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Iepiinyn

Amd 6tav oyedidotnie 1 Prolog, 0 Aoyikdg TpoypapaTIGHOC £YIVE EVa OO TO EXIKPATEGTEPO. LOVTEAL
TPOYPAUHOTIGHOV. O AOYIKOC TPOYPOUUOTIGHOC gival Tapadoslakd Tpdtng TaEng. Qo1dc0, £Y0VV
Vrapéet KAmoleg TPooTaBELES VoL EMEKTODEL [LE YOPOUKTNPIOTIKA VYNAOTEPNG TAENG.

Mia tpdopatn epyacio Tmv Xopolaumidn K.o. TPoTeivel i KAVOTOO EVOALIKTIKY| GTLG TPOTYOULE-
veg mpoomdBeieg. Ot cvyypageig opilovv éva Bewpntikd TAaiclo, H, e GTATIKO GUGTNLA TOTMV KO
EKTATN ONpaclodoyia. Xe avtibeon pe ponyovpevo TAaiota LYNAOTEPNG TAENG LLE EKTOTT] O LOGIOAO-
vio, TO O1KO TOVG EMLTPETEL [T OPYIKOTOINUEVEG HETOPANTEG VYNAGTEPNC TAENG. [Tapéyovv emiong pia
TPOTOTLTN VAOTOIN G, VIO TO 6vopo HoPEs.

2e auTn TN SIMAOUOTIKY epyacia, cuveyifovpe T dOVAELL TOV XOPOAUUTION K.0. Yo Vo vTepPovLE
dV0 UELOVEKTHOTA TNG:

e H HoprEks sival avti) ™ otiyun acopupatn pe v Prolog, to ek tov Tpoypdtmv onpeio avagopdic
Yo 10 A0Y1KO Ttpoypappatiopd. [To cvykekppéva, amhd Tpoypappata og Prolog mov Bempnrti-
K@ aviKouv 6T0 VITOGUVOLO TTPATNG TAENG T H Ogv yivovtan dektd and tnv HOPES.

e H HoprEes dev vmootpilel TOADUOPOIKH KOTYOPLOTO.

[N va vepPolpe avtd Ta petovektipota, enavacyedialovpe v H, GTOXEDOVTOG GE e VAOTOINGT
nov Ba pmopel va yeproTel Eva vIeEPoHVOAO VYNAOTEPNG TAENG TG cuvnBouévng Prolog, kot v
EMEKTEIVOVLE PE VO TOADUOPPIKS TOGTHIO GOUTEPOTLOD TOTWY. OVOUALOVILE TO KAvOOPLo LG TTA-
o10 polyH. 1 cuvéyeln TPOTEVOLLE Lo YADOGO TPOYPOUUOTIGHOD BACIGUEVT] GTO TAAIGIO OVTO,
™V polyHOPES, 1 omoia €ivol GYESIOGUEVT Y10 VO ATOTEAEGEL LI EMEKTACT) VYNAATEPNG TAENG TG
Prolog, kot yio tnv omoio TopEYOVLE L TPMTOTLN VAOTOINGT.

A&Eerg KAEWOWO

ZOUTEPUOUOG TOTWV, TOAVHOPPIGHOC, AOYIKOG TPOYPOUUUOTIGUOC, TPOYPALUATIONOS VYNANG TAENG,
Prolog






Abstract

Since the design of Prolog, logic programming has been one of the most prominent programming
paradigms. Logic programming has traditionally been first-order. However, there have been some
attempts to extend it with higher-order features.

A recent work by Charalambidis et al. proposes an innovative alternative to the previous attempts. Its
authors define a framework, #, with a static typing discipline and an extensional semantics. Unlike
previous extensional higher-order frameworks, their framework allows for uninstantiated higher-order
variables. They also provide a prototype implementation, HopEs.

In this thesis, we build on this work of Charalambidis et al. to overcome two drawbacks:
e HoprEs is currently incompatible with Prolog, the de-facto standard in logic programming. More

specifically, simple Prolog programs which theoretically belong in the first-order subset of
are not accepted by HopEs.

e HopEs supports no polymorphic predicates.
To overcome these drawbacks, we redesign #, aiming at an implementation that could handle a higher-
order proper superset of ordinary Prolog, and extend it with a polymorphic type inference system.
The new framework is named polyH. Then, we propose a surface language over our framework,

polyHoprEes, which is designed to be a higher-order extension of Prolog, and of which we provide a
prototype implementation.

Key words

Type inference, polymorphism, logic programming, higher-order programming, Prolog
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Chapter 1

Introduction

1.1 Objectives

This thesis aims at defining and implementing a higher-order logic programming language supporting
polymorphic type inference, which is also a proper superset of Prolog. It mostly builds on recent work
by Charalambidis et al. [Char10, Char13b]. The work presented here mainly addresses the front-end
of the system (syntax, type checking), while the language semantics and proof procedure are borrowed
(with the necessary adjustments) from the original work in [Char10].

1.2 Motivation

Since its conception, logic programming has been one of the most prominent programming paradigms.
Prolog, the first complete logic programming system to be developed in 1972, has been the de facto
standard in logic programming since. Prolog (PROgramming in LOGic) was based on work by Alain
Colmerauer and Robert Kowalski, who developed a procedural implementation of implications in
first-order logic in 1972. The use of Prolog as a practical programming language was given great
momentum by the development of a compiler by David Warren in Edinburgh in 1977.

In the meantime, the other prominent declarative paradigm, functional programming, was being de-
veloped. Functional languages implement a superset of a (usually typed) lambda calculus. As is the
case in lambda calculus, functional programming allows for higher-order functions — that is, functions
that accept other functions as arguments or return them as return values.

Logic programming, on the other hand, has traditionally been first-order, following the trend Prolog
has set. However, there have been some attempts to incorporate higher-order features into logic pro-
gramming, mainly AProlog [Mill86], HiLog [Chen93], a framework developed by W. Wadge which he
calls “the definitional subset of higher-order Horn logic” [Wadg91] and more recently, the H frame-
work by Charalambidis ef al. [Char10, Charl13b]. Of these, HiLog is the only one which attempts
to define a proper extension to Prolog, while the others are independent languages. HiLog, though,
only offers an extended syntax. It does not offer any static type checking discipline, and its semantics
collapses to this of first-order logic.

The most recent work [Char10] is an innovative alternative to the previous attempts. It defines a lan-
guage H with a static typing discipline and an extensional semantics, which collapses to the traditional
semantics of logic programming when restricted to the first-order subset of 7. H also defines a proof
procedure that is proved to be complete and sound. Unlike previous attempts to define extensional
higher-order logic programming, their framework allows for uninstantiated higher-order variables,
namely predicate variables that can be returned as a reply for a query. Their framework is imple-
mented as a simple interpreter, Hopgs [Charl3a].
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In this thesis, we build on this work of Charalambidis et al. to overcome two drawbacks:

e HoprEs is currently incompatible with Prolog, the de-facto standard in logic programming. More
specifically, simple Prolog programs which theoretically belong in the first-order subset of
are not accepted by Hopes. This is partly due to language design decisions; e.g., Charalambidis
et al. make use of currying for passing multiple parameters to predicates.

e 7 requires type annotations, which is largely inconsistent with Prolog’s untyped nature. On the
other hand, Hopes infers predicate types but does not support polymorphism.

To overcome these drawbacks, we proceed in three fronts:

e We redesign H, aiming at an implementation that could handle a higher-order proper superset
of ordinary Prolog.

e We extend H with a polymorphic type inference system which abolishes the need for explicit
type annotations in predicates. Our type system supports Hindley-Milner (or ML-style) para-
metric polymorphism for higher-order predicates. We are naming the revised framework polyH.

e We propose a surface language for our framework, called po/yHopes, which is designed to be
a higher-order extension of Prolog with polymorphic type inference. polyHopgs is influenced
by the syntax of Erlang [Eric13, Cesa(09], a functional language which was in turn originally
inspired by Prolog. We also provide a prototype implementation of po/yHoPEs.

