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ZupuBoAn otnv Ztatikn Kot Avvapkn Eykapola Anokpion

NocodAwv OEUEALWOEWG

Ektevn¢ NepiAnyn

Ewocaywyn: Xkomog tn¢ AtatptBrc

H opwlovtia amokplon TMAcCOAWV BOeUeAWOEWS UTIO OTATIKI Kol SUVAULKA
doption amotelel éva medio ouvexoug €psuvag, adol oL BePeAWOEL TTOOOAAWV
Xpnowiomotwovvtal ocuxvd ywa tnv  BOepeliwon  Kataokevwv, ONMwG YEQDUPEC,
OVEUOYEVWNTPLEC, TAQTPOPUEG TeTpeAaiov. EWOKOTEPA, N SUVOMLKA KLWWNUATIKA Ko
adpavelak aAnAenidbpaon tou cuothupatog eddadoug-nacodlov-avwdoung e§aptatal
oo €va oUVOAO TAPOUETPWY, OMWC N £dadiky otpwpatoypadia Kat ol eSadikEg
WOLOTNTEG, N MNA-YPAUULK Ox€on TAcewv-mapapopdwoewv tou €6Adoug Kal Tou
TAOOAAOU  (UNA-YPAUUKT) OUpTEpLPOPA TOU UALKOU) KOL Ol YEWMUETPLKEC HN-
YPOUULKOTNTEG (artokOAANoN Kot oAioOnon).

OL pébodol avaluong tTwv TAccAAwv UTO eykapola ¢OpPTLon HUMmopouv va
katnyoplomotnBouv wg £€ng: (1) péBodol oplakng Loopporiag, (2) pebodol dokou emi
ehatnpwtou eddadoug tumou Winkler, oL onoieg ouvnBwg Pacilovial o€ MELPAUATIKEG
KOUTTUAEG p-Y, (3) néBobol ou Bacilovtal otnv Bswpla cuvexouc péoou, Kal (4) péBodot
Hakpo-otolxeiou. H néBodog oplakng Loopporiag, n omoia Bewpel kai tov macoado Kot
T0 £601$p0C WG AMOAUTWCE TTAQOTIKA UALKA, £lval KATAAANAN LOVOV yLa TOV UTTOAOYLOLO TOU
opLakou $popTiou Tou Macodlou. TNV Tpitn Katnyopia avikouv AUCELG pe T Bewpla TG
€A\AOTIKOTNTAC KAL AUCELG PE UA-YPOLULKA TIPOCOUOLW LOTA TIETIEPACUEVWVY OTOLXELWV. Ta
YPOUULKA EAAOTIKA TipOocOopolwpata duvatal va xpnotornotnBolv eUkoAa, egattiag Twy
OVOAUTIKWV ekdpdoswv, ol aduvatolv vo TeplypAPouv TNV avamodpeuktn
mAaotikonoinon tou edadoug, Wlwg oe peydleg mapapopdwoels. Ta UA-YPOUULIKA
TIPOCOUOLWHATA  TIEMEPACUEVWY  OTOLXELWV  OUVEXOUG péocou Tpoomabouv  va

OVOTTAPAYOUV PEAALOTIKA TNV TOAUTAOKN cuumneplidpopd otnv Siemipavela edadoug-



TACOAAOU, OAAG N EVOWUATWOT) TOUC O aplBunTikoug KWOLKEG TIPOoUTOBETEL TNV XPron
kat PBabupovounon TPOXWPNMEVWY KAl TOAUTIAOKWV  €8adKWV  KOTOOTATIKWY
TIPOCOUOLWHATWY, pia blattépwc xpovoBopa Stadikacia. Ta mpooopolwpata SOKWV Tl
ehatnpuwtou eddadoug tumou Winkler €xouv amodelytel kat@AAnAa yla tnv amokplon
TIACOAAWVY UTIO 0pLlOVTIO POPTLON, EVW ETLITAEOV UITOPOUV EUKOAX Vo evowpatwBouv og
opLOUNTIKOUC KWOLKEG. To PBOOKO HELOVEKTNUA OUTAG tTNG HeEBOSou elval OTL KABe
eSadlkd eAATNPLO ATIOKPIVETAL aveAPTNTA ATIO T YELTOVIKA TOu. TEAOg, n HEBodOC
LOKPO-OTOLXEIOU ETUTPEMEL TNV TIANPN HUOKPOOKOTILKA) TIPOCOUOIWON TOU GUOTAHOTOC
ebadouc-Bepeliwong oe ehdyxloto xpovo, OMwG Kol Ta TMpocopowwpata Sokwv el
ehatnpwtou edadoug tumou Winkler, evw tutoxpova oot ol Babuotl eAeuBepiag Tou
HaKpO-oToLXElOU lval culeuypevol.

YKOTOC NG SL6AKTOPLKAG SLaTpIBAG €lval N amoKTNOoN VEWV YVWOEWVY OXETIKA UE
™V uA-ypapukn aAAnAenidpacn cuotnuatwyv £dddouc—maocoalo-OepeAlwoewy UMO
otatikn kot Suvapkn ¢option Kat emutAéov oUUPBAMEL otnv  avamtuén evog
KOLVOTOMLKOU UTIOAOYLOTIKOU TAOLOiOU (HaKPO-OTOLXELOU) yla TNV OVTLUETWTILON TNG
nacoaAo-Oepediwong w¢  E€VidioU  CUOTAMATOG, OTNV  OOKPLON  TNG  omoloag
ouvumoloyilletal n tautoxpovn €EEALEN OAWV TWV UA—YPOAUULKWY UNXOVIOUWY TIOU TNV
ouvBEtouv. Amotédeopa tng SlatpPng eival n katavonon tou poAou Ospedlwdwv
Tapayoviwv otnv aAAnAenidpaon cuotnpatwyv eddadouc—macoaAo-0epeAiwoneg, OmMwg
TLX. N oAAnAemibpacn mMAOCAAOU-TIPOC—TIACCOAOV OTNV QVEAOOTIK TEPLOXN TNG
napapopdwaong Kat n dnuiouvpyia MAACTIKWY opOPpWOEWV OTOV TAGOAAO.

JUVOMTIKA, Tapouctdaletal €va  amlomolnuévo  €6adlkd  KOTOOTOTIKO
TIPOCOMOLWHA YlO. TNV OTATIK KAl QVOKUKALK oupneplpopd MOACCAAWV OE HN-
OUVEKTLKA €6adn umd otpayyl{opneveg cuvOnKeg. To MPOCOUOIWHUA EVOWHATWVETOL OE
€va TPLoSLACTATO KWOLKO TEMEPOAOUEVWY OTOLXEIWV PEoW UTtopouTivag, Babuovopeital
Kol emaAnBeveTal pe MEPAUATA O GUYOKEVIPLOTH Yla UEUOVWHEVOUC TTOOOAAOUG O€
QUMO UTO €YKAPOLA aVOKUKALK ¢OpTLON, KoL XPNOLLOTIOLEITAL Yl TNV KaTavonon
daALVOUEVWY TIOU TIAPOTNPOUVTOL OE HEMOVWHEVOUC KOl U TTACOAAOUG UTIO OVOKUKALKN
dopton, onwe: (1) To dawouevo NG otabepomoinong tng MAAOTIKAG EVEPYELOG ME
pelovpevo puBuo (plastic shakedown response), (2) n enidpaon twv duo pUNXOVIOCHWY
TIou TPOKOaAOUV TOo dalvopevo tng otabepomoinong NG MAAOCTIKAG EVEPYELAG OTNV

amoKplon Tou TmaccdAou, (3) n emppon Tou aplBpol Twv KUKAWV ¢$OpTIoNG OTLC



EOWTEPLKEG SOUNTLKEG SUVAUELG (UEYLOTEC KAl TIOPAUEVOUTEG), Kal (4) To paLVOUEVO TNG
OKLAG KOt N arnodoTkoTNTA TNG MacoaAopnddag.

ErmutAéov, amod tnv Bewpla TNG opLlaKknG Looppomiag mapouclalovTal aVOAUTIKEC
eKPPAOCELS YLa TG KOUTTUAEG OAANAETSPAONG UEUOVWHEVWY TIOOOAAWY UTIO opllovTia
Suvapn Kat pomn avatporig ya Stadopoug edadikolc TUMOUC, KaBwE Kal oVOAUTIKEC
EKPPACELC YLOL TOV VOO TTAQOTLKIC PONC, Ta omoia amoteAoUv tn BAcon yla TNV avamtuén
HOKPO-OTOLXELOU yla TNV amokplon maccdAou. Ou ekdppdoelg auteg emainbevovtal
opOUNTIKA ME HUN-YPOUULKO elatnpuwto mpoocopoiwpa Winkler, al\a kat pe
TPLOSLACTATEG AVAAUCELG TIETMEPACHEVWVY OTOLXELWV (KaL PE TO AVOTUXOEV KOTOOTATIKO
npooopoiwpa), AapBavovtag umoyPwv kol To Katakopudpo doptio. Tautoxpova
Slevepyouvtal TIAPAUETPIKEG OVAAUCELS yla TNV emibpaon mapayoviwv avioxng tou
edadoug otnv 0pBOTNTA TWV avVaAUTIKWY ekdpacswyv. EmutAéov, n emaAnbeuon yivetal
HUE ouykpion He amoteAéopata amd meipoapa GuOLKAG KALLOKAG TTACCAAOU KAl HE
newpapata ou Ste€nxbnoav oto epyactrplo Auvapikng / Edadounyxavikng tov EMM.

TéNog, SlepeuvwvTal oL EMUMTTWOELG TNG SLPPONG TOU TTACCAAOU OTNV amtoKpLon
ocuvotnuatog edadouc-macodlou-yédupag umod oelopilky doption pe éudaon otnv
dopntikn avehaotikotnta. H aAAnAenidpaon eddadoug-maccdAou-avwdoung avaivetal
ue duo pebodoug: (1) pe tnv pEBobdo Tou macoalou emi eAatnplwtov edadouc, n omola
nipaypatomnoleital og Suo otadia: (i) avaluon (ev-xpovw) TNG AVEAACTIKNG U -YPOLULKAG
anokplong tou edadlkol OoXNUATIOMOU, Xwpl¢ tnv Tapoucia mMOocoAAou, UTO TIG
e€etalOpueveg oslOULKEG Oleyépoelg, kat (ii) avaAluon tng amokpLong Tou CUCTHUATOC
ebadoug-macodlou-avwdoUnG e XpPron UA-YPAUUKOU EAATNPLWTOU TIPOCOUOLWHATOG
Winkler, to omoio Oleyeipetal pe ta amoteAéopata NG avaAuonc tng edadikng
anokplong, kot (2) pe mpooopoiwon TG MARPoug oULIeLENG TNG KLWWNUATIKAG Kol
adpavelakng aAAnAenibpaong o€ TpLoSLACTATO TPOCOUOLWUA TIEMEPACUEVWY OTOLXELWV
(koL LE TO KATAOTATIKO MPOCOUOLW A TTOU avartuxonke otnv napovoa dlatpPn).

Mpoteivetat pa  peBodoloyia Pabuovounong twv elatnpiwv Kol  Twv
amooBeotipwv TG UPBPLOIKNC SLATAENG TIOU XPNOLUOTIOLEITOL YO TO HA-YPOAUULKO
eAatnpuwtd npooopoiwpa Winkler. EmutAéov, e§etdletal n eniépaocn tou tUTOU TOU
edadikol UALKOU, Tou UYPoug Tou Babpou, Kal TNG SuvaTOTNTAG AVATTTUENG TAQOTIKIC
apBpwong otov dopéa MAVW Kal KATW oo tnv entpavela tou 6AdPoug oTNV OELOULKA
OTOKPLON TOU CUCTHUOTOC OE OPOUC TTAQCTIHLOTNTOG.



Kataotatiko lMpooouoiwua yia thv AvakukAikny Anokpion lMoaocodAwv oe Aupwdeg
Ebdacwog

Itnv mapovuca Swatplfr] OVOMTUCOETAL €va  QITAOTIOLNMEVO  KOTOOTOTLKO
TIPOCOMOLWHA YLO TNV AVOKUKALKA OIOKPLoN MAcoAAwV o€ appuwdes €6adog. To ev Adyw
TIPOCOMOLWHA ElVOL EMEKTAON TOU TIPOCOUOWWUATOS TIou Babuovoundnke amd toug
Gerolymos et al (2005, 2006) yla GUVEKTIKA UALKA. To pocopoiwpa xapaktnpiletal amno
UN-YPOUULKO VOUO  KPATUVONG, HIN-OUCXETIOUEVO VOHUO TAQOTIKAG PONG Kol
Tpomonolnuévo kptnpo Stapporic Mohr-Coulomb . Ot MapAUETPOL TOU KATACTATIKOU
Tipocopolwpatog PBabuovopouvtal va Taplalouv PE TO KPLTATIO oaotoxiag Mohr-
Coulomb oto enimedo twv KUplwv TACEWV yla KaBe ywvia tou €aywvou cOUPwva Pe
Vv neplBarlovoa actoxiag Tou IxAuatog 1. Zuudwva Ue to Kpttriplo Sltappong, n taon
Slappong o, Loovtal:

o, =4/3J, (@D
ormou J, n 6eltepn avaAloiwTtog TOU TOVUOTH TWV OMOKALVOUCWV TACEWV TOU OTNV

aotoxia kavomolel Tnv akoAoubn efiowon:
Ilsin(p+%[3(l—sin 9)sin0++/3(3+sinp)cos0 | I, ~3ccosp =0 (2)

omou |, N mMPWTN avaAAOLIWTOG TOU TOVUOTH TWV KUPLWV TACEWV, € n cuvoxn, ¢ N ywvia

PPN Kot B n ywvia Lode (Chen and Mizuno, 1990).

Triaxial Compression

Mohr-Coulomb
Surface

IxAna 1: Tplodldotatn OmeKOVION TOU VOMOU KPATUVONG TOU TIPOTELWVOUEVOU

KOTOLOTOTIKOU TIPOCOUOLWHLOTOC



To TPOCOUOIWHA EVOWHATWVETAL OTOV KWOLKO TIEMEPACUEVWY OTOLYELWV
ABAQUS péow umopouTivag, n omoio CUVOEEL TIG TAPAUETPOUG TOU TIPOCOUOLWLATOG LUE
NV KOTakopudn TAoN, TIG KUPLEG TACELC KOl TNV ywvia Lode og kaBe Brua ¢optionc. H
ywvia Lode emtpénel tnv akpLBECTEPN MPOCOUOLWON TNG ATOKPLONG Tou £6Aadoug oe
TpLodlaotarto meplBailov. lNa tov AOyo auTO ELCAYETAL L0 TTOPAMETPOG YLOL TNV EVTOTLKNA
Kataotoon tou edagdouc k (cuvaptioel Tng ywviag Lode), n onota Aappavet TipéG amo 0
€wg 1. H tyun k = 0 avtiotolkel oe ocuvOrkeg kabBapou tplagovikol edpeAkuopou, k = 1 o€
kaBapn tplatovikr OALPN, k = 0.5 oe Sokipun amneubeiag Statunonc.

To mMapov AmAOTIONUEVO KATAOTATIKO Tipooopoiwpa dgv Aapupdvel untoPv tou
Vv SlootoAkr) oupnepipopd tou edadoug Kal thv £dadik) cCUUMUKVWON KATA ThV
avakukAlkr ¢option. H emibpaon tng StaotoAkig ocupmepidpopds eivalr ocuvnbBwg
oaonuavtn, kKabwe n edadikn cupmukvwon anoteAel tn dsonolovoa cupumnepldpopd oTNV
EYKAPOLA OVOKUKALKY OIOKPLON UE MEYAAO aplBud kUKAwv ¢poptiong. H aduvapia tou
TIPOTELVOUEVOU KATAOTATIKOU TIPOCOUOLWHOTOC ylot TNV TPOoopoiwan tng e8adLkng
CUMMUKVWONG XpnoLdomolntnke yla tnv afloAdynon tou poAou Twv SU0 UNXAVIOUWV
kpdtuvong (edadikig cupmikvwong Kal evepyomolnuévng edadikng avtiotaong oe
pueyaAutepa Badn) oto mapatnpnBev daivopevo tng otabepomoinong tng MANOCTIKAG
EVEPYELAG UE HELOVUHEVO pUBUO (plastic shakedown response).

TO TPOTEIVOUEVO KOTOOTATIKO Mpocopoiwpa Pabuovoueital kot emalnBevetal
LE TO TIELPAUATIKA amoTteAéopata anod tpia mewpdpata oe GUYOKEVTPLOTH UEUOVWHIEVOU
TIAOOAAOU o€ €npr AUUO UTIO OVOKUKALKN gykapola poption (IxAua 2) oto Laboratoire
Central des Ponts et Chaussées (LCPC) amné toug Rosquoét et al (2004). Ta melpdpata P32
Kol P344 €xouv aCUUUETPN AVAKUKALK PopTion He SLoPOopETIKO UPOC SUVAUEWY, EVW
1o meipapa P330 €xeL mAnpn avokuAwkn ¢oéption. To Tplobldotato mpoocouoiwpa
TIEMEPACUEVWV OTOLXELWV TIOU XpnoLponoliOnke napouaotdaletal oto Ixnua 3. To €dadog
TIPOCOUOLWVETAL HE OKTAKOUPBLKA OTOLXELD CUVEXOUG LECOU, EVW O EAQOTIKOC TTAGOAAOC
He Tplobldotata otolxelo Sokol KaTA PKOG Tou Katakopudou afovd tou ocuvdedepeva
HE KATAAANAOUG KLVNUOTLKOUG TIEPLOPLOMOUG LE TOUG KOMBOUG OTnNV MEPIPETPO TOU Yl
TNV PEAALOTIKA Tpoocopoiwon OoAOKANPNG TNG YEWUETPLAG Tou maoodAou. Ta otoleia

ouVeXOUC LECOU EVTOC TNG TEPLUETPOU TOU TAGGAAOU €XoUV Undevikn Suokapia.
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IXAna 2: Alatoén kat xpovoiotopieg GpoOpTIoNG TWV MEPAUATWY O GUYOKEVTPLOTH OTO

LCPC. Ot dLaotaocelg avadpEpovTal 0To MPWTOTUTIO
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IxAna 3: TpLodLAoTaTo MPOCOUOIWUA TIEMEPACUEVWY OTOLXEIWY TWV TELPOUATWY KoL

TOU MO.0oGAOU
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IxAMa 4: JUYKPLON OMOTEAECUATWY SUVOUNG—HETATOMLONG OTNV KEPAAN TOU TTACCAAOU

TOU MelpApatog P32 pe ta anoteAéopata tng aplOUnTKAG avaAuong
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IXAMA 5: UYKPLON KATAVOUWY KOUTTTLKWY POTIWV YLa TO Tieipapa P32 katd tnv ¢poption
kot anodoption tou 1°¥ kat tou 6°° kUkAou pe ta amoteAéopata TG APLOUNTIKAC

avaiuong
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H kapmUuAn SUVOUNG—HETATOMIONG OTNV KEPAAN TOU TOLOOAAOU KOTA TNV OPXLKN
¢doption tou melpdpatog P32 (peylotn opiloviia duvaun 960 kN kat eAdxiotn 480 kN)
XPNOLWOTOLE(TAL yla TNV BaBpovounon Twv MOPAUETPWY TOU £8adLKOU KATAOTATIKOU
TIPOCOUOLWHATOG. 2TO IXAMA 4 Ttapatnpeitol OTL TO TPOCOUOLWHA avVaATIOPAYEL ThV
kpatuvon (plastic shakedown response) otnv amokplon tou macodlou. H ev Adyw
amokplon sival to amotéAeopa SUo pnxaviopwy: (1) tne edadikng cupumvkvwaong, Kat (2)
™G “ouMnUKVWOoNG TOU CUCTANATOG”, AOyw TG POOSEUTIKAG aUENONG (L€ TOUG KUKAOUG
dopTIoNg) Tou Oykou tou edadikol Tplopatog actoxlag. To MPOTABEV KATACTATIKO
Tipocopolwpa avamapdyel LOVov Tov SeUTEPO pnxaviopod. To IXAna 5 amelkovilel tnv
QmoPPEOUON KOTAVOUH TWV KOUTTTIKWY pomwv yla tov 1° kat tov 6° kUkAo ¢pdptionc. H
YEVIKN OUYKPLON TWV KATAYEYPOUEVWY KOUMTIKWY POTIWV HE TO ONMOTEAECHOTA TNG
opLOUNTIKAC avAAuoNng lval LKAVOTIONTIKY. TO TPOCOUOIWHA TIPOPBAEMEL EMITUXWE TO
OXNMO TNG KOTOAVOUAG TWV POTWV Kal TNV alénon Twv KOUMTIKWY POTIWV HE TOV
auvéavopevo aplOpo Twv KUKAwWV ¢optiong. EmumAéov, TPOCOUOLWVETAL EMITUXWG TO
BaBog tNG MEYLOTNG KOMMTIKAG pOmAG o€ ¢OpTlon kal amodoption, KabBwg Kol n
HETATOTILON TNG MEYLOTNG KAUTTIKAG POTING O peyaAutepa BaOn pe tnv avénon tou
oplOpou Twv KUKAWV PopTLong.

