}(1+v_{f})^{2}}{(1+v_{m})^{2}(1-2v_{f})E_{f}}U_{5} + 3\frac{(1-2v_{m})^{2}U_{6}}{(1+v_{m})^{2}(r_{6}^{3}-r_{5}^{3})}\int_{r_{5}}^{r_{6}}\frac{(1+v_{i,3})^{2}}{E_{i,3}(1-2v_{i,3})}r^{2}dr + \frac{(1-2v_{m})^{2}U_{7}}{E_{m}}U_{7}$$

$$(1-2v_{m})U_{7}$$

$$U_m = U_{m,1} + U_{m,2} = U_3 + U_7 \qquad U_f = U_{f,1} + U_{f,2} = U_1 + U_5$$
  
$$\mu \qquad :$$

$$\frac{(1-2v_{c})}{E_{c}} = \frac{(1+v_{f})^{2}(1-2v_{m})^{2}U_{f}}{(1-2v_{f})(1+v_{m})^{2}E_{f}} + 3\frac{(1-2v_{m})^{2}U_{i,1}}{(1+v_{m})^{2}(r_{2}^{3}-r_{1}^{3})}\int_{r_{1}}^{r_{2}}\frac{(1+v_{i,1})^{2}}{E_{i,1}(1-2v_{i,1})}r^{2}dr$$

$$+\frac{(1-2v_{m})}{E_{m}}U_{m} + 3\frac{(1-2v_{m})^{2}U_{i,2}}{(1+v_{m})^{2}(r_{4}^{3}-r_{3}^{3})}\int_{r_{3}}^{r_{4}}\frac{(1+v_{i,2})^{2}}{E_{i,2}(1-2v_{i,2})^{2}}r^{2}dr$$

$$+3\frac{(1-2v_{m})^{2}U_{i,3}}{(1+v_{m})^{2}(r_{6}^{3}-r_{5}^{3})}\int_{r_{5}}^{r_{6}}\frac{(1+v_{i,3})^{2}}{E_{i,3}(1-2v_{i,3})}r^{2}dr$$
(7.80)

| Poisson | μ |
|---------|---|
| :       |   |

$$v_{c} = v_{1}U_{1} + v_{2}U_{2} + v_{3}U_{3} + v_{4}U_{4} + v_{5}U_{5} + v_{6}U_{6} + v_{7}U_{7} = v_{f,1}U_{f,1} + v_{i,1}U_{i,1} + v_{m,1}U_{m,1} + v_{i,2}U_{i,2} + v_{f,2}U_{f,2} + v_{i,3}U_{i,3} + v_{m,2}U_{m,2}$$
(7.81)

Poisson

$$v_{c} = v_{1}U_{1} + \frac{3}{r_{7}^{3}} \int_{r_{1}}^{r_{2}} v_{2}(r)r^{2}dr + v_{3}U_{3} + \frac{3}{r_{7}^{3}} \int_{r_{3}}^{r_{4}} v_{4}(r)r^{2}dr + v_{5}U_{5}$$

$$+ \frac{3}{r_{7}^{3}} \int_{r_{5}}^{r_{6}} v_{6}(r)r^{2}dr + v_{7}U_{7} =$$

$$v_{f,1}U_{f,1} + \frac{3}{r_{7}^{3}} \int_{r_{1}}^{r_{2}} v_{i,1}(r)r^{2}dr + v_{m,1}U_{m,1} + \frac{3}{r_{7}^{3}} \int_{r_{3}}^{r_{4}} v_{i,2}(r)r^{2}dr + v_{f,2}U_{f,2}$$

$$+ \frac{3}{r_{7}^{3}} \int_{r_{5}}^{r_{6}} v_{i,3}(r)r^{2}dr + v_{m,2}U_{m,2}$$
(7.82)

:

8

.

:

$$μ μ$$
 [62], ,  
:  
 $E^* = E' + iE''$  (8.1)  
 $μ$  μ

, 
$$\mu \mu$$
,  $\mu$ ,  $\mu$ ,  $\mu$ ,  $\mu$   
 $\mu \mu$ ,  $\mu$ ,  $G^*$ ,  $\mu$ , Poisson \*.  
 $G^* = G' + iG''$  (8.2)

$$v^* = v' - iv'' \tag{8.3}$$

$$E^* = 2G^* \left( 1 + v^* \right) \tag{8.4}$$

$$v'_{m} = \frac{E'_{m}G'_{m} + E''_{m}G''_{m} - 2(G'^{2}_{m} + G''^{2}_{m})}{2(G'^{2}_{m} + G''^{2}_{m})}$$
(8.5)

$$v_m'' = \frac{E_m'G_m'' + E_m''G_m'}{2(G_m'^2 + G_m''^2)}$$
(8.6)

$$\in {''_f} = \frac{E'_f - 2G'_f}{2G'_f}$$
(8.7)

μ μ μ μ μ (7.80) μ μ μ , μ Poisson μ : μ μ μ • μ μ

$$\frac{\left(1-2v_{c}^{*}\right)}{E_{c}^{*}} = \frac{\left(1-2v_{m}^{*}\right)}{E_{m}^{*}}U_{m} + \frac{\left(1-2v_{m}^{*}\right)^{2}\left(1+v_{f}^{*}\right)^{2}}{\left(1+v_{m}^{*}\right)^{2}\left(1-2v_{f}^{*}\right)E_{f}^{*}}U_{f} + \frac{3\left(1-2v_{m}^{*}\right)^{2}U_{i,1}}{\left(1+v_{m}^{*}\right)^{2}\left(r_{2}^{3}-r_{1}^{3}\right)\int_{r_{1}}^{r_{2}}\frac{\left(1+v_{i,1}^{*}\right)^{2}}{E_{i,1}^{*}\left(1-2v_{i,1}^{*}\right)}r^{2}dr + \frac{3\left(1-2v_{m}^{*}\right)^{2}U_{i,2}}{\left(1+v_{m}^{*}\right)^{2}\left(r_{4}^{3}-r_{3}^{3}\right)\int_{r_{3}}^{r_{4}}\frac{\left(1+v_{i,2}^{*}\right)^{2}}{E_{i,2}^{*}\left(1-2v_{i,2}^{*}\right)}r^{2}dr + \frac{3\left(1-2v_{m}^{*}\right)^{2}U_{i,2}}{\left(1+v_{m}^{*}\right)^{2}\left(r_{4}^{3}-r_{3}^{3}\right)\int_{r_{3}}^{r_{4}}\frac{\left(1+v_{i,2}^{*}\right)^{2}}{E_{i,2}^{*}\left(1-2v_{i,2}^{*}\right)}r^{2}dr + (8.9)$$

(8.9) µ µ

,

$$\begin{array}{cccc} \mu & \mu & \vdots \\ \bullet & \mu & \vdots \\ \frac{1-2 \underset{c}{\in}_{c}^{*}}{E_{c}^{*}} = \frac{1-2 \left(v_{c}^{\prime}-i v_{c}^{\prime\prime}\right)}{E_{c}^{\prime}+i E_{c}^{\prime\prime\prime}} = \frac{1-2 v_{c}^{\prime}+2 i v_{c}^{\prime\prime\prime}}{E_{c}^{\prime}+i E_{c}^{\prime\prime\prime}} = \frac{\left(1-2 v_{c}^{\prime}\right) E_{c}^{\prime}+2 E_{c}^{\prime\prime\prime} v_{c}^{\prime\prime}}{E_{c}^{\prime2}+E_{c}^{\prime\prime2}} + i \frac{2 E_{c}^{\prime} v_{c}^{\prime\prime}-\left(1-2 v_{c}^{\prime}\right) E_{c}^{\prime\prime}}{E_{c}^{\prime2}+E_{c}^{\prime\prime2}} \end{array}$$

:

$$\begin{split} \frac{1-2\mathfrak{E}_{m}^{*}}{E_{m}^{*}}U_{m} &= \frac{1-2\left(\mathfrak{E}_{m}^{\prime}-\mathfrak{E}_{m}^{\prime\prime}\right)}{E_{m}^{\prime}+iE_{m}^{\prime\prime}}U_{m} = \\ &= \left\{\frac{\left[\left(1-2\mathfrak{E}_{m}^{\prime}\right)E_{m}^{\prime}+2\mathfrak{E}_{m}^{\prime\prime}E_{m}^{\prime\prime}\right]+i\left[2\mathfrak{E}_{m}^{\prime\prime}E_{m}^{\prime}-\left(1-2\mathfrak{E}_{m}^{\prime\prime}\right)E_{m}^{\prime\prime}\right]\right\}U_{m} = \\ &= \frac{C+iD}{E_{m}^{\prime\prime^{2}}+E_{m}^{\prime\prime^{2}}}U_{m} \end{split}$$

: 
$$C = (1 - 2\mathfrak{E}'_m)E'_m + 2\mathfrak{E}''_mE''_m$$
  $D = 2\mathfrak{E}''_mE'_m - (1 - 2\mathfrak{E}'_m)E''_m$ 

•

•

$$\frac{\left(1+\mathfrak{E}_{f}^{*}\right)^{2}}{1-2\mathfrak{E}_{f}^{*}}\left(\frac{1-2\mathfrak{E}_{m}^{*}}{1+\mathfrak{E}_{m}^{*}}\right)^{2}\frac{U_{f}}{E_{f}^{*}} = \frac{\left(1+\mathfrak{E}_{f}^{'}\right)^{2}}{1-2\mathfrak{E}_{f}^{'}}\left(\frac{1-2\left(\mathfrak{E}_{m}^{'}-i\mathfrak{E}_{m}^{''}\right)}{1+\left(\mathfrak{E}_{m}^{'}-i\mathfrak{E}_{m}^{''}\right)}\right)^{2}\frac{U_{f}}{E_{f}^{'}} = \\ = \frac{\left(1+\mathfrak{E}_{f}^{'}\right)^{2}}{1-2\mathfrak{E}_{f}^{'}}\frac{\left(2\mathfrak{E}_{m}^{'}-1\right)^{2}-4\mathfrak{E}_{m}^{''^{2}}-4i\left(2\mathfrak{E}_{m}^{'}-1\right)}{\left(1+\mathfrak{E}_{m}^{'}\right)^{2}+\mathfrak{E}_{m}^{''^{2}}-2i\left(1+\mathfrak{E}_{m}^{'}\right)\mathfrak{E}_{m}^{''}}\frac{U_{f}}{E_{f}^{'}} = \\ = \frac{\left(1+\mathfrak{E}_{f}^{'}\right)^{2}}{1-2\mathfrak{E}_{f}^{'}}\left(A+iB\right)\frac{U_{f}}{E_{f}^{'}}$$