1.3 QOutline of the Thesis

The rest of the thesis is organized as follows: First of all, Chapter 2 gives a brief overview of H
and its implementation, HopEs, focusing on the features that are primarily addressed in this thesis.
Chapter 3 proposes an alternative framework, polyH, that is better suited to offer the basis for a higher-
order language that is compatible with Prolog. Chapter 4 presents such a language, po/lyHopEs, while
Chapter 5 explains how the structures of the surface language polyHopres correspond to those of poly’H
and Chapter 6 contains illustrative examples. Finally, we conclude the thesis and suggest possible
directions for further research on the subject in Chapter 7.

18



Chapter 2

An overview of H

Higher-order logic programming comes in two general categories: intensional and extensional. The
former considers two predicates equal if they have the same name; the latter considers them equal
if they succeed for the same instances. The former category is more developed, and some systems
based on this principles have been built, notably XSB [XSB12] and Teyjus [Teyj08]. The latter is
less developed, and no working systems had been built until recently. In [Char10], the authors build
upon the work of Wadge [Wadg91] and present H, a complete theoretical framework for extensional
higher-order logic programming, including a denotational semantics and a proof procedure which is
shown to be complete and sound. The most innovative feature of H is that, although it does not offer
higher-order unification, it allows uninstantiated higher-order variables to appear in program clauses
and queries.

2.1 An Intuitive Approach to

The language H, defined by Charalambidis et al., can be used as the formal basis to extend Prolog
with higher-order predicates [Char10, Charl3b], i.e., predicates taking other predicates as arguments.
The following predicate, written in a Prolog-like syntax, defines the transitive closure of a relation R:
closure(R, X, Y) :- R(X, Y).
closure(R, X, Y) :- R(X, Z), closure(R, Z, Y).

Now, if parent is defined as:

parent(trude, sally).
parent(tom, sally).
parent(tom, erica).
parent(mike, tom).

then the following goal will find all the descendants of mike:

?- closure(parent, mike, X).

X = tom ;
X = sally ;
X = erica ;
false.

In the syntax of H, the definition of closure is written as follows (omitting type annotations). Notice
also that the partial application of predicates and currying can be used to define ancestor:

closure < AR.AX.AY.RXYV (3Z.RXZAclosureRZY)
ancestor <— closure parent
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We mentioned before that the 7 framework also accepts uninstantiated higher-order variables. So
what would happen if the user had inserted the query

?- closure(R, mike, erica).

instead?

To illustrate this, let us consider the following simpler example, borrowed from [Charl3b] and written
in a Prolog-like syntax:

pP(Q) :- Q(0), Q(s(0)).
nat(0).
nat(s(X)) :- nat(X).

where s(X) stands for the successor of a natural number X. Understood under an extensional seman-
tics, p is the set of all relations that succeed at least for ® and s(0). Now consider the query

?- p(Q).

At first sight, this query seems unreasonable, since there are uncountably many relations that succeed
for @ and s (0) (otherwise said, that are supersets of {0, s(0)3}). However, the semantics of H ensures
that a predicate is a solution to a query, if and only it is a superset of a countable set of finite relations.
That means that the proof procedure of H can only examine those finite relations as candidate solutions
and enumerate those that satisfy the query. Additionally, there is a solution that is representative of all
others (intuitively, that is a subset of all others). In our concrete example, every acceptable solution Q
is a superset of {0, s(0)} and vise versa. So, {0, s(0)} is representative of all solutions and will
be return as a result to the user. To be accurate, the answer will be returned in a notation compatible
with the syntax of the language, namely as a disjunction of A-abstractions:

?- p(Q).
Q=\X.X=0;\Y.Y=s(0);Q

where ’; ' is the (higher-order) disjunction operator, and Q' represents any other solution (so Q is any
superset of {0, s(0)}).

Now let us continue with a more formal approach to H.

2.2 TypesinH

The language H is based on a simple type system that supports two base types: o, the boolean domain,
and i, the domain of individuals (data objects). The composite types are partitioned into three classes:
functional (assigned to function symbols), predicate (assigned to predicate symbols) and argument
(assigned to parameters of predicates).

c w=1il| (i— o) functional types
=il argument types
=o|(p— m) predicate types

Functional types, as is the tradition in logic, represent mappings from vectors of individuals to new
individuals. As you can see, there are no type variables or polymorphic types in H.

20



2.3 Syntax of H

Below we give a slightly simplified version of the H syntax. In the following, V" denotes variables,
¢ denotes argument (predicate or individual) constants of every argument type, f denotes functional
symbols of every functional type o # i, and n is a natural number with n > 1. Note that, because in-
dividual constants can be considered the subset of functional constants with arity 0, we will sometimes
refer to both categories of symbols as “functional” symbols.

Expressions of H consist of the true constant, variables (V'), predicate/individual constants (c), func-
tional applications, predicate applications, lambda abstractions, conjunctions and disjunctions, unifi-
cations, and existentials.

E == true | ¢, | V, | f, E1... Ey | E1 E3 | AV,. E Expressions in H
| El/\ﬂ-Eg‘El\/ﬂ—E2|E1%E2‘E|pV.E

Notice that constants, variables, as well as all connectives in H need type annotations (except for ~
(unification), which works only on expressions of type i). In the rule for functional application, f
must be of the passing functional type, or 0 = 1" — 1i.

A clause in ‘H is a predicate constant, followed by the reverse implication symbol and a defining
expression:

C = ¢cp <, F clauses in H

The defined predicate, the <— connective and the expression must be of the same predicate type.

Finally, a goal in  is a defined as
G = false + E goals in H

We will not go into details about the typing rules of H here, as the typing rules are generally straight-
forward. The type system of our own revision of the framework, poly’H, will be analyzed in detail in
Section 3.2.

2.4 Semantics of H

In Section 2.1 we mentioned that the semantics of 4 allow the construction of a proof procedure which
returns meaningful answers to queries with uninstantiated higher-order variables. In this section we
will quickly cover the semantics of H to clarify how this is possible. We are keeping the analysis as
simple as possible, as our aim is not to cover the semantics of H in depth, but to present the most orig-
inal ideas found in [Char13b] that allow higher-order queries. Notably, we are simplifying notation,
unfortunately losing on the formality of our analysis. For a more formal and detailed analysis, please
refer to the original work.

To begin with, let us define lattices and algebraic lattices: A lattice is a partially ordered set (poset)
in which every subset has a least upper bound (lub) and a greatest lower bound (glb). An algebraic
lattice is a lattice £ with the additional property that each of its elements is the Iub of a set of compact
(intuitively, simple) elements of L. If additionally these compact elements are countable, the lattice
is called an w-algebraic lattice. We will write IC(L) to denote the set of compact elements of the
algebraic lattice £, and KC(L£),, to denote the set C' of compact elements y with y C . It can be shown
thatz = | |C.
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Let D be a nonempty set functioning as the domain of interpretations of expressions of 7{. The indi-
vidual type in H is interpreted as D: [i]] = D. We can consider D to be an algebraic lattice under
the trivial partial order C; such that d C; d, for all d € D. Also, the boolean type forms an algebraic
lattice with false T, true, false C, false and true T, true. In fact, the semantics of types are
defined in such a way that all predicate types in H form w-algebraic lattices.

This is achieved by introducing the following constraint to the semantics of types: the semantics
of a type (m1 — m2) is not the set of functions from [71]] to [r2]], as one may expect, but only
K([m1) 2 [72], where = denotes monotonic functions. Under this constraint, all predicate types
in H are shown to be w-algebraic lattices.

However, it is not obvious how the semantics of expressions can be defined to ensure that all expres-
sions are indeed interpreted as elements of the domain described above. To achieve that, H interprets
A-abstractions and (predicate) applications in a non-standard way. Parameters of A-abstractions range
only over the compact elements of their type. The semantics of application is defined as

[(E1E2)T = L, (TELTI(D)),
with b ranging over IC(type(Eg))[[ B]

Due to this property of the domain, it is shown in [Char10] that each program has a minimum Herbrand
model as in the first order case and an immediate consequence operator can be defined that is indeed
continuous. That means that for every goal G, x is a solution of G only if every element in KC(type(z))»
is also a solution of G. Also, if C is the set of all compact elements that satisfy G, then a predicate p
is a solution of G if and only if | |C C p. Consequently, we can represented all solutions of a query
by enumerating the (countable) compact elements C comprising it.