To BaBuovounuévo mpocopoiwpa amd to neipapa P32 xpnoluomoleital &v
ouvexela ywa TNV mPOPAsPn NG AMOKPLONG TWV MEPAUATWY P344 (TMANpwC aCUUUETPN
avakuKALk ¢option, xwpis aAlayr oto mpoonpo tng ¢optiong) kat P330 (mAnpwg
OUMMETPLKN avaKUKALKR poption, ue alayn mpoonpou ¢optionc). Ito neipapa P344 n
Héylotn opovtia Suvaun eivatl 960 kN evw n eAdxiotn 0 kN. Zto IXApa 6 cuykpivovtal
TO. AMOTEAECUOTA TOU TIELPAUATOC KAl TNG aplBUnTIKAG pooopoiwong He thv popdn
KAUTTUANG SUvapng-petatomniong otnv kepaln tou nacodAou. Mapd tnv Stadopd tng
TIAPAUEVOUOAE METATOTIONG OTO TéAOG kABe otadiou amodoptiong n ouykplon eival
OPKETA LKOVOTIOLNTLKA. 2TO IXAMA 7 VIVETAL CUYKPLON TWV OPLOUNTIKWY OTTOTEAECUATWVY
HE TA TELPAUATIKA LE TNV HOPPI KATAVOUWY KAUTTTIKWY POTIWV 0TO TEAOG TNG POPTLONG
Kot tng amododptiong tou 1°%° kat tou 6°° kUkAou. MapdAo TOU N KATOVOUN TWV
KQLUTTTLKWY POTIWV OTO TEAOG TNG POpTLoNnG KABE KUKAOU CUUPWVEL HE TA TIELPAUATIKA
6ebopéva, mapatnpeital Stadopd TNG AMOKPLONG OTO TEAOC TNC AMOPOPTIONG TWV
KOKAwvV. H gv Adyw Sladopd amodidetal otnv aduvapic Tou TPOCOUOLWUATOCG Vo
avamapayel tnv edadikr) CUUTIUKVWON Kol xaAdpwon. Etot, n evepyomolnuévn edadikn
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pada miow amo tov macoalo, n onoia akoAouBel TNV Kivnon tou Katd tnv ¢poption otnv
aplOuntiky avaiuon, mpoodidel peyalutepn avtiotaon otnv anodoption onod To
xaAapwpévo £€5adog oto meipapa.

Télog, to IxAMa 8 amewovilel Ti¢ WolYPElG TwWV evePYNTIKWY KoL TadONnTIKwy
EVTOTIKWY KOTOOTOOEWV OE OXEON HE TNV TapApeTpo k ya tpia Stadopetika otadia
doptionc: (a) oto télog tne doptiong Tou 1°° kUkAou, (B) oto téAog TS amodOPTLoNE TOU
12°Y kUKAou, kat (y) oto téhog dodptiong Tou 12°° kUkAou. k = 0 avtioTtolyel oe GUVORKEC
kKaBapou tplafovikol edpeAkuopoU, k = 1 og kaBapn tplatovikr OAPN, k = 0.5 oe dokiun
anevBeiag Sidtunong. To dawvopevo tng otabepomoinong TG MAACTLIKAG EVEPYELAG ME
pHelovpevo puBuo (plastic shakedown response) amelkoviletal amoé tnv avénon Tou
TUApMatog Tou €6A4doug Umpootd amd Tov MACCAAO o€ TAONTIKA KOTAOCTACN ME TOV
oplOUO TWV KUKAWV POPTIONG, EVW TO EVEPYOTIOLOUHEVO €860 PLKO TUAMA TIIoW Ao Tov
TIAOOOAO O€ EVEPYNTLKN KOTAOTAON LELWVETAL. EmumA€oy, oto ZxAua 8B mapatnpeital OtL
mapolo mou O&ev oaokeital oplovtia ¢option otov maccalo (otddlo TMARPOUG
anodpoptiong), 0 mAcoalog dev emOTpEPEL oTNV apXLKA katakopudn BEon, efattiag tng
avtiotaong Tou €8adLkoU TUNUATOG TO OO0 UETATOTIETAL UE TOV TTACOAAO KOTA TN
doptIon Kal KataAapBavel TAEov TV apxLkr B€on Tou macodlou.

H petpnBeioa kapmuAn Suvapng—peTatomnong otnv kedpaArni Tou TAcoAAOU yLa TO
nieipapa P330 (pe péylotn optZovtia Suvapn 960 kN kat n eAayiotn -960 kN) cuykpivetat
HE TO OMOTEAEOMOTA TNG APLOUNTIKAG avAaAluong oto IXApa 9. Itnv mepimtwon tng
TIA|POUC CUHUETPLKAG AVOKUKALKNG GOPTIONG N HUETATOMION TOU MOOCAAOU OTO OnUEia
oAAayng and ¢poption oe anodOPTLoN HELWVETAL PE LELOUUEVO pUBUO HE TOV aplBUo Twv
KUKAWV $OpTIoNG, oc avtiBeon pe TNV MeplmTwon TG acUUUETPNG PpopTionG. H kpatuvaon
QUTA OTNV amoKpLon TOU TAcOoAAoU odelleTal otnV €KTEVH TAQOTIKOMOLNCN TOU
ebadoug yupw amod tov macocalo, n omnoia odnyel otnv avénon tng £dadikng mieong
otov nacoalo. EmutAéov, mapatnpeital dtadopd otnv petatonon nepimov 1.5 cm oto
TEPAG TNG “apXLkNG” doOpTiong tou Telpdpatog P330 oe oxéon pe ta melpapata P32 kat
P344. Auto umtovoel OTL oL apXLKEG CUVONKEG TNG Appou oto Teipapa P330 Sev eival idLeg
HE TwV Tepapdtwy P32 kot P344. Ta amoteAéopata o€ oUTH TNV MeEpimTwon eivatl
TIEPLOCOTEPO TIOLOTIKA TIOPA TIOCOTIKA, adou Sev mpaypatonolndnke véa Babuovounon

TOU TIPOTELVOLEVOU TIPOCOUOLWLATOG VLA TLG VEEG E0APLKEG OCUVONKEG.
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IxAna 6: Zuykplon SUvaUNG-HeETATOMIONG OTNV KEGAAN TOU TTACCAAOU TOU TIELPAUATOG

P344 pe ta anoteAéoparta tTn¢ aplOUnTIKAG avaAuong
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IxAMa 7: JUYKPLON KOTOVOUWV KOUMTIKWY POTIWV TOU TEpApato¢ P344 kotd tnv
doption kat amoddption tou 1°%° kat tou 6°° KUKAOU HE TA QMOTEAEOMATO TNG

apLOUNTIKAG avaAuong



To IxAna 10 mapouctalel TNV oUYKPLON TWV KOTOVOUWY KOUMTIKWY POTWVY ToU
TIELPANOTOG PE TA ATMOTEAEOHATA TNG aPlOUNTIKAG avAdAuong. Ma tnv TMARPN AVOKUKAUKA
dopTIoN n olykplon sival Lkavorotntikr. Evéladépov mapouatdalouv oL KOTAVOUEG OTO
TEAOG TNG Poptong Kal oto TEAoG tnGg amodoptiong, kabwe &ev eival akplpwg
OUMMETPIKEC, alAd elval Alyo peyaAUtepeg Tpog tnv KatevBuvon NG “apxikng
doptionc”. To ev Aoyw Patvopevo odpelletal oto yeyovog OTL TO TUAMA Tou £d6dadoug
oW amd Tov MACCAAO KATA TNV “Oopxlkn ¢option” péel Pe TOV MACCOAO KOl £TOL
avéavetal n edadikr avriotaon Katd TNV amodoption Kal thv opTon NmPog Tnv

avtiBetn katevBuvon.

B k=00 k=01 k=03 k=05 k=071 k=08 k=10
IxAnua 8: looUPEelC TwV EVEPYNTIKWVY KAl TTAONTIKWY EVIATIKWY KATAOTACEWY OE OX£0N
He TNV mapapetpo k yia tpia Stadopetikd otadia ¢optiong: (a) oto TEAOG TNG
doptiong tou 1°° kUkAou, (B) oto téhog tng amodoptiong tou 12°° kUkAou, kat (y) oto

téhoc podptiong tou 12°Y kOKAou. (ZuvteheoTric peyéBuvonc: 5)
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IxAna 9: Zuykplon SUvaunG-peTATONMIONG 0TNV KEGAAN TOU TTACCAAOU TOU TIELPAUATOG

P330 pe Ta amoteAéopata TNG aplOunTkng availuong
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IxAua 10: ZUyKPLON KOATOVOMWV KOAUTITLKWY POTIWV TOu TElpAapatog P330 katd tnv
doption kat armoddption tou 1% kat tou 6°° kKUKAOU pE TO OMOTEAEOHOTA TNC

apLOUNTIKAG avaAuong
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Emeldn to £€6adog punpootad and tov nacocaho OABeTaL Kal BplokeTal o madNTIKN
KOTAOTOON, EVW TIOW armo Tov MAcoaAo PpIloKETAL O EVEPYNTLIKN KatAotaon, e€eTtaletal
n enidpaon tng pHopdnc tou Kpitnplou dloppong oto emimedo T OTNV AMOKPLON TOU
nacodlou. E€etalovral tpla Sadopetikad kpitripla Sappong: (a) Tto MPOTEWVOUEVO
KOTOOTOTIKO Tipooopoiwpa (opiletal wg mpocopoiwpa CT), 0mou To KpLtrplo Stappong
epantetal oto e€dywvo tou Kpitnpiou aotoyxiag Mohr-Coulomb oe kabe ywvia oto
eninedo m, (B) éva avriotowo mpocopoiwpa (mpocopoiwpa C), O6MOU TO KPLTNPLO
Sloppong elval €vag KUKAOG TIEPLYEYPOAUMEVOG OTO €€AYWVO TOU Kpltnplou aotoxiog
Mohr-Coulomb oTLg TpELG YwVIEG TTOU avTloToloUV o€ Sokun TpLagovikng BALPNG, kat (y)
£€va avtiotolyo nmpocopolwpa (mpooopoiwpa T), 6ToOU TO KPLTAPLO SLoppong eival €vag
KUKAOG TIEPLYEYPOAUMEVOG 0TO €£AYWVO Tou KpLtnpiou aotoxiog Mohr-Coulomb otig Tpelg
YWVIEC TOU avtotolyolv o Sokiun tplafovikol edeAkuopol. OL  avoAUoELG
TIPOLYHOTOTIOLONKAV KAl YLot TOUG TPELG TUTIOUG AVOKUKALKAG POPTLONG TWV TELPAATWV.
Jto IXAua 11 ouykpivovtal n KapumuAn SUvapung—peTatoniong otnv kedaln Tou
TIAOOAAOU TOU TIELPAMATOG P32 e Ta amoTteAEopATA aTo TG ApLOUNTIKEG AVOAUCELG TWV
TPLWV Tpocopolwudtwy. Eival mpodaveg otL to mpooopoiwpa CT €xeL TNV KAAUTEPN
amnokplon. H amokplon pe to mpocopoiwpa C elvol KOVTA OTLC TIELPAUATIKEC TIUEC (adoU
YEVIKA n BALYPN €lval autr) mou Kuplopxel otV amodkpLon TOU CUOCTHUATOC TO.OCAAOU-
edadoug) aAla gival o SUCKAUTTTN, EVW N ATOKPLON HE To Tpocopoiwpa T umtoAoyilel
HEYOAUTEPEG LETATOTILOELG. AvtioTolXn CUMTTEPLPOPA TTAPATNPELTOL KOL OTLG KOTOVOMES
TWV KOUMTIKWY POTIWV KoL TWV SLATUNTIKWY SuVAPEwVY. Mo TNV MepmTwon TG MARPOUG
QVAKUKALKAG $OPTIONG N OWOTH TPOCOUOLWON TNG TPLAEOVIKAG avioxnG o€ ePeAKUCUO

€XEL LEYOAUTEPN ONUAOCLO OO OTL OTNV ACULUETPN AVAKUKALKA popTLon.
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IxAna 11: 0ykplon Suvapng-peTATOMIONG 0TNV KEPAAR TOU TTACCAAOU TOU TIELPALOTOG
P32 pe ta amoteAéopata TwWV aplBunTikwv avaAlUoewv He Tpla  Sladopetikd

KOTOOTOTLIKA TIPOCOLOLWHLOTOL

Tpelg Seikteg ouumepldhopdg ELoAyovVTOL YL TNV AELOAOYNON TWV OMOTEAECUATWV
TOU cuoTNUatog macodlou-edadoug. Ito IXAMa 12a mopouctaleTal ylo To Meipapa
P344 o Aoyog tou €PATTOUEVIKOU UETPOU O€ KABOE onueio anoddptiong-enavadoptiong
KABe KUKAOU TIPOG TO EPATITOUEVIKO LETPO OTO onuelo amodoptiong-enavadoptiong Tou
MPpWToU KUKAoU ¢optong. O Oelktng ouUTOC elval eVOEIKTIKOG TNG EAOOTLKAG
ouuneplPopdg TOU OuOTAHATOC TooodaAou-edddoug. Eival afloonueiwto oOtL TO
TIPOKUTITOV E€POTTOUEVIKO HETPO QMO TNV OPLOUNTIK avAAUcn HE TO TIPOTELVOUEVO
KOTOOTOTIKO TPOCOUOIWHA Tapapével oTabepd, avefdptnto amd Toug KUKAOUG
dOpTIONG, VW TO €PATMTOUEVIKO HETPO TOU TELPAUATOG QUEAVEL PE TOV apLOUO TwV
KOKAwv ¢options. H avénon auth amodidetatl otnv €dadikry cUPMUKVWON KATA TNV
OVOKUKALK  ¢OpTion, ¢awvopevo mou Oev TIPOCOUOLWVETAL HE TO TIPOTELVOUEVO
TIPOCOUOLWHA KoL TO OTOLO EMIKPATEL OTNV EAACTIKN) amOKpLon Tou macodAou. O Adyog
TOU TEUVOVTOG UETPOU Ao TO MEPAS TNG AmodOPTLONG KAl TO EPAG TNC EMAVAPOPTIONG
oToV (610 KUKAO pOPTLONG IPOC TO TEUVOV LETPO TOU MPWTOU KUKAOU $pOpTILONG, 0 omoiog
elval evOEIKTIKOC TNG OUVOALKNG CUUTEPLDOPAG TOU OUOTHUATOG MAocAAoU-£6Aad0oUG

KOTAL TNV OVAKUKALKR $OpTLoN, amelkoviletal oto IXApa 12B. & autiv TNV MeEPLMTTWOn To
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TEUVOV HETPO TIOU UETPNONKE MEPAUATIKWG, AAAQ KOL OUTO TIOU TIPOKUTITEL ATO TIG
apLlOUNTIKEG avaAUoeLg audvel pe Tov aplBuo twv KUKAwv ¢optiong. Asdopévou OTL N
KPATUVON TOU CUCTHHATOC, AOYW TNG TPOO0SEUTIKNC avénang (He Toug KUKAoug dopTLoNCG)
TOU Oykou Tou €dadikol TplopaTog aoToxiag, TPOCOUOLWVETOL aplOuntikd, n dtadopd
OTLG TLUEG TOU TEUVOVTOC LETPOU ATO TO TIEPAMA KOL TV aplOuUNTIKr availuon odeiletal
otnv edadikr cupmukvwon. O AOyoc TNG OXETIKAG HETATOMIONG Suo SLadoXIKwV onUeilwv
enavadoptionc-anodoptiong otnv kKedaAl TOU MACCAAOU WG TPOC TNV OXETIKN
HETATOMION TNG “apxknc” ¢optong kot emavadoptiong-amodoptiong Tou TMPWToU
KUKAoU &ivetal oto IXAMa 12y. e KAOe KUKAO N HETATOTILON TOU MO.OOAAOU OTO onueia
doptionc-amnodoptiong avéavetal PeE HELOUMEVO PUBUO pEXpL va otabepomolndel o
PUBUOG TwV TAACTIKWV Tapapopdwoswy. Mapatnpeital OTL TO AMOTEAECHOTO TWV
opLOUNTIKWY AVOAUCEWY CUUPWVOUV LKOVOTIONTIKA HE Ta TEPAMATIKO Sedopéva,
UTIOSELKVUOVTOG OTL O MNXOVIOROG TNG KPATUVONG TOU CUOTHMOTOG UTEPLOXUEL TOU
HUNXOVLIOHoU TG €8adpLknC cUUMUKVWONG.

‘Exovtog ouyKkpilvel Kol eEMAANBeVOEL TNV EYKAPOLO QTOKPLON TTAOCAAWY OE QWO
TOU TIPOTELVOUEVOU TIPOCOUOLWHMOTOC HE TELPAUATIKA Oedopéva, TO TMPOCOUOLWUA
Xpnowlomoleital yta tnv availuon 1x2 nmacocalopadog yia ta idla tpla mewpapata. Ot
TIACOAAOL, Ol OTIO(OL ATIEXOUV AMOCTACH TPLWV SLAUETPWVY OO KEVTPO OE KEVTPO, €lval
napaAAnAoL mpog tnv StevBuvon Goptiong. OL KEPAAEC TWV MACCAAWVY £Xouv apBpwtn
ouvdeon Ue Tov KEPAAOSETUO e KATAAANAOUC KLVNUATLKOUG TIEPLOPLOUOUG, WOTE: (a) oL
KEDAAEG TWV MOLOOAAWYV VAL £XOUV (8La LETATOTILON OTIWG OF pia macoaAopada, kat (B) ta
OTOTEAECHOTO TWV OVOAUCEWV VA CUYKpilvovTal aneuBelag pe aUTA TOU UEUOVWUEVOU
nacoalou eAevBepnc kepaAnc. To doptio edpapuoletal otnv pEon tou kepalodeopou
ue dopd amd aplotepd mpog ta Oe€ld, kablotwvrag tov defld macocalo “mpwto
nacoalo” KoL tov aplotepd “deltepo macoaio”. To IxAna 13 amelkovilel Tn TOUN TOU
TPLoSLAOTATOU IPOCOUOLWLATOG TEMEPACUEVWY OTOLXELWV TIOU XPNOLUOTIOLONKE KaL TLG
LOOUYPEL TWV EVEPYNTIKWY KOL TOONTIKWY EVTIATIKWY KATAOTACEWV OE OXECN HUE TNV
nopapetpo k yia to meipapa P344: (a) oto téhog Tng Ppdptiong tou 1°Y kikAou, kat (B)
oto téhog dpoptiong tou 12°Y kUkAou. H ekdva Twv wolPwv eivatl mapdpola Ue Tou
IXAMATOC 8 yLa TNV AMOKPLON LEUOVWUEVOU TTOOAAOU. € QUTH TNV TIEPUMTWON OUWC, TO
baLVOUEVO TNG OKLAG ATELKOVIETAL PE TOV oXNUATIONO piag Lwvng xahdpwong (k = 0-0.5

avtiyta k = 1) avapeoa otoug SU0 TACGAAOUG.
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Ixnua 12: Asikteg oupnepidpopdc yia to meipapa P344: (a) o Adyog Tou eHATTTOUEVIKOU
HETpOU amo kABe onueio amodoptiong-enavadoptiong KaBe KUKAOU TPOGC TO
€PATTOUEVIKO LETPO ATIO TO ONUELO AmodOPTIONG-EMavVAPOPTIONG TOU TIPWTOU KUKAOU
doptong, (B) o AGyog Tou TEUVOVTOG UETPOU OO TO MEPAG TNG AmodoOpTIonG Kol TO
EPAG TNG eMavadopTiong otov 8Lo KUkAo GoOpPTIONG TPOC TO TEUVOV UETPO TOU MPWTOU
KUKAou ¢optiong, (Y) o AOyog tnNC OXETIKNC HeTATOMONG duo Sladoxlkwv onueiwv
enavapoptionc-anodoptiong otnv KebaAp Tou TACCAAOU WG TPOC TNV OXETKNA

LETATOMION TNG apXIKAG $opTong Kat emavadoptionc-anodpopTione Tou TPWTOU

KUKAOU
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B k=00 k=01

Ixnua 13: lool P el Twv eveEPYNTIKWY KoL TIAONTIKWY EVIATIKWY KATOOTACEWV OE OXEON

k=03 k=05 k=071 k=08 k=1.0

HE TNV Topdpetpo k tou melpdpatog P344: (a) oto téhog tng doptiong tou 1°Y kUkAou,

kot (B) oto téhoc pdptiong tou 12°Y kOKAou. (ZuvteAeotric peyéBuvong: 5)
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IxAua 14: AOvVopN-UETOTOTION TOU UEUOVWHEVOU TAOOAAOU KOl TNG TTACCAAOUASAG

yla tnv ¢poption tou nelpapatog P344

H emBoaAlopevn Suvaun otnv moacocaiopdda eival SutAdowo amod OtL ota

TELPAUATA, WOTE N péon duvaun ava macoalo tng maccalopddag va sivat (dla pe tov

HEHOVWUEVO Tacoaho. To IxAua 14 ouykpivel tnv KOUMUAN péong Suvaung ava

TIACOOAO—ETATOMLONG TNG TACOOAOMASOG ME TNV OvTiOTOXN TOU MEMOVWUEVOU
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macodlou ywo to neipapa P344. Ma to 6o péco ¢optio, n HETATOMION TNG
nacocoAopddag eival peyaAUtepn omd TOU MUEMOVWUEVOU TaoodAou. Auth n
oupneplpopad odelletal oto OTL oL MAONTIKEG {WVEC TWV TMAOCAAWV TNC TTOLOCAAOUASAC
emukoAUTITOVTOL (alvOpEVO TNG OKLWAG) HE TNV auvénon Ttou oplldvtiou doptiou,
HELWVOVTAG £TOL TNV HEoN £6adIKr AVTIOTAON OTOUC TACOAAOUG T macoalopadag. To
dalvoUeEVO TNG OKLAC lval IO €UPAVEG OTAV UELWVETOL N AMOOTOON TWV TIACCAAWV.
Onwg Kal 0TOV HEUOVWHEVO TIACOAAO, N UETATOTILON TNG Maoocalopadag auEAvetal Ue
HUELOUPEVO pUBUO HE TOV aplOpd Twv KUKAwvV $optiong péExpL va otabepomotnbel n
mAaotikn evépyela (plastic shakedown response). EmumAéov, mapatnpeital 0t o Bpodxog
SUVAUNG-UETATOMIONG TNC ToCOAOUAdOG €ival HeyoAUTEPOG amoO TOV avTioToL o
HELOVWHEVOU TTACCAAOU, UTIOVOWVTAG LEYOAUTEPN TAOTIKOTIOlNON Tou €dddoug.