μ

:

$$A = \frac{\left(1 - \mathcal{E}'_{m} - 2\mathcal{E}''_{m}^{2} - 2\mathcal{E}''_{m}^{2}\right)^{2} - 9\mathcal{E}''_{m}^{2}}{\left[\left(1 + \mathcal{E}'_{m}\right)^{2} + \mathcal{E}''_{m}^{2}\right]^{2}} \qquad B = \frac{6\left(1 - \mathcal{E}'_{m} - 2\mathcal{E}''_{m}^{2} - 2\mathcal{E}''_{m}^{2}\right)\mathcal{E}''_{m}}{\left[\left(1 + \mathcal{E}'_{m}\right)^{2} + \mathcal{E}''_{m}^{2}\right]^{2}}$$

:

$$F = \frac{\left[\left(1 + \mathcal{E}'_{i,1}\right)^2 - \mathcal{E}''_{i,1}\right] \left[\left(1 - \mathcal{Z}\mathcal{E}'_{i,1}\right) E'_{i,1} - \mathcal{Z}\mathcal{E}''_{i,1} E''_{i,1}\right] - 2\left(1 + \mathcal{E}'_{i,1}\right) \mathcal{E}''_{i,1} \left[\left(1 - \mathcal{Z}\mathcal{E}'_{i,1}\right) E''_{i,1} + \mathcal{Z}\mathcal{E}''_{i,1} E'_{i,1}\right]}{\left[\left(1 - \mathcal{Z}\mathcal{E}'_{i,1}\right)^2 + 4\mathcal{E}''_{i,1}\right]}$$

$$H = \frac{\left[2\left(1+\epsilon'_{i,1}\right)^{2}\epsilon''_{i,1}\right]\left[\left(1-2\epsilon'_{i,1}\right)E'_{i,1}-2\epsilon'''_{i,1}E''_{i,1}\right]+\left[\left(1-2\epsilon'_{i,1}\right)+2\epsilon'''_{i,1}E'_{i,1}\right]\left[\left(1+\epsilon'_{i,1}\right)^{2}-\epsilon'''_{i,1}\right]\right]}{\left[\left(1-2\epsilon'_{i,1}\right)^{2}+4\epsilon'''_{i,1}\right]}$$

•

:

• 
$$\mu ::$$

$$3\frac{(1-\mathfrak{Z}_{m}^{*})^{2}}{(1+\mathfrak{E}_{m}^{*})^{2}}\frac{U_{i,2}}{r_{4}^{3}-r_{3}^{3}}\int_{r_{3}}^{r_{4}}\frac{(1+\mathfrak{E}_{i,2}^{*})^{2}}{(1-\mathfrak{Z}_{i,2}^{*})E_{i,2}^{*}}r^{2}dr=3\left(\frac{1-2(\mathfrak{E}_{m}^{\prime}-\mathfrak{E}_{m}^{\prime\prime})}{1+(\mathfrak{E}_{m}^{\prime}-\mathfrak{E}_{m}^{\prime\prime})}\right)^{2}\frac{U_{i,2}}{r_{4}^{3}-r_{3}^{3}}\int_{r_{3}}^{r_{4}}\frac{(1+\mathfrak{E}_{i,2}^{\prime}-\mathfrak{E}_{i,2}^{\prime\prime\prime})^{2}}{[1-2(\mathfrak{E}_{i,2}^{\prime}-\mathfrak{E}_{i,2}^{\prime\prime\prime})](E_{i,2}^{\prime}+iE_{i,2}^{\prime\prime\prime})}r^{2}dr=$$

$$=3\frac{U_{i,2}}{r_{4}^{3}-r_{3}^{3}}(A+iB)\int_{r_{3}}^{r_{4}}\frac{K+iL}{E_{i,2}^{\prime}+E_{i,2}^{\prime\prime}}r^{2}dr=$$

$$=3\frac{U_{i,2}}{r_{4}^{3}-r_{3}^{3}}\int_{r_{3}}^{r_{4}}\frac{(AK+BL)-i(AL-BK)}{E_{i,2}^{\prime}+E_{i,2}^{\prime\prime}}r^{2}dr$$

$$K = \frac{\left[\left(1 + \mathcal{E}'_{i,2}\right)^2 - \mathcal{E}''_{i,2}\right] \left[\left(1 - 2\mathcal{E}'_{i,2}\right) E'_{i,2} - 2\mathcal{E}''_{i,2} E''_{i,2}\right] - 2\left(1 + \mathcal{E}'_{i,2}\right) \mathcal{E}''_{i,2} \left[\left(1 - 2\mathcal{E}'_{i,2}\right) E''_{i,2} + 2\mathcal{E}''_{i,2} E'_{i,2}\right]}{\left[\left(1 - 2\mathcal{E}'_{i,2}\right)^2 + 4\mathcal{E}''_{i,2}\right]}$$

$$L = \frac{\left[2\left(1+\epsilon'_{i,2}\right)^{2}\epsilon''_{i,2}\right]\left[\left(1-2\epsilon'_{i,2}\right)E'_{i,2}-2\epsilon''_{i,2}E''_{i,2}\right]+\left[\left(1-2\epsilon'_{i,2}\right)+2\epsilon''_{i,2}E'_{i,2}\right]\left[\left(1+\epsilon'_{i,2}\right)^{2}-\epsilon''_{i,2}\right]\right]}{\left[\left(1-2\epsilon'_{i,2}\right)^{2}+4\epsilon'''_{i,2}\right]}$$

:

μ μ

$$3\frac{(1-\mathfrak{X}_{m}^{*})^{2}}{(1+\mathfrak{E}_{m}^{*})^{2}}\frac{U_{i,3}}{r_{6}^{3}-r_{5}^{3}}\int_{r_{5}}^{r_{6}}\frac{(1+\mathfrak{E}_{i,3}^{*})^{2}}{(1-\mathfrak{X}_{i,3}^{*})E_{i,3}^{*}}r^{2}dr = 3\left(\frac{1-2(\mathfrak{E}_{m}^{'}-\mathfrak{E}_{m}^{''})}{1+(\mathfrak{E}_{m}^{'}-\mathfrak{E}_{m}^{''})}\right)^{2}\frac{U_{i,3}}{r_{6}^{3}-r_{5}^{3}}\int_{r_{5}}^{r_{6}}\frac{(1+\mathfrak{E}_{i,3}^{'}-\mathfrak{E}_{i,3}^{''})^{2}}{[1-2(\mathfrak{E}_{i,3}^{'}-\mathfrak{E}_{i,3}^{''})](E_{i,3}^{'}+iE_{i,3}^{''})}r^{2}dr = =3\frac{U_{i,3}}{r_{6}^{3}-r_{5}^{3}}(A+iB)\int_{r_{5}}^{r_{6}}\frac{M+iN}{E_{i,3}^{'2}}r^{2}dr = =3\frac{U_{i,3}}{r_{6}^{3}-r_{5}^{3}}\int_{r_{5}}^{r_{6}}\frac{(AM+BN)-i(AN-BM)}{E_{i,3}^{'2}+E_{i,3}^{''2}}r^{2}dr$$

$$M = \frac{\left[\left(1 + \mathcal{E}'_{i,3}\right)^2 - \mathcal{E}''_{i,3}\right] \left[\left(1 - \mathcal{E}'_{i,3}\right) E'_{i,3} - \mathcal{E}''_{i,3} E''_{i,3}\right] - 2\left(1 + \mathcal{E}'_{i,3}\right) \mathcal{E}''_{i,3} \left[\left(1 - \mathcal{E}'_{i,3}\right) E''_{i,3} + \mathcal{E}''_{i,3} E'_{i,3}\right]}{\left[\left(1 - \mathcal{E}'_{i,3}\right)^2 + 4 \mathcal{E}''_{i,3}\right]}$$

$$N = \frac{\left[2\left(1 + \mathcal{E}'_{i,3}\right)^2 \mathcal{E}''_{i,3}\right] \left[\left(1 - \mathcal{2}\mathcal{E}'_{i,3}\right) E'_{i,3} - \mathcal{2}\mathcal{E}''_{i,3} E''_{i,3}\right] + \left[\left(1 - \mathcal{2}\mathcal{E}'_{i,3}\right) + \mathcal{2}\mathcal{E}''_{i,3} E'_{i,3}\right] \left[\left(1 + \mathcal{E}'_{i,3}\right)^2 - \mathcal{E}''^2_{i,3}\right]}{\left[\left(1 - \mathcal{2}\mathcal{E}'_{i,3}\right)^2 + \mathcal{4}\mathcal{E}''^2_{i,3}\right]}\right]$$

(8.9) µ

μ

μ

μ:

•

:

(8.9)