2.5 HopEs

The ideas covered in the previous sections have been implemented in a prototype interpreter by A.
Charalambidis, Hopres [Char13a]. The interpreter offers a Prolog-like extended syntax, of which we
have already seen some examples. Also, it offers a type inference mechanism, to avoid the explicit
type annotations mandatory in 7, and some useful syntactic sugar. Hopes currently implements no
arithmetic, so one has to rely on successor notation to define simple predicates on integers.

To get a feel of how this language looks like, let us consider some examples. Let’s start with some
simple examples given in [Charl3a]:

nat(0).

nat(s(X)) :- nat(X).
even(0).

even( s(s(X)) ) :- even(X).

The predicate nat defines natural numbers in successor notation, and even succeeds only for even
naturals.

Hopres also offers support for lists. From a theoretical point of view, list notation is just syntactic sugar
for an individual constant, nil or [], along with the functional symbol cons or ’ . ’, which constructs
anew list from a two other individuals (head and tail). So we could define a predicate calculating the
length of a list as in Prolog:

length( [, 0 ).
length( [X]|T], s(N) ) :- length( T, N ).

In H syntax, the above predicate would be written (omitting type annotations) as
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length <« AL AN (L=[]JAN ~0)V (3X. IT. . L~ .(X,T) AN =~ s(N) A length T N)

Let us now write two examples of higher order predicates: al1(R, L) succeeds if R succeeds for all
elements of the list L. map is the predicate version of the functional programming favorite:

all( R, []).
all(R, [ X | Xs 1) :- R(CX), all( R, Xs ).

map( R, [1, [1 ).
map( R, [ X | Xs ], [Y]Ys]) :-R(X, Y), map( R, Xs, Ys ).

Take in account, however, that since functional symbols only work on entities of type i, lists in HOPES
are monomorphic and cannot contain predicates, as is the case in functional programming.

Partial application is allowed in HopEs. For example, all(even) is a predicate of type (i — o) that
succeeds if its argument is a list of even numbers.

2.6 Shortcomings of 7/ and HoPEs

Although H is a very innovative and well-defined framework, with some nice attributes such as com-
pleteness and soundness, it does have some drawbacks, originating mostly from the difficulty of com-
bining a Prolog-like language with higher-orderness.

One of the major difficulties in introducing higher-order features to Prolog is the language’s liberty
with name aliases. Prolog is an untyped language. Multiple predicates with the same name can be de-
fined, which are then told apart by their arities; they cannot be confused because only full application
is allowed. The same name can be used in an expression both as a predicate and functional (or individ-
ual) symbol; Prolog always knows which entity the name refers to, because predicate names appear
only outside all parentheses in rule bodies, while functional (or individual) symbols appear only in-
side parentheses, as predicate arguments. However, in a higher-order setting, aliasing creates many
problems which cannot easily be resolved. Consider, for example, the following simple program:

p.
p(o).
q(x) :- X(p).

What does p refer to, in the third line? The predicate of arity O defined in the first line, the predicate
of arity 1 defined in the second line, or an individual constant? HopEs bypasses this problem by disal-
lowing name aliases completely: no synonym predicates are allowed, and a name defining a predicate
cannot then be used as a functional symbol. This, however, is incompatible with ordinary Prolog.

Another problem in this context is created by partial application: If we allowed partial application
along with name aliasing without taking measures, it would be impossible to tell if the predicate in
p(X) is p/1 or a partially applied p/2, p/3, etc. HopEs, liberated from aliasing, offers a simple partial
application mechanism which ignores arity, as we saw earlier. If we are to design a Prolog-compatible
higher-order language, this mechanism must be redesigned.

Finally, H offers no parametric polymorphism. The original implementation of HopEs provides a type
inference mechanism to avoid explicit type annotations, but this mechanism, like the underlying type
system for 7, is monomorphic. For example, the type of closure from Section 2.1 would be inferred
in Hopes as: (1 — i — o) — i — i1 — o. This type is not, however, the most general possible. Why
not allow closure to handle relations on any argument type?

In the rest of this thesis, we are trying to address these issues. We begin by defining an alternative
framework in the following chapter.
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Chapter 3

polyH: A Framework for Higher-Order Logic
Programming

In this chapter we present polyH (polymorphic H), our alternative framework for higher-order logic
programming with extensional semantics. po/y’H builds on H, but is more suited to be a formal basis of
a proper superset of Prolog. Additionally, it upgrades H’s monomorphic type system to one supporting
let-polymorphism (in the style of ML).

In brief, the most significant differences between H and poly’H are the following:

e In poly’H, individual, functional and predicate constants are taken from the same alphabet, as
in Prolog. The problem with name aliases is resolved by using explicit arities when referring to
predicate constants; e.g., we write p/1. To remain compatible with Prolog, the implementation
polyHores will often be able to infer a predicate’s arity when the predicate is applied. Addi-
tionally, polyHorEgs will be able to differentiate predicates from functional symbols by their
position. Some extra measures need to be taken to allow the programmer to override the default
position-based interpretation if needed; this will be explained in detail in Chapters 4 and 5.

e In polyH we allow multiple parameters in A-expressions; however, when such a predicate is
applied, all arguments must be given. In Prolog-like syntax, the predicate closure could be
defined as follows, allowing for the partial application of its first argument:

closure(R)(X, Y) :- R(X, Y).
closure(R)(X, Y) :- R(X, Z), closure(R)(Z, Y).

The type system is adjusted accordingly to describe the types of the predicates defined with
multiple parameters. E.g. a first-order predicate that takes two parameters of type i would be
of type (i,1) — o.

e The major addition in poly’H w.r.t. H is polymorphism. In polyH, the closure predicate, written
as:

closure/1 <+ A(R). A(X,Y).R(X,Y) V (2. R(X,Z) A closure/1(R)(Z,Y))

would have its type inferred as V(«, ¢). ((o, ) — ¢) — (a, ) — ¢, where « denotes an
argument type variable and ¢ denotes a predicate type variable, as will be explained in §3.2.

3.1 Syntax of poly’H

The syntax of polyH is defined as follows, where } denotes variables, ¢ denotes constants, m and »
are natural numbers with m > 0 and n > 1. Expressions consist of variables (¥), functional/individual
symbols (c), predicate symbols which are always annotated by their arity (c/m), applications, lambda
abstractions, conjunctions and disjunctions, unifications, existentials, and liftings.
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E ==V |c|c¢/m]| EE,..., E))| XVi,...,Vp).E expressions
| E\NEy | E\VEs | By ~Ey | 3V E | 1(E)
R = ¢/m <+ E rules
G = Ry, ... R, declaration groups
P = Gy, ...,G, programs

Figure 3.1: The syntax of expressions in poly’H

Each predicate is defined by exactly one rule. For simplifying the type inference algorithm, we as-
sume that the rules in a program are organized in declaration groups. Each group contains a set of
rules defining predicates that are (necessarily) mutually recursive; rules in a group may use only the
predicates defined in previous groups or in this one. Given a program in a language like Prolog or
Haskell, where these declaration groups are not given explicitly by the user, they can be deduced
automatically with a simple dependency analysis [Marl10].

The true and false logical constants of  are not mentioned separately here, but they are present in
our language too and are written true/0 and false/0.

Notice that application allows for multiple arguments and, likewise, A-abstraction allows for multiple
parameters. Additionally, A, V, 3 and <— now lack type annotations, and polyH is able to infer their
(possibly polymorphic) types.

The reader may wonder at this point what this peculiar 1 (lift) connective means. 7 is itself polymor-
phic and maps a boolean value to a value of a predicate type; specifically, for each predicate type 7,
T (true) = Trand 1 (false) = L. Inother words, T (true) is a predicate of any type that succeeds
given any set of parameters, and T (false) fails no matter what parameters it is given. At this point,
one may question the usefulness of such a structure, but it will be become apparent when we try to
convert our surface language to poly’H in Chapter 5.