H Katavoprn Ttwv KOUMTKWV pomwv HE To Paboc ywo kKabBe maccoAo tNG
naccalopddag Sidstal oto IxApa 15 otnv ddption kat tnv anodoption tou 1°° Kat Tou
6°° kUkAou ¢optonc. Ito dlo oxAua yivetal ocUyKpon ME TA ONOTEAECHOTA TOU
HELOVWHEVOU TtacoaAou. Mapatnpeital otL:

e H péylOTN KAUMTIKA porr) aufAvel Pe ToV aplOpd Twv KUKAWV ¢$OpTIoNG Kot
petatomniletol o peyaAutepa Badn e€attiog TG MPOOSEVTIKAG MAACTIKOTIOINONG
Tou &badouc. Mapopola ocuumepldopd TOPATNPEITAL OTIC KOTOVOMEC TWV
SatpnTikwyv Suvapewy kat tng oplovtiag edadikng avtidbpaonc.

e H peyaAUtepn KOUTIKA POTIH QVONTTUCOETAL OTOV TPWTO MACCAAO OE OXEON ME
Tov 6eUTEPO KAl TOV MEUOVWHEVO TACCAAO, O omoiog €xeL pla evOlapeon
amoKpLon and Toug mMaccdAoug TN macocalopdadac. H Stadopd otnv Katavoun
TWV KOMUTITIKWY POTIWV UETAEU TOU TPWTOU Kot Tou &eUTEPOU TACCAAOU
odeiletal otov palvOUEVO TNG OKLAG. Mapopola cuumepidhopd mopaATNPELTAL KOl
OTIC KOTOVOMEG Twv Slatuntikwv Suvdpewv kat tng opulovriag edadikig
avtidpaonc.

e Jtnv amodoption (undeviky oplovtia SUvapn) oL KAUTTIKEG POTEC Oev
unéevidovral, aAAd SlatnpoUV HEYAAEC TIUEC OE OXEON HE QUTEC QO TO HEYLOTO
dopTLo. H peiwon Twv péylotwy Tipwv ival epimou 40%. AvtiBeta, yla EA0OTLKO
£6adoc oL TIHEC aUTEG Ba undevilovtav.

Télog, to IxAua 16 Tapoucldlel TOuG CUVTEAEOTEG amodoTikotntag Tng 1x2
nacoalopadag uno eykapoto poption o UPog 1.6 m anod v enmipavela Tou £8adoug

XViil
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IxAua 15: JUYKPLON TWV KATOAVOUWV KAUTTIKWY POTIWV TNG MOCCOAOUASOC Kal TOU
HEUOVWHEVOU TtAcodAou yla To meipapa P344: (a) otnv ¢pdption tou 1°Y kot tou 6°°
KUKAou yia SUvapn 960 kN avd rtdooaho, kat (B) otnv anoddption tou 1% kat tou 6°°

KUKAou yla Suvapn 0 kN avd naccaAo
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IxAua 16: Z0yKPLON TWV OUVTEAECTWV OamodoTkOTNTAG Yyl 1x2 maccalopdda umod
opulovtia ¢optio og UYPog 1.6 m amnd v emupavela Tou £6AdouG e TOUG AVTLOTOLXOUG

Twv Reese and Van Impe (2001)

OUVAPTAOEL TNC OPL{OVTLAC UETATOMIONG, OMWCE TPOKUTITOUV amd TNV avalucon HE TO
T(POTELVOEVO KATAOTATIKO MPOCOUOLWHA KAL TOUG avTioTolyoug amnod toug Reese and Van
Impe (2001). Ol OCUUMTWTIKEC TIMEC TWV OUVTEAEOTWV QMOSOTIKOTNTOG OO ThV
aplOuntik avaiuon eival Kovid oTig TIHEG Twv Reese and Van Impe (2001) yia peyaAeg
petatoniosls. Mapatnpeital pia dtadopd yla TOV OCUVIEAECTH) OMOSOTIKOTNTOG TOU
TIPWTOU TIACCAAOU, O OTIOLOC APXLKA UELWVETAL KOBWG AUEAVETAL N LETATOTILON, AAAQ YL
TIOAU LEYAAEG LETATOTILOELG EMAVEPXETOL OTNV apPXKN (oxedOV eAaotikn) T (n. = 1). H
gv AOyw KpaAtuvon otnv cuumnepldpopd, anmodidetal oto ¢pavopevo tng otabepomnoinong
NG MAQOTIKAG EVEPYELOG UE LELOUPEVO puBuo (plastic shakedown response). AviiBétwe,
0 OUVTEAEOTNG amMOSOTIKOTNTAG Tou SeUTEPOU TOLOOAAOU HELWVETOL CUVEXWG, £€altiog
ToUu dalwvopévou tNG OKLAG, aANA UE HPELOUPEVO pubuod e€altiag tng KpAtuvong Tou
ouotnuatog nmacoalopadac-¢dadog, GTavovtoc o PO ACUUMTWTIKA T (nt = 0.7).

Zexwploto evéladepov mapouctdlel OtL OAOL Ol CUVTEAECTEG AMOSOTIKOTNTAG ATO TNV
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oplOUNTIKA avaAuon ylwo TNV €AOOTIK amokplon €ival moAU kovta oto 1 (= 0.97),
uTovowvTag OTL N aAAnAenidpacn MAcoAAOU-TIPOG-IACCAAD €XEL QEANTEQ EMidpaon.
AuTO odeiletal Kuplwg OTO yeyovog OTL TO onuelo epappoync tng ¢optong eivat
PnAotepa amnd tnv enudpavela tou edddoug, KabBwg Kot OTL N cUVEECH TWV TTACCAAWY HE

ToV KEPaAOSEGHO elval apBpwTn.

Mpooouoiwon tn¢ Eykapoiag Anokpiong Eukaurntou lNaocodAov pe Makpo-otolyeio:
KaunvAegc AAAnAermibpaonc kot Nouog [lMAaotikn¢ Pong — AvaAutikn Ekgpaon,
Aptduntikn kou Newpauatikn EnaAndsvon

H mnpoocopolwon HME HAKPO-OTOLXELO OMOOKOTEL OTNV avamopaywyn Ttng
OOKPLONG TOU OUOTAMOTOC £6APOUG-TIAOCAAOU OE LOKPOOKOTILKO EMIMESO HE OPOUC
Suvapewv-petatomnioswyv yupw amnd éva onpeio avadopdg (tnv kepan tou maccdiou)
Kal oxL o€ eninedo edadkou otolxeiov. JUpPwva pe Toug Martin and Houlsby (2001) n
HaBnuatikn Statumwon Tou pakpootolxeiov (ZxApa 17) amattel avaAuTIKEG EKPPAOELS:

e ylLa TNV KOUTIUAN aAAnAemtidpacng Tou maocodlou os 6poug afovikng doptionc N,

opLlovtiag ¢poptong Q, kat pomng M,

® Yyl TO EAACTIKO pUNTpwo Suokapdiag,
e yla TOV VOMO TTAOOTLKAG pon¢ (plastic flow rule), kat
e yla tov vopo Kpatuvong (hardening rule).

Ekdpdoelg yla to €AaoTikO untpwo Suokapiag kol tov VOHO KPATUVONG
unapyouv otnv BiBAloypadia (mx Gazetas, 1991; Gerolymos and Gazetas, 2005). lNa tov
AOyo auto, otnv mapouca StatplPi avamtuxOnkav aVAAUTIKEG EKPPACEL KOUTTUAWV
oAANAemidpaong kat kpLtnpiou MAACTIKNAG PONG YL LEUOVWUEVO TIACOAAO. Z€ AUTO TO
mAaiolo, pe adetnpia tnv pEBodo oplakng wooppormiag tou Broms (1964a,b, 1965)
miapdyovtal KAELOTOU TUTIOU eKPPACELG yla TNV KAUMUAN aAAnAentidpaong VKOUMTOU
HEUOVWUEVOU TIOLooAAOU UTIO cuvduacopévn poption Q—M otnv KepaAr) Tou MTAGCAAOU
yla dtadopoug tumoug edddouc. H kedaAr Tou MAGOAAOU CGUUTIMTEL HE TNV eMmdAVELA
Tou £6adoug Kal oL BewpoUpEVEG BETIKEG POPEC YLt TNV POPTLON KO TIG EMOKOAOUOEG
METAKIWVNOELS WG TPoG To onuelo avadopdg mapoucialovial oto IXApa 18.

JUYKeKpLEVa, tapouatalovtol KapmUAeg aAANAETI&paonC yLol EUKOUITO TACOAAO OF:
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(i) OLOLOYEVEG GUVEKTIKO £601d0C

(ii) OUVEKTIKO £€6adog Gibson

(iii) UN-OUVEKTLKO £€6adog

(iv) SloTpwto cuveKTIKO £6adog

(v) UN-OUVEKTIKO £6adog pe TNV KedaAn TOU MTACCAAOU OE QMOOTACH € TAVW

oo tnv empavela tou edadoug
Ol KapUAEG aAANAETSpaoNG TTOU TIPOKUTITOUV ELVAL KOAVOVLIKOTIOLNUEVEG WG TIPOG

TIC “KaBapéC” avioxEC Tou cuaoTtnpatog macodlou-eddadoug, SnAadr oe AMOKAELOTIKWG
opLlovtia $optTLon Kol O ATOKAELOTIKWG ETBAAANOUEVN porr), oL onoieg cupBoAilovtal
pe tov Oeiktn “y’. To HeyAAO TAEOVEKTNUA QUTAG TNG KOVOVIKOTIOLNONG EYKELTAL OTO
YEYOVOG OTL N popdn Twv KOUMUAWV aAAnAenidpaong dev emnpedletal amd GAAEG
TIAPOUETPOUC avToxnG tou £dadoug i Tou accdAou. Ol aVAAUTIKEG EKDPACELG YLa TLG

TIAPATIAVW TIEPUTTWOELG KATAARYOUV O€ pia yevikn ékdpaon yia ¢oéption o€ xwpo M-Q:

B

f =|sgn(Q) Q +sgn(Q)A Q +sgn(M) M* -1=0 vy M <1 (3)
y y y y
KoL
M M
y My

onou A, B, Q,*, My* otaBepég, avaloya pe TNV mepintwon mou peAetdtal divovtat otov
Nivaka 1. H pebodoloyia auvth duvatal va epappooTel Kal o€ AAAEC TIEPUTTWOELS, OTIWC

TAooaAog o€ TPlOTPWTO CXNUATIOUO.
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Nivakag 1. >tabepc kapmuAwv aAAnAenidpaong

Naocalog oe: A B Q,* M, *
OLLOLOYEVEG OUVEKTLKO 1
€6adog 0 2 (2PyM y )2 My
1
ZUVEKTLKO £€8adog 45 3
Gibson 0 3/2 (TMyaydj My
1
Mn-ouveKTKO £6adog 0 3/2 (% M yzkpyd j3 M,
2b(P,-P,)
2
A{CTPWTO GUVEKTIKO P bZ(P b ) 5 b M |1 Pylbz(Pyl - Pyz) M1 Pb (Pyl - Pyz)
€6adog ne Sy1 < Su2 2Py2M ) (1_ yL yt— y2 } y2Vly 2Py2M , y 2Py2M ,
2P M
y2 y
Mn-ouveKTIKO £6adog .
KE TV KEPOAL TOU 27 RE 1
TMOLGOAAOU OE anootach e(gkpydMyj 3/2 (zMjkpydT My
e MAvw anoé tnv M 8

emudaveia tov edadoug




a) Failure Envelope

qorm 4 /

w3 ¢) Plastic flow
rule
[ -
\— J
N uor?d
b) Elastic response of d) Hardening law
the foundation
system

Ixnua 17: Amapoaitnteg ekppAoELS yla TNV Snuoupyla EVOC HOKPOOTOLXEIOU KoL N

ETULPPOI] TOUG OTLG KOUTTUAEG SUVOUNG—UETATOMLONG KAl pOTtHG-0TPOodNAG

N

IxAua 18: OcTikeC dopEC GOPTIWV KOl LETATOTIOE WV

To IxApa 19 napouotdlel tnv adlactatonotnpévn KapumuAn aAAnAenidpaong yla
TIAOOAAO OE OLOLOYEVEG OUVEKTLKO £€6a.d0¢, N Omola Elvoll CUMHETPLKN WC TPOC TNV apxn
Twv afovwv Q/Q,~M/M,. NMapatnpeitat OTL N HEYLOTN POTI AVATPOTG 0TO cUOTNUA eV

propet va unepPel tv pomn Stapporg tou MaccdAou (Mmax / My = 1), kabwg otnv
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“kaBapn” avtoxn os eMBAAAOUEVN POTII) TOU GUOTAUATOC CUUBAAAEL LOVOV O MTACOOAOG.
Otav n pomn avatpomnng eivat opdéonun tng opllovtiag duvapng, n avroxn o€ opllovtia
Suvapn eivat pkpdtepn tng “kaBaprig” avioxng oe oplovta poption (Q/Qy =1, M/ M,
= 0), e€attiag tng mpdobetng dpaong Tng pomn¢. AvtiBeta, Otav n pomr avatpomng ivat
ETEPOCNUN ME TNV opllovTia Suvaun, n avtoxn os opllovtia ¢popTion aUEAVEL EWG OTOU O
nacoaloc $OAaceL otnv porr) SLapponG Tou, OTIOU KOl EMITUYXAVETAL N Léylotn opllovTtia
¢dopTIon oto cvotnua. Auto odelAeTaL OTO YEYOVOG OTL N €TEPOCNUN POT CUUPBAAAEL
otnv avtiotaon tou edadoug otnv oplovtia ¢option. lNa TNV MeEPIMTWOn opoLoyevoUg

OUVEKTLKOU UALKOU, N HEyLoTn opllovtia GOpTLon EMITUYXAVETAL YA Qmax / Qy = 2°°.

2
M
f;ﬂ_lzo f =|sgn(Q) Q +|——{sgn(M)(-1=0
15 M, s (0,M /M)A Q) M,
S 7
1.0 DI 71
N
(Q,/Q,,0)
0.5 SN W
> N7
E o 1 L] /// b 1
= -,
7
-0.5 'S -
-1.0
N
-1.5 = (Qmax/Qy’ Mmax/My)
-1.5 -1.0 -0.5 0 0.5 1.0 1.5
asa,

IxAna 19: KapmuAn aAAnAenidpaong macoAAou G€ OLOLOYEVEG CUVEKTLKO £€6adog

To duvapiko mAaotikomnoinong (platic potential) exdpalel Tnv ox€on mou £€xouv ot
netaBoréc (increments) twv MAaOTKWY petakwhioswy (v7, uP, 8”) katd Ty otypd e
ootoxiag o Aueon ouvaptnon Me TNV UetafoAn) tng emdavelag Sappong Tou
OUOTNUATOG TNG BepeAiwong wg MPOCg Ta eVIATIKA HeYEBn M—-Q-N. Me tnv Bswpnon
OUOXETIONEVOU VOUOU TAQOTIKAG pong g = f, omou n ouvaptnon tou SuvapLkou
TIAQLOTIKOTIONONG g OUMMimMTeL e TNV ouvaptnon OSwppong f, dnAadn ywa dueon
OUOXETION TWV TAQOTIKWV TOPAUOPPWOEWY HE TNV KAUTUAN oAAnAemibpaong, n

€kppaon ToOu VOUOU TIAAOTIKAG PONAG TIPOKUTITEL ME TAPAYWYLON TWV OVAAUTIKWV
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EKPPACEWV TWV KAUTUAWV aAAnAsmtidpaong. ETOL, 0 CUOXETIOUEVOC VOUOG TIAQOTIKAG
PONG TWV PETAKIVAOEWY ekPpaleTal otnv popodn:
of
{aup'}:k aQ )
06" of
oM
OToU A €vag U apvnTIKOG ouvteAeoTnG, o omoiog dnAwvel To pEyebog mou €xouv ol
TIAQLOTLKN METOKIVNON Kal otpodn Katd tnv actoxio. Ol ekPpAOELS TTOU TIPOKUTITOUV YL
TOV VOUO MAQOTIKNC POr¢ oTo xwpo Q—M eival aveaptnteg tng emBaAlOpevng portng M
oTov TAco0AO0. AOYW TOU OCUOCXETIOMEVOU VOMOU TAQOTIKAG PONG, TO Slavuopa Twv
TIAOLOTIKWY HETATOTIOEWV ToU ap)Xilel otnv KapmuAn Stappornc kot €xel kKAlon tov Adyo
TWV TAQOTIKWY UETATOMIOEWV TPOG TG otpodég (6u/60) elval kABeTo otV KAUTUAN
oAnAenidpaonc oe auTto TO onueio.
ErutAéov, AOyw TG ouvOnKkng TNG KaBETOTNTOG, OTA ONUElA TNG UEYLOTNG POTING
Mumax © AOYOG TNG MAQOTIKIC UETATOMLONG TIPOG TN otpodn €ivat 0, adol otnv KedaAn
TOU MA.GGAAOU UTIAPXEL LOvVoV otpodr, SnAadn:

of ou”

Q07w - e

=0 ylua

AvtiBeta, oto onueio tng péylotng opllovtiag SUvaUNG Qumax EKTOG OO UETOTOTLON
UTIApXEL Kol otpodr otnv kedaAn Tou MaccdAou, adou e€eTAaleTol EVKAUTTTOC TTACOAAOG
Kol 6ev aotoxel povov to £dadocg.

H opBotnta TwV avaAuTtikwy ekPpACEWY TWV KAUTIUAWY odAANAETi&paonc Ko Tou
Kpttnplou mAAOTIKAG pong emaAnBelovtal pe avalvoelg emBoAng Suvaung o€
€\QOTOMAQOTIKO Tipocopoilwpa Sokol oe elatnplwto €dadog tumou Winkler kat oe
TANPWC TPLOSLACTATO TIPOCOUOIWHA TIEMEPOOUEVWY OTOlXElwyv. KabBs avaluon
okoAouBel pia cuykekplpuévn Stadpoun ¢optiong otnv Kepain Tou MACOAAOU £wG TNV
ootoxia otov xwpo Q-M. Ektoc amd tnv emaAnbesuon tng HOPpdNC TNG KOUMUANG
oAANAemtidpaong, amnod Tig avaAUoeLg AapBAavovTtal Kal oL EMAUENTIKEG LETATOTILOELG KATA
Vv aotoyia. Etol eAéyxetal Kal n eyKupOTNTA TOU CUCXETIOMEVOU VOLLOU TTAOLOTLKAG PONC.

H avalutik €kdpaocn tng KABE XOpaAKTNPLOTIKAG TEPIMTWONG EAEYXETAL
Eexwplota pe éva mpooopoiwpo Sokol og eAatnplwto £dadoc tumou Winkler péow evog

xopaktnplotikol mapadeilypuatog. To mpooopoiwpa dokou eni eAatnpuwtol £dddoug
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Winkler &nuloupyeital oe KwOIKA TEMEPACUEVWY ONUEiWV. Xpnolpomolovvtal &€
Swoblaotata  otolxelon SokoUu  ylo  ToOv  TACOOAO  PE  SLlypOpULK  OXEon
POTIC—KOUTTUAOTNTAG KOl EAAOTOMAQOTIKA eAaThpLa yia to £dadocg (Zxaua 20).

Apxlkwg, €A€yxeTal n evaloBNCio TOU MPOCOMOLWUNTOG OTNV TIUKVOTNTA TOU
kavvapou (katakopudpn amootacn twv elatnpiwv). To IxAua 21 mapouoctalel TNV
OUYKPLON TNG KOVOVIKOTIONMEVNG KOMUTUANG oAAnAsmidpaong ywo macocalo o€
OLLOLOYEVEG OUVEKTLKO €6adog amd tnv avaAutikn €kPpaon HE TA ANMOTEAECHATA TWV
oplOUNTIKWY avaAUoewv pe anootaon ehatnpiwv 1 m, 0.25 m kat 0.1 m. Mapatnpsitat
otL yla adpd kdvvafo ta amoteAéopata Sivouv UTIEPAVTOXN TOU CUCTAUATOC YL TO
TUAMO TNG KAUTTUANC aAAnAemiSpacng OMOU n POMN UMEPLOXUEL OTNV OTOKPLON TNG
opLlovtiag Suvaung, evw elval eTepOoneS. AvtiBeTa, yla TIUKVO KAVVABo oL aplBuNTIKEG
avaAloslc  emBefatwvouv TAAPWEG TNV  AVOAUTIKA  KapmUAn  aAAnAemiSpaong,
arnodekviovtag OtL yla To e€etalopevo mpoPAnua n peydAn Siakpiltomoinon eivat
amopaitntn. EmutAfov, mapapetpkn Stepelvnon €6elée OTL n popdn TNG KOUMUANG
oAANAemtidpaong eival avedptnTn OPLOMEVWY XOPAKTNPLOTIKWY TIOPAMETPWY AVTOXNG
TOU OUOTNUATOG MaocaAou-e6Aadoug, OmMwe n SLAUETPOC TOU TMOACCAAOU, TO HETPO

€A\AOTIKOTNTAC TOU £6AGOUC, KOl N LOTPAYYLOTN SLATUNTLKI TOU avToxh.