:

$$\frac{(1-2v'_{c})E'_{c}+2E''_{c}v''_{c}}{E'_{c}^{2}+E''^{2}_{c}} = \frac{CU_{m}}{E''_{m}^{2}+E'''_{m}^{2}} + \frac{A(1+\xi'_{f})^{2}}{1-2\xi'_{f}}U_{f}$$

$$+3\frac{U_{i,1}}{r_{2}^{3}-r_{1}^{3}}\int_{r_{1}}^{r_{2}}\frac{(AF+BH)}{E'_{i,1}^{2}+E'''_{i,1}}r^{2}dr$$

$$+3\frac{U_{i,2}}{r_{4}^{3}-r_{3}^{3}}\int_{r_{3}}^{r_{4}}\frac{(AK+BL)}{E'_{i,2}^{2}+E'''_{i,2}}r^{2}dr$$

$$+3\frac{U_{i,3}}{r_{6}^{3}-r_{5}^{3}}\int_{r_{5}}^{r_{6}}\frac{(AM+BN)}{E'_{i,3}^{2}+E'''_{i,3}}r^{2}dr$$

$$=T$$
(8.10)

$$\mu \qquad (8.9) :$$

$$\frac{2v_{c}''E_{c}' - (1 - 2v_{c}')E_{c}''}{E_{c}'^{2} + E_{c}''^{2}} = \frac{DU_{m}}{E_{m}'^{2} + E_{m}''^{2}} + \frac{B(1 + \epsilon_{f}')^{2}}{1 - 2\epsilon_{f}'}\frac{U_{f}}{E_{f}'}$$

$$-3\frac{U_{i,1}}{r_{2}^{3} - r_{1}^{3}}\int_{r_{1}}^{r_{2}}\frac{(AH - BF)}{E_{i,1}'^{2} + E_{i,1}''^{2}}r^{2}dr$$

$$-3\frac{U_{i,2}}{r_{4}^{3} - r_{3}^{3}}\int_{r_{3}}^{r_{4}}\frac{(AL - BK)}{E_{i,2}'^{2} + E_{i,2}''^{2}}r^{2}dr$$

$$-3\frac{U_{i,3}}{r_{6}^{3} - r_{5}^{3}}\int_{r_{5}}^{r_{6}}\frac{(AM - BN)}{E_{i,3}'^{2} + E_{i,3}''^{2}}r^{2}dr$$

$$= W$$

$$(8.11)$$

:

$$E'_{c} = \frac{(1 - 2\mathfrak{E}'_{c})T - 2\mathfrak{E}''_{c}W}{T^{2} + W^{2}}$$
(8.12)

(8.10 - 8.11)

$$E_c'' = \frac{(1 - 2\varepsilon_c')W + 2\varepsilon_c''T}{T^2 + W^2}$$
(8.13)

| Poisson | С |  |
|---------|---|--|
|         | μ |  |

μ

•

$$\begin{aligned} & \in_{c}^{\prime} = \notin_{f}^{\prime} U_{f} + \#_{m}^{\prime} U_{m} + \#_{i,1}^{\prime} (r) U_{i,1} + \#_{i,2}^{\prime} (r) U_{i,2} + \#_{i,3}^{\prime} (r) U_{i,3} = \\ & = \#_{f}^{\prime} U_{f} + \#_{m}^{\prime} U_{m} + \frac{3U_{i,1}}{r_{2}^{3} - r_{1}^{3}} \int_{r_{1}}^{r_{2}} \#_{i,1}^{\prime} (r) r^{2} dr + \frac{3U_{i,2}}{r_{4}^{3} - r_{3}^{3}} \int_{r_{3}}^{r_{4}} \#_{i,2}^{\prime} (r) r^{2} dr \\ & + \frac{3U_{i,3}}{r_{6}^{3} - r_{5}^{3}} \int_{r_{5}}^{r_{6}} \#_{i,3}^{\prime} (r) r^{2} dr \end{aligned}$$
(8.14)

$$\begin{aligned} & \in_{c}^{"} = \in_{m}^{"} U_{m} + \in_{i,1}^{"}(r) U_{i,1} + \in_{i,2}^{"}(r) U_{i,2} = \\ & = \in_{m}^{"} U_{m} + \frac{3U_{i,1}}{r_{2}^{3} - r_{1}^{3}} \int_{r_{1}}^{r_{2}} \in_{i,1}^{"}(r) r^{2} dr + \frac{3U_{i,2}}{r_{4}^{3} - r_{3}^{3}} \int_{r_{1}}^{r_{2}} \in_{i,2}^{"}(r) r^{2} dr \\ & + \frac{3U_{i,3}}{r_{6}^{3} - r_{5}^{3}} \int_{r_{5}}^{r_{6}} \in_{i,3}^{"}(r) r^{2} dr \end{aligned}$$
(8.15)

1. μμ μ

μ

ц ц ц :

μ :

$$E_{i,1}^{*} = \frac{E_{f}^{*}(r_{i,1} - r) + E_{m}^{*}(r - r_{f,1})}{r_{i,1} - r_{f,1}}$$
(8.16)

μ

 $E'_{i,1} = \frac{\left(E'_{f}r_{i,1} + E'_{m}r_{f,1}\right) - \left(E'_{f} - E'_{m}\right)r}{r_{i,1} - r_{f,1}}$ (8.17)

$$E_{i,1}'' = \frac{E_m''(r - r_{f,1})}{r_{i,1} - r_{f,1}}$$
(8.18)

μ

Poisson  $\mu$ :

$$\in_{i,1}' = \frac{\left(\in_{f}' r_{i,1} - \in_{m}' r_{f,1}\right) - \left(\in_{f}' - \in_{m}'\right) r}{r_{i,1} - r_{f,1}}$$
(8.19)

$$\in_{i,2}'' = \frac{\in_{m}''(r - r_{f,1})}{r_{i,1} - r_{f,1}}$$
(8.20)

μ

μ

$$E'_{i,2} = \frac{\left(E'_{m}r_{i,2} + E'_{f}r_{m,1}\right) - \left(E'_{m} - E'_{f}\right)r}{r_{i,2} - r_{m,1}}$$
(8.22)

:

$$E_{i,2}'' = \frac{E_m''(r_{i,2} - r)}{r_{i,2} - r_{m,1}}$$
(8.23)

μ μ

:

μ

$$E_{i,3}^{*} = \frac{E_{f}^{*}(r_{i,3} - r) + E_{m}^{*}(r - r_{f,2})}{r_{i,3} - r_{f,2}}$$
(8.26)

:

μ
$$E'_{i,3} = \frac{\left(E'_{f}r_{i,3} + E'_{m}r_{f,2}\right) - \left(E'_{f} - E'_{m}\right)r}{r_{i,3} - r_{f,2}}$$
(8.27)

$$E_{i,3}'' = \frac{E_m''(r - r_{f,2})}{r_{i,3} - r_{f,3}}$$
(8.28)

Poisson µ:

$$\boldsymbol{\epsilon}_{i,3}' = \frac{\left(\boldsymbol{\epsilon}_{f}' r_{i,3} - \boldsymbol{\epsilon}_{m}' r_{f,2}\right) - \left(\boldsymbol{\epsilon}_{f}' - \boldsymbol{\epsilon}_{m}'\right) r}{r_{i,3} - r_{f,2}}$$
(8.29)

$$\in_{i,3}'' = \frac{\in_m''(r - r_{f,2})}{r_{i,3} - r_{f,2}}$$
(8.30)

**2. μ** μμμμμ .

$$E_{i,1}^{*} = \frac{\left(E_{m}^{*}r_{i,1} - E_{f}^{*}r_{f,1}\right)r + \left(E_{f}^{*} - E_{m}^{*}\right)r_{i,1}r_{f,1}}{\left(r_{i,1} - r_{f,1}\right)r}$$
(8.31)

μ

μ :

$$E'_{i,1} = \frac{\left(E'_m r_{i,1} - E'_f r_{f,1}\right)r + \left(E'_f - E'_m\right)r_{i,1}r_{f,1}}{\left(r_{i,1} - r_{f,1}\right)r}$$
(8.32)

$$E_{i,1}'' = \frac{E_m'' r_{i,1} \left( r - r_{f,1} \right)}{\left( r_{i,1} - r_{f,1} \right) r}$$
(8.33)

μ

Poisson  $\mu$ :

$$\boldsymbol{\epsilon}_{i,1}' = \frac{\left(\boldsymbol{\epsilon}_{m}' r_{i,1} - \boldsymbol{\epsilon}_{f}' r_{f,1}\right) r + \left(\boldsymbol{\epsilon}_{f}' - \boldsymbol{\epsilon}_{m}'\right) r_{i,1} r_{f,1}}{\left(r_{i,1} - r_{f,1}\right) r} \tag{8.34}$$

$$\in_{i,1}'' = \frac{\in_{m}'' r_{i,1} \left( r - r_{f,1} \right)}{\left( r_{i,1} - r_{f,1} \right) r}$$
(8.35)

$$E'_{i,2} = \frac{\left(E'_{f}r_{i,2} - E'_{m}r_{m,1}\right)r + \left(E'_{m} - E'_{f}\right)r_{i,2}r_{m,1}}{\left(r_{i,2} - r_{m,1}\right)r}$$
(8.37)

μ :

$$E_{i,2}'' = \frac{E_m'' r_{m,1} (r_{i,2} - r)}{(r_{i,2} - r_{m,1})r}$$
(8.38)

μ

:

Poisson  $\mu$ :

$$\boldsymbol{\epsilon}_{i,2}' = \frac{\left(\boldsymbol{\epsilon}_{f}' r_{i,2} - \boldsymbol{\epsilon}_{m}' r_{m,1}\right) r + \left(\boldsymbol{\epsilon}_{m}' - \boldsymbol{\epsilon}_{f}'\right) r_{i,2} r_{m,1}}{\left(r_{i,2} - r_{m,1}\right) r}$$
(8.39)

$$\in "_{i,2} = \frac{\in "_m r_m (r_{i,2} - r)}{(r_{i,2} - r_{m,1})r}$$
(8.40)

$$E_{i,3}^{*} = \frac{\left(E_{m}^{*}r_{i,3} - E_{f}^{*}r_{f,2}\right)r + \left(E_{f}^{*} - E_{m}^{*}\right)r_{i,3}r_{f,2}}{\left(r_{i,3} - r_{f,2}\right)r}$$
(8.41)

μ μ :

$$E'_{i,3} = \frac{\left(E'_{m}r_{i,3} - E'_{f}r_{f,2}\right)r + \left(E'_{f} - E'_{m}\right)r_{i,3}r_{f,2}}{\left(r_{i,3} - r_{f,2}\right)r}$$
(8.42)

$$E_{i,3}'' = \frac{E_m'' r_{i,3} \left( r - r_{f,2} \right)}{\left( r_{i,3} - r_{f,2} \right) r}$$
(8.43)