Additionally, we define goals as

Goal ::= false/® <+, E goals

In this case, we are using a monomorphic version of the reverse implication connective, as we demand
that the expression functioning as a goal is of the boolean type. Also, until it becomes clear what a
polymorphic goal could mean, all subexpressions of a goal must be monomorphic.

3.2 The Type System of polyH

3.2.1 Types and Environments

The syntax of types and environments is defined in Figure 3.2, where o denotes argument type vari-
ables, ¢ denotes monomorphic type variables, m, m’ and n are natural numbers with m,m’ > 0
and n > 1. We distinguish three kinds of types: argument types, for characterizing arguments of
predicates, as well as (monomorphic) predicate and polymorphic types, for characterizing predicates.
Notice that we allow two kinds of polymorphism: over argument types and over (monomorphic) pred-
icate types. The reason is that i is not an acceptable type for some polymorphic expressions, e.g. the
arguments of A. Environments contain two kinds of mappings: from argument variables to argument
types (V' : p) and from predicate symbols to (possibly) polymorphic types (¢/m : 7).

We will use 7 as an abbreviation for V(). 7 when m = m’ = 0, in other words, we will treat pred-
icate types as a subset of polymorphic types. Also, we will sometimes write p instead of (p) when

p €{i,a,0,0}.
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p n=1ila|nw argument types

T u=o0]¢ | (p1,. ... ,pn) > (monomorphic) predicate types
T ou= V(a1 ooy Quy O1y oo D). T polymorphic types
r=0|LLV:ip|c/m:T type environments

Figure 3.2: Types in poly’H

As a last comment on types, we have dropped the functional type for simplicity. Individual symbols,
when in the functor of an application, assume the role of functional symbols.

3.2.2 Typing Rules

The type system of poly’H uses ML-style polymorphism [Miln78, Dama82]. We describe below an
algorithm in the style of Hindley-Milner type inference, consisting of two steps: constraint generation
and unification [Pier02, ch. 22].

We define constraints to be sets of equations between argument types.
C == 0| C,p1=p2 constraints

The typing relation for programs is quite simple. Starting from an initial type environment I'g, which
should contain all built-in predicates, we iterate through each declaration group in turn and augment
the environment by adding all the predicates defined in the group. The final environment (I';,) contains
all predicates defined in the program.

iy FG:Ty foralll<i<n T;=T,;Ul} foralll<i<n
Fol_Gl,...,GnIFn

The typing relation for declaration groups is where constraints are first generated and then solved,
using unification. A type environment I is formed, containing the predicates defined in the declaration
group. Each predicate is associated in I with the most general type that is consistent with its arity .
This is accomplished with the auxiliary function artyp(m) which is defined as follows: artyp(0) = o;
and artyp(n) = (o, ... ,a,) = ¢, if n > 1, where «; and ¢ are fresh type variables.

Note that such a definition of artyp can never create a predicate of type V(¢).¢, the most general type
imaginable. This is deliberate, as such a predicate could accept any number of arguments and would
thus have no fixed arity. Additionally, we see that arity affects the type of a predicate only as far as
the first set of arguments is concerned.

After we have built IV, all rules are type checked in the environment I' U I and, for each rule R;, a
set of constraints C; is generated. The union of all constraints is then solved, using the function unify
which will be defined in §3.2.3. If unification succeeds, a substitution s is obtained and applied to I",
then the result is generalized.

I" = {c/m :artyp(m) | (¢/m < E) € G}
FUFll—RZ‘|Ci forall R; € G s:unify(Clu...UCn)
I'F G :gen(s(I”))

Function gen takes an environment where the types of all predicates are monomorphic but may contain
free type variables. These variables must be generalized, thus resulting in polymorphic predicate types.
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The result of gen is a “generalized” environment, in which monomorphic types 7 have been replaced
with polymorphic types V(a1, ... , Qun, @1, « .oy Gy ). T, Where aq, ...,y and @1, ... , ¢,y areall
the free type variables that occur in 7.

The typing of rules is also straightforward. The only constraint here is that the type of the defining

expression F must be the same as the type of the predicate in the environment.

'FE:p|C (¢/m:m)el
'kFe/m«— E|{m=p}uC

Variables, constant symbols and predicate symbols generate no additional constraints and their typing
rules contain no surprises. However, notice that whenever a polymorphic predicate symbol is used,
the type variables in its type must be replaced by fresh type variables.

(Vip)ell (¢/m:7)el
TEV:ip|0 Fkc:i|0 't c¢/m :freshen(T) | 0

The auxiliary function freshen converts (possibly) polymorphic predicate types to monomorphic, by

introducing fresh type variables; i.e., it replaces V(aq, ..., Qm, @1, ... , Pp). ™ With s(m), where
s is a substitution which maps a1, ... ,qy, and @1, ..., ¢,y to fresh variables o, ..., o/, and
s oo, @, respectively.

There are two typing rules for application. The first handles the application of functional symbols,
whereas the second handles all other kinds of application. Notice that functional symbols take argu-
ments of type i and return a result of type i.

PEE; :p; |C; foralll <i<n
Fke(Br, ..., Ey)ii|{pi=1i]1<i<n}UCiU...UC,

'FE:p|C E#c TFE :p|C; foralll<i<n ¢isa fresh type variable
I'FE(Ey, ....E): ol {p=(p1, ... ,pn) > ®)}UCUCLU...UC,

In the typing rule for abstraction, the environment is extended with the function’s arguments. The
constraint requires that the type of the abstraction’s body is a predicate type.

«; and ¢ are fresh type variables I ={V;:q;|1<i<n} TUI'FE:p|C
TEXV, .o, Vo). E:(aq, ... yan) = ¢ | {d=ptUC

The remaining typing rules correspond to conjunction, disjunction, unification, existentials and lift-
ings. Notice that unification takes place between operands of type i, whereas conjunction, disjunction,
existentials and liftings are essentially polymorphic on any predicate type.

F|_E11p1|01 P"E22p2|02 F}—Elzpl\Cl F"E22p2|02

¢ is a fresh type variable ¢ is a fresh type variable

F}—El/\Egl(ﬁ‘{¢=p1,¢:p2}U01UCQ F|—E1\/E21¢|{¢:p1,¢=p2}UC1UCQ

LLV:aFE:p|C
TFE :p|C1 ThHEy:ps|Cy « and ¢ are fresh type variables
F"El%E220|{p1:i,p2:i}U01UCQ F"E'VE¢|{¢=[)}UO

FFE:p|C
¢ is a fresh type variable

FET(E):¢[{p=0}UC
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Finally, we give the rule for goals. It demands that the body of the goal is of the boolean type:

FTFE:p|C
'k false/o +, E | {p=0}UC

3.2.3 The Unification Algorithm

The algorithm that we use for solving type constraints is a simple adaptation of standard Hindley-
Milner unification. A substitution s is a function mapping an argument type p to an argument type o/,
by replacing free occurrences of type variables (¢ or ) with types (7 and p, respectively). Composition
of substitutions, denoted as s; o s9 is defined as (s1 0s2)(p) = s1(s2(p)). By id we denote the identity
substitution, leaving types unchanged. By [¢ — 7| and [« — p] we denote singleton substitutions that
replace all free occurrences of a single type variable with a specific type. Abusing notation a bit, we
extend the application of substitutions to constraints and environments: we denote by s(C') and s(I")
the result of applying substitution s to all types in C' and T', respectively.

unify(§) = id
unify({p1 = p2} U C) =
unify(C') if p1 = po
unify([ac = p2]C) o [ae = p2] if p1 = a and « does not appear in po
unify([ac = p1]C) o [av = p1] if po = a and o does not appear in p;
unify([¢p — 7]C') o [¢p — 7] if p1 = ¢, p2 = m and ¢ does not appear in 7
unify([¢p — 7]C) o [¢p > 7] if po = ¢, p1 = 7 and ¢ does not appear in ™
unify(C U {pi = pb |1 <i<npU{m =m}) ifp1 = (p1,...,p}) = mrand po = (p3, ... ,p}) — m2
type error otherwise

Figure 3.3: Unification

Our unification algorithm differs from that of Robinson [Robi65], in that it handles two kinds of type
variables. Since argument type variables are more general (and thus carry less information) they are
substituted out first; the predicate type variables can then only be unified with a predicate type. The
use of a different unification algorithm poses the need for a different proof of the principality of the
resulting types than the one used in [Dama82]. This, however, is outside the scope of this thesis and
is left for future work.
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Chapter 4

polyHoprgs: a Higher-Order Extension of Prolog

So far, our discussion has concerned the theoretical foundation of a higher order logic programming
language, but we have not yet explained how our framework is associated with a superset of Prolog.
Indeed, the examples of poly’H code given in the previous chapter do not resemble Prolog at all. In
this chapter, we present polyHoPEs (polymorphic HoPEs), a prototype interpreter for a higher-order
extension of Prolog that attempts to satisfy the Prolog standard in its integrity, while integrating higher-
order features in a smooth way. The design of this language is partly influenced by the syntax of
Erlang [Eric13, Cesa09], a functional language which was in turn originally inspired by Prolog.