A ) M
(kM) L %, p,)

(xy py)

El

IxAua 20: Mpooopoiwpa dokol oe elatnpuwto €dadog tumou Winkler, oxéon

POTINC—KOUMUAOTNTAG Kol ox€on e6adIKAG avTidpaonC-pETATOMIONG
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b A Winkler Model,z=1.0m
» . A ® Winkler Model, z=0.25m
1.0 4 Winkler Model,z=0.1m
= Analytical Expression
0.5
g
E 0 T 1
-0.5
-1.0
A A o o
-1.5
-1.5 -1.0

A
0.5 1.0
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IxAua 21: Emidpaon tng mukvotntag tou kavvaBou twv glatnpiwv Winkler otnv
KOUTTUAN aAANAETSpaonG yla MACOOAO OE OLLIOLOYEVEC OUVEKTLKO £6adog

o Winkler Model

A Analytical Expression
1.5 ig%ﬁ%m;
pire) 9?;
A
1.0 — o
=4 -
__ 05 yot
3 —a a4
§ 0 =4 ==
< P res
2 -05 A A
P Y
P e
-1.0 4 “
A A
1.5 ’Q i;;
-1. JSeelarec
ity
-1.0 0 1.0

Q (MN)
IxAMa 22: AlavOopata TwV HETOROAWV TWV MAQACTIKWY EYKAPOLWYV UETOKIVAOEWVY Kol
otpodwv amd TNV avaAuTik €kdpacn HE TNV Bewpnon OUCXETIOUEVOU VOUOU

TAOLOTLKAG PONG Yla TTAGOAAO O CUVEKTIKO £€8adoc Ttumou Gibson Kol cUyKpLon HE Ta
anoteAéopata amnod T aplOUNTIKEG AVAAUOELG KOTA TNV aoToxia
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Ta SLOVUOHATA TWV PETAROADVY TWV TAAOTIKWY EYKApoiwy petakwhioswv SuP kat
otpodwv 86° amd v avodutiki €kdpacn He TNV BeWPNOn GUCKETIOMEVOU VOHOU
TIAOLOTLKAG PONG Yylot TTACOOAO OE OUVEKTIKO €dadog tumou Gibson kol autd amo Tig
apLlOuUNTIKEG avaAUOELG KATA TNV aotoxia deixvovtal oto IxApa 22. Ta Staviopata Kot
Twv SU0 mpooeyyloswv eival ypodlkwe (dla Kal emUTAEéov KABETO OTNV KOUMUAN
oANAeTiépacnC OTOV UA-KOVOVIKOTIOINHEVO XWPo Q—M. JUuVEMWG, N yvwon Tng
avaAuTIKAG  €kdpaonG TNG KAUMUANG aAAnAemibpaong elvat apket yw Tov
TIPOOSLOPLOO TOU VOLOU TTAOOTLKAG PONC.

H puoikn onuaoio Tng LoxUog TOU CUCXETIOUEVOU VOUOU TIAQOTIKNG PONG Elval OTL
0 MACOOAOC LETA TNV QOTOXLOL CUUTIEPLPEPETOL WC EVA AKAUTTO OTEPEO CWHA KOL APA TO
BaBog tng mAaotikng ApBpwong 6ibetal amd Tov AOyo TNG TAAOCTIKNAG EYKAPOLAG
HETAKivnong mpog tnv otpodn. Opilovtag we B tnv ywvia twv (Euywv pomng opL{ovTLog
Suvaung QM otnv actoxia, pe B = 0° to onueio Q = Q, kat M = 0 (kaBapr avtoxn oe
oplovtia Suvapn) kat mnyaivovtag aplotepooctpoda otov xwpo Q/Q, — M/M,, To IXAHA
23 armnelkovilel TNV petafoAn Tou Adyou TNG MAACTIKNG EYKAPOLAG HETAKIVNONG TTPOG TNV
otpodn otnv actoxia ywa dtadopa evyn QM kal to avtiotolyo BABog tNG MAAOCTIKAG

apBpwong ya ta idla onpela. Eival epdaveég OtL eKTOG amd TLG TIEPLOXEG MUE |M / My| =1

(6nAadh yia B = 90° - 145° ka B = 270° - 325°), émou n Sountikr actoxio Tou macodAou
ekbnAwvetat otnv ke Tou, 0 AOYy0oG TG LETAKIVNONG TTPOG TNV 0TPOodH CUUTITTEL E
To Babog NG mMAaoTIKAC apBpwanc.

To npoocopoiwpa dokou oe ehatnpwtd €dadog tumou Winkler xpnowpomnoteital
EUPEWG YLO TNV IPOCOUOLWON HEUOVWHEVWY TTALoOAAWY, aAAd v AapPavel umtoYv Thv
mANPn ¢uolkrl tou TPOPANUATOG, OMWC N VEWUETPKN MA-YpOopUlKOoTnTa. ETOL, Ol
QVAAUTIKEG EKPPACELG TWV KOUTMTUAWY OAANAETSpAONG KoL TOU CUOCXETLOUEVOU VOROU
TMAOOTIKAG pong efetalovtal TEPALTEPW HE TPLOSLAOTOTEC aPLOUNTIKEG AVAAUOELG
TIEMEPACUEVWY OTOLXELWV UE TNV XPrion SLUPOPETIKWY KATAOTUTIKWY TIPOCOUOLWUATWY
(oupmepAapBavopEVoU KoL TOU TIPOTELVOUEVOU) XWPLG CUCXETIOMEVO VOUO TTIAOLOTIKAG
PONG, Ta OTOL0 IPOCOKOLWVOUV KOAUTEPA TNV KA YPAUULIKA cupmepldopd tou edadikou
UALKOU. ATOSEelKVUETOL OTL N HOKPOOKOTILKA OUUTEPLPOPA TOU CUOTHHATOG £dadouc-
Bepediwong Sev  emnpedletal  amd  TA  XOPOKTNPELOTIKA TOU  KOTAOTATIKOU

TIPOCOUOLWHATOC TWV AVOAUCGEWV.
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IxAua 23: JUykplon tTNG UETABOANG TOU AOYOU TNG MAXOTIKNAG EYKAPOLAG UETAKIVNONG
Tpog TNV otpodn otnv actoyia yia diadopa {evyn QM kal Tou avtiotoiyou Baboug tng

TAOLOTLKAG apBpwoaong yia ta idla onueia

Eniong, e€etaletal n emppon tng UTAPENG 1N OXL YEWHETPLKWY UA-YPAUUKOTATWV.
Ta Zevyn pomn¢ M kat opllovtiog duvapng Q otnv aotoxia, KOVOVLKOTIOWNUEVA UE TLG
“koBapeg” avtoxeg oe pomy M, kat oplovtia duvapn Q, amd TG TPLOSLAOTATEG
opLOUNTIKEC aVOAUOELG, YLO TTACOOAO OE OLOLOYEVEC OUVEKTIKO £6adog HE 1 xwplc TV
umapén kevou Sidovtal oto IxAua 24. Ta anoteAéopata TwV TPLoSLACTATWY AVOAUCEWY
emaAnBevouv fava TNV avalutiki ekbpaocn NG KAUmUAng aAAnAemnidpaonc. Mwa pikpn
UTIEPAVTOXH TIOPATNPELTAL OTAV N POTA OTNV KEPAAN TOU TAGOAAOU Elval ETepOONUN TNG
optZovtiog SUVaUNG OTO TUNHA OTIOU N POTIH UTIEPLOXUEL TNG opllovtiag Suvapng. Auth n
Slapopa odeiletal otnv MUKVOTNTA TOU KavvaBou otnv katakopudn SievBuvon (oto
OUYKEKPLUEVO Ttpooopoiwpa eivat 0.3 m avti 0.1 m tou eAatnpLWTOU MPOCOUOLWHATOG).
H oAloBnon kat n amokoAAnon tou e8ddouc otov MAcoaAo dev emnpedleL TNV Hopdr) TG

KOVOVIKOTTOLNEVNC KAUTIUANG OAANAETtSpaong.
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IxAMa 24: Z0YKPLON TWV ATOTEAECUATWY ATIO TLG TPLOSLACTATEG APLOUNTIKEG AVOAUOELS

(a) pe tnv Umapén kevou, kat (B) xwpic TNV Umapén kevol HE TNV KAUTUAN

oAnAenidpaong and tnv avaAuTikn €kppacn yla MACOAAO OE OUOLOYEVEG OUVEKTIKO

£dadoc.

MeAETWVTAC TOUG MNXOVIOHOUG aoToxlog Tou Tmaocodlou  Slakpilvovtol

XOPAKTNPLOTIKEG {WVEG 0TNV KAUTTUAN aAAnAentidpaong. E€attiag tng cuppeTpiag povov n

Hwn K
1.

oumUuAn aAAnAenidpaong mapouaotaletol oto IXApa 25. Alakpivovrtat:

Zwvn opdéonung M—Q ¢optiong, Omou n PO UTEPLOXUEL OTNV OMOKPLON TOU
OUOTANATOG. O TMACOOAOG UTIOKELTOL OE MLKPN OPL{OVTLOL LETOTOTILON KoL PEYAAN
opoéonun otpodr. H mAaotiky apBpwaon avanmtuooeTal KOVTA otnV KEPOA ToU
oo dAou.

Zwvn opoonung M-Q ¢optiong, omou n opllovtia Suvapn UTEPLOXUEL OTNV
anokplon Tou ouothpatog. O MACCAAOG UTOKETAL O MEYAAn oplloviia
HETATOTLON KOl HLKPr) opoonun otpodr). H mAaotiky apBpwon avantuoosTol o€
BaBog, KataveunEVN O€ APKETO LAKOG TOU TTOLOCAAOU.

Zwvn etepoonung M—-Q ¢optiong, omou n oplovtia duvapn UTEPLOXVEL OTNV
anokplon Tou ouothpatog. O TMACCAAOG UTOKELTAL O MEYAAn opLloviia
HETATOTILON KOL MIKPN opoonun otpodr. H mAaotik dpbpwon avamtiooetal
okopa Babutepa Katd PAKOG Tou macodlou, adol n etepdonun pormr avéavel
TNV avtiotaon Tou cUCTHUATOG.

Zwvn etepoonung M—Q ¢optiong, OMoU N POTH AVOTPOTING UTEPLOXVUEL OTNV
QamoKpLon Tou cuoTANATOC. O MACOAAOG UTIOKELTOL LOVOV OE €TEPOCNUN OTpodN)
w¢ Mpoc¢ TNV KatevBuvaon tng Suvaung. H mMAaotiky apBpwaon avantuooeTal oTNV

kedaAn Tou maccAAou.
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IxAna 25: Enidpaon tng poptiong otnv andkplon Tou TaccAAou

To IxApa 26 amewkovilel ta Staviopata amo TNV AVOAUTIKN €kdpaon HE TV
Bewpnon CUOCXETIOUEVOU VOUOU TIAOOTLIKAG PONG HE T SLAVUOUOTO UETOTOTIOEWY Kol
oTpodWV KATA TNV aotoxia amod Ti¢ Ttplodidotateg avaAloels (a) pHe tnv umapén Kevou,
kal (B) xwplc tnv UMapPEn Kevol yla MACCAAO OE OUOLOYEVEG OUVEKTIKO €6adog. Elval
gUPaVEC OTL Ta SLAVUOUOTO TwV OPLOUNTIKWY aVOAUCEWY €lval KABETA OTNV KAUTUAN
oaAnAenidpaong otov xwpo Q—M. ErmutAéov, mapatnpeital ot n “kaboapni” avtoxn Tou
TIAOOAAOU Of POMN HE TIG TPLodldotateC avaAUoelg sival dlo HE TNG AVOAUTIKNG
ékdpaong. ZTig tpLodlaoctateg avaAloelg xwplg tnv Unapén kevou, n “kabapn” avtoxn
TOU ouoTAUaToC o opllovtia poption elval HeyaAUTEPN Ao TNG AVAAUTIKAG Ekdpaonc.
AvtiBeta, n “kaBapry” avtoxy Tou ouoThUatog oe opllovtia GopTIon aAmd TIC

Tplodldotateg avaAloelg pe tnv Umapén kevol eival mepimou 0.7 ¢opég enmi tnv
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oavtiotolyn amo TIC tPLodlaotateg avoAUOoel Xwpi¢ kevo. Auto elval avVAUEVOUEVO
anotéAeopa, adou n edadiki aviiotaon py HELWVETAL pe TNV UApPEn TOU KEVOU Kal n
“kaBapn” avtoxn Tou ouotApotog ot opuoviia GoptTion e€lval cuvaptnon NG
TETPAYWVIKNG pilag tng edadikig avtiotaons. Ouwg, mapd tnv dtadopd otnv “kabapn”
0VTOXN TOU CUOTNHATOG o opllovtia ¢opTion, n Hopdn ¢ KapmvuAng aAAnAenidpaong
TIALPOLLLEVEL AUETAPBANTN, KATA CUVETIELQV OVETINPEACTN ATTO TNV UTIAPEN YEWUETPLKWV UN-
YPOLULKOTATWV.

Ot kapmUAeg aAAnAemidpaong mou avamtuxdnkav éw¢ edw &ev AapBavouv
unoPv toug tnVv enidpaocn tou katakopudou doptiou, oMW cuuPaivel otnv MPAEN
onuepa. MNa tov Aoyo auto, e€etaletal pe TPLOSLAOTATEC OPLOUNTIKEC AVOAUCELS N
enibpaon tou katakopudou ¢optiou oTg KauMUAEG aMAnAemibpaong. ApxIKwG,
npoodlopifovtal ot “kabapeg”’ avioxég tou maccdAou oe Katakopupo doptio N,
opllovtio ¢doptio Qy kat pomn avatpornig M,. Ev cuvexeia, €va otabepo katakopudo
doptio (mooootd tng “kabapng” avtoxng N,) aokeital cuvexwg otnv kedpaArn Tou
nacodAou kat Aappavovtat ol kKapnuAeg aAAnAenidpaong Q-M ywa to ¢optio auvtd. H
Sladlkacio auth mpayuatomoliOnke yla TECOEPEG TIUEG Katakdpudou doptiou: O,
0.25N,, 0.5N, kat 0.75N,. Ot kaumnUAeg aAAnAenibpaong mou mpogkuav eival idieg
HETAEL TOUG, avefdptnteg Tou Katakopudou doptiou. Me Bdon TG TPLOOLACTATEG
avaAUoeLg TipoteiveTal pla mMARPNG KapmuAn aAAnAenidpaong os afovikr ¢option N,
opllovtia doption Q Kot KAtk porr M, xwpig va Aaupavetal UTOYLY To KPLTHPLO

Sloppon G Tou UALKOU TOU MaooaAou (ZxApa 27).
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IXAMa 26: Alaviopato Twv UETAROAWY TWV TMAACTIKWY EYKAPOLWV HETAKIVACEWY KO
otpodwv amd TNV avaAuTik €kdpacn HE TNV BOewpnon OUCXETIOUEVOU VOUOU
TAOOTLIKAG PONC YlOt TTAOOAAO OE OMOLYEVEC OUVEKTIKO £8adog Kol oUyKplon HE Ta
anoteAéopata and TG aplOUNTIKEG avaluoels (a) pe tTnv Umapén kevou, kat (B) xwplg

TV umapén Kevou
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IxAua 27: Mpotewvopevn KOUMUAN oAAnAemidpaong ylo UEMOVWUEVO TAOCAAO OF

OHOLOYEVEG CUVEKTIKO £6adog otov Tplodiactato xwpo M/M,-Q/Q,~N/N,
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IxAUa 28: ZUYKpLOn TOU QTOTEAECUATOC TELPAUATOG 0 GUOLKA KALLOKA WE TNV

KaUrtUAn aAAnAemnibpaong and tnv avaAutikn ékbpaon

To amotéAeopa plag Sokung ¢uolkng KApakag macocdlou umo opilovtia
dopton, pnkoug L = 25 m, Sapétpou = 0.8 m, kat ponry Stapporig My = 800 kNm o€
noAakn apylho (Gerolymos, 2013) Sivel éva onueio otnv kapmuAn aAAnAenidpaonc. H
doption aoknBnke oe LPoc 19 cm amd TNV emdpavela tou £6AadPouc Kal To OnuEeio
aotoxiag og oxEon Me TNV KoUUAn aAAnAemtidpaong anelkoviletal oto IXAua 28.

MNa tov Umapén mMoAwv onueiwv aoctoxiag otnv KaumuAn alAnAenidpoaong
SLleENxOn pla ospd MePAUATWY HOVOTOVIKWE GOPTI{OUEVWY UEUOVWUEVWVY TTOOOAAWV
oe &npn Aupo uTO pomn Kat opl{ovtia Suvaun €wg tnv actoxia (Push-over Tests) oto
Epyaotiplo Auvvauikng / Edadopnxavikng tou EBvikol MetooBiou MoAutexveiou.
IKOTOG TNG TELPOUATIKAG OElPAg elvalt n mpaktiky emaAfbguon TG KAUTUANG
oAnAenidpacnc Q—M KoL TOU CUCXETIOHEVOU VOHOU TAQOTIKAC PONG HEUOVWUEVWV
TIAOOAAWY O€ OPUWEEG UALKO. APXLIKWG, TIPAYLATOTIOONKAV TTELPALOTO TIPOKELLEVOU Val
eKTIUNOel n emibpaon mapayoviwv Onwe n SLAUETPOG TOU TaccdAou, n Slemipavela
naocodlou-edadoug, n mukvotnta tou edddoug kal n BEon Tou MAcCAAOU OTO KIBWTLO

NG AUHOU:
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e H péyotn edadwkn avtidbpaon mpoékude peyaAltepn amd authH  TOU
urtoAoyiletat pe tn pEBodo Broms pe ywvia TpBRg tTng AUpoU ion e auTAV TG
Kplowwng kotdaotaong. AeSOpévou OTL N KOUMUAN aAAnAemiSpoong eivat
KavoviKoTtoltnpévn autn n dtadopad efaleidetal.

e Ta BdBog NG mMAaoTikAg ApBpwong anod tnv endpdavela Tou eddadouc, kabwg Kat n
eSadikn avtidpaon avéavovtal pe TNV SLAUETPO TOU MACCAAOU.

e H edadikn avtidpaon avéavetal pe tTnv avénon tng edadiknc nukvotntag anod D,
= 45% (xaAapr kataotoon) os D, = 94% (mMukvr) Kotaotaon). INUELWVETAL OTL,
HETA TO MEYLOTO ¢opTio OTNV MUKV AUMO, N ATnOKPLON TOU CUCTAMOTOC
napouaotalel xaAdpwon.

e H B¢0n TOU MAOCAAOU OTO KOUTL TNG AUHUOU, YLa TIC (OLEG TTELPOUOTIKEG CUVONKEG,
bev enmnpedlel TNV anodkplon Tou macodAou o€ 6poug duokauiag kat “kabapnig”
avVtoxXNnG o€ opLlovtia hpopTLoN.

e Efetaotnkav tpelg Siadopetikég Siemidpaveleg macodAov-edadoug: (1) xwpig
texvntn Slemudavela, (2) pe texvnth tpaxela Slemipavela amd KOAA Kal AUUO,
Kal (3) e moAu tpaxeia Stemipavela anod yvahoxapto (N 120). Xwpig tnv texvnti
Slemipavela, to €uBoro oAlcBaivel MAvw otnV EMLPAVELN TOU TTAGOAAOU E
anotéAeopa va aAAAleL cuveXwG To onueio epapuoyng tou doptiou. H dtadopd
0TNV QTOKPLON TOU TAGOAAOU e TG Suo AAAeG Slemudaveleg eival eEAdyLoTn.
TeAKWC, yla ta melpapota eTAEXONKe ocwAnvoeldng mMAcoaAog and aAoupivio

6063 — F25 pe dudpetpo 30x28 mm, e teEXVNTA Tpaxela Siemudavela and KOAAA Kot
appo, og 60 cm mukvng appou (D, = 94%), TomoBeTNUEVOG OTO KEVTPO TOU KIBwTiou TNG
aupou. H povotoviki opllovtia ¢poption aokeital eite otnv kedpaAn Tou maccdAou (otnv
empavela tou £6adoug) eite o OUYKeKPLHEVO UPoC MAvw amd TNV emipAvelo Tou
edadoug, wote va petafiBaletal kal pomn otnv KepaArl TOu MACOAAOU. e KAOe
TAcoaAo TOmMoBeTOUVTAL HETAKIVNOLOMETPpA. Mia XOopaKTnploTk TeAWKN &ldtaén

nelpapartog 6ibetal oto IxApa 29.
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IXAna 29: TeAkn Statagn MepAUATOG

JUVOAKA Tipaypatomolifnkav Séka melpdpata: €va umo kaboapr opllovria
Suvapun, éva und kabapr pomr), MEVIE UTIO SLOPOPETIKEG OUOONUEG POPTIOELG, Eval yLa
€Aeyxo tNG emavaAnyPuotnTag Twv MEPAUATWY Kal duo umd etepoonun ¢option. To
IxAua 30 TapoUGCLAlEL TNV KOVOVIKOTIOLNUEVN KOUMUAN aMAnAemibpaong amo tnv
OVOAUTIKN €kdpacn Kol T TELPOUATIKA amoteAéopata. Mapd TNV PKPR KALMOKA TOu
TMEWPAUOTOG, N KAVOVIKOTIOINUEVN — KOUTMUAN  oAAnAenidpaong  emaAnBevetal
LKOVOTIOLNTIKA. TO KOKKLVO TPlywvo OTO OXNUO OVTLOTOLXEL OTO MElpapa yla Tov EAEyX0
™G emavoAnPLUOTNTOG KOl EVIOXUEL TNV ONUACLO TWV ATOTEAECUATWV.