Poisson  $\mu$  :

$$\boldsymbol{\epsilon}_{i,3}' = \frac{\left(\boldsymbol{\epsilon}_{m}' r_{i,3} - \boldsymbol{\epsilon}_{f}' r_{f,2}\right) r + \left(\boldsymbol{\epsilon}_{f}' - \boldsymbol{\epsilon}_{m}'\right) r_{i,3} r_{f,2}}{\left(r_{i,3} - r_{f,2}\right) r} \tag{8.44}$$

$$\in_{i,3}'' = \frac{\in_{m}'' r_{i,3} \left( r - r_{f,2} \right)}{\left( r_{i,3} - r_{f,2} \right) r}$$
(8.45)

| 3. | μ                                                                |                                                                                                                             |        |
|----|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------|
|    | μ μ<br>:                                                         | μ                                                                                                                           |        |
|    | $E_{i,1}^* = \frac{\left(E_f^* - E_m^*\right)\left(r\right)}{r}$ | $\frac{(r-2r_{i,1})r+E_{f}^{*}r_{i,1}^{2}+E_{m}^{*}r_{f,1}^{2}-2E_{m}^{*}r_{i,1}r_{f,1}}{\left(r_{i,1}-r_{f,1}\right)^{2}}$ | (8.46) |

μ

μ

μ :

 $E'_{i,1} = \frac{\left(E'_{f} - E'_{m}\right)\left(r - 2r_{i,1}\right)r + E'_{f}r_{i,1}^{2} + E'_{m}r_{f,1}^{2} - 2E'_{m}r_{i,1}r_{f,1}}{\left(r_{i,1} - r_{f,1}\right)^{2}}$ (8.47)

$$E_{i,1}'' = \frac{E_m'' \left[ r_{f,1}^2 - 2r_{i,1}r_{f,1} - r\left(r - 2r_{i,1}\right) \right]}{\left( r_{i,1} - r_{f,1} \right)^2}$$
(8.48)

Poisson µ :

$$\boldsymbol{\epsilon}_{i,1}' = \frac{\left(\boldsymbol{\epsilon}_{f}' - \boldsymbol{\epsilon}_{m}'\right)\left(r - 2r_{i,1}\right)r + \boldsymbol{\epsilon}_{f}' r_{i,1}^{2} + \boldsymbol{\epsilon}_{m}' r_{f,1}^{2} - 2\boldsymbol{\epsilon}_{m}' r_{i,1} r_{f,1}}{\left(r_{i,1} - r_{f,1}\right)^{2}} \tag{8.49}$$

$$\boldsymbol{\in}_{i,1}^{"} = \frac{\boldsymbol{\in}_{m}^{"} \left[ r_{f,1}^{2} - 2r_{i,1}r_{f,1} - r\left(r - 2r_{i,1}\right) \right]}{\left(r_{i,1} - r_{f,1}\right)^{2}}$$
(8.50)

μ :

$$E_{i,2}^{*} = \frac{\left(E_{f}^{*} - E_{m}^{*}\right)\left(r - 2r_{m,1}\right)r + E_{f}^{*}r_{m,1}^{2} + E_{m}^{*}r_{i,2}^{2} - 2E_{m}^{*}r_{i,2}r_{m,1}}{\left(r_{i,2} - r_{m,1}\right)^{2}}$$
(8.51)

 $E'_{i,2} = \frac{\left(E'_{f} - E'_{m}\right)\left(r - 2r_{m,1}\right)r + E'_{f}r_{m,1}^{2} + E'_{m}r_{i,2}^{2} - 2E'_{m}r_{i,2}r_{m,1}}{\left(r_{i,2} - r_{m,1}\right)^{2}}$ (8.52)

$$E_{i,2}'' = \frac{E_m'' \left[ r_{i,2}^2 - 2r_{i,2}r_{m,1} - r\left(r - 2r_{m,1}\right) \right]}{\left( r_{i,2} - r_{m,1} \right)^2}$$
(8.53)

| L |   |   |
|---|---|---|
| h | - | ł |
| L |   |   |

μ

Poisson  $\mu$ :

$$\boldsymbol{\epsilon}_{i,2}' = \frac{\left(\boldsymbol{\epsilon}_{f}' - \boldsymbol{\epsilon}_{m}'\right)\left(r - 2r_{m,1}\right)r + \boldsymbol{\epsilon}_{f}' r_{m,1}^{2} + \boldsymbol{\epsilon}_{m}' r_{i,2}^{2} - 2\boldsymbol{\epsilon}_{m}' r_{i,2} r_{m,1}}{\left(r_{i,2} - r_{m,1}\right)^{2}} \tag{8.54}$$

$$\boldsymbol{\epsilon}_{i,2}^{"} = \frac{\boldsymbol{\epsilon}_{m}^{"} \left[ r_{i,2}^{2} - 2r_{i,2}r_{m,1} - r\left(r - 2r_{m,1}\right) \right]}{\left(r_{i,2} - r_{m,1}\right)^{2}}$$
(8.55)

$$E_{i,3}^{*} = \frac{\left(E_{f}^{*} - E_{m}^{*}\right)\left(r - 2r_{i,3}\right)r + E_{f}^{*}r_{i,3}^{2} + E_{m}^{*}r_{f,2}^{2} - 2E_{m}^{*}r_{i,3}r_{f,2}}{\left(r_{i,3} - r_{f,2}\right)^{2}}$$
(8.56)

μ :

$$E_{i,3}' = \frac{\left(E_{f}' - E_{m}'\right)\left(r - 2r_{i,3}\right)r + E_{f}'r_{i,3}^{2} + E_{m}'r_{f,2}^{2} - 2E_{m}'r_{i,3}r_{f,2}}{\left(r_{i,3} - r_{f,2}\right)^{2}}$$
(8.57)

$$E_{i,3}'' = \frac{E_m'' \left[ r_{f,2}^2 - 2r_{i,3}r_{f,2} - r\left(r - 2r_{i,3}\right) \right]}{\left( r_{i,3} - r_{f,2} \right)^2}$$
(8.58)

| L |  |
|---|--|
| г |  |
|   |  |

Poisson  $\mu$ :

$$\boldsymbol{\epsilon}_{i,3}' = \frac{\left(\boldsymbol{\epsilon}_{f}' - \boldsymbol{\epsilon}_{m}'\right)\left(r - 2r_{i,3}\right)r + \boldsymbol{\epsilon}_{f}' r_{i,3}^{2} + \boldsymbol{\epsilon}_{m}' r_{f,2}^{2} - 2\boldsymbol{\epsilon}_{m}' r_{i,3} r_{f,2}}{\left(r_{i,3} - r_{f,2}\right)^{2}} \tag{8.59}$$

$$\boldsymbol{\in}_{i,3}^{"} = \frac{\boldsymbol{\in}_{m}^{"} \left[ r_{f,2}^{2} - 2r_{i,3}r_{f,2} - r\left(r - 2r_{i,3}\right) \right]}{\left( r_{i,3} - r_{f,2} \right)^{2}} \tag{8.60}$$

|         | μ |   | μ | μ | , | μ |
|---------|---|---|---|---|---|---|
| Poisson | μ | μ | μ |   | : |   |

$$\boldsymbol{\epsilon}_{f}^{*} = \boldsymbol{\epsilon}_{f}^{\prime} = \boldsymbol{\epsilon}_{f}, \ \boldsymbol{\epsilon}_{m}^{*} = \boldsymbol{\epsilon}_{m}^{\prime} = \boldsymbol{\epsilon}_{m}, \ \boldsymbol{\epsilon}_{i}^{*}(r) = \boldsymbol{\epsilon}_{i}^{\prime}(r) = \boldsymbol{\epsilon}_{i}(r), \ \boldsymbol{\epsilon}_{c}^{*} = \boldsymbol{\epsilon}_{c}^{\prime} = \boldsymbol{\epsilon}_{c}$$
(8.61)

(8.9) :

$$\frac{\left(1-2v_{c}\right)}{E_{c}^{*}} = \frac{\left(1-2v_{m}\right)}{E_{m}^{*}}U_{m} + \frac{\left(1-2v_{m}\right)^{2}\left(1+v_{f}\right)^{2}}{\left(1+v_{m}\right)^{2}\left(1-2v_{f}\right)E_{f}^{*}}U_{f} + \frac{3\left(1-2v_{m}\right)^{2}U_{i,1}}{\left(1+v_{m}\right)^{2}\left(r_{2}^{3}-r_{1}^{3}\right)}\int_{r_{1}}^{r_{2}}\frac{\left(1+v_{i,1}\right)^{2}}{E_{i,1}^{*}\left(1-2v_{i,1}\right)}r^{2}dr + \frac{3\left(1-2v_{m}\right)^{2}U_{i,2}}{\left(1+v_{m}\right)^{2}\left(r_{4}^{3}-r_{3}^{3}\right)}\int_{r_{3}}^{r_{4}}\frac{\left(1+v_{i,2}\right)^{2}}{E_{i,2}^{*}\left(1-2v_{i,2}\right)}r^{2}dr + (8.62)$$

$$\frac{3\left(1-2v_{m}\right)^{2}U_{i,3}}{\left(1+v_{m}\right)^{2}\left(r_{6}^{3}-r_{5}^{3}\right)}\int_{r_{5}}^{r_{6}}\frac{\left(1+v_{i,3}\right)^{2}}{E_{i,3}^{*}\left(1-2v_{i,3}\right)}r^{2}dr$$