In this chapter, we will be using the verbatim font for terminal grammar symbols of the polyHoPEs
language, and the italic font for nonterminal.

4.1 Lexical Conventions of polyHOPES

polyHoPEs tries to imitate Prolog’s lexical conventions as much as possible.

Comments are enclosed in /* and */. An one-line comment starts with %. The lexical structure of
variables and constants is given below. upper, lower and alphaNum denote uppercase letters, lower-
case letters and alphanumeric characters respectively. char stands for any character, and escaped for
an escaped character sequence. Braces denote choice of one of the enclosed characters. As in Prolog,
constants (or atoms) can be graphical or alphanumeric identifiers, the ! (cut) constant, or any string
within single quotes. The only reserved word in polyHopEs is pred. Additionally, \", => and | are
reserved identifiers.

14 m= (_ | upper)(_ | alphaNum)* variables

c = graphicldent | alphaldent | stringLiteral | ! constants
graphicldent = {.#$8*+-;/:<=>2@""\|}* graphic identifiers
alphaldent  ::= lower ( alphanum | _)* identifiers
stringLiteral ::= '(char | escaped )*’ string literals

Figure 4.1: Lexical conventions in po/lyHOPEs

4.2 The Syntax of polyHoPEs

4.2.1 Syntax of Expressions

The syntax of expressions is given below. Again, V' stands for variables, ¢ for constants, num for
unsigned integer or floating point constants, 7, m for natural numbers with m > 1. prefixop, postfixop
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and infixop are operators (special constants — see below). An expression enclosed in square brackets
([ ]) is optional.

E 2=V |c| num | predc[/m] | E(E1, ..., Ey) expressions
| prefixop E | E postfixop | E; infixop Ey
| \"(Vi, ..., Va)=>E | list | (E)

list == [1 | [E1, --., Ex[1(V | list)]] lists

Figure 4.2: The syntax of expressions in polyHOPES

Following Prolog’s style, predicate and functional symbols are taken from the same alphabet, and the
interpreter takes up the task to decide which constant symbol refers to which entity. However, the
default behavior sometimes has to be overridden, and the programmer needs to force a constant to be
interpreted as a predicate to ensure that higher-orderness is indeed available. Thus, pred c¢[/n] stands
for a predicate constant with the name c¢. The programmer has the option of specifying the predicate’s
arity themselves; if they do not, it is inferred from the context. The reader may object that the necessity
of this construct admits po/yHoPEs’s incompatibility with Prolog. Hopefully, we will convince them
otherwise in Chapter 5. Erlang uses a similar construct to pass functions as parameters, albeit with the
fun keyword instead [Eric13, Cesa09].

Operators in polyHoprEs are just constants that have been declared as such through the special op
directive, as done in ordinary Prolog. For example,

1- op(500, yfx, "+").

tells the interpreter that + can now be used as an infix operator with precedence 500 and left associa-
tivity.

polyHopEs has no special syntax for conjunction, disjunction, or unification, as these are just ordinary
operators, written ', ’, ’; * and "=’ respectively. When a comma-separated list of expressions is ex-
pected (in the arguments of an application or the initial elements of a list) a comma (, ) is interpreted
as a delimiter rather than an operator. The user can of course still use it as an operator by enclosing
the expression in parentheses. Also, there is nothing equivalent to the existential or lift structures of
polyH in the surface language; these structures will be created during the transformation to po/yH as
needed.

One minor difference from ordinary Prolog is that we restrict list tails to be either a list or a variable.
Anything else would (certainly) create an improper list (a list whose tail is not itself another list).

Finally, the delimiters of A-abstraction have been chosen so as to not coincide with standard Prolog
operators.

4.2.2 Syntax of Sentences and Programs
A sentence is either a clause, a goal or a directive. A program is a nonempty set of sentences.

Sentence ::= Clause | Goal | Dir sentences

Program = Sentence® programs

Figure 4.3: Sentences and programs in polyHOPES

A clause in polyHopEs partly defines a predicate. Multiple clauses may contribute to the definition of
the same predicate. Clauses allow predicates to be defined with parameter notation, as done in Prolog,
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in addition to the \-abstraction notation. Clauses contain a clause head and an optional clause body.
The body, if present, is a proper expression. The head, however, has a more restricted syntax:

Clause  ::= Head | Impl Body . clauses

Head = AppHead | c¢/n clause head
AppHead ::= c¢ | AppHead(Ey, ... , Ey)

Impl n= - | <- reverse implication
Body n= F clause body

Figure 4.4: The syntax of clauses in polyHopPEs

A clause head in po/yHopEs is more complex than in ordinary Prolog. The first possibility to define
it, AppHead, allows for more than one sets of arguments. This is necessary to define higher-order
predicates. Each of these arguments will later be used as a parameter of a A-abstraction if it is a
variable, or it will be unified with such a parameter if it is a more complex structure (a pattern). And
since unification is provided only for the individual type, there is no point of having predicates in
clause heads. Therefore, A-abstractions and pred structures are disallowed in clause heads.

We have the choice to use either <- or : - as the reverse implication symbol in a clause. The first one
corresponds to the < connective in polyH. The second one is a monomorphic version thereof, <,
which demands that both the head and the body of the clause are of type o. The first symbol is more
flexible, but the second one has the same semantics as in Prolog and keeps better compatibility. Also,
it is often more intuitive to have the clauses one defines return true or false than a higher-order
predicate.

If the programmer wants to define a predicate with the use of <- and without using any parameters
(e.g. with partial application of another predicate), they have the option to do so by using just the
predicate name along with its arity (the second option to define a clause head).

We will call a clause without an empty body a fact, and one with a nonempty body a rule.

A goal is just a boolean typed expression introduced with the symbol ?-. A directive is an expression
introduced with : - .

Goal = ?-E. goal
Dir == :-E. directive

Figure 4.5: Goals and directives in polyHoPEs
Directives do not have the same semantics as other expressions. They are not typed and are used

only to provide the compiler with additional information on how to handle the program, e.g. which
constants may be used as operators, or which predicates may accept new clauses dynamically.

4.3 Implementation of polyHOPES

An implementation of polyHopEs is under development and publicly available at [Kouk13]. So far
it has had some successes, such as successfully parsing and type checking a 10.000-line program in
Prolog, with some minor problems that will be better described in Section 7.2.
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Chapter 5

Transforming polyHopEs to polyH

In the previous two chapters, we defined polyH, a language with a simple, elegant syntax and a well-
defined type system, and pol/yHopes, which is syntactically a superset of Prolog, but for which we
have yet not specified its meaning.

In this chapter, we are establishing how

e we decide the meaning (predicate or functional) and arity of a constant,
e we split program sentences into dependency groups and finally

e we map each syntactic structure of polyHopPEs to the corresponding one of polyH.

5.1 Inferring the Meaning and Arity of Constants

As mentioned before, polyHopEs follows Prolog’s footsteps and takes both its functional and predicate
constants from the same alphabet. So the first thing we have to do is decide the meaning of constants
in our syntax tree, keeping in mind that we would like to keep our language compatible with Prolog
if possible.

In Prolog, a simple rule can determine what a constant refers to: since Prolog is first-order, the “topmost
functor” of a clause or goal body, that is, the constant outside all parentheses and besides the : -
operator, is interpreted as a predicate.