To ZxAua 31 anekovilel Ta Slaviopata Tou AOYoU HETAKivNoNG Pog otpodn
amo TNV avaAutiki Ekbpacn HE TNV BewpPnon CUCXETIOUEVOU VOLOU TIAOOTLKAG PONG UE
TO ATIOTEAECUATO TWV TEPAUATWY. H KAUPn tou maccdhou Sev eMETpePE TNV PETPNON
QUTWV Twv SebopéVwY yla TIG eTEpOOnEC poptioelc. NMapoAa auTd, yla TIG OUOCNUES

doptioelg eival mpodpaveg o0tL n Bewpnon TnG KaBeTOTNTAG Elval SiKaloAoynuEvn.
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IxAua  30: JUyKplOn TWV TIEWPOAUATIKWY  ONTOTEAECUATWY HE TNV KAUUAn

oAANAeTtidpaong amod tnv avaAuTiki EKPpacn yLa mMACoAA0 OE UN-CUVEKTLKO €6adog.
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IxAua 31: Alaviopata Twv UETAROAWY TWV MAACTIKWY EYKAPOLWV HETAKIVACEWY KO
otpodwv amod TNV aVOAUTIK €kdpacn He TNV Oewpnon OCUCKETIOMEVOU VOUOU

TIAOLOTLKAG PONG VLA TIAOOOAO OE HUI-CUVEKTIKO £60.$0C KOl CUYKPLON UE T TELPOLULOTIKA

anoteAéopaTa
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IxAua 32: Jo0ykplon OSuvapnc—petakivnong otnv KepoArl TOU TIACCAAOU  ylo
emuParopevn Suvapn oe VYPog 56 cm pe Ta amoteAéopata tng Tplodldotatng

availuong, alAa Kot pe tnv mpoPAedn Tou ATAOTIOLNUEVOU TTPOCOUOLWHLOTOG.

H enmaAnBeuon twv nelpapdtwy £ywve pe mpoPAePelg Class B (Lambe, 1973) péow
€VOG QITAOTIOLNUEVOU TIPOCOUOLWUATOG S0KOU ETTL UA-YPAUHULKOU eAaTnpLwTol edddoug
tumou Winkler. To mpooopoiwpa Babuovoundnke pe ta melpapata “kabapng” avtoxng
oe pomn (ywa tnv cupmepldpopd TOUu TACOoAAou) kol oe opllovtia Suvapn (ywa to
cvuotnua) Kal ev ouvexela €ywe mpoPAsedn TNG aAmMOKPLONG TOU TIACCAAOU yla Ta
UTTOAOLTTOL OKTW TIELPAATA TTPOTOU QUTA MpAyUOTOTo60UV.

EmutAéov, petd TNV OAOKANPWON TWV TEPAUATWY TPAYHOTOMOLNONKE
TPLOSLAoTaTn apLOUNTIK) TIPOCOUOLWON TOUG HE TO KATOOTOTIKO TIPOCOUOIWHO TIOU
npoteivetal otnv mapovoa StatplPry, TpomMomolnpévo wote va AapBavel umoPv tnv
HETABOAN TNG ywviog TPWPBNAC TNG AUUOU PE TNV Katakopudn taon, Kabwg Kal tnv
xaAdpwon Ttou €dadlkol UAKOU oOuvapTtnoeL TNG SLATUNTIKAG Ttapapopdwons. To
npoocopoiwpa Babuovopeital, onmwg kat mpv, yw “kabopn” opllovtia ¢option Kat
“kaBapn” pomn koL ev ouvexela emaAnBeVel TNV AMOKPLON TOU CUCTHUOTOC YO TLG

UTTOAOUTTEG TIELPALMATLKEG SOKLLLEG.
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To IxAna 32 cuykplvel TNV SUVAUN—PETAKIVNON 0TNV KEDAAN TOU MOLOCAAOU Lo
emuBar\opevn Suvaun oe UVYog 56 cm pe TA QAMOTEAEOMATO TNG TPLOSLAOTATNG
ovailuong, aAAd Kal pe tnv TPOPBAedn TOU AMAOMOLNUEVOU TPOCOMOWWUATOC. Elvat
eUdaveg OTL TO AMAOTIOLNUEVO TIPOCOUOLwHA TIPOERAEPE KAVOTIONTIKA TNV OMOKPLON
Tou maoodlou. EmutAéov, n amokplon og 0pou¢ Suokapdiog kat peylotng Suvaung amo
TV Tplodlactatn apBuntikn avaluon sival oAU KOVTA oTa TIEPAUATIKA Sedopéva.
Mikpég Sladopég mou mapatnpouvtal, opeidovtal otnv StacTtoAlkotnTa Tou £6ddouc, N

orola 5&V POCOOLWVETOL ATIO TO CUYKEKPLUEVO KATAOTATIKO TIPOCOUOLWAL.

Epappuoyn otn Avvauikn Antokpion KoAwvonaooaAwv MEpupacg

Exovtag emaAnBeVosl TNV aflomIOTiO TOU, TO TIPOTELVOUEVO KOTOOTOTLKO
npooopoilwpa epappoleTal otnV HEAETN TNG OVEAAOTIKAG OSUVAULKAC amoKpLong
ovotnuatog eddadouc-macoalou-katackeunc. H alnAenidpoon eddadouc-macoaiou-
avwdoung avalvetat pe duo peBodoug: (1) Me amdomolnpévn mpocouoiwaon, n omnoia
nipaypotonoleital oe Vo otddia: (i) avaAuon (ev-xpOvw) TNG AVEAACTLKAG N-YPOMULKAG
amokplong tou edadkol OXNUATIOMOU, XWpI¢ TNV mapouciat MACCAAOU, UTO TIC
e€etalOpeveC OelOULKEG Oleyépoelg kal (ii) avaluon tng amokplong edadoug-naccdAou-
OVWOOUNG HE XPAON UN-YPAUUKOU UBPLSIKOU eAatnplwtol mpooopolwpato¢ Winkler,
To omoilo Oleyeipetal ocupdwva He Ta amoteAéopata TG avdluong tng €dadikig
amokpong, (2) Me mpooopolwon TG MAAPoug oUTeLENG TNG KLVNHOTLKAC KOl
adpavelakng aAAnAemnidpacnc oe TpLoSLACTATO MPOCOUOIWLLO TIEMEPACUEVWY OTOLXELWV.

ApXlKWG, OuYKplvoTtal Ta omoTeAEopOTA TwV SUO TPOCOUOLWHATWY Yyl TNV
ehaotiky Suvaukn amokplon €vog cuotAUaTto¢ £56A¢OUC-TAoOAAOU-KATAOKEURG. O
KoAwvomaooalog OepeAllwpévog oe Slotpwto apylliko €6adog kot HOVOALOKA
ouvOESEUEVOC HE TO KATAOTpWHA HLOC yépupac umoPBAMeTal o OElOMIKN SLEyepon
(Zxqua 33). EAéyxetal n enidpacn tTwv cuvopwv Tou TPLOSLACTATOU TIPOCOKOLWOTOG
OoTNV amoKpLon Tou cuoTtnuatog £6adouc—TtaccaAou—KaTaoKeUnc. Na tnv opBotepn
ipooopoilwaon oto TPLodLAcTATO MPOCOUOolWHA Xpnoldomnoleital tooduvaun anocBeon
HE TO mMpooopoiwpa Sdokol oe elatnplwto €dadog tuomou Winkler. H enibpacn tng
Oléyepong oOTNV  OEWOULIK  amokplon  OlepeuvAtal  PECW TPLWV  TIPOYUOTIKWY
gMLTayuvoloypadnUATwy:
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e Tnv Kataypadn Tou oelocpol tou Atyiou (1995)

e Tnv kataypadr tou oslopoL tng Acukadag (2003)

e Tnv kataypadn JMA tou oelopou tou Kobe (1995)

e OAeg TG KotaypadEg €ywe emkAlpAkia avaywyn oe PGA = 0.5 g. Ta
amoteAéopota Twv duo peBOdwv ouykpivovtal TOAU KOAG o Opoug xpovoiotopiag
gmtayxuvong (Exnua 34), petatoniong, otpodnc, GaopATWY AmoKPLoNG Kol KATAVOLNC
HeyloTwy pomwv.

‘EXovtag OUYKPILVEL TNV €AOOTIKA QIOKPLON TOU OUOTAHOTOC ME TG Suo
Sladopetikeg peBodoug, mpayuatomnoleital pia mpwtn Slepelivnon TWV EMUTTWOEWY TNG
Sl0pponG Tou MO.GOAAOU OTNV AMOKPLoN cuotipatog e5adouc-mtaccalou-yEpupag UMo
ocloplkn poption pe Eudaon otnv dountikn avelaotikotnta. EmutAéov, e€etaletal n
enidpacn Tou TUMoU Tou edadikol UALKOU, Tou Uoug tou Babpou, kat tng duvatotntag
avantuéng mMAAoTIKAG apBpwong otov popéa MAVW Kal KATW amod tnv emidpAavela Tou
£6A¢doUG OTNV OELOULKI) OTTOKPLON TOU CUCTHHATOC OE OPOUG TTAOCTIULOTNTOC.

To efetalopevo mpoPAnua mapouctdaletal oto IxAua 35. KoAwvomdooaAog
Bepellwpévog oe: (a) apyllikd €dadoc¢ pe avavopevn pe to Babog aotpdyylotn
Statuntikn avtoxn, kot (B) appwdec édadoc e ywvia tpAg ¢ = 40° kat cuvox ¢ = 5
kPa urntoBdaMAetal oe oelopikn Sleyepon. H andotaon tng empavelag tou edadoug anod
TO KEVIPO MAOG TOU KATAOTPWHATOC opiletol w¢ uYog tou PBabpou H, to omoio
TapaApeTPKA AapPdavetat wg H = 5, 10 m. H &Siatour tou KoAwvomaoodlou €xel
SLapeTpo d yla To TUAMO KATW armo tnv emdavela tou edadouc kat b (b = 1.5, 3.0 m) ywa
TO TMAMA TTAVW amo tnv emipdvela Tou €dddoug. MNa tnv Slepevvnon TNG EMPPONG TNG
B£ong TG MAAOTIKAC ApBpwong otnv amokplon Tou ouothuatog n Sidpetpoc d
avéavetal katd 33% oe oxéon e tnv Sldpetpo tou BAaBpou b, wote n MAACTIKA
apBpwon va dnuoupynBel mavw amno tnv enudpavela tov edadoug (6nAadn oto Babpo
Kal OxL otov macocaho). Etol, ta levyn Swopétpwv maccdlou—Babpou, d-b, mou
avaAvovtat eivatr 1.5-1.5, 2.0-1.5, 3.0-3.0, 4.0-3.0 (oe m). To pAKOG EUmnéng tou
KoAwvormaoodlou eivat L = 30 m, evw to PBpaxwdec unoBabpo Beswpeital ota 50 m
BaBog. ZuvoAka eetalovtal 8 Slatagelg KOAwvVoOmacoAAou.

MNa kaBe £va oamd ta ovailuBévta Sountikd ouotipato n  pala Tou
KATAOTPWUATOG UTIOAOYIoTNKE WoTe N Lolomepiodog Tou maktwuévou otn Baon Babpou

va ooutat pe T = 0.3 sec. H uA-ypa k) Sountik oupnepldopd Twv KOAWVOTIOLOOAAWY
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anelkoviletal oto ZIxAMa 36. OL KAUMUAEG OUTEG UTtoAoylotnkav HECW TOU
npocopolwpato¢ BWGG (Gerolymos et al.,, 2009) pe Tt mapapétpou n = 1, apxko
HETpo Suokapiag El TNG pun-pnyHATWHEVNG SLOTOUAG KOL KAUTTTIKY POTIH avToXN¢ otnVv
otdbun NG empdvelng Tou €dAadoug yla UEYLOTN EMLTAXUVON OTn  MAlo Tou

Kataotpwpatoca=0.2 g.

\ i1-© | / m=60tons
— [« d=15m
H=10m
Gy (MPa)
soft clay
18 m S, =2z kPa
L=30m p=1.6t/m3
v 86
Iy 200
v L 32 m
stiff clay
S, =100 kPa
p=18t/m3
v
P A A A A A A ol

rock
IxAua 33: Efetalopevo mPOPANUA yla TNV €AOOTIKA SUVOULKN) OTOKPLON E€VOG
OUOTAMOTOG  €6APOUG-TTAOCANOU-KATOOKEUNG HE  €va  TANPWG  TPLoSLAoTATO
TIPOCOUOLWHA TIEMEPACUEVWV OTOLXEIWV Kal €va Tipocopoiwpa Sokol og eAATNPLWTO

€6adog tumouv Winkler
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Ixnua 34: UyKpLon XPOVOIOTOPLWV EMITAXUVONG OTO KOTACTPpWHA TNG YEPupPOC UE TO
TIANPWG TPLOSLACTATO TMPOCOUOIWA TIEMEPACUEVWY OTOLXELWV KoL Eva TIPOCOUOlwA

Sokou og ehatnpwTto £dadog tumou Winkler
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Clay Sand
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IxAua 35: E€etalopevo mpoPAnua ylo tnv aveAaoTik SuvaULKh Omokplon €vog

ouoTNUaTog £6AdOUG—TIACCOAAOU—KATACGKEUTC

10 150
g . /,--" —b=15m,H=10m 125 4 e ——b=30m,H=10m
e ——-b=20m,H=10m Py ——-b=40m,H=10m
B s ——b=15m H=5m goq4 / ——b=30m, H=5m
2 6 ,’ ——-b=20m,H=5m F ke —=-b=40m,H=5m
2 i 2 75 !
2 K s {1
2 4 ;f
/ 50 4
i . e = —— 1 e ]
4 J,- I~
17 25 4
S ]
f
0 T r r . 0 . . . .
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0,006 0.008 001
K (rad/m) K (rad/m)

IxAua 36: KaumUAEC POTAC—KOUTIUAOTNTAG YlOL TIC TIOPOUETPLKEG OVAAUOCELC TOU

e&etalopuevou mpoPARUOTOG
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equivalent-linear

soil response analysis

Ixnua 37: MA-ypop ko mpooopoiwpa tumou Winkler

Me OTOXO TOV MEPLOPLOKO TWV TIAPAUETPWY TIOU UTIELCEPXOVTAL OTO TIPOPANUA, N
enidpacon tng amokplong tou edddouc ekundeviotnke, Bewpwvtag Eva povov eSadpiko
npodiA yla TNV avaluon NG MA-YPAUUKAG amdkplong tou €dadikol oxnuatiopov. H
enidpaon tng OlEyEPONG OTNV OELOUIKN amoKplon Olepeuvatal HEOW TWV TPLWV
TIPOYHOTIKWY  ETUTAXUVOLOYPAPNUATWY TIOU  XPNOLLOTIoONKaV  OTLG  EAOOTLKEG
ovaAUOELC PE TUKALLAKLO avaywyr o€ 0.5 g kat 0.8 g otnv emudaveta tou edadoug.

To IxAna 37 mapouctdlel T0 UA-YPAUUKO Ttpocopoiwpa tumou Winkler mou
xpnowornow)tnke. H avaAvon oamoteAsital amd Svo otadwa: (1) avaluon NG
QVEAQOTIKNG OmoKpLong Tou &€6adlkol OXNUATIOMOU, Xwplg TNV mapoucia Tng

KOTOOKEUNG HMe Tov  kwdwka SHAKE kat (2) avadAuon TG  Qmokplong
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edadoug-acocdrou-avwdounc os katakopupws Stadtdbopevn Sieyepon (amd to MpwTo
0tddLo ) pe tov kwdika OpenSees. OL edadkeg xpovoiotopieg ano to SHAKE elorixbnoav
w¢ Sléyepon OTO WUN-YPAULLKO Tipocopoiwpa tumou Winkler, evw n xpovoiotopia g
emtayxuvong ota 30 m xpnowdomnoltnke w¢ SLEyepon oTo TPLOSLACTATO MPOCOUOIW U
TIEMEPACUEVWY oTolXelwv. ETol, eAéyxetal n povodldotatn avaAuon tng OVEAACTIKNG
UN-YPOUULKAG amokpong tou edadlkol oOXNUATIOHOU ME TNV TPodldotatn. To
KATAOTPWHUO TIPOCOMOLWONKE WG OUYKEVIpWUEVN Halo otov kopudaio kopBo Ttou
KoAwvormaoodAou. O KOAwVOMAcoaAoC SLAKPLTOTOLETAL OE UA-YPAUULIKA oTolXElat SoKkoU
uAkoug 1.0 m, KaL n KAUMTIKR ocupunepldopd Tou opileTtol HEOW TOU KATAOTATIKOU
npooopolwpato¢ BWGG (Gerolymos & Gazetas 2005). 3T0 UA-YPOAUULIKO EAATNPLWTO
npooopowwpa  Winkler xpnowomoteitat pa  uBpdiky  Sudtafn eAatnpiwv  Kkat
amooBeotripwv. H cuunepidpopa tou edadoug Aapfavetatl oYLV HE Eva PUA-YPOLLULKO
elatriplo ocuvoebepévo v oelpd pe pLa TapAAANAn cuvbeon ypappLkou ehatnpiou Kot
amooBeotipa. la TNV Ouykekpluévn Olataén mpoteivetal Mot peBodoloyia
BaBuovounong twv otabepwv twv glatnpiwv Kot Tou amoofeotipa (IxAua 38)
ocUudwva Pe TNV omoia oL otaBepeg Twv eAatnpiwv kat Tou anooBeotrpa divovtal péow
uLog Stadikaoiog BeAtiotonoinong amnod TG OXECELG:

Re kelknl_|_|m(:’\elknl leEs (5)
k, +k, +ioc,

) -1/4
K L il KaKn Hl0CaKy | gl 0d) g (6)
® Ky +K, +ioc, V,

s
Omou ke n otaBepd tou ypoappikol elatnpiou, ky, n otabepd Ttou UA-ypPAUULKOU
ehatnplou, ¢ N otabepa Tou amooPeotrpa, Es To pETpo eAaotikoTnTAC Tou £6Adoug, V,
N ToxUTNTA TOU SLATUNTIKOU KUMOTOG, d N SLAUETPOG TOU TTACOAAOU KOl Ps N TTUKVOTNTA
Tou £6adoug. Ta HA-YPOUULIKA p-y eAatipla tou edddouc mpoaodlopilovtal emiong amo

TO KOTOLOTOTLKO Tipocopoiwpa BWGG Babuovounuévo e Tig KapmuAeg p-y Tou Matlock

(1970) yia apyho kal twv Reese et al (1974) ywa appo (Drosos, 2007).
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IxAna 38: Babuovounon tng Suokaupiag k, kat tng otabepdg amooBeong c, TG
UBPLEIKNG SLatagng Tou e€etalopévou PoBANUATOG

15m/

30m

Ixaua 39: Alokpltomoinon Tou KavwaBou yld TO TPLOSLACTATO TPOCOMOLIWHA

TIEMEPACUEVWYV OTOLXELWV TOU €eTAlOUEVOU TIPOBAAUATOC
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Itn Oeutepn HEBOSO n avaluon TNG OELOULKAG amoOKplong Ttou edadikol
oXnNUATWopoU Kalt n avaAuon tng oAAnAemidpaocng eddadouc-macodrouv-avwdoung
TIPAYUOATOTOLOUVTOL OE €VOl MOVOV OTASL0 HE TOV KWOLKA TIETMEPACUEVWV OTOLYELWV
ABAQUS (Zxnpa 39). To €dadog MPOoOUOLWVETAL UE OKTAKOUPLKA OTOLXELD CUVEXOUC
HEOOU eVW O KOAwvomaooaAog He tplodlaotata otoleia dokoU Katd HAKOG Tou
KatakopUdou afova Tou cuvdedepéva He KATAAANAOUC KIVNUOTIKOUG TIEPLOPLOOUC UE
TOUG KOUBOUG OTNV TEPLUETPO TOU Yyl TNV PEAALOTIK Tipocopoiwon oAOKANpNG tng
YVEWUETPLOC TOU KOAwvomacodAou. H cupnepipopd Tou KOAWVOMAGOAAOU (0 OpouC
POTING—KOUTUAOTNTAG) opileTal and eva eA0COTOMAAOTIKO TIPOCOUOIWUA CUUPWVA LE TIG
KOUMUAEG Tou ZxAMatog 36. MNa TNV PEOALOTIKI) TIPOCOUOLWON TNG HN-YPOAUMLKAC
anokplong tou £6adoug o avakukAlk ¢option, €l0AyovTal PECW UTIOPOUTIVAG TO
KOTOOTOTIKO Tipooopoiwpa twv Gerolymos et al (2005) yia tqv oupmepidopd TNG
apy{Aou Kol To TPOTELVOUEVO OTNV Ttapoloa SLaTPLBH KATAOTATLKO TIPOCOMOLWMA Yot TNV
oupuneplpopd tTNC AUpou. Ol TIAPAUETPOL TwV SUO KATOOTOTIKWY TPOCOUOLWHATWY
BaBuovopouvtal e oTOX0 TNV TAUTION TWV KOUTUAWY PE TIG AVTIOTOLXEG KOUTTUAEG G-y
Twv Ishibashi and Zhang (1993) amnd t™ BBAloypadia. MNa to avamtuxBév KATAOTATIKO
TIPOCOMOLWHA 0 AOYOC TOU HETPOU SLATUNOEWC O AVAKUKALKA GOpTLon amAng Statunong

umoAoyiletal ano tnv oxeon:

L <Yy
o t . 1 _YGO+(c+ptar;<p)c05cp
C an ¢ )Ccos - DN SRR
— = ( P (P) (P( a) (c+ptanq))coscp(1—§j (7)
G, 1-e >Y,
_(c+ptang)coso
! aG,

Kall N av€non Tou AOYou UOTEPNTLKAG amooBeong € Pe T SlaTunTkn mapapdpdwaon y

0, <Yy
B ~ +(C+ptan(p)COSlp ]
aG,
V3(cptan ¢)005¢(1—§j (c +ptan (p) CoS @ (l— 1)
3G, 2 a
a = E 1+e _ Go ~ (8)

_Y+<c+ngw (c+ptang)coso Yy
(c+ptang)cos (p(l—lj ! aG 0
G—Oa

| 1-e |
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onou

_(c+ptang)cose

aG, ©)

Yy

KataAAnAot Kivnuatikol meploplopol emBAANOVTOL OTIC AKPEG TOU TPOCOUOLWHUATOG,
wote n kivnon va eival opola pe tou elevBepou mediou. TENOG, yla TNV pElwon TOU
UTTOAOYLOTLKOU XPOVOU, TO OPXLKO TPLOSLACTOTO TPOCOUOIWHO TUABNKE EyKAPOLO KOTA
TO NULOU XwpLg va emnpealovTal MOCOTIKA TO OTMOTEAECHOTO TWV AVOAUCEWV.