μ:

$$\frac{\left(1-2v_{c}\right)}{E_{c}^{\prime}+iE_{c}^{\prime\prime}}=\frac{\left(1-2v_{m}\right)}{E_{m}^{\prime}+iE_{m}^{\prime\prime}}U_{m}+\frac{\left(1-2v_{m}\right)^{2}\left(1+v_{f}\right)^{2}}{\left(1+v_{m}\right)^{2}\left(1-2v_{f}\right)E_{f}^{\prime}}U_{f}+\frac{3\left(1-2v_{m}\right)^{2}U_{i,1}}{\left(1+v_{m}\right)^{2}\left(r_{2}^{2}-r_{1}^{3}\right)r_{1}^{2}}\int_{r_{1}^{\prime}}\frac{\left(1+v_{i,1}\right)^{2}}{\left(E_{i,1}^{\prime}+iE_{i,1}^{\prime\prime}\right)\left(1-2v_{i,1}\right)}r^{2}dr+\frac{3\left(1-2v_{m}\right)^{2}U_{i,2}}{\left(1+v_{m}\right)^{2}\left(r_{4}^{3}-r_{3}^{3}\right)r_{3}^{\prime}}\int_{r_{3}^{\prime}}\frac{\left(1+v_{i,2}\right)^{2}}{\left(E_{i,2}^{\prime}+iE_{i,2}^{\prime\prime}\right)\left(1-2v_{i,2}\right)}r^{2}dr$$

$$\frac{3\left(1-2v_{m}\right)^{2}U_{i,3}}{\left(1+v_{m}\right)^{2}\left(r_{6}^{3}-r_{5}^{3}\right)r_{5}}\int_{r_{5}^{\prime}}\frac{\left(1+v_{i,3}\right)^{2}}{\left(E_{i,3}^{\prime}+iE_{i,3}^{\prime\prime}\right)\left(1-2v_{i,3}\right)}r^{2}dr$$

$$(8.63)$$



• µ µ (8.63) :

$$\frac{(1-2v'_{c})E'_{c}}{E'_{c}^{2}+E''^{2}_{c}} = \frac{(1-2\varepsilon_{m})E'_{m}}{E''_{m}^{2}+E'''^{2}}U_{m} + \frac{(1-2\varepsilon_{m})^{2}(1+\varepsilon_{f})^{2}}{(1+\varepsilon_{m})^{2}(1-2\varepsilon_{f})}\frac{U_{f}}{E'_{f}} + 3\frac{U_{i,1}(1-2\varepsilon_{m})^{2}}{(r_{2}^{3}-r_{1}^{3})(1+\varepsilon_{m})^{2}}\int_{r_{1}}^{r_{2}}\frac{(1+\varepsilon_{i,1})^{2}E'_{i,1}}{(1-2\varepsilon_{i,1})(E'_{i,1}^{2}+E'''_{i,1})}r^{2}dr + 3\frac{U_{i,2}(1-2\varepsilon_{m})^{2}}{(r_{4}^{3}-r_{3}^{3})(1+\varepsilon_{m})^{2}}\int_{r_{3}}^{r_{4}}\frac{(1+\varepsilon_{i,2})^{2}E'_{i,2}}{(1-2\varepsilon_{i,2})(E'_{i,2}^{2}+E'''_{i,2})}r^{2}dr + 3\frac{U_{i,3}(1-2\varepsilon_{m})^{2}}{(r_{6}^{3}-r_{5}^{3})(1+\varepsilon_{m})^{2}}\int_{r_{5}}^{r_{6}}\frac{(1+\varepsilon_{i,3})^{2}E'_{i,3}}{(1-2\varepsilon_{i,3})(E''_{i,3}^{2}+E'''_{i,3})}r^{2}dr = Z$$



•

μ

(8.9) :

$$\frac{(1-2v_{c})E_{c}''}{E_{c}'^{2}+E_{c}''^{2}} = \frac{(1-2\varepsilon_{m})E_{m}''}{E_{m}'^{2}+E_{m}''^{2}}U_{m} + 3\frac{U_{i,1}(1-2\varepsilon_{m})^{2}}{(r_{2}^{3}-r_{1}^{3})(1+\varepsilon_{m})^{2}}\int_{r_{1}}^{r_{2}}\frac{(1+\varepsilon_{i,1})^{2}E_{i,1}''}{(1-2\varepsilon_{i,1})(E_{i,1}'^{2}+E_{i,1}''^{2})}r^{2}dr$$

$$+3\frac{U_{i,2}(1-2\varepsilon_{m})^{2}}{(r_{4}^{3}-r_{3}^{3})(1+\varepsilon_{m})^{2}}\int_{r_{3}}^{r_{4}}\frac{(1+\varepsilon_{i,2})^{2}E_{i,2}''}{(1-2\varepsilon_{i,2})(E_{i,2}'^{2}+E_{i,2}''^{2})}r^{2}dr$$

$$+3\frac{U_{i,3}(1-2\varepsilon_{m})^{2}}{(r_{6}^{3}-r_{5}^{3})(1+\varepsilon_{m})^{2}}\int_{r_{5}}^{r_{6}}\frac{(1+\varepsilon_{i,3})^{2}E_{i,3}''}{(1-2\varepsilon_{i,3})(E_{i,3}'^{2}+E_{i,3}'')}r^{2}dr$$

$$=Y$$

$$(8.65)$$

μ

(8.64 - 8.65) µ :

$$E_{c}' = \frac{\left(1 - 2\varepsilon_{c}\right)Z}{Z^{2} + Y^{2}}$$
(8.66)

$$E_{c}'' = \frac{(1-2\varepsilon_{c})Y}{Z^{2}+Y^{2}}$$
(8.67)

| 8.2           |        | μ                  | μ | μ |   |  |
|---------------|--------|--------------------|---|---|---|--|
|               |        |                    | μ | т |   |  |
|               | (8.14) | μ                  |   |   | μ |  |
| Poisson $v_c$ |        | 3                  |   | μ | 1 |  |
| hh h          |        | Poisson <b>v</b> i | 3 | μ |   |  |
| μ             |        |                    |   | : |   |  |

| U <sub>f</sub> | Vc    |
|----------------|-------|
| 0,05           | 0,356 |
| 0,1            | 0,353 |
| 0,15           | 0,349 |
| 0,2            | 0,348 |
| 0,25           | 0,347 |



|        |      | U <sub>f</sub> = | 0.05         | U <sub>f</sub> =         | : 0.1                    | U <sub>f</sub> =         | 0.15         | U <sub>f</sub> = | : 0.2                    | U <sub>f</sub> = | 0.25                     |
|--------|------|------------------|--------------|--------------------------|--------------------------|--------------------------|--------------|------------------|--------------------------|------------------|--------------------------|
|        |      |                  | •            | -                        |                          | -                        | -            | -                |                          | -                | -                        |
| f (Hz) | Logf | E'c<br>(GPa)     | E'。<br>(GPa) | E' <sub>c</sub><br>(GPa) | E' <sub>c</sub><br>(GPa) | E' <sub>c</sub><br>(GPa) | E'。<br>(GPa) | E'c<br>(GPa)     | E' <sub>c</sub><br>(GPa) | E'c<br>(GPa)     | E' <sub>c</sub><br>(GPa) |
| 0,1    | -1   | 3,21             | 3,2          | 3,46                     | 3,4                      | 3,78                     | 3,6          | 4,13             | 4,1                      | 4,56             | -                        |
| 1      | 0    | 3,29             | 3,2          | 3,54                     | 3,4                      | 3,87                     | 3,7          | 4,23             | 4,2                      | 4,67             | -                        |
| 5      | 0,7  | 3,35             | 3,3          | 3,61                     | 3,5                      | 3,95                     | 3,8          | 4,31             | 4,3                      | 4,77             | -                        |
| 10     | 1    | 3,4              | 3,3          | 3,66                     | 3,6                      | 4                        | 3,9          | 4,37             | 4,4                      | 4,83             | -                        |
| 20     | 1,3  | 3,43             | 3,4          | 3,7                      | 3,6                      | 4,04                     | 4            | 4,41             | 4,4                      | 4,88             | -                        |
| 50     | 1,7  | 3,54             | 3,4          | 3,82                     | 3,7                      | 4,17                     | 4,1          | 4,55             | 4,5                      | 5,03             | -                        |
| 100    | 2    | 3,68             | 3,5          | 3,96                     | 3,8                      | 4,32                     | 4,2          | 4,72             | 4,6                      | 5,22             | -                        |

8.2



μ •



|        |      | U <sub>f</sub> =          | 0.05         | U <sub>f</sub> = | 0.1          | U <sub>f</sub> = | 0.15         | U <sub>f</sub> = | : <b>0.2</b>  | U <sub>f</sub> = | 0.25         |
|--------|------|---------------------------|--------------|------------------|--------------|------------------|--------------|------------------|---------------|------------------|--------------|
|        |      | -                         | -            |                  |              | -                |              |                  |               |                  |              |
| f (Hz) | Logf | E'' <sub>c</sub><br>(MPa) | E"。<br>(MPa) | E"。<br>(MPa)     | E"。<br>(MPa) | E"。<br>(MPa)     | E"。<br>(MPa) | Е"。<br>(MPa)     | E''。<br>(MPa) | E"。<br>(MPa)     | Е"。<br>(MPa) |
| 0,1    | -1   | 22,8                      | 21           | 24,37            | 24           | 26,51            | 26           | 28,89            | 28            | 31,91            | -            |
| 1      | 0    | 31,32                     | 30           | 33,47            | 32           | 36,4             | 36           | 39,66            | 38            | 43,8             | -            |
| 5      | 0,7  | 38,16                     | 36           | 40,77            | 38           | 44,34            | 44           | 48,3             | 48            | 53,35            | -            |
| 10     | 1    | 42,55                     | 41           | 45,44            | 44           | 49,41            | 48           | 53,83            | 54            | 59,45            | -            |
| 20     | 1,3  | 48,39                     | 46           | 51,66            | 50           | 56,18            | 55           | 61,2             | 60            | 67,59            | -            |
| 50     | 1,7  | 58,31                     | 55           | 62,21            | 60           | 67,65            | 64           | 73,68            | 72            | 81,36            | -            |
| 100    | 2    | 67,82                     | 63           | 72,3             | 68           | 78,6             | 74           | 85,59            | 80            | 94,51            | -            |



μμ 8.2: μ "c, , μ.



$$\tan u = \frac{E''}{E'} (3.33) \mu \mu \mu \mu$$

$$\mu \mu tan$$

$$\mu U_{f}$$

$$\mu (= 20 °C).$$

f,



μμ 8.3 : tan ' μ .