More formally, by fopmost functor of an expression E we are referring to the constant we find by
starting with the syntax tree of £ and moving to the functor of an application or the operator part of
an operator application until we end up with a single constant (if we do).

On the other hand, any constant that is found inside an argument is interpreted as a functional symbol;
otherwise we would have a predicate passed to another predicate as an argument, which is forbidden
in first-order logic.

This rule, though, must admit some exceptions: constants in the scope of some specific operators
should be considered predicates themselves. For a start, we will choose these special operators to be
", /2 (conjunction) and ' ; ' /2 (disjunction). We could also include ' ->’ /2 (implication) and " \+’ /1
(negation-as-failure), once we have determined how they can be defined in our language. Bear in mind
though that all special operators can be encountered as functional symbols too (e.g. in the expression
p(q;r)); in that case, their arguments are no predicates either.

Unfortunately, the above assumption about Prolog is not always valid. For example,

p - X, a(s(X)).
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is legal Prolog. According to what we have said so far, s must be considered a functional symbol here,
thus X is of type i. However, we can see that X also appears as an operand of the ', ’ predicate, and
must thus also have a predicate type; it follows that the above program is mistyped. However, our
thoughts are still of some value, as the above clause can actually be written equivalently as

p :- call(X), a(s(X)).

with call/1 being the familiar Prolog meta-predicate, which in polyHoPEs has type i — o. Similarly,
something like

w(s(X)) :- \+ X.

can be written

w(s(X)) :- \+ call(X).

So with minimal syntactic changes to a Prolog program and no changes at all to its semantics, we can
ensure that our assumption is indeed correct. From now on, let us assume that these changes have been
made to Prolog programs, whether by hand or by an automated script.

This is a good starting point as to how to analyze our polyHopEs source and extract information about
constants, while respecting the compatibility with Prolog. To the above observations, we have to add
that the topmost functor of the body of a A-abstraction is naturally considered a predicate as well.

However, the point of higher-orderness is that we sometimes do want to pass predicates as argu-
ments. Fortunately, the programmer can overcome the default behavior by using the pred construct:
pred c/n always denotes the predicate ¢/n. Notice that a Prolog file, which lacks this syntactic exten-
sion, is still interpreted correctly, because predicates are not found in arguments and thus this structure
is unneeded.

To sum it up, a constant or operator is interpreted as a predicate when

e [t is the topmost functor of a clause body, clause head, goal, or A-abstraction body,

o It is the topmost functor of an operand of a special operator, and this special operator is inter-
preted as a predicate, or

e It is defined with the aid of the pred structure.

When we have decided that a constant is actually a predicate, we must also specify its arity. This
part is easier: if a constant is explicitly given the arity n by the programmer (in a clause head or a
pred construct), then its arity is z. If it does not have its arity explicitly specified, we have to infer it
automatically: if a constant is the functor of an application with n arguments, or an operator with »
operands, it has arity n. Otherwise, its has arity 0.

We can run through the syntax tree of all expressions of a polyHoprEs program and annotate each
constant and operator with a flag (predicate or functional) and a natural number (arity), which we will
later extract and use in further analysis, as seen in the following sections.

5.2 Dependency Analysis

Now that we have found which constants in our clauses are really predicates, it is time to do a depen-
dency analysis to separate the program into dependency groups. Dependency groups are minimal sets
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of (necessarily) mutually recursive predicates. As you may recall from Chapter 3, constraint genera-
tion and unification takes place in each such group separately in dependency order, and the order of
the predicates within each group is irrelevant. This is necessary to achieve maximum polymorphism.

To explain why it is not optimal to generate and solve constraints for the entire program at once, let
us consider the following example, written in polyH:

apply/2 <+ A(X,Y). X(Y)
iszero/1 <+ A(X).apply/2(\(Y).Y = 0, X)

Here, if we skip the dependency analysis and try to solve constraints generated from both rules to-
gether, we will end up with apply/2:: (i — o, i) — o, which is not the most general type possible.

Some ideas found in this section are borrowed from Haskell, another language that forms dependency
groups automatically [Marl10].

5.3 Mapping poly’H to polyHoPEs

Having done the preparatory work, we are now ready to transform our program written in polyHOPEs
to polyH.

5.3.1 Transforming Expressions

Let us begin with the mapping of expressions. In Figure 5.1 we define a function, transformE, that takes
an expression in polyHopEs and returns one in poly’H. Essentially, what it does is remove syntactic
sugar (operators, lists etc.), introduce the special A, V and = structures, and transform constants that
are interpreted as predicates in polyHoPEs to the respective polyH predicate constants. Numbers are
left as they are (they are simply a subset of individual symbols). The empty list is left as [ | € i, and
the “cons” functional symbol is written as a dot (.), as in Prolog. We do not give a separate rule for
“cut” (!), as it behaves like any other constant.

The functions arity(e) and isPred(e) extract the information that we annotated on the syntax tree earlier.
Finally, transformApp is a function that maps an application of the predicates ’, ' /2, ’; /2 and '='/2
to their special meanings, and returns an ordinary application in all other cases. Thus

transformApp(’, ' /2,{E1, E2}) = E1 N\ Ey

transformApp(’; ' /2,{F1, E2}) = E1V Es
transformApp(’'='/2,{E1, E2}) = E1 = E»
transformApp(E, {E1, ... , En}) = E(E1, ... , Ey), for all other functors E

5.3.2 Transforming Clauses

Transformation of clauses is the tricky part of converting our source code to polyH code correctly.
The first thing we have to do is to find which predicate is defined by each clause. If the clause is in
the form

C(El,h 7El,n1)~-'(Ek,17 ,Ekmk) <- Body.

then we can see that the arity of the predicate is n; so we are defining ¢/n;. If the clause is in the form
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transformg (V') =V

transformE(c) =c/n , ifisPred(c) and n = arity(c)
=c , otherwise
transformE(num,) = num , (num € 1)
transformE(pred c[/n]) =c/n , if n' = arity(pred c[/n])
transformE(E(E1, ... , En)) = transformApp(E', {E'1, ... , E',}), E. = transformE(E;),
E’ = transformE(E)
transformE (prefixop E) = transformApp(op’, { E}) , op/ = transformE (prefixop)
E' = transformE(E)
transformE(E postfixop) = transformApp(op’, { E}) , op’ = transformE (postfixop)
E' = transformE(E)
transformE (E infixop E2) = transformApp(op’, { B, ES}) , op’ = transformE (infixop)
E] = transformE(E;)
transformE(\™(Vy, ... , Vo)==E)=A(V1, ... , Vn).E , E' = transformE(E)
transformeE([]) =[]
transformE([E1, ... , E, | tail]) = .(E1, .(Eo,... .(Ep,tail’)...)) , tail' = transformE (tail)
transformE([E1, ... , E,]) = .(E1,.(E2y... (En,[])--))
transformE( (E) ) = transformE(E)

Figure 5.1: Transforming a polyHopEs expression to polyH
¢/n <- Body.

then we are defining ¢/n, and if we have
¢ <- Body.

it would be ¢/ 0.

We can break the transformation down to three tasks:

e Transform parameters to lambda abstractions

o Insert extra unification clauses where needed

e Insert existential quantifications if needed
A-abstraction parameters can only be (unique) variables. Therefore, there are two cases where we
cannot directly use a clause argument as a parameter in the resulting A-abstraction: if the parameter
appears a second time, or if it is not a variable; in the latter case, it is called a pattern. In both cases,
what is implied is an additional unification: in the first case, the two synonym variables have to be

unified, and in the second, the parameter of the A-abstraction has to be unified with the original pattern
in the argument. So if our initial clause is

Clause = c(Ev1, ... ,E1ny) .- (Eg1s - 5 Egp,) <- Body .
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it will be transformed to

)\(Vl,17 ceny Vl,nl)' N )\(VkJ, ey Vkvnk) BOdy/
where
) Ei if E; ; is a variable encountered for the first time,
b fresh variable otherwise

Body', in turn, should contain a conjunction of unifications of each newly introduced variable with its
respective pattern (or variable) in the original clause. However, to make sure there is no type mismatch
between these unifications (of type o) and the clause body (of any predicate type), we should /ift the
unifications before conjoining them with the original body, using the special connective 1:

Body’ = transformE(Body) A (Y(Uy AU A...AU,) )
where
{Ui} = {Vi, = transformE(E; ;) | V; ; is a freshly introduced variable}

In case our clause is a fact (it has no body), we take the initial Body = true/o0.