AvalUoelg  eykdpolag povotovikng ¢optiong (Pushover Tests) twv 6uo
TIPOCOUOLWHATWYV Tiponynonkav Twv Suvapkwy avaAloswy: (a) pe Bewpnon cuvBnkwv
TAKTWONG otnv Baon tou Babpou mpokelpévou va eAeyBel n SounTikr cupmnepldopd g
KATa.oKEUNG, Kat (B) pe Bewpnon tn¢ aAnAenidpaong edadouc-avwSounc.

To ZxApa 40 mapoucLAleL TIG XPOVOIOTOPLEG TNG EMITAXUVONG OTNV ETILHAVELD TOU
edadoug oto eAelBepo medio yla TV Kataypadr tou JMA Kal Ta avtiotolya pacpata
anokplong ywa amnooPfeon 5%, onwg mpokumrtouv e TIC duo peBOSoug avaiuongc.
E€ayovtal ta akoAouba cupunepacuoTa:

e To aufnuévo TAATOC TNG EMITAXUVONG OTIC MEYAAEC OUXVOTNTEG ylo TNV
TPLOSLAOTATN AVAAUGN OE OXEON HE TNV UN-YPOAUULKA avaAuon amodidetal otnv
ToOAU Uikpn anooBeon Rayleigh tou tplodidotatou npooopolwpatog. EmutAéoy, n
tooduvapn ypapukn HEBodog €xel peyalltepn amoofeon otnv edadikn
anokplon yla UPNAEC CUXVOTNTEG.

e Je OAEG TIG TIEPUTTWOELG, N TPLodLaotatn avaluon odnyel o€ (oeg | XapunAOTEPES
TIMEG yla TNV péylotn edadikn erutayxuvon (PGA) oe oxéon pe tnv wooduvaun
VPOUUIK HEBOSO, katadelkvuovtag Ttnv emibpaocn NG  “MPOyMOTIKAG”
UN-YPOUULKAG cupmepldopdg Tou e6Adoug TNV amokpLon.

e Onw¢ avauevotav, n HUA-YPAUUKN amokplon Tou &86AadouC MELWVEL TIG
dACUATIKEC ETITOXVVOELC, eVvWw N deomdlouvoa Ttepiodog mapapével n idia.

e Jtnv Ttplobldotatn avaAuon, n TmAaotikomoinon Ttou edddoug audvel
auv&avopevng t¢ kopudaiag edadiknc smtayxuvong (PGA). Etol, n evioxuon tng
ocloULKAG Oléyepong elval ULKPOTEPN O OXEON HE TNV LOOSUVOUN YPOUULKN

uébodo.
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0.6 - — Equivalent Linear Analysis 24

0.4 4 —— 3D Nonlinear Analysis
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Ixnua 40: (o) Xpovoiotopieg tng emtayuvong tou JMA (Kobe) pe emkAlpdkia avaywyn
oto 0.5g oto eAeVBepo medio kal (B) daopa amnokpiong (€ = 5%) amo tnv woduvaun

YPOUULKA LEBOSO KaL TNV TpLodLldoTatn UN-YPAMULKA avadAuon yia dpytho

To ZxAua 41 cuyKpLVEL TIC XPOVOIOTOPIEC TNC EMITAXUVONG OTO KOTACTPWHA TNG
védbupag amnod T Vo peBddoug yia koAwvorndacoaAlo Stapétpou d = 3 m o€ APUWOEC
£€6adog we mpog to LYPog tou Babpou. Eival epdaveég OTL n AMOKPLON TOU GUOTAOTOC
and TIg Tplodldotateg avaAloelg elval mopopola Kol PE TNV armAomolnuévn pebodo.
EVOEIKTIKA, OO TO AMOTEAECUOTA TNE TTAPAUETPIKN G SlEPEUVNONG MO pATNPOUVTAL OTL:

e Havénon tou UYPouc Tou BABPoU AUEAVEL TNV EMLTAXUVON OTO KATACTPWLOL.

e H ukpoOtepn SLAUETPOC TOU TMAOCAAOU 0dnyel o peyaAltepn €mItdyuvon oOTO
KOTAOTPWHAL.

e Je otoBepn¢ SlapéTpou KoAwvomaoodloug, n avénon tNg SlapETpou TOU
MaooAdAou petaBLBAalel TIq LEYLOTEG POTIEG O€ eyalutepo Baboc.

e OuL otaBepng SLAPETPOU KOAWVOTIACOOAOL QVOMTUOOOUV TIAQOTIKN apBpwon
€VTOC Tou €6AdOoUG Kal OL TIAOOTIKEG OTPOGDEC KOTOVEUOVTOL OE HEYOAUTEPO
BaBocg, pelwvovtag £TOL TNV UEYLOTN KAUTTUAOTNTA.

e Me tnv avénon tou UPoug Tou BaBpou n mMAaotikn apBpwon petaBiBaletal mo
Kovta otnv enidavia tou edadoug.

Ektog amd ta Bepeliwdn peyédn, Omwe ol xpovoiotopleg emtdyuvong, TOU
TIEPLYPAPOUV TNV OELOUIKI) OTOKPLON TOU OUOTHUATOC £6A¢HOUC—KOAWVOTACCAAOU—
avwdoung, AAAoL onpavtikol SEIKTEG TNG OELOULKAG amokplong eivat o eiktng KABOAKNG
NMAQOTWOTNTAG M, O OelkTtNG TOTKAG TAQOTIHOTNTAG Mg, N Stadopikr oploviia
HETaKivnon TNG avwdoung avnyuevn npog to uog tng v (drift ratio). Qg deiktng TomKAG
MAQOTOTNTAG Mg OpileTal o AGyog NG HEYLOTNG KOUTMUAOTNTA Kmax TOU €TULRAAAETOL

OTNV KATOOKEUT QO TOV CELOUO TPOG TNV KAUTIUAGTNTA SLoppong Ky, Ttou ival Wbotnta



™N¢ SLATOUNC TOU KOAwvVoTaoodAou. Avtiotolya, wg S€IKTNG KAOOALKAG TTAQOTIUOTNTOG s
opileTal o AOyoG TNG MEYLOTNG METAKIVNONG TNG AVWEOUNG Umax, TNV OTIOLOL SLOVUEL TO
TUAMO TNG KATAOKEUNG MAVW amod Tnv eripavela tou £6adoug, mPog TNV HETAKIVNON
Slappong mou eival WbdTNTA Tou cuotuatog e6Adoug-koAwvonacodAou-yEdupag.
T€Aog, n Stadoplkn opllovTia PETOKIVNON TNE avwSoUnG avnyrEévn Tpog to UYPoG TNG Y
opietol w¢ 0 AOyoC TNC HEYLOTNG 0PL{OVTLOG METAKIVNONC TOU KATOOTPWHATOC OE OXEON

Ue tn Baon tou Babpou mpog to LPog tou Babpou.

a(g)

0.2

a(g)
o
1
s
p)

-0.2 4

-0.4

0 5 10 15 20 25
t (sec)

IxAua 41: Xpovoiotopieg TNG EMITAXUVONG OTO KATACTpWHA TNG YeEPupag yla
KoAwvoraooalo pe Sapetpo d = 3 m oe appwdeg £dadog (Stéyepon JMA 1995 pe

ETUKALLAKLA avaywyn oto 0.8 g)

To Zxnpa 42 apouctdlel TNV cUYKPLON TOU SEIKTN TOTIKNAG TAAOTLLOTNTAG g KOLL
™¢ dtadoptkng opllovtiag HeTakivnong tTng avwdoung avnyuévn mpoc to uPog tne y%
OTWG TpogkuP AV Ao TO UNA-YPOUKLKO Tipocopoiwpa turtou Winkler kat to tplobidotato
TIPOCOMOlWHA TIEMEPACUEVWY OTOLXElWV. H oUyKplon Twv SUOo TAPAUETPWY HE TIG Suo
HeB6doug avaluonc UTOSEIKVUEL OTL N AmOKPLON TOU CUOTAMOTOC £8A¢OoUC-TTacaAAoU-
BepeAiwong pe 1o TPLOSLACTATO TPOCOUOLWUA TIEMEPACUEVWY OTOLXELWV Elvatl Alyo TiLo
SUOKaAUITN Ao TNV AVTIOTOLYN KE TO UN-YPAUULKO Tipocopoiwpa tumou Winkler. MNa tov
AOYO QUTO OAQ TOL ATMTOTEAECHLOTO KATNYOPLOTIOLOUVTAL KOL WG TIPOC TNV HEBoSo availuong

TIOU XPNOLUOTIONONKE.
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Ixnua 42: >ovykpon (a) tou Seiktn TomkAg mMAoOTILOTNTAG Mg Kot (B) tou Adyou
opllOVTIOG HETOKIVNONG TNG OVWOOUNG Y% OO TO UA-YPOUULIKO TIPOoOoUoiwpa TUTIOU

Winkler kal To TplodLdoToTO MPOCOUOLW LA TIEMEPACUEVWV OTOLXELWV
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IXNua 43: uoxEtion tou SeikTn TOTUKAG TTAACTIHOTNTAG Mg KAl TOU AOyou opliovTlag
HETAKIVNONC TNG avwSounG Y% yia SladopeTikéC BETELG TNE MAAOTIKIG ApOpwaong HE TIC

Suo e€etalopeveg peBodoug avaluong

To IxApa 43 Seixvel tnv oxéon Tou SeiKTN TOTUKAG TMAAOCTIHOTNTOG Mg KOL TNG
Stadoplkng opllovtiag Petakivnong g avwdoung avnyuévn mpog to uog ¢ y% yla
B£on NG MAAOTIKNC apBpwong otov Gopéa TAVW Kal KATW omo TNV eMLPAVELX TOU
ebadoug. H anattolpevn mAaotipotnta yio Sedopévov Aoyo opllovtlag petakivnong tng
avwdoung kat yia tig duo pebodoug eival peyaAltepn otav n MAaoTikh apBpwaon
ovantuooetal oto PdabBpo. H ev Aoyw ouumepipopd odeiletal otnv  kivnon

amopaUOpPWTOU CWHATOG, TTIOU auEAveTal e To BABOC TNG MAACTIKAC apBpwaong Kot



6ev TmpokaAel Sountik ootoxia, emopévwg Oev  emnpedlel TNV ATALTOUWEVN
mAaoTuotnTa. EmutAéoyv, yla tnv mepimtwon tng avantuéng tng mAaoTtikng apbpwong
oto BaBpo kot ot Suo pEBodoL UTIOAOYLOUOU KOTAANYOUV OE MAPOUOLO CUCKETLON TOU

Seiktn TOMUKAG TMAQOTOTNTOG g HE TOV AOYO OXETLKNAG OpLlOVTLAG HETAKivNONG TNG

avwdoungy.
41
¢ H=10mBNWF ﬂw—_l = 35 27
361 @ H=10m3DFE Hs—1
O H=5mBNWF .
3 A H=5m3DFE
26 . H =5 m Eurocode 8 o *
N H =10 m Eurocode 8
=

21

161

111

Hs

IXAHa 44: ZuoxETion Tou SElKTN TOTILKAG MAACTIMOTNTAG Mg KOl TOu Seiktn KatBoAWKn G
TAQOTLUOTNTOG WUs Yia StadopeTikd VPN Tou BaBpou pe Tig duo efetalopeveg pebBodoug

avaAuonc kot Tov Eupwkwdika 8

H empporn tou UYPouc tou BABPOU OTNV CUCKETION TWV OEIKTWV TOTILKAG KOl
KOLBOALKNG TMAQOTLLOTNTAG Mg KO s HE TG Suo efetalopeveg peBOSOUG AMOTUTIWVETOL
oTo ZXAHa 44 kal yivetal ovykplon He tov Eupwkwdika 8. To PnAdtepo Babpo (H =10 m)
TapoucLdlel peyoAUtepn oamaitnon o€ TOTUKA TAACTWOTNTA Mg Yoo puoe Sedopévn
KOBOALKr TAQOTIHOTNTA s, KAOBWG 0 pécog Adyog (Ue — 1) / (Ms — 1) looutat pe 2.7 kat 2.1
yla TO TPLoOSLAOTATO TIPOCOUOLWHA TIEMEPOAOCHEVWY OTOXELWV KOL TO HA-YPAUULKO
npocopoiwpa tunou Winkler avtiotowa, évavtt 1.3 kat 1.1 yia to kovtutepo Babpo (H =
5 m). Auto odelletal KoL otnv HeyaAUTEPN evepyO LOLomepiodo TOU KOAWVOTIACCOAOU LE

To Kovtutepou PBabpo (T = 1.15 sec) oe oxéon pe to PnAotepo (T = 0.9 sec), omwg



npoékuPe pe avaiuon Fourier. EmutAéov, n anaitnon oe 0poug MAACTLUOTATAG A0 TOV
Eupwkwdika 8 gival mo cuvtnpntikn kat anod Tt duo pebodoug avaiuonc.

To IxAua 45 mapouclalel TG UECEC KAl QKPOLEC TIMEG TOU Oeiktn KABOAIKAG
TAQLOTLPOTNTAG s OE OXEON ME TNV B€on TG MAAOTIKAG ApBpwong otov popéa MAvVw Kal
KATW oo TNV emipavela tou e6adouc. O eUePYETIKOG POAOC TNG SnuLoupyilag TTAACTLKAG
apBpwong kKAtw amnod tnv empavela tou edadoug ivat mpodavng, KabBwE Kal ol HECEC
kal oL akpaieg THEG Tou Seiktn KABOALKAG TAACTIOTNTAG Mg ELvaLl UKPOTEPEG ATIO TIG
ovtioToL eC vl TNV MAAOTIKN apBpwaon oto BaBpo. H cupnepipopd auth mapatnpeitot
Kall LE TS Suo aplBuntikeég pebodouc.

MNa va eAeyxBel n emidpacn TN edadiLkric evOOOLUOTNTAG OTNV CELOULKN OTOKPLON
TOU CUOTAMATOC Tpaypatornoltnke moapapetpikny Sitepevvnon duo emunmAéov edadikwv
npodk: (a) dppou pe ywvia TpBAc ¢ = 28° kat ouvoyn ¢ = 5 kPa otaBepd pe to Babog
(opiletatl wg xaAapn), kat (B) apyilou pe to 20% TNG ACTPAYYLOTNG SLATUNTIKAG AVIOXAG
amo tnv apxtkn Bswpnon (opiletal wg xaAapn), ya TG dle¢ SUVOHLKES LBLOTNTEG TOU
ebadoug. Emedn n peiwon tng avroxng tou e6adoug emnpedlet TIG SUVOHLKES LOLOTNTES
Tou edadoug oto TpLodldotato npocopoiwpa (my. E§lowoelg 7-9) Kol KATd CUVETELQV N
HEYLOTN €mLTA)XUVON OTNV emidpavela tou 6adoug ival HIKPOTEPN ATIO TNV ETLTAXUVON
™G emKALAKLAG avaywyng, n ebdadikn evdooludtnta UeEAETATOL HOVOV ME TO
UN-YPOUULKO Tipocopoiwpa turmou Winkler.

Xto IXAuo 46 Oeixvetal n ouoxETlon TNG TOTUKAG Mg HE TNV KABOAWKA
TAOOTIHOTNTO s OUVAPTAOEL TNG €vOOOLUOTNTAC TOU €8A¢OUC HE TO HUA-YPAUULKO
npooopoiwpa turmou Winkler. Aev mapatnpouvtal onuavtikeég dtadopomnolnoslg, adou
yla O8ebopévn TAAOTIHOTNTA OE OPOUC METAKIVNONG, N TIAQOTIUHOTNTA OE OPOUC
KOUTTUAOTNTOG EVOC KOAWVOTIAOCAAOU BepeAlwUéEVOU O palakn dpylho 1 xaAapr appo

eAdxota Stadpepel and tnv avtiotolyn o€ otippr ApyAO i TIUKVA GULUO.
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IxAMa 46: JUOXETION TWV UTIOAOYIOMEVWY OEIKTWV TOTUKAG Kal KOOOALKAG
TMAQOTIHOTNTAG Mg KO Mg Yo StadopeTiky edadikry evoooLuoOTNTA PE TO UN-YPOULKO

npooopoiwpa tumou Winkler

M'EVIKA, Ao TIG MAPAUETPLKEG OVAAUCELG TWV SUO TIPOCOUOLWUATWY TIPOKUTITEL:

e [l OUYKEKPLUEVN amaitnon og Seiktn KABOAIKN G MAAOTILOTNTAS WUs, N EUPAVION
NG TAQOTIKAG ApBpwonc KATw amo tnv emidpavela tTou £8APoug UELWVEL TNV
arnaitnon oe Seiktn TOTUKAG TMAAOTIHOTNTAG [y, UTIOSELKVUOVTOG TNV EVEPYETKNA

ouunepLPoPA TNG OVEAACTIKN G ATTOKPLONG TOU MOLOCAAOU.
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e H &uapetpog tou BaBpou dev xel LdLaitepn eMLPPON OTNV CUCXETLON TWV SELKTWVY
TOTUKNG KAl KAOOALKA G TTAOOTIUOTNTOG.

e Ta yYnAotepa PBabpa, €xouv peyalutepn amaitnon o€ Oelktn TOMKAG
MAQOTWOTNTAG Mg, YO OUYKEKPLUEVN amaitnon o€ Oeiktn  KoBOAKNAG
TMAQOTIHOTNTAG Ms. H amaitnon mAaotiuotntag tou Eupwkwdika 8 elval
OUVTNPNTLKOTEPN O oUYKpLon HE TIc duo pebddoug avaAloewd.

e Avtlotoiywg, n anaitnon oe Seiktn TOTUKAG MAACTIHOTNTOG [y, YL CUYKEKPLUEVO
AOyo opuovtiag Hetakivnong tNg avwdoung y elval PeyaAUTEPn HE TNV
mAaotikonoinon tou BaBpou katl pe tnv avénon tng SLapETpou Kot Tou UYPoug
Tou Babpou.

® JYETIKA UE TIC MEOCEC KOl MEYLOTEC TIUEC TOU AapBdavouv ol efetalopevol opol
TIAQLOTLUOTNTAG KOTA TN SLApKeELa VOGS OELOUOU, oL SEIKTEG TOTIKAG Kal KABOALKNAG
TAQOTIHOTNTAG Mg KOL Ps, HEWWVOVTAL OTOV N TAQOTIKA ApBpwaon avamtuooetal
puéoa oto £6adoc. H avénon tou UYPoug tou Pabpou kal tng SLAUETPOU TOU
BAaBpou aufAavouv TG LECEG KO LEYLOTEG TLHEG TWV g KOL Hs, EVW HELWVOUV TLG
avtiotolyeg Tou AOyou opL{OVTLOC LETAKIVNONG TNG AVWEOUNC Y.

e H ouox£Tlon TwV SEIKTWV TOTLKAG Kol KABOALKAG MAQOTUOTNTAC eMnpealeTal
eAdxlota ano tnv edadikn evdooipotna.

e [ O6ebopévo Aoyo opllovtiag PETOKIVNONG TNG OVWOOUNAG Y, N amaitnon os
Seiktn TOTILKAG MAQOTIHOTNTAG Wy, ElvaL peyaAlTepn o paAakd e6adn.

AMO TO QVWTEPW TOVIIETAL O MLKPOC EUEPYETIKOC POAOC TNG OVEAOOTLKAG
ocupumneplpopdg tou e6adPoug otV amokpLon TNG KATAOKEUNRG, OAAA Kuplwg n HEYAAN
EUEPYETIKN eMibpaon TNG avamtuéng tng MAAOTIKAE apBpwaong oto popEa KATW amo TV

ermudavela tov edadouc.
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CHAPTER 1:
OVERVIEW OF METHODS OF ANALYSIS OF PILES UNDER LATERAL LOADING

1.1 INTRODUCTION

The lateral response of pile foundation under static or dynamic loading is an area
of extensive active research, since pile foundation is widely used to support
superstructures such as bridges, wind-turbines and offshore platforms. Especially, the
kinematic and inertial interaction constitute a complex and unique phenomenon referred
to as the soil-pile—structure interaction which includes a number of parameters, such as
the soil stratigraphy and properties, the nonlinear stress—strain behavior of the soil and
pile (material nonlinearity) and the geometrical nonlinearities (p—6 effects, separation
and slippage).

The methods of analyses of laterally loaded piles can be categorized into four
major groups: (i) the limit equilibrium method, (ii) beam-on-Winkler-foundation methods
usually based on experimentally derived p-y curves, (iii) methods based on continuum
mechanics, and (iv) the macro-element method. The limit equilibrium method considers
both the pile and the soil to be perfectly plastic and is suitable only for the ultimate load
of a pile. Models of the third group can be either linear elastic continuum models or
nonlinear continuum finite element models. Linear elastic models are easily used having
closed-form expressions, but they are not capable of describing the inevitable soil
inelasticity, especially in large strains. Nonlinear continuum finite element models
attempt to reproduce realistically the complicated soil-pile interface behavior, but their
implementation in numerical codes presumes the use and calibration of quite advanced
and complicated constitutive models, usually an extremely time-consuming task. Beam-
on-Winkler-foundation models have been proved sufficient in the prediction of
horizontally loaded pile response, while at the same time they can be easily implemented
in numerical codes. A drawback of this method is that each soil spring responds

independently from the adjacent ones, thus ignoring the shear transfer between the soil



layers. Finally, the macro-element method allows the complete macroscopic simulation
of the soil-foundation system with minimum time as the beam-on-Winkler-foundation
methods, while all the degrees of freedom of the macro-element are coupled.