 $\mu U_{f}, \qquad \mu f = 0.1 - 1 - 10 - 50 \text{ Hz}.$ 



f = 0.1 Hz

| f = 0 1 Hz | U <sub>f</sub> = 0.05 |              | U <sub>f</sub> = 0.1 |              | $U_{\rm f} = 0.15$ |              | U <sub>f</sub> = 0.2 |              | U <sub>f</sub> = 0.25 |              |
|------------|-----------------------|--------------|----------------------|--------------|--------------------|--------------|----------------------|--------------|-----------------------|--------------|
|            |                       | •            | -                    | •            |                    |              |                      |              | -                     | -            |
| (°C)       | E'。<br>(GPa)          | E'。<br>(GPa) | E'c<br>(GPa)         | E'c<br>(GPa) | E'c<br>(GPa)       | E'₀<br>(GPa) | E'c<br>(GPa)         | E'。<br>(GPa) | E'c<br>(GPa)          | E'。<br>(GPa) |
| 20         | 3,19                  | 3,1          | 3,43                 | 3,3          | 3,75               | 3,6          | 4,1                  | 4,1          | 4,53                  | -            |
| 40         | 2,85                  | 2,8          | 3,08                 | 3,1          | 3,36               | 3,3          | 3,67                 | 3,7          | 4,06                  | -            |
| 60         | 2,52                  | 2,6          | 2,72                 | 2,8          | 2,97               | 3            | 3,25                 | 3,3          | 3,59                  | -            |
| 80         | 1,86                  | 1,9          | 2                    | 2,4          | 2,19               | 2,5          | 2,4                  | 2,7          | 2,66                  | -            |
| 100        | 0,55                  | 0,6          | 0,59                 | 0,9          | 0,64               | 1,3          | 0,71                 | 1,4          | 0,78                  | -            |





149

f = 1 Hz

| f – 1 Hz  | $U_{\rm f} = 0.05$ |              | U <sub>f</sub> = 0.1 |              | U <sub>f</sub> = 0.15 |              | U <sub>f</sub> = 0.2 |              | U <sub>f</sub> = 0.25 |              |
|-----------|--------------------|--------------|----------------------|--------------|-----------------------|--------------|----------------------|--------------|-----------------------|--------------|
| 1 = 1 112 |                    |              | -                    |              |                       | -            | -                    |              |                       |              |
| (°C)      | E'c<br>(GPa)       | E'c<br>(GPa) | E'。<br>(GPa)         | E'。<br>(GPa) | E'。<br>(GPa)          | E'。<br>(GPa) | E'c<br>(GPa)         | E'。<br>(GPa) | E'。<br>(GPa)          | E'。<br>(GPa) |
| 20        | 3,3                | 3,1          | 3,55                 | 3,3          | 3,88                  | 3,6          | 4,24                 | 4,1          | 4,68                  | -            |
| 40        | 2,96               | 3            | 3,2                  | 3,2          | 3,49                  | 3,4          | 3,81                 | 3,9          | 4,22                  | -            |
| 60        | 2,52               | 2,7          | 2,72                 | 2,8          | 2,97                  | 3            | 3,25                 | 3,7          | 3,6                   | I            |
| 80        | 1,97               | 2,4          | 2,12                 | 2,6          | 2,32                  | 2,7          | 2,54                 | 2,9          | 2,82                  | I            |
| 100       | 0,65               | 0,8          | 0,71                 | 1            | 0,77                  | 1,2          | 0,85                 | 1,9          | 0,94                  | -            |



μ .

f = 10 Hz

| f – 10 Hz  | $U_{\rm f} = 0.05$ |              | U <sub>f</sub> = 0.1 |              | U <sub>f</sub> = 0.15 |              | U <sub>f</sub> = 0.2 |              | U <sub>f</sub> = 0.25 |              |
|------------|--------------------|--------------|----------------------|--------------|-----------------------|--------------|----------------------|--------------|-----------------------|--------------|
| 1 = 10 112 |                    | -            | -                    |              | -                     | -            | -                    |              |                       |              |
| (°C)       | E'。<br>(GPa)       | E'c<br>(GPa) | E'c<br>(GPa)         | E'。<br>(GPa) | E'c<br>(GPa)          | E'c<br>(GPa) | E'c<br>(GPa)         | E'。<br>(GPa) | E'c<br>(GPa)          | E'c<br>(GPa) |
| 20         | 3,3                | 3,2          | 3,55                 | 3,4          | 3,88                  | 3,8          | 4,24                 | 4,2          | 4,69                  | -            |
| 40         | 3,08               | 3,1          | 3,31                 | 3,3          | 3,62                  | 3,5          | 3,96                 | 4            | 4,38                  | -            |
| 60         | 2,74               | 2,8          | 2,96                 | 2,9          | 3,23                  | 3,2          | 3,53                 | 3,7          | 3,91                  | -            |
| 80         | 2,41               | 2,4          | 2,6                  | 2,6          | 2,84                  | 2,8          | 3,11                 | 3,1          | 3,44                  | -            |
| 100        | 1,52               | 1,8          | 1,65                 | 2            | 1,81                  | 2,4          | 1,98                 | 2,6          | 2,19                  | -            |

8.6



μ

f = 50 Hz

| f = 50 Hz  | $U_{\rm f} = 0.05$ |              | U <sub>f</sub> = 0.1 |              | U <sub>f</sub> = 0.15 |              | U <sub>f</sub> = 0.2 |              | U <sub>f</sub> = 0.25 |              |
|------------|--------------------|--------------|----------------------|--------------|-----------------------|--------------|----------------------|--------------|-----------------------|--------------|
| 1 = 00 112 | •                  | -            | -                    | •            | -                     | •            | -                    | •            | -                     | -            |
| (°C)       | E'。<br>(GPa)       | E'。<br>(GPa) | E'c<br>(GPa)         | E'。<br>(GPa) | E'c<br>(GPa)          | E'。<br>(GPa) | E'c<br>(GPa)         | E'c<br>(GPa) | E'c<br>(GPa)          | E'c<br>(GPa) |
| 20         | 3,52               | 3,4          | 3,79                 | 3,5          | 4,14                  | 3,6          | 4,52                 | 4,1          | 5                     | -            |
| 40         | 3,3                | 3,1          | 3,55                 | 3,3          | 3,88                  | 3,4          | 4,24                 | 3,8          | 4,69                  | -            |
| 60         | 2,85               | 2,8          | 3,08                 | 2,9          | 3,36                  | 3,1          | 3,67                 | 3,5          | 4,06                  | -            |
| 80         | 2,3                | 2,5          | 2,48                 | 2,7          | 2,71                  | 2,8          | 2,97                 | 3,2          | 3,28                  | -            |
| 100        | 1,64               | 2,1          | 1,77                 | 2,2          | 1,94                  | 2,4          | 2,12                 | 2,5          | 2,34                  | -            |

8.7





,

•

μ



f = 0.1 Hz

| f = 0.1 Hz | U <sub>f</sub> = 0.05     |                           | U <sub>f</sub> = 0.1 |              | U <sub>f</sub> = 0.15 |              | U <sub>f</sub> = 0.2 |               | U <sub>f</sub> = 0.25 |              |
|------------|---------------------------|---------------------------|----------------------|--------------|-----------------------|--------------|----------------------|---------------|-----------------------|--------------|
|            | •                         |                           |                      |              |                       |              |                      |               | -                     | •            |
| (°C)       | Е'' <sub>с</sub><br>(MPa) | E'' <sub>c</sub><br>(MPa) | Е"。<br>(MPa)         | E"。<br>(MPa) | E"。<br>(MPa)          | E"。<br>(MPa) | Е"с<br>(MPa)         | Е''。<br>(MPa) | E''。<br>(MPa)         | E"。<br>(MPa) |
| 20         | 20,11                     | 20                        | 21,5                 | 20           | 23,3                  | 20           | 25,5                 | 30            | 28,2                  | I            |
| 40         | 34,03                     | 35                        | 35,9                 | 40           | 39                    | 40           | 42,5                 | 50            | 46,9                  | I            |
| 60         | 66,58                     | 70                        | 71,5                 | 80           | 77,8                  | 90           | 84,9                 | 100           | 93,8                  | -            |
| 80         | 99,19                     | 120                       | 107                  | 140          | 116,5                 | 150          | 127,3                | 160           | 140,7                 | -            |
| 100        | 195,7                     | 220                       | 212                  | 260          | 232,1                 | 280          | 254                  | 300           | 281,2                 | -            |





μ ,

μ.

f = 1 Hz

| f = 1 Hz | U <sub>f</sub> = 0.05     |              | U <sub>f</sub> = 0.1 |              | U <sub>f</sub> = 0.15 |              | U <sub>f</sub> = 0.2 |               | U <sub>f</sub> = 0.25 |              |
|----------|---------------------------|--------------|----------------------|--------------|-----------------------|--------------|----------------------|---------------|-----------------------|--------------|
| 1 = 1112 |                           |              | -                    |              | -                     |              | -                    |               |                       |              |
| (°C)     | Е'' <sub>с</sub><br>(MPa) | E"。<br>(MPa) | Е"。<br>(MPa)         | E"。<br>(MPa) | E"。<br>(MPa)          | E"。<br>(MPa) | Е"。<br>(MPa)         | Е''。<br>(MPa) | Е''。<br>(MPa)         | E"。<br>(MPa) |
| 20       | 11,19                     | 15           | 11,95                | 20           | 13                    | 30           | 14,16                | 40            | 15,64                 | -            |
| 40       | 66,88                     | 70           | 71,61                | 80           | 77,92                 | 90           | 84,95                | 100           | 93,85                 | -            |
| 60       | 133,2                     | 130          | 142,9                | 135          | 155,6                 | 150          | 169,8                | 160           | 187,7                 | -            |
| 80       | 187,6                     | 180          | 201,9                | 200          | 220,2                 | 210          | 240,4                | 220           | 265,8                 | -            |
| 100      | 217,7                     | 260          | 235,7                | 300          | 258                   | 330          | 282,3                | 355           | 312,5                 | -            |





f = 10 Hz

| f = 10 Hz  | $U_{f} = 0.05$           |     | U <sub>f</sub> = 0.1 |              | U <sub>f</sub> = 0.15 |              | U <sub>f</sub> = 0.2 |               | $U_{f} = 0.25$ |              |
|------------|--------------------------|-----|----------------------|--------------|-----------------------|--------------|----------------------|---------------|----------------|--------------|
| 1 = 10 112 |                          |     | -                    |              |                       |              | -                    |               |                | -            |
| (°C)       | E''c E''c<br>(MPa) (MPa) |     | E"。<br>(MPa)         | E"。<br>(MPa) | E"。<br>(MPa)          | E"。<br>(MPa) | Е"。<br>(MPa)         | E''。<br>(MPa) | Е"。<br>(MPa)   | E"。<br>(MPa) |
| 20         | 27,96                    | 30  | 29,88                | 35           | 32,5                  | 40           | 35,41                | 50            | 39,11          | -            |
| 40         | 55,8                     | 60  | 59,71                | 70           | 64,96                 | 75           | 70,8                 | 85            | 78,21          | -            |
| 60         | 100                      | 100 | 107,3                | 115          | 116,8                 | 135          | 127,4                | 145           | 140,8          | -            |
| 80         | 188,4                    | 190 | 202,4                | 210          | 220,4                 | 230          | 240,5                | 250           | 265,8          | -            |
| 100        | 252,6                    | 270 | 272,5                | 285          | 297,5                 | 310          | 325                  | 340           | 359,5          | -            |