If the original polyHopEs clause uses the monomorphic : - connective, we must somehow restrict the
type of Body to be boolean. If our implementation supports no annotations that could help the inter-
preter know about the limitation, we can achieve that in a less elegant way, by inserting a conjunction
with true/0. In that case, since the type of the original Body is surely o, we can drop 1. So in that
case

Body’ = transformE(Body) A (U1 AUs A ... A U,) A (true/o)

However, our final expression is still incomplete, as it may still have some free variables. So we have
to introduce an existential for each variable that is still left free. The most natural way to do it is
between the Body’ and the newly introduced A-abstractions.

So to sum it all up, let us define a function, transformClause, which takes a clause and returns an
expression in polyH which partly defines the predicate in question:

transformClause(Clause) = AXVi1, o s Vin ) AV, <oy Vin, ) 3VE.. ..EIV?.Body’

with Body" and V; ; as defined above, and e ..., V?} are the free variables in Body' excluding
{Vij}.

Finally, if Clausey, ..., Clause,, define the predicate c¢/n, the respective predicate in poly’H will be
defined by a disjunction of all Clause;:

¢/n < transformClause(Clause;) V ...V transformClause(Clause,)
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5.3.3 Transforming Rules and Directives

A rule is transformed by simply calling transformE on the expression defining it. In the current version
of polyHopgs, directives do not translate to pol/y’H. Even though they have a similar syntax to the other
two kinds of sentences, they are just used as untyped compiler directives.

5.4 Examples of Transformations

To make the procedure more concrete, let us now present some examples of how predicate definitions
written in the polyHopEs source language are transformed into polyH. Let us begin with our original
polyH example:

closure(R)(X, Y) :- R(X, Y).
closure(R)(X, Y) :- R(X, Z), closure(R)(Z, Y).

Firstly, we have to infer the meaning and arities of constants in the bodies of the rules. Here we have
only two constants, both in the second clause: firstly, ’, ’ is the topmost functor of a clause body, so
it is a predicate. It is applied on two operands, so it stands for ’, ’ /2. Then, closure is the topmost
functor of closure(R)(Z, Y), an operand of the ’, ’ /2 special predicate. Because it is additionally
applied on one operand, R, it stands for closure/1.

Now let us proceed with the transformation. To avoid needless repetition, let’s call the two clauses
Clause; and Clauses respectively. Clause; is relatively simple: we have to add no extra unifications,
but we are using the monomorphic : -. So here

Body, = R(X,Y)A(true/o)
and
transformClause(Clause;) = A(R). A(X,Y).R(X,Y) A true/o

Clauses is a bit more complicated. Firstly, we see that we have an application of ’, * /2, which will
become a A connective. Secondly, Z is now a variable which is not bound in a A-abstraction, so we
have to insert an extra existential. So working as before we get

transformClause(Clauses) = A(R) .A(X, Y). 3Z.R(X,Z) A closure/1(R)(Z,Y) A true/0
Finally, we disjoin the two clauses defining closure/1 to create its complete definition:

(X, Y). R(X,Y) A true/o )V

closure/1 <+ (A(R).A
A(X,Y). 3z.R(X,Z) A closure/1(R)(Z,Y) A true/0 )

(AR) -

The only difference that this predicate has to the one given in Chapter 3 is the extra true/0 conjunc-
tions which restrict its return type to o instead of the more general (but less intuitive) V..

Now if we define

ancestor/1 <- closure(pred parent/2).
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we can easily see that the defined predicate is ancestor/1, and the constants referred to in the
body are predicates (one because of its position, and the other because of the pred keyword). Also,
pred parent/2 has explicitly been given the arity 2. So the resulting definition in poly’H would be

ancestor/1 < closure/1(parent/2)

Finally, let us define a more “exotic” predicate which showcases the other tools we have at our disposal.
Let’s say a programmer with strange taste defines

strange(s(N)) <- pred closure/1.
Here the transformation of the body is trivial. The parameter of the head, however, is a pattern. Thus
it will be replaced with a fresh variable (say N’) and force us to add an extra unification to the resulting
body. Notice that here, the use of the 1 connective is necessary, because the body of the clause is not

boolean. Also, the resulting expression ends up with a free variable (N), which has to be existentially
quantified:

strange/1 < A(N').3N.closure/1 A (1T (N =~ s(N)))
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Chapter 6

Examples

To illustrate how our language looks like, we now give some more examples written in pol/yHOPES.
Some are accompanied by their respective version in poly’H. Also, we are indicating a possible be-
havior of the call/1 meta-predicate.

6.1 First-order List Predicates

Firstly, let us illustrate that we can express familiar first-order list predicates in po/yHOPES just as
we can in Prolog. Notice that we are defining two (distinct) synonym predicates with different arity,
reverse/2 and reverse/3.

length([], 0).
length([X|L], N2) :- length(L, N), N2 is N+1.

append( [], L, L ).
append( [ X | L1 ], L2, [ X | L3 ] ) :- append( L1, L2, L3 ).

reverse( L, R) :- reverse( L, [], R).
reverse( [], R, R).
reverse( [ X | Xs ], L, R) :-reverse( Xs, [ X | L], R).

These predicates are written in polyH

length/2 <+ Vi,V2). Vo R OAVL = [])V

Vi,N2). IX.3L3N. v = (X, L) A length/2(L,N) A is/2(Ng, +(N,1)) )
Vi,L, Vo). L Vo AV = [])V

Vi, Lo, Va). IX.3Lg.3L;.

Vo &~ .(X,L3) A Vi~ .(X,L1) A append/3(Ly,La,L3)

—~ O~~~

(A
(A
append/3 <+ (A
(A

(L,R). reverse/3(L,[],R)
A(V1,R, Vo). R Vo AV & []) V
A )

)
reverse/2 <« A
reverse/3 <+ (A(

( A(V1,L,R). IX.3Xs. V1 = .(X,Xs) A reverse/3(Xs,.(X,L),R) )

For better readability, we have indexed the numbers in the variable names, and written newly intro-
duced variables as Vv;. Also, we have skipped superficial conjunctions with true/e.
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The type checker outputs the following types for these predicates:

length/2 :: (i, 1) -> o
append/3 :: (i, i, i) -> o
reverse/2 :: (i, i) -> o
reverse/3 :: (i, i, i) -> o

6.2 Higher-order List Predicates

The point of polyHopEs is to offer a higher level of abstraction than Prolog through higher-orderness.
So let us now see some familiar higher-order predicates from functional programming implemented
in polyHOPES.

Of course we could start with none other than map/1, written here in curried form:

map(R)([1,[1).
map(R) ([X|Xs], [Y]|Ys]) :-
R(X,Y), map(R)(Xs,Ys).

The type of map/1 is found by the type checker to be

map/1 :: ((i, i) -> o) -> (i, i) -> o.

In polyH, map/1 is written

map/1 + (A(R). A(Vi,Va). Vo m [JAVI=][])V
( A(R). A(V1,Vg). JY. Jys. IX. IXs.
Vo = .(Y,Ys) AVy = .(X,Xs) AR(X,Y) Amap/1(R)(Xs,Ys)
)

Now using map/1 we could write a predicate, samelength/2, which, as the name suggests, succeeds
for predicates of the same length. We are giving it in two forms, one defined with partial application,
and one in a more traditional way. To do that we are using an auxiliary anonymous predicate (de-
fined through a A-abstraction) that succeeds for every pair of inputs. Hopefully, this example, though
curiously defined, will showcase the usefulness of <-:

sameLength/2 <- map(\"(X,Y) => true).
sameLength2(X,Y) :- map(\"(X,Y) => true)(X,Y).