The lateral pile response and the soil-pile-structure interaction have been
investigated by numerous researchers. In the present chapter, an overview of
characteristic methods of analysis available in the literature is presented with emphasis

on single piles embedded in non-liquefied soils.

1.2 LIMIT EQUILIBRIUM METHOD

In general, limit analysis provide the equations for the loading that develops the
ultimate bending moment on the pile. The main assumption considers the soil and the
pile as rigid plastic materials. The failure load of a laterally loaded pile was first treated in
detail by Broms (1964a, b, 1965). Different mechanisms of failure were identified
depending on the relative length of the pile, the plastic moment of the pile section and
the strength of the soil. A key quantity in the solutions was the limiting pressure (or force
per unit length of the pile) which the soil was assumed to apply. The ultimate load is
found by equations of statics for the distribution of ultimate resistance of soil that puts
the pile in equilibrium.

For cohesive soil, Broms assumed a limiting pressure of 9S, where S, the
undrained shear strength of the soil. Close to the ground surface this value is reduced to
allow for the different mode of deformation at that region. Randolph and Houlsby (1984)
used classical plasticity theory to derive lower and upper bound values of the limiting
pressure on a laterally loaded pile from undrained soil. The soil was modeled as a
perfectly plastic cohesive material and the calculation of the ultimate lateral resistance at
depth to purely horizontal movement reduced to a plain strain problem of plastic theory.
Hence, the load is calculated on a long cylinder which moves laterally through an infinite
medium. It was found that the load factor varies from 6+m for a perfectly smooth pile to
5.66+2n for a perfectly rough pile. Similar results have been obtained by Murff and
Hamilton (1993) and Martin and Randolph (2006).

For cohesionless soil, Broms assumed that the ultimate lateral resistance is a
factor n (in Broms’ case n = 3) times the Rankine passive pressure. Many researchers

have proposed different values for the factor n. Fleming et al (1992) proposed a value



equal to the passive earth pressure coefficient n = K,. Pender (1995) proposed a value of
n = 5 times the Rankine passive pressure because it compares well results from finite
element analysis. Additionally, Cubrinovski et al (2006) based on full-scale pile tests
measured a value of n =4.5.

Recently, De Simone (2012) extended the Broms’ theory for cohesionless soils to
account for an arbitrary position of the pile head, considering embedded as well as over-
ground restrained and free pile head (Figures 1.1 and 1.2). As in Broms’ theory, soil and
pile are both considered as rigid plastic materials, the collapse mechanisms being: (i) the
rigid (short or no hinges) and long (one hinge) pile in case of free head, and (ii) short,
intermediate (one hinge) and long (two hinges) in the case of a restrained head, with the
soil reaction profiles at an ultimate state condition. Explicit analytic expressions for the
collapse load and the geometrical parameters (such as pile length and diameter) of the

problem are given for the cases examined.

1.3 BEAM-ON-WINKLER-FOUNDATION METHODS

Originally proposed by Winkler in 1967, Beam-on-Winkler-foundation methods
are widely used for the response of single piles. The model represents the soil as an array
of uncoupled springs while the pile is modeled as a beam-column element. The springs
can be linear elastic or nonlinear and the shapes of the load-deformation relationships
are described by empirical p-y curves, where the spring stiffness value is variable,
allowing consideration of a non-proportional relationship between the soil resistance per
unit pile length p and the lateral displacement y. For dynamic problems, hysteretic
energy dissipation in the soil is modeled using nonlinear springs whose parameters are
determined experimentally from load-deformation curves while dashpots are also
introduced that account for the energy dissipation due to radiation damping under
dynamic loading conditions. Regarding seismic excitations, Penzien et al (1964) assumed
a lumped mass model and performed the analysis in two stages: (1) the dynamic motion
of the free-field is obtained by considering that it is uncoupled from the pile motion (site
response analysis), and (2) the free-field motion is applied to the soil-pile system as
boundary support movements at the end of each spring element. Although this method

ignores the shear transfer between layers of soil and the radial and three-dimensional



components of interaction, it has been adopted by many researchers due to its efficiency
and simplicity.

Several researchers have developed recommendations for p-y curves. Based on
experiments on single piles in soft clay, Matlock (1970) proposed relationships of the soil
resistance p and the lateral soil displacement y for short-term loading, for cyclic loading
and after-cyclic loading (Figure 1.3). Similarly, Reese et al (1974) developed p-y curves for
piles embedded in sand for short term static loading and for cyclic loading, while Reese
et al (1975) conducted lateral pile load tests in overconsolidated stiff clay and proposed
p-y curves for static and cyclic loading. O'Neill and Murchison (1983) proposed a
procedure for developing p-y curves for piles embedded in sands that is recommended
by the APl (2000). In their study, the failure mechanisms of Reese et al (1974) that
correspond to the wedge-shaped and the horizontal plane strain failure mode are
retained, but three coefficients that are dimensionless functions of the peak friction
angle are introduced in the ultimate soil resistance. Furthermore, the initial modulus is
given as a function of either the relative density or the friction angle of the soil.
Georgiadis (1983) proposed a procedure for the determination of p-y curves for layered
soils. Ashour and Norris (2000) developed the Strain Wedge Model, which allows the
assessment of nonlinear p-y curve response of laterally loaded piles based on a 3D soil-
pile interaction response through a passive wedge soil developing in front of the pile
(Figure 1.4). This approach relates the stress-strain-strength behaviour of the layered soil
in the 3D wedge model to the 1D BNWF model parameters taking into consideration
influences such as pile bending stiffness, pile cross-sectional shape, pile-head fixity, and
pile-head. Results have shown very good agreement with actual field tests in sand, clay,
and layered soils. Finally, Reese and Van Impe (2001) proposed a procedure for short-
term static loading and for cyclic loading for piles embedded in soils that are
characterized by both cohesion c and friction ¢.

Novak (1974) based on beam-on-elastic-foundation model studied the dynamic
response of piles to horizontal loading and derived spring and dashpots coefficients
assuming plane strain conditions. Matlock et al (1978) proposed a Winkler model for the
dynamic response analysis of pile foundations which consists of a frequency-independent
nonlinear spring connected in parallel with a linear dashpot which accounts for the

radiation damping.

10



Trochanis et al (1991a) used the experience gained from a three-dimensional
parametric study to develop a simplified model that reproduces the main nonlinear
features of the behavior of single piles, as well as the interaction between a pair of piles.
A simplified model consisting of coupled, inelastically supported one-dimensional piles
was developed that takes into consideration slippage and separation between the piles
and the soil, as well as the overall inelastic soil behavior including degradation. A
degrading hysteretic model developed by Wen (1976) for the analysis of single and multi-
degree oscillators was adapted as the constitutive model for the vertical and horizontal
springs of the proposed simplified model. The validity of the proposed model was
assessed by an extensive comparison with numerical results from the more accurate
three-dimensional study, as well as with results from experimental field tests.

Nogami et al (1992) completed a rational dynamic soil-pile interaction model
which was developed adopting Winkler's hypothesis with a special attention to the
conditions in which the strong nonlinearity is induced in the vicinity of the pile shaft
under dynamic loading. It is formulated in a simple system of frequency independent
mass, springs, and dashpots that consists a near-field and a far-field element (Figure 1.5).
The near-field element, consisting of nonlinear spring and mass, accounts for the
nonlinear soil behavior in the vicinity of the pile shaft, and the far-field element,
consisting of three parallel spring and dashpot pairs connected in series, reproduces the
elastic behavior of the soil outside the region of strong nonlinear behavior. This
arrangement enables the model to logically reproduce the nonlinear effects in the
dynamic response by transferring the motion through the area of strong nonlinear
behavior to the far field. The nonlinear pile-soil interaction model is applicable to both
frequency-domain and time-domain dynamic lateral response analyses. The nonlinear
condition and dynamic condition are coupled with each other to produce the complex
soil action to the pile shaft motion while special consideration of a gap formation at the
soil-pile interface is taken.

Kavvadas and Gazetas (1993) studied the kinematic response of free-head piles
since such pile deformation was observed to trigger structural damage in many strong
earthquakes. In addition, a dynamic Winkler foundation model for two layered deposits
was developed and an extensive parametric study on the kinematic response of single

free-head piles to vertically propagating harmonic shear waves was conducted showing
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that the critical region of pile distress due to kinematic loading is at or near the interface
between alternating soft and stiff soil layers.

Duncan et al (1994) developed the characteristic load method (CLM) based on
nonlinear p-y analyses for a wide range of flexible free-head and fixed-head piles and
drilled shafts in clay and in sand, in which the results are given in the form of
relationships among dimensionless variables (Figure 1.6). The method can be used to
determine: (1) ground-line deflections due to lateral load for free-head conditions, fixed-
head conditions, and the flagpole condition, (2) ground-line deflections due to moments
applied at the ground line, (3) maximum moments for free-head conditions, fixed-head
conditions, and the flagpole condition, and (4) the location of the maximum moment in
the pile or drilled shaft. Ooi et al (2004) extended the characteristic load method (CLM)
to account for embedment effects for single fixed-head piles and pile groups. A simplified
procedure to estimate group deflections and moments was also developed based on the
p-multiplier approach. Group amplification factors are introduced to amplify the single
pile deflection and bending moment to reflect pile—soil-pile interaction.

Badoni and Makris (1996) proposed a macroscopic model that consists of
distributed hysteretic springs and frequency dependent dashpots to compute the
nonlinear response of single piles under dynamic lateral loads. The distributed nonlinear
spring described by the Bouc-Wen model (Bouc 1971, Wen 1976) is combined with a
distributed viscous dashpot placed in parallel. The model is physically motivated,
adequate for both cohesive and cohesionless soils, and involves standard geotechnical
parameters. Only two parameters have to be calibrated by fitting experimental data.
While hysteretic damping is accounted for by the Bouc-Wen model, the distributed
damping coefficient that models radiation damping is provided through a realistic
frequency dependent expression which has been modified to allow for some reduction
when nonlinear behavior prevails. The model was calibrated and validated against five
well instrumented full-scale experiments.

El Naggar and Novak (1996) proposed a Winkler model for evaluating the lateral
response of piles accounting for nonlinearity. The model includes a hyperbolic stress-
strain relationship and slippage and gapping at the pile-soil interface. Springs, sliders and
dashpots are combined to approximate the behavior of the pile-soil interface, the 'inner’

field and the 'outer' field. The model also accounts for the propagation of waves away
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from the pile and energy dissipation through both material and geometric damping. El
Naggar and Bentley (2000) modified this model to utilize existing or developed cyclic or
static p-y curves to represent nonlinear behavior of the soil adjacent to the pile (Figure
1.7).

Wang et al (1998) used several implementations of the beam-on-nonlinear-
Winkler-foundation method to predict results of centrifuge model tests of single piles in
a soft clay soil profile. By separating the soil into two zones, near field and far field, soil
behavior under soil-pile-structure interaction is reasonably modeled. It was found that
viscous dashpots in parallel with a hysteretic element (parallel radiation damping) can
provide a mechanism for unrealistically large forces transmitted around the hysteretic
element. This problem can be avoided by placing the linear viscous dashpot in parallel
with only the linear component of the hysteretic element and then in series with the
hysteretic component (series radiation damping).

Boulanger et al (1999) proposed a dynamic beam-on-nonlinear-Winkler-
foundation (or ““dynamic p-y’’) analysis method for analyzing seismic soil-pile-structure
interaction (Figure 1.8). The nonlinear behavior consists of elastic, plastic and gap
components in series. Important features of the dynamic p-y analyses include the use of
series hysteretic/viscous damping to represent radiation damping (as proposed by Wang
et al, 1998) and the inclusion of gapping effects (after Matlock et al, 1978) by a nonlinear
closure spring in parallel with a nonlinear drag spring. This method was evaluated against
the results of a series of dynamic centrifuge model tests. The centrifuge tests included
two different single-pile-supported structures subjected to nine different earthquake
events with peak accelerations ranging from 0.02 to 0.7g. The soil profile consisted of
soft clay overlying dense sand. Reasonably good agreement was obtained between
calculated and recorded responses for both structural models in all earthquake events.

Budek et al (2000) used a simple beam-on-Winkler-foundation model to
represent the lateral force response of a reinforced concrete (RC) pile in cohesionless
soil. An inelastic analysis was performed on the structure, using as the pile constitutive
model the section moment-curvature relationship which was based on confined stress-
strain relationships for the concrete. The varied parameters included the pile head
conditions (free and fixed head), the height of pile head above ground level, and the soil

stiffness. Linear, bilinear, and hyperbolic soil models were examined. The analysis
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showed that shear would be significantly underpredicted by an elastic analysis, as
inelastic behavior moved the point of maximum moment in the pile shaft closer to the
surface, thus reducing the shear span. Maximum moment depth in the pile shaft and
plastic hinge length were also shown to be strongly dependent on soil stiffness, and in
the case of fixed-head piles, on above ground height of the superstructure.

Nikolaou et al (2001) implemented an approximate beam-on-dynamic-Winkler-
foundation (BDWF) model for the seismic response of piles in layered soil. After
evaluating some existing design methods for kinematic pile loading, a simple
approximate formula for estimating the maximum harmonic steady-state bending
moment at the interface between two consecutive soil layers under resonant conditions
was proposed. The expression is based on a “characteristic” shear stress, t., which is
proportional to the actual shear stress that is likely to develop at the interface, as
function of the maximum free-field acceleration at surface. Both fixed- and free-head
piles, and different boundary conditions at the pile toe, were considered. It was shown
that the magnitude of kinematic moments depends mainly on the stiffness contrast
between the soil layers, the pile-soil stiffness contrast, the excitation frequency, and the
number of excitation cycles.

Hutchinson et al (2004) performed nonlinear static and dynamic analyses to
evaluate the inelastic seismic response of bridge and viaduct structures supported on
extended cast-in-drilled-hole (CIDH) pile shafts. The nonlinear dynamic analyses used a
beam-on-nonlinear-Winkler-foundation model to simulate the soil-pile interaction,
nonlinear fiber beam-column elements to model the reinforced concrete sections and
one-dimensional site response analyses for the free-field soil profile response. The study
included consideration of ground motion characteristics, site response, lateral soil
resistance, structural parameters, geometry nonlinearity (P-A effects), and performance
measures. Results focused on how the ground motion characteristics and variations in
structural configurations affect the performance measures that evaluate the inelastic
seismic response.

Gerolymos and Gazetas (2005) developed a dynamic nonlinear Winkler spring
model to study the seismic response of deep foundations. The model utilizes the
phenomenological Winkler-type model for the inelastic response of both the soil and the

pile. The constitutive model used for the soil springs, the soil dashpots and the pile is
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based on an extension and modification of the Bouc-Wen model, named BWGG. The
nonlinear reaction of the soil is modeled realistically by the BWGG interaction springs
and dashpots and is able to simulate effects such as separation of the pile from the soil,
radiation damping and loss of strength due to pore-water pressure development. The
modeling of the pile inelasticity can treat from well-reinforced to poorly-reinforced
concrete sections. The proposed model is calibrated through experimental data and is
capable of predicting the large amplitude dynamic response of piles up to failure from
pile load tests both static and cyclic. Gerolymos et al (2009) applied this model to the
analysis of pile-column supported bridge structures, in order to investigate the
consequences of pile yielding in the response of such systems.

Allotey and ElI Naggar (2008) developed a synthesized cyclic normal force-
displacement model for the dynamic Beam-on-nonlinear-Winkler-foundation model used
in the analysis of shallow and deep foundations. The backbone curve of the model
comprises a four-segment adaptable multi-linear curve that can represent both
monotonic and post-peak behavior. The approach used for the unloading and reloading
curves is an adaptation of Pyke’s method (Pyke, 1979) which is modified to account for
strength degradation. A soil cave-in modeling approach is developed allowing for the
rational modeling of the slack zone formation. A modified version of the rainflow-
counting technique of Anthes (1997) is developed for the modeling of cyclic degradation.
Radiation damping is modeled using a stiffness-proportional nonlinear damping
formulation that comprises a nonlinear dashpot placed in parallel with a nonlinear
spring, while the hysteretic damping ratio of the model ranges from zero for a perfectly
elastic response to the largest possible amount of energy dissipation per cycle under

two-way cyclic loading.

1.4 METHODS BASED ON CONTINUUM MECHANICS
1.4.1 Elastic solutions

Models of this group have analytical or numerical solutions. The elastic
continuum analytical method is based on Mindlin’s (1936) closed-form solution for the
application of point loads within a half-space. Soil nonlinearity is not taken into
consideration and the method is applicable to small-strain steady-state vibration

problems.
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Poulos (1971) used the elastic theory, in which the soil surrounding the pile is
modeled as a homogeneous elastic continuum, to study the displacement, rotation and
moment in a single floating vertical pile subjected to horizontal load and moment. The
effects of local yielding of the soil on the behavior of the pile were also examined.
Despite its limitations, the proposed theory enables: (a) quantitative estimates of the
effect of pile movements of factors like the pile length and stiffness, (b) an estimate of
the relative proportions of immediate and consolidation movement, and (c) a logical
analysis of the effects of local soil yielding. Poulos and Davis (1980) extended the elastic
theory to analysis and design methods for pile foundations for a wide range of cases.

Kagawa and Kraft (1980) used the results of a 3-D Finite Element analysis to
derive spring and dashpot coefficients comparable to those of the plane-strain case. The
analyses performed led to dynamic p-y relationships of three heterogeneous soil profiles.
Nonlinear stress-strain relationships of soils were approximated by the equivalent linear
method. A conventional beam-on-Winkler- foundation method was then used to provide
a basis of comparison with the obtained results to gain some insight into the nonlinear
discrete soil-pile springs and dashpots for the seismic response analysis of a soil-pile-
structure system.

Randolph (1981) conducted a parametric study of the response of laterally loaded
cylindrical piles embedded in an elastic soil continuum with: (i) a constant, and (ii) a
linearly varying soil modulus, using the finite element method. Based on the results from
the analyses, simple algebraic expressions for the active length of the pile, the ground
level deformations, and the maximum bending moment along the pile derived. In
addition, the patterns of soil movement around a laterally loaded single pile, obtained
from the finite element analysis, were used to develop expressions for interaction factors
between adjacent piles for fixed-headed and free-headed piles.

Velez et al (1983) utilized an efficient finite-element formulation to study the
dynamic response characteristics of single constrained-head piles embedded in a soil
stratum having linearly increasing stiffness with depth. The excitation consists of a
harmonic horizontal force or moment applied at the pile head and the soil is modeled as
a linear hysteretic medium. The results of the study are presented in the form of non-
dimensional graphs from which one can estimate static and dynamic stiffnesses and

effective damping ratios of piles. The three impedances (swaying, rocking and coupled
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swaying-rocking) are expressed in terms of the normalized stiffness and the three
corresponding effective damping ratios depend on: (1) the ratio of the Young’s modulus
of the pile over the Young’s modulus of the soil, (2) the slenderness ratio L/d, (3) the
dimensionless frequency factor as = wd/Vs, in which V; the shear wave velocity of the soil,
(4) the internal hysteretic damping ratio in the soil B assumed to be either a constant or a
decreasing function of depth, (5) the Poisson’s ratio v of the soil, and (6) the ratio of mass
density of the pile and the soil. In addition, the concept of an effective soil modulus is
introduced to elucidate the importance of soil non-homogeneity and it is shown that the
effective soil modulus not only depends on the type of loading (force or moment), but
also on its frequency of oscillation. Finally, criteria were developed to define when a pile
is “flexible” under static and dynamic loads.

Gazetas (1984) presented an extensive parametric study of the dynamic response
of end-bearing piles embedded in soils with (a) homogeneous, (b) linear, and (c)
parabolic Young’s modulus distribution and subjected to propagating harmonic S-waves.
The seismic soil-pile-structure interaction was studied as the superposition of two
effects: (i) the kinematic interaction effect, and (ii) the inertial interaction effect (Figure
1.9). Results from both kinematic and inertial interaction are offered in the form of
dimensionless graphs and formulae covering a wide range of excitation frequencies and
geometric parameters. The kinematic amplification and interaction factors are given in
comparison to the ratio of the excitation frequency to the soil frequency as a function of:
the stiffness ratio of the pile and the soil, the soil profile, and the slenderness ratio of the
pile length to the pile diameter. Thus, by multiplying a given free-field design response
spectrum with the appropriate interaction curve, the design response spectrum that
must be input at the base of a structure on piles foundation may derive. The steady state
response of piles to lateral dynamic forces from the superstructure is computed as a
function of the dynamic impedances Kyy, Kvn and Kups associated with swaying, rocking
and coupled swaying-rocking oscillations, respectively. Each impedance is expressed as a
product of the static stiffness of the pile with the dynamic stiffness coefficient and the
effective damping ratio of the system.

Gazetas and Dobry (1984) developed a procedure for estimating the lateral
dynamic stiffness and damping of flexible piles embedded in arbitrarily layered soil

deposits. The proposed approximate method involves four steps:
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(1) The horizontal displacement profile ys(z) of the pile subjected to a statically
applied horizontal load of magnitude P, is obtained. The static value K of the
spring coefficient K is then directly computed.

(2) Two parallel dashpots are assumed attached to the pile at every elevation and
their characteristic coefficients ¢, and c. are determined. The first dashpot
simulates the material dissipation of energy in the soil, while the second dashpot
simulates the radiation of energy by waves spreading geometrically away from
the pile-soil interface.

(3) The overall dashpot coefficient C = C(f) at the head of the pile is computed from
the values of ¢, and c,, distributed along the pile (step 2) in conjunction with the
static pile deflection profile ys(z) (step1).