f = 50 Hz

| f – 50 Hz  | $U_{\rm f} = 0.05$        |                          | U <sub>f</sub> = 0.1 |              | U <sub>f</sub> = 0.15 |              | U <sub>f</sub> = 0.2 |               | U <sub>f</sub> = 0.25 |              |
|------------|---------------------------|--------------------------|----------------------|--------------|-----------------------|--------------|----------------------|---------------|-----------------------|--------------|
| 1 - 50 112 | -                         |                          | -                    |              | -                     |              | -                    |               | -                     | -            |
| (°C)       | Е'' <sub>с</sub><br>(MPa) | E" <sub>c</sub><br>(MPa) | Е"。<br>(MPa)         | E"。<br>(MPa) | E"。<br>(MPa)          | E"。<br>(MPa) | Е"。<br>(MPa)         | E''。<br>(MPa) | Е"。<br>(MPa)          | E"。<br>(MPa) |
| 20         | 50,45                     | 50                       | 53,83                | 56           | 58,54                 | 60           | 63,76                | 70            | 70,41                 | -            |
| 40         | 50,33                     | 50                       | 53,79                | 56           | 58,5                  | 60           | 63,74                | 70            | 70,4                  | -            |
| 60         | 89,08                     | 85                       | 95,44                | 90           | 103,9                 | 100          | 113,2                | 110           | 125,1                 | -            |
| 80         | 177,1                     | 170                      | 190,4                | 180          | 207,4                 | 195          | 226,3                | 220           | 250,2                 | -            |
| 100        | 230,9                     | 220                      | 249                  | 230          | 271,7                 | 250          | 296,8                | 270           | 328,3                 | -            |



, μ.

(8.8 - 8.9 - 8.10 - 8.11) μμ μ "c , μ μ "c μ μ μ . μ μ , μ μ μ μ , , μ μ μ μ "c μ μ μ μ μ. μ μ μ μ μ . μ μ μ μ μ μ "c μ μ μ μ μ μ μ μ

|   |   |   | μ |   |    | , | μ | μ |   |   |   |   |   |
|---|---|---|---|---|----|---|---|---|---|---|---|---|---|
|   |   | μ |   | μ |    | μ | , | I | μ |   |   |   |   |
|   | μ |   | , |   | μ  |   |   |   | μ | μ |   |   |   |
|   |   |   | μ |   |    |   |   |   | μ |   |   |   |   |
|   | μ |   |   |   | ł  | L |   |   | μ |   |   |   |   |
|   |   |   | μ |   | μ. |   |   |   |   | μ |   | , |   |
|   | μ | , |   |   | μ  | μ |   |   |   |   |   |   | μ |
| μ |   |   |   |   |    |   |   |   |   |   | μ |   |   |
|   |   |   | μ |   | μ  |   |   |   | μ |   |   |   |   |

:

μ μμ μ μμ 3 μ 3.3 μ, (3.6 – 3.21),

3.3, 
$$\mu \ \mu$$
 (3.6 - 3.21)  
.  $\mu$  ,  $\mu$   
 $\mu$  ,  $\mu$  ( $E_j \rightarrow E_j^* = E_j' + iE_j''$ ).

(3.6) Einstein [3,4,5] :

$$E'_{c} = (1+2.5U_{f})E'_{m} \qquad E''_{c} = (1+2.5U_{f})E''_{m}$$
 (8.68 , )

 $\mu$  (3.7) Guth Smallwood [6,7]  $\mu$   $\mu$ 

$$E'_{c} = E'_{m} \left( 1 + 2.5U_{f} + 14.1U_{f}^{2} \right) \qquad E''_{c} = E''_{m} \left( 1 + 2.5U_{f} + 14.1U_{f}^{2} \right) \quad (8.69 , )$$

(3.9) Kerner [8]

$$E'_{c} = \left\{ 1 + \frac{U_{f}}{U_{m}} \left[ \frac{15(1 - v_{m})}{8 - 10v_{m}} \right] \right\} E'_{m}$$
(8.70)

:

$$E_{c}'' = \left\{ 1 + \frac{U_{f}}{U_{m}} \left[ \frac{15(1 - v_{m})}{8 - 10v_{m}} \right] \right\} E_{m}''$$
(8.70)

μ (3.15) Mooney [11] μ μ :

$$E_c' = \left[ \exp\left(\frac{2.5U_f}{1 - SU_f}\right) \right] E_m' \qquad E_c'' = \left[ \exp\left(\frac{2.5U_f}{1 - SU_f}\right) \right] E_m'' \qquad (8.71 , )$$

$$S = \frac{\{rz \in \neg v \in g \ x \mid g \ vx \mid \} v \ t \neg rt, g}{f...rx \neg rtz \mid g \ x \mid g \ vx \mid } v \ t \neg rt, g}$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad S$$

$$1.2 \ \mu \qquad 2.$$

:

$$E'_{c} = T \cdot E'_{m}$$
  $E''_{c} = T \cdot E''_{m}$  (8.72 , )

$$T = \left\{ \left[ 1 + \frac{1}{2} \frac{x^2}{1 - x} \right] \left[ 1 - \frac{x^3 k}{3} \left( \frac{1 + x - x^2}{1 - x + x^2} \right) \right] - \frac{x^2 k}{3(1 - x)} \left( \frac{1 + x - x^2}{1 - x + x^2} \right) \right\}$$
(8.73)

(3.21)

μ

:

S

μ

$$E_{c}' = \frac{E_{f}' \left[ E_{m}' \left( E_{m}' U_{f} + E_{f}' U_{m} \right) + E_{m}''^{2} U_{f} \right]}{\left( E_{m}' U_{f} + E_{f}' U_{m} \right)^{2} + \left( E_{m}'' U_{f} \right)^{2}}$$
(8.74)

$$E_{c}' = \frac{E_{f}' \left[ E_{m}'' \left( E_{m}' U_{f} + E_{f}' U_{m} \right) - E_{m}' E_{m}'' U_{f} \right]}{\left( E_{m}' U_{f} + E_{f}' U_{m} \right)^{2} + \left( E_{m}'' U_{f} \right)^{2}}$$
(8.74)

μ

:

$$\frac{E_c'}{E_c'^2 + E_c''^2} = \frac{\left\{ \left[ (1-k) E_m' + k E_f' \right] \right\}}{\left[ (1-k) E_m' + k E_f' \right]^2 + \left[ (1-k) E_m'' \right]^2} + \frac{(1-\ell) E_m'}{E_m'^2 + E_m''^2} = P \qquad (8.75)$$

Takayanagi [16] µ

$$\frac{E'_{c}}{E'_{c}^{2} + E''_{c}^{2}} = \frac{\left\{\left[\left(1-k\right)E''_{m}\right]\right]}{\left[\left(1-k\right)E'_{m} + kE'_{f}\right]^{2} + \left[\left(1-k\right)E''_{m}\right]^{2}} + \frac{\left(1-\left\{\right)E''_{m}}{E'_{m}^{2} + E''_{m}^{2}} = Q \qquad (8.75)$$

μ μ:

$$E'_{c} = \frac{P}{P^{2} + Q^{2}}$$
  $E''_{c} = \frac{Q}{P^{2} + Q^{2}}$  (8.76 , )





0.1 Hz.





0.1 Hz.

f =



μμ 8.15:



f =



,

(8.12 - 8.13) μ μμ 'c μμ (8.14 - 8.15)μ μ μ "c ( μ , (8.68 - 8.76) μ μ μ μ ), μ μμ μ μ μ μ , μ μ μ μ , μ , с μ μ μ ( "c) μ μ μ μ μ μ μ μ μ μ

163

| н н                    | μμ                  |
|------------------------|---------------------|
| μ μ.                   | μ                   |
| μ μ                    | μ                   |
| h h h                  | μ.                  |
| u                      | u                   |
| u u                    | μ μ                 |
| νοigt μ μ-μ            | Mooney Guth         |
| - Smallwood µ .        | , μ                 |
| Einstein µ             | , μ                 |
| , µµ µ                 | μ                   |
| μ                      | ,                   |
| μ.μ.μ                  | I                   |
| μ μ μ                  | μ μ '               |
| ., μ                   |                     |
| Takayanagi, Kerner Sat | o – Furukawa. µ     |
| , μ                    | μ μ                 |
| μ                      | Sato – Furukawa '   |
| μ                      | $U_{\rm f} = 0.25.$ |
| Takayanagi Kerner µ    | ,                   |
| μ.                     |                     |
| μμ 8.14 8.15           | μ μ ",              |
| μ μ μ                  | μ                   |
| μ μ                    | μμ                  |
| μμ                     | ,                   |
| μ.                     |                     |
|                        |                     |
| μ                      | μ μ<br>,            |
| μ μ<br>,,              | с, µ                |
| C                      | П                   |
|                        | Ч                   |
| ٣                      | M ·                 |

|        |    |   |   |   | μ      |         |         |    | μ |                |
|--------|----|---|---|---|--------|---------|---------|----|---|----------------|
|        | μ  | μ |   | ł | J      |         |         | μ  |   | :              |
| 1.     |    |   |   |   |        |         |         | μ  | μ |                |
| I      | μ  | • |   |   |        |         |         |    |   |                |
| 2.     |    |   | μ | μ |        |         |         | μ  |   |                |
| I      | μ  |   |   |   |        |         | μ       |    |   |                |
|        |    |   |   |   |        | μ       |         | μ  |   | μ              |
|        |    |   |   |   |        |         | μ       |    |   | μ              |
|        |    | μ |   | μ | ,      | μ       |         | μ  |   |                |
|        |    |   |   | μ | ٢      | ı µ     |         |    |   |                |
|        | μ  |   |   |   |        | μ,      |         |    |   |                |
|        |    | μ |   |   |        |         |         |    |   |                |
| - 8.15 | 5) |   | μ |   | μ<br>μ | μ       |         | μ  | μ | μ (8.12        |
| ,      |    |   |   |   |        |         | μ       | μ  |   |                |
|        |    |   |   | μ |        | μ       |         |    | μ |                |
| μ      |    |   |   | μ | μ      |         |         |    |   |                |
|        |    |   |   |   | μμ     | (8.16 - | - 8.17) |    | μ |                |
| μ      |    |   |   |   | ,<br>c | μ       |         | "с |   |                |
|        |    | f |   |   |        | ,       |         |    | μ | $U_{f} = 0.20$ |
|        |    |   |   | I | ιμ     |         |         | μ  | μ |                |
|        |    | μ |   | μ |        |         |         |    |   |                |



= 0.20.