Another familiar function on lists are folds. Folds start with an initial element and traverse through a
list, each time performing an operation on the previous result and the current list element, and return
the final result. A generic version of a left fold for logic programming is given below:

foldl(F, 2)([],2).
foldl(F, YO)([X|Xs], Z) :-
F(YO, X, Y1),
foldl(F, Y1)(Xs, Z).

As most predicates, foldl must be changed to adapt to logic programming: instead of returning the
result as a value, foldl/2 accumulates the result into an accumulator parameter. Expanding the folded

list, foldl(F,z1)([X1, X2, ..., Xn], Z) isequivalent to
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F( z1, X1, 22 ),
F( 22, X2, Z3 ),

F( Zn, Xn, Z ).

Splitting the arguments this way (two in the first set and two in the second) just seems like a logical
choice: this way, foldl(F,z1) is a predicate that succeeds if its second argument is the result of
folding F over its first argument, with initial value z1. The programmer could of course split them any
other way they choose.

The type of foldl/2 is

foldl/2 :: ((i, i, i) -> o0, i) -> (i, i) -> o

Now we can define a predicate that sums a list of numbers:

"+'(X,Y,Z) i- Z is X+Y.
sum(L,Sum) :- foldl(pred "+'/3, ©)(L,Sum).

6.3 A Comment on List Predicates

List predicates showcase a weakness of our system. Since our language supports no polymorphic data
structures and lists are just elements of the individual type, we have to restrict ourselves to monomor-
phic list predicates. The Prelude of Haskell, for example, defines a function and that takes a list of
boolean values and returns their conjunction:

-- Haskell code
and = foldr (&&) True
In this case, the argument of and is a list of boolean values. It is impossible to define such a predicate

in polyHopEs using the monomorphic fold.

However, in comparison to their functional counterparts, these list predicates have the advantage of
supporting backtracking, thus also functioning non-deterministically.

For example, we can define a predicate that checks whether all elements of a list satisfy a condition R:

all(_)([1)-
all(R)([H|T]) :- R(H), all(R)(T).

Then if we define isDigit to succeed for 0, 1, ..., 9,

?- length(List,5), all(pred isDigit/1)(List).

would return all digit sequences of length 5.

6.4 Generic Higher-order Predicates

One type of predicates our language supports well are the ones based on predicate application itself.
closure, which we have seen many times through the thesis, is one example. In the following, the in-
terpreter denotes argument type variables with a1, a2, ...and predicate type variables with t1, t2, ... .
Also, it skips (the always assumed) V notation:
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closure(R)(X, Y) :- R(X, Y).
closure(R)(X, Y) :- R(X, Z), closure(R)(Z, Y).
% closure/1 :: ((a1, al) -> 0) -> (a1, al1l) -> o

As other examples, we can reproduce some functions from the Haskell prelude: curry and uncurry
take a predicate defined without currying and return one with currying and vise versa, and f1ip flips
the arguments of a predicate.

curry(P)(X)(Y) <- P(X,Y).

uncurry(P)(X,Y) <- P(X)(Y).
flip(F) (X)(Y) <- F(Y)(X).

% curry/1 i ((a1, a2) -> t3) -> a1 -> a2 -> t3
% uncurry/1 :: (a1l -> a2 -> t3) -> (a1, a2) -> t3
% flip/1 :r (a1l -> a2 -> t3) -> a2 -> a1l -> t3

Another interesting predicate to define would be predicate composition. We first define it to be a
highly associative operator. We use two dots to not get confused with the synonym list cons functional
symbol and delimiter:

:- op(60, xfy, "..").

"',(FIG)(XIZ) N F(XIY)I G(YIZ)'
% ../2 :: ((a1, a2) -> o, (a2, a3) -> 0) -> (a1, a3) -> o

In poly’H, composition is written as
/2 <« A(F,6). A(X,2).3Y. (F(X,Y) AG(Y,Z) A true/o)

Now if we define the successor predicate as

succ(X,Y) :- Y is X+1.

then

add2/2 <- pred succ/2 .. pred succ/2.

adds 2 to a given number.

6.5 The call/1 meta-predicate

In Section 5.1 we mentioned call/1 as a meta-predicate of Prolog. In [SWI10], a meta-predicate is
defined as a predicate that calls other predicates dynamically, modifies a predicate or reasons about
properties of a predicate. call/1 is mentioned specifically as a meta-call predicate.

Since meta-predicates manipulate predicates, they often violate the assumption that we made in Sec-
tion 5.1 about Prolog, that predicates can never be encountered as predicate arguments. It follows
that meta-predicates need special treatment in polyHopgs. We already saw how we treat the meta-
predicates ’, ' /2 and ’; ' /2: we consider their arguments to be predicates by default as well. Now
we will address how call/1 behaves in our language.

call(X) in Prolog tries to call X as a predicate, and succeeds if and only if X also succeeds. This
function is necessary in Prolog to simulate higher-order features in an otherwise first-order environ-
ment, as well as to call terms that have been constructed dynamically through functor/3 and arg/3.
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The last function can sometimes be useful even in a higher-order setting. In polyHopPEs, call/1is a
built-in predicate of type i — o.

We will informally give the behavior of call/1. Since it functions on expressions of type i, we will
only show what it does on constants, functional applications, and variables. Firstly, trying to call a
constant without arguments should result in the respective predicate of arity 0. So call/1(c) would
be evaluated by the interpreter to ¢/0. A functional application, on the other hand, would require its
functor to become a predicate of the correct arity. Thus call/1(c(Ey, Eso, ..., E,)) is evaluated
to ¢/n(Ey, Ea, ..., E,). Exceptionally, if we have a “special” operator, we have to make sure we
output the correct structure, and possibly propagate call/1 to the arguments of that structure. E.g.
call(;(E1, E2)) must become (call/1(Ej) V call/1(E2)). Finally, call/1(V') throws an instanti-
ation error.
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Chapter 7

Concluding Remarks

7.1 Contribution

In this thesis we have presented a framework for higher-order logic programming with extensional
semantics, polyH. We have also presented a higher-order extension of Prolog, polyHorEs, which,
though yet imperfect, is to our knowledge the first attempt to create an extension of Prolog with a
polymorphic type discipline. A prototype implementation of polyHopEs, written in Haskell, is publicly
available at [Kouk13].

7.2 Limitations and Future Work

Our framework, though it has made progress in integrating a polymorphic type inference mechanism
into the untyped nature and unusual syntax of Prolog, still has not managed to solve all problems
associated with this combination. These problems need to be addressed if a higher-order language
which satisfies the standard of Prolog in its integrity is to be developed.

Specifically, as explained in Section 5.1, there are some cases where Prolog directly calls expressions
that can be shown to have type i. This can be corrected if we wrap these expressions in call/1.
This, however, currently demands intervention to the original source by the programmer. It would be
interesting to develop a technique to insert these calls automatically, and be able to compile Prolog
code directly.

Additionally, it is not yet clear how the system can integrate dynamic predicates. Prolog offers two
predicates, assert/1 and retract/1, which dynamically add or remove clauses in runtime. It is not
clear how this these new clauses will be type checked against the old ones in a typed environment.
Similarly, negation-as-failure needs to be integrated to our system. Also, polyHoPEs currently demands
that goals are monomorphic. What a polymorphic variable would mean in a goal is debatable.

On the more practical side, more work needs to be done on the interpreter. Firstly, one has to make sure
there are no details of Prolog syntax that we are failing to capture: for example, clause heads defined
in operator notation, though allowed in Prolog, are currently not parsed by our system. Secondly, the
code needs to be optimized, as some stages such as parsing are considerably slow. Perhaps Haskell is
not an adequate implementation language, and a faster language like C needs to be used, as is done in
modern industrial-strength Prolog systems.

Also, the back-end of the interpreter is not yet ready, and those parts that are significantly different
from the original H have to be sorted out. To mention two examples, the types of predicates in the
environment have to be instantiated each time these are called, and polymorphic goals have to be
addressed, possibly through some defaulting discipline. For both of these issues there is experience
that can be gained from interpreted functional languages.
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Finally, there is work to be done concerning the meta-language of po/yH. The semantics of types and
expressions has not been formally specified, although it would probably resemble this of H closely.
Also, we lack a proof of the principality of types for the type inference algorithm that we have provided.
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