= 0.20.

μμ μ Mooney Guth – Smallwood μ μ Voigt. μ μ μ µ Takayanagi Kerner, μ μ μ μ μ Sato – Furukawa. μ Sato – Furukawa µ μ μμ μ μ, k μ (8.72).

Т μ μ μ μ μ μ μ μ μ μ , μ μ μ , μ μ . μ μ μ μ μ μ μ μ . , μ μ μ Poisson) (μ μ , μ • 'c (μ μ μ μ "<sub>c</sub>). μ μ μ μ μ μ μ μ μ μ , μ • μ μ μ μ μ μ μ • μ μ : μ μ μ • μ μ μ μ μ μ μ

9

,

- E<sub>c</sub>' μ , Ес". μ μ μμ μ μ E<sub>c</sub>' Ес", μ μ μ . , μ μ μ , μ μ μ ,
- μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
   μ
- μ μ , , μ , μ E'<sub>c</sub> μ μ μ E"c μ , μ μ μ .
- μ ,
   μ ( instein, Guth Smallwood, Kerner, Mooney,
   Takayanagi, Sato Furukawa, Voigt) μ μ
   :
  - $E_{c}^{*} U_{f} \mu$   $E_{c}^{*} U_{f} \mu$   $E_{c}^{*} \log f \mu$   $E_{c}^{*} \log f \mu$   $\mu$

- 1. Counto (1964), Mag. Concr. Res 16, p. 129.
- 2. Paul (1960), Trans Amer. Inst. Mech. Eng. 36, p. 218.
- A. Einstein (1905), "Uber die von Molekularkinetischen theorie der. Warme Geforderte Bewegung von in Ruhenden Flüssigkeiten suspendierten Teilchen", Ann Physic, Vol. 17, p. 549.
- A. Einstein (1906), "Eine Neue Bestimmung der Molekuldimensionen", Ann Physic, Vol 19, p. 289.
- 5. A. Einstein (1911), "Berichtigung zu meiner Arbeit Eine neue Bestimmung der Molekuldimensionen", Vol. 34, p. 591.
- 6. Guth (1945), J. Appl. Phys 15, p. 20.
- M. Smallwood (1944), "Limiting Law of the Reinforcement of Rubber", Jnl.Appl. Phys, Vol. 15, pp. 758 – 762.
- E.H. Kerner (1956), "The Elastic and Thermoelastic Properties of Composite Media", Proc. Phys. Soc. 698, pp. 808 – 813.
- Y. Sato and Furukawa (1962), "A Molecular Theory of Filler Reinforcement based upon the conception of the internal Deformation", Rubber Chem. Technol., Vol. 35, pp. 857 – 862.
- K. Takahashi, M. Ikeda, K. Harakawa and K. Tanaka (1978), "Analysis of the Effect of Intefacial Slippage on the Elastic Moduli of a Particle Filled Polymer", Jnl. Pol. Phys. Ed., Vol. 16, pp. 415 421.
- Mooney (1951), "The Viscosity of a Concentrated Suspension of Spherical Particles", Jnl. Colloid Sci. Vol. 6, pp. 162 – 169.
- 12. H. Eilers and Van Dyck (1941), kolloid Z, Vol. 97, pp. 313-318.
- P.S. Theocharis (1984), "The Adhesion Quality and the Extent of the Mesophase in Particulates", Jnl. of Reinforced Plastics and Composites, Vol. 3, pp. 2304 – 2331.
- P.S. Theocharis (1985), "The Mesophase and its influence on the Mechanical Behaviour of Composites", Advances in Polymer Science 66, Springer - Verlag Berlin, pp. 149 – 186.
- P.S. Theocharis and E. Sideridis (1984), "The Elastic Moduli of Particulate – Filled Polymers", Journal of Applied Polymer Science, Vol. 29, pp. 2997-3011.

- 16. Takayanagi, S. Uemura and S. Minami (1964), J. Polym. Sci. C. No
   5, pp 113 122.
- 17. . Hashin and B. W. Rosen (1964), J. Appl. Mech. 31 p. 223.
- 18. R. Hill, J. Mech (1965), Phys. Solids 13 p. 213.
- 19. .Lewis and L. Nielsen (1970), J. Appl. Polym. Sci. 14 p. 1449.
- **20.** F. Bueche (1960), "Molecular Basis for the Mullins Effect", Jnl. Appl. Polym. Sci., Vol. 4, pp. 107-114.
- 21. A. M. Bueche (1957), J. Polym. Sci. 25 p.139.
- 22. . T. Wu, Int. J. Solids Struc. 2 (1966) I.
- 23. T. S. Chow (1978), J. Polym. Phys. 16 p. 959.
- 24. S. Ahmed and F. R. Jones (1988), Composites 19 p. 277.
- **25.** R. . Dickie (1973), J. A . Polym. Sci., 17 p. 454.
- 26. R.M. Christensen (1979), "Mechanics of Composite Materials", Wiley New York.
- 27. J. Spanoudakis and R. J. Young (1984), J. Mater. Sci. 19 p. 487.
- 28. L. E. Nielsen (1966), J. Appl. Polym. Sci. 10 p. 97.
- 29. J. Broutman and R.H. Krock (1967), "Modem Composite Materials" (Addison Weskey), Reading. Mass.
- **30.** L. F. Nielsen (1967), J. Compos. Mater. 1 p. 100.
- **31.** L. Nicolais and M. Narkis (1971), ibid 11 p. 194.
- 32. M. R. Piggott and J. Leidner (1974), J. Appl. Polym. Sci. 18 p. 1619.
- 33. G. Landon, G. Lewis and G. Boden (1977), J. Mater. Sci 12 p. 1605.
- J. Leidner and R. T. Woodhams (1974), J. Appl. Polym. Sci. 18 p. 1639.
- **35.** H. Hojo and W. Toyoshima (1973), 31st ANTEC, SPE Montreal, Canada (Teehnomic, 1973), p. 163.
- **36.** H. Hojo, W. Tanura and N. Kawanura (1974), Polym. Eng. Sci. 14 p. 604.
- 37. .Schrager (1978), Jnl, Appl.Pol. Sci., Vol 32, p 2379.
- 38. Passmore (1989), J. A . Polym. Sci., 17.
- **39.** S.P. Timoshenko and J.N. Goodier (1983), "Theory of Elasticity", Mc Graw-Hill.
- 40. T.L. Smith (1959), Trans. Soc. Rheol., 3, p. 113
- 41. T.L. Smith (1961), Rubber Chem. Tech., 34, p.123.

- 42. Yu.S. Lipatov and T.E Geller (1966), Vysokomol, Soedin, 8, p. 592.
- 43. Yu.S. Lipatov and V.F. Babich (1968), Vysokomol, Soedin, B10, p. 848.
- **44.** Yu.S. Lipatov and F.G. Fabulyak (1972), J. Appl. Polym. Sci., 16, p.2131.
- **45.** Yu.S. Lipatov (1973), Plaste Kautschuk, 10, p. 738.
- Yu.S. Lipatov, V.F. Babich and V.F. Rosovizky (1974), J. Appl. Polym. Sci., 18, p. 1213.
- **47.** Yu.S. Lipatov and L.M. Sergeeva (1974), Adsorption of Polymer, New York.
- **48.** Yu.S. Lipatov, V.F. Babich and V.F. Rosovozky (1976), J. Appl. Polymer Sci., 20, p. 1787.
- **49. G.C. Papanicolaou and P.S. Theocaris(1979)**, Colloid and Polymer Sci., 257, 3, p. 239.
- 50. P.S. Theocaris and G.C. Papanicolaou (1980), Colloid and Polymer Sci., 258, 9, p. 1044.
- 51. R.F. Landel and T.L. Smith (1961), American Rocket Society Jnl., p. 599.
- 52. S. Turner (1965), Appl. Mat. Res., p. 10.
- 53. C.W. Van Der Wal, H.W. Bree and F.R. Schwarzl (1965), J. Appl. Pol. Sci., 9, p. 2143.
- 54. C.A. Kumins and J. Roteman (1963), J. Pol. Sci., 1-A, p. 527.
- 55. G.C. Papanicolaou, S.A. Paipetis and P.S. Theocaris (1977), J. Appl. Pol. Sci., 21, p. 689.
- 56. S. Strella and P.F. Erhardt (1969), J. Appl. Pol. Sci., 13, p. 1373.
- 57. S. Strella (1963), J. Appl. Pol. Sci., 7, p. 569.
- 58. S. Strella (1963), J. Appl. Pol. Sci., 7, p. 1281.

",

**59. μ. (1998)**, " μμ μ

**60.** E. Sideridis, P.S. Theocaris and G.C Papanicolaou (1986), "The elastic modulus of particulate composites using the concept of a mesophase" Rheol Acta 25, pp. 350 – 358.

μ
- **61. Yu.S. Lipatov (1977)**, Physical Chemistry of Filled Polymers, Translated from the Russian by R.J. Moseley, International Polymer Science and Technology Monograph No 2, Originally Published "Khimiya", Moscow.
- **62. . μ (1991)**, μ μ μ , μμ .
- **63.** E. Sideridis (1986), "The Dynamic Moduli of Particulate Filled Polymers as Defined by Concept of Interphase", Composites Science and Technology, Vol. 27, pp. 305 322.
- 64. E. Sideridis, P.S. Theocaris and E. Kontou (1986), "Dynamic Mechanical Properties of Particulates: Application to Iron – Epoxy Composites", Polymer Composites, Feb 1986. Vol, No 1, 1-7.
- 65. G. Spathis, E. Kontou and P.S. Theocaris (1984), "Dynamic Mechanical Properties of an Iron – Epoxy Particulate Composite", Journal of Rheology, 28(2), 161 – 175.