(4) The variation with frequency of both the spring coefficient K(f) and the damping
ration D(f) are estimated from the static stiffness, K, and from the results of steps
2 and 3.

In addition, models based on 1-D and 2-D wave propagation idealizations are discussed
and a new one is proposed (Figure 1.10). This approximate plane-strain model is based
on the assumption that compression-extension waves propagate in the two quarter-
planes along the direction of loading while shear waves are generated in the two
quarter-planes perpendicular to the direction of loading. Only horizontal soil
deformations are allowed within each quarter-plane and all straight lines originally
normal to the corresponding direction of wave-propagation remain normal during the
oscillation. The shear waves are assumed to propagate with velocity Vs in the two
guarter-planes, while compression-extension waves propagate with Lysmer’s analog
velocity Vi, in the other two quarter-planes.

Nonlinear lateral response solutions from the elastic continuum theory were
developed by Budhu and Davies (1987) under the condition that the lateral pile-soil
pressure cannot exceed the ultimate lateral pile-soil pressure. Specifically, the
cohesionless soil is modeled as en elastic-perfectly plastic material that yields when the
normal and shear stresses on the pile exceed those calculated from considerations of
limit equilibrium. The analysis takes into account the bearing failure in the compressive
soil zone around the pile, the interface slip at the limiting shear stress and the gapping in

the tensile soil zone. Similarly for cohesionless soils, Budhu and Davies (1988) proposed
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an analysis of laterally loaded piles based on the boundary element method and
assuming knowledge of the shear-strength profile of the soil. The shear strength is
assumed to increase linearly with depth, a reasonable assumption for soft clays. The
analysis encompasses bearing failure in the compressive zones, shear failure along the
pile-soil interface, and tension failure in the soil. The solution for a laterally loaded pile
using this method requires specification of only one soil parameter, the undrained shear-
strength distribution with depth. The elastic loading response and collapse loading
conditions are expressed in terms of simple equations, while the effects of soil yielding
are presented in convenient dimensionless diagrams and equations in order to facilitate
design applications.

Fan et al (1991) studied the kinematic response of groups of vertical floating piles
connected through rigid massless caps and subjected to vertically propagating harmonic
S-waves. Dimensionless graphs have been presented for dynamic horizontal
displacements and rotations developing at the cap level of single piles and pile groups,
embedded in three idealized soil profiles: a homogeneous half-space, a half-space with
modulus proportional to depth, and a two-layered stratum. These graphs are of practical
value in determining the "effective" seismic input motion at the base of structures, if the
free-field motion is known (e.g. in the form of a "design" spectrum of the seismic code).

Sun (1994) developed a continuum-based analytical solution for laterally loaded
piles based on the Vlasov and Leontiev (1966) method. The proposed method uses
variational calculus to obtain the governing differential equations of the soil and pile
system. A principal parameter y is used in this model to present the elastic foundation,
and an iterative technique is adopted to obtain a consistent energy solution. Both free
and fixed head piles are considered. Two kinds of boundary conditions of practical
interest at the pile tip, floating tip and clamped tip, are also considered. The proposed
method has been validated by comparison with other available methods based on the
elastic continuum and finite element approach. Basu and Salgado (2007) extended this
method for laterally loaded piles in homogeneous medium and developed closed-form
solutions for piles embedded in multi-layered elastic continua. The analysis takes into
account an arbitrary number of soil layers and the 3D interaction of the pile and the

surrounding soil.
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Tabesh and Poulos (2001) suggested a simple approximate methodology for
estimating the maximum internal forces of piles subjected to lateral seismic excitation.
The approach assumes that: (i) the soil is an ideal elastic, isotropic material, (ii) the
stresses developed between the pile and the soil act normal to the face of the pile, and
no account is taken of possible shear stresses developed between the soil and the sides
of the pile, and (iii) each pile element is acted upon by a uniform horizontal stress p,
which is constant across the width of the pile. The method involves two main steps: (1)
computation of the free-field soil movements caused by the earthquake, and (2) the
analysis of the response of the pile to the maximum free-field soil movements
(considered as static movements) plus a static loading at the pile head, which depends on
the computed spectral acceleration of the structure being supported.

Sa’don et al (2007) based on the elastic continuum approach developed an
analytical technique for the cyclic response of laterally loaded piles. In this study, the
response of the whole pile shaft is represented by a simple set of pile stiffness equations
focusing on the pile head. Both linear and nonlinear load-displacement response of the
pile are considered and results are verified against the cyclic Winkler calculations and
field data.

Maiorano et al (2009) performed an extensive parametric study on single piles
and pile groups embedded in a two-layer subsoil profile aiming to evaluate kinematic
bending moments developing during earthquakes. A quasi three-dimensional finite
element program has been used to perform dynamic analyses in the time domain. Piles
have been considered as elastic beams, while the soil has been modeled using a linear
elastic constitutive model. Kinematic bending moments in single piles and pile groups
with dynamic analyses in the time domain, in different subsoil conditions were evaluated
and compared with simplified approaches provided in published literature. On the basis
of the obtained results, a modified criterion to evaluate the transient peak bending
moments at interfaces between layers is proposed.

Rovithis et al (2009) studied the elasto-dynamic response of soil-pile-structure
systems to seismic loading using a rigorous three-dimentional finite element model. The
system under investigation comprises of a single pile supporting a single degree of
freedom (SDOF) structure founded on a homogeneous visco-elastic soil layer over rigid

rock. Parametric analyses are carried out in the frequency domain, focusing on: (a) soil-
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pile-structure interaction in terms of the modified dynamic properties of the coupled
system, (b) the combined effect of kinematic and inertial interaction on the motion of
the pile head, by identifying the fundamental frequencies that dominate the response,
and (c) the role of the frequency content of the input motion on the development of pile
bending. Furthermore, the notion of a pseudo-natural SSI frequency is introduced, as the
frequency where pile-head motion is minimized with respect to free-field surface motion.

Di Laora et al (2012) investigated the behavior of kinematically stressed fixed
head and free-head piles in layered soil under the passage of vertically-propagating
seismic S waves with three-dimensional finite element analyses. Both pile and soil are
idealized as linearly visco-elastic materials, modeled by solid elements and pertinent
interpolation functions in the realm of classical elastodynamic theory. The system is
analyzed by a time-Fourier approach in conjunction with a modal expansion in space.
Constant viscous damping is considered for each natural mode, and a FFT algorithm is
employed to switch from frequency to time domain and vice versa in natural or
generalized coordinates. Kinematic bending in the vicinity of a layer interface can be
viewed as the superposition of two components: (1) a negative contribution imposed by
soil curvature in the first (soft) layer, and (2) a positive contribution provided by the
restraint effect of the second (stiff) layer. In this context, the interface can be viewed as a
bending perturbation agent whose influence vanishes beyond an active pile length above
and below that specific elevation. A simplified semi-analytical formula for evaluating pile
bending moment at an interface separating two soil layers of different stiffness is
proposed. The results of the study offer an interpretation of kinematic pile bending in
terms of the interplay between pile and soil, expressed through dimensionless layer

thickness, pile-to-soil stiffness ratio and impedance contrast at the layer interface.

1.4.2 Nonlinear solutions

On the second category, the finite element analysis offers the ability to simulate
any possible soil profile by applying appropriate constitutive soil models. Regarding
dynamic analyses, soil-pile-structure interaction problems are solved efficiently in a fully
coupled manner.

Brown and Shie (1990) analyzed the behavior of a pile subjected to lateral loading

using a three dimensional finite element model. In order to study parametrically the
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effects of pile spacing, pile head fixity, and soil stiffness on the pile response, the model
accounts for soil plastic yielding as well as gapping and slippage at the pile-soil interface.
Soil constitutive models include a simple elastic-plastic model with a Mises yield surface
and associated flow rule and an extended Drucker-Prager model with non-associated
flow rule. Frictional interface elements were used to provide for slippage at the pile-soil
interface and to allow gapping in the space behind the pile. Bending moment data from
the pile were used to obtain p-y curves.

Trochanis et al (1991b) examined the effect of nonlinear soil behavior on the axial
and lateral response of piles to monotonic and cyclic loading by means of a three-
dimensional finite element model. The soil material, either clay or sand, is idealized as a
Drucker-Prager elasto-plastic continuum, and interface elements are used to allow for
slipping and separation between the piles and the soil. Neglecting inertia effects, only
pseudodynamic loading was considered. A limited parametric study of the response of a
single pile and a pair of piles subjected to concentrated loads at their heads was
conducted in order to examine the effects of soil plasticity, slippage, and separation
between piles and the soil.

Wu and Finn (1997a, b) developed a quasi-3D finite element method of total
stress analysis for both: (i) dynamic elastic analysis in frequency domain, and (ii) dynamic
nonlinear analysis in time domain of single piles and pile groups. The proposed method is
based on a simplified 3D wave equation for describing the dynamic response of
foundation soils. The analysis simulates the nonlinear stress-strain response and the
hysteretic damping of the soil, as well as soil yielding and potential gapping between the
pile and attached soil. The analysis has been incorporated into the computer program
PILE-3D and has been validated using data from centrifuge tests. Recently, Thavaraj et al
(2010) extended this quasi-3D continuum method of dynamic analysis for the dynamic
nonlinear analysis of pile foundation under earthquake excitation. The total stress based
method was extended for effective stress analysis by incorporating a model for the pore-
water pressure generation due to earthquake shaking. The method was incorporated
into computer programs (PILE-PY and PILE3D) and verified against centrifuge tests.

Bentley and El Naggar (2000) developed a 3D finite element model that can
accurately model the kinematic soil-pile interaction accounting for the nonlinear

behavior of the soil (using the Drucker-Prager model), the discontinuity conditions at the
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pile-soil interface, the energy dissipation and the wave propagation. The model was used
to investigate the kinematic interaction effects of a free-head pile response with respect
to the input ground motion. Overall, the kinematic interaction response for the cases
examined resembled the free-field response.

Yang and Jeremic (2003) based on results from a 3D finite element study on the
behavior of a single pile in elastic-plastic soils generated p-y curves for pile embedded in
uniform sand, clay as well as cases with sand layer in clay deposit and clay layer in sand
deposit. Clay was modeled by a simple Von Mises material model which is completely
defined with the undrained shear strength, while sand was simulated by a Drucker-
Prager material model with a non-associated flow rule.

Maheshwari et al (2004) examined the effects of plasticity and work hardening of
soil on the free-field response and the kinematic response of single piles and pile groups
using the hierarchical single surface (HiSS) soil model. The analysis extended to include
the superstructure in order to evaluate the effects of soil-pile-structure interaction for a
fully coupled system taking into account both linear and nonlinear responses.

Zhang et al (2004) examined the effects of slope inclination and sleeving thickness
on the behavior of laterally loaded piles based on a series of 3D finite difference analysis
in which the soil was simulated with an elastic-perfectly plastic model. Based on the
results, empirical relations for estimating the horizontal displacement and the maximum
bending moment of a pile in a sloping ground are proposed together with a criterion for
selecting suitable sleeving thickness considering both pile response and compressibility
of the sleeving material.

Jeremic et al (2009) presented a numerical investigation of the influence of non—
uniform soil conditions on a prototype concrete bridge with three bents where soil
beneath bridge bents varied between stiff sands and soft clay (Figure 1.11). The soil
constitutive model used consists of a Drucker—Prager vyield surface, Drucker—Prager
plastic flow directions (potential surface) and a nonlinear Armstrong—Frederick
(rotational) kinematic hardening rule. Eight specific cases representing combinations of
different soil conditions beneath each of the bents were simulated. It was shown that
variability of soil beneath bridge bents has significant influence on bridge system (soil—
foundation—structure) seismic behavior. Furthermore, the obtained results indicate that

free-field motions differ from the observed motions under the base of the bridge

23



columns implying that the use of free-field motions as input for only structural models is
not be appropriate. It is also shown that the usually assumed beneficial effect of stiff soils
underneath a structure cannot be generalized and that such stiff soils do not necessarily
help the seismic performance of structures.

Georgiadis and Georgiadis (2010) proposed p-y curves for flexible free-head piles
embedded in sloping cohesive soil based on 3D finite element analyses (Figure 1.12).
Piles of different diameter and length embedded in sloping cohesive soils, which are
modeled as linear elastic—perfectly plastic Tresca material, with various undrained shear
strength and several ground slopes were studied. Based on the results of the finite
element analyses, analytical formulations for the ultimate load per unit length and the
initial stiffness of hyperbolic p-y curves derived. New p-y criteria for static loading of piles
in clay are proposed, which take into account the inclination of the slope and the

adhesion of the pile-slope interface.

1.5 MACRO-ELEMENT METHOD

Macro-element modeling is a new method for the study of the non-linear effects
in the soil-foundation system. The macro-element can be thought of as an advanced
finite element, and more precisely a link element, to be used in numerical modeling of
structures subjected to seismic loading. This element is placed at the base of the
superstructure and aims at reproducing non-linear interaction effects taking place at
foundation level. Its main advantages are: (1) computationally expensive 3D non-linear
soil-structure interaction analyses can be avoided, since it simplifies drastically the
consideration of soil-structure interaction effects in structural analyses by dispensing
from the need to model explicitly the soil domain, and (2) foundation response at very
small (nearly elastic) and at extremely large deformations are treated within a unified
mathematical framework.

At present, the most comprehensive macro-element models for soil-foundation
interaction are based on work-hardening plasticity theory. In the non-linear macro-
element method, the entire soil-foundation system is replaced by a single element
located at the base of the super-structure, described with a suitable yield surface and
plastic potential function. Thus, the footing and the soil are considered as a single

‘macro-element’, and a 6 DOF (3D case) or a 3 DOF (2D case) model is formulated
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describing the resultant force-displacement behavior of a point of the footing (e.g. the
center of a surface foundation or the center of head in the case of a pile foundation) in
the vertical, horizontal, and rotational directions (Chatzigogos et al, 2011). The basic
assumption beneath this formulation is that the footing is considered as a rigid body. The
main advantage with respect to the Beam-on-nonlinear-Winkler-Foundation method is
that all degrees of freedom of the macro-element are coupled.

According to Martin and Houlsby (2001) the four basic components needed for
the formation of a macro-element are: (1) an expression of the failure envelope of the
foundation in three dimensional moment, horizontal and vertical loading M—Q-N space,
(2) an expression of the elastic response of the foundation within the yield surface, (3) an
expression of a plastic flow rule for the incremental plastic displacements at failure of the
reference point of the foundation, and (4) an expression of a hardening law which
controls the transition from the elastic (small-strain) response to the yielding (large-
strain) response. It is remarked that even though considerable effort has been devoted
to the macro-element modeling of shallow foundations (e.g. Nova and Montrasio, 1991;
Paolucci, 1997; Cremer et al, 2002; Di Prisco et al, 2003; Chatzigogos et al, 2011 among
others), only recently macro-element modeling of deep foundations has been developed.

Gerolymos et al (2012) studied the response of massive square caisson
foundations embedded in undrained soil and subjected to combined overturning
moment, horizontal and vertical loading M—Q—N through a series of force-controlled and
sideswipe 3D finite element analyses. The ultimate limit states are presented by failure
envelopes in normalized form with their pure loading capacities. The results emphasized
the effects of the embedment depth and the vertical factor of safety on the failure
modes of the caisson. Furthermore, analytical expressions for the failure envelope and
the associated plastic flow rule, that serve as a basis for a plasticity-based macro-element
for caissons in undrained cohesive soils without gap formation were proposed.

Correia et al (2012) extended the macro-element model for shallow foundations
by Figini et al (2011) to the design of pile-shafts that support bridges. The lateral
response of the entire soil-pile system to seismic actions is condensed at the pile-head,
being represented by a joint element located at the base of the columns and subjected to
the foundation input motion. A saturated soil deposit is considered with undrained

behavior and the Tresca failure criterion. Two undrained shear strength distributions
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were studied: (i) a constant one, and (b) a linear one. The main elements of the macro-
element consist of: (1) a nonlinear elastic model (small-strain behavior of the system)
that accounts for the transition from the initial response (with no gap), to a gap opening
on the back of the pile for monotonic response, or to a gap on both sides of the pile
when cyclic behavior is considered, (2) a failure mechanism and ultimate loading surface
for laterally loaded piles (large-strain behavior of the system) which are determined
through optimization procedure of the results of three-dimensional analyses based on
the kinematic approach of yield design theory, (3) a gapping behavior which is associated
with the evolution of inelastic displacements of the pile-soil system, and (4) a bounding
surface plasticity model for the pile-head resultant generalized forces and corresponding
displacements that ensures a smooth transition from the initial nonlinear elastic behavior
up to large-strain response domains. The resulting macro-element parameters are largely
based on fundamental response characteristics and only 4 out of the initial 15
parameters need to be calibrated. The response of the macro-element was calibrated
and validated with numerical results and experimental load tests. Additionally, nonlinear
incremental dynamic analyses were performed on a reinforced concrete bridge,
considering different support conditions and a large set of ground motions, with minor

computational effort.

1.6 SCOPE AND STRUCTURE

Even today, the methods of analyses of laterally loaded piles are evaluated and
modified, while taking into consideration new experimental data (eg. Curras et al, 2001;
Rollins et al, 2005; LeBlanc et al, 2010; Chenaf et al, 2012) and case histories, especially
from pile failures during earthquakes (eg. Haiti, 2010 (Green et al, 2011); Chile, 2010
(Villalobos et al, 2011, Figure 1.13); Christchurch, 2011 (Tasiopoulou et al, 2011, Figure
1.14)). The scope of the present dissertation is the acquisition of knowledge regarding
the nonlinear interaction of the pile-soil system under static and dynamic loading. In
addition, it contributes to the development of a macro-element for the response of the
pile-soil system which takes into consideration the possible nonlinear mechanisms of the
response. Finally, the dissertation focuses on the understanding of the influence of key
elements, such as the pile-to-pile interaction for nonlinear soil response and the

development of plastic hinge at the pile foundation, on the pile-soil interaction.
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Chapter 2 presents a simplified constitutive soil model for the static and cyclic
response of piles embedded in cohesionless soil under drained conditions. The
constitutive model is implemented in a three-dimensional finite element code through a
user subroutine. The model predictions are compared with experimental results of three
centrifuge experiments on a pile in dry sand from Laboratoire Central des Ponts et
Chaussees (LCPC) in Nantes, France. The comparison sheds light on some complicated
features of the pile response regarding: (i) the observed plastic shakedown behavior of
the pile, (ii) the effect of the so-called “system” densification and the cyclically-induced
material (soil) densification that result in the plastic shakedown response of the pile, and
(iii) the influence of the number of cycles on the internal structural forces (residual and
maximum) and soil reactions of the pile. Appropriately defined performance measure
parameters are introduced to evaluate the pile response and to unravel the contribution
of soil and “system” densification to the plastic shakedown mechanism. The influence of
the m-plane shape of the yield surface of the proposed constitutive model is also
investigated. The model is further utilized to the analysis of a case study involving a
group of 1x2 piles with similar characteristics to those of the centrifuge tests focusing on:
(i) the influence of the shadow effect on the pile group response, and (ii) the efficiency of
the pile group.

Chapter 3 deals with components of a macro-element for piles. Closed-form
solutions for failure envelopes of flexible single pile under combined Q-M loading for
different soil conditions are proposed based on limit equilibrium analysis. The failure
envelope is normalized against the pure lateral load and the pure overturning moment
capacity of the soil-pile system, thus allowing the shape of the envelope to remain
unaffected from any other strength parameter of the soil or the pile. Analytical
expressions of the plastic flow rule are also proposed with the assumption of normality.

Chapter 4 verifies the proposed failure envelope and the associated plastic flow
rule against force-controlled analyses with an elastoplastic Beam-on-Winkler-foundation
model. As expected, the shape of the normalized failure envelope remains unaffected
from strength parameters of the soil or the pile such as the soil Young’s Modulus, the soil
strength and the pile diameter. The assumption of an associated plastic flow rule is
verified graphically by the normality of the incremental displacement vectors at failure

from the Winkler model on the failure surface. It is also found that the plastic
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displacement to rotation ratio at failure equals to the depth of the plastic hinge
formation of the rigid body measured from the ground surface. The analytical
expressions of both the failure envelope and the associated plastic flow rule are further
evaluated against 3D numerical analyses: (i) with different soil constitutive models
(including the one developed in Chapter 2), and (ii) with and without allowing slippage
and separation at the pile-soil interface. Furthermore, the pile response within the
proposed normalized failure envelope is examined and separated in four zones of
characteristic response. Finally, based on the 3D analyses, a complete failure envelope
for M-Q-N loading is proposed without taking into consideration the interaction
diagrams of the pile material.

Chapter 5 compares the results from one real-scale pushover test on a vertical
pile embedded in clay with the proposed failure envelope and outlines a series of
laboratory pushover experiments on single piles embedded in dry sand under lateral
force and overturning moment combinations at the pile head conducted at the
Laboratory of Soil Mechanics / Dynamics in NTUA. Preliminary tests were performed in
order to figure out the influence of parameters such as pile diameter, soil-pile interface,
soil density and pile position in the sandbox. The results from the Pushover Tests validate
the proposed failure envelope and the assumption of an associated plastic flow rule.
Validation of the experiments is achieved through comparisons with results from Class B
predictions with a simplified beam-on-nonlinear-Winkler-foundation model. In addition,
3D finite element analyses taking into account the nonlinear behavior of the soil and the
pile are undertaken to model the Push-over Tests. For this reason, a fourth parameter is
introduced to the proposed constitutive model of Chapter 2 which accounts for soil
softening through the variation of friction angle with octahedral strain.

Chapter 6 investigates the influence of the pile inelastic behavior and soil-
structure interaction on structure ductility demand based on the concept proposed by
Gerolymos et al (2009), according to which the formation of a plastic hinge in the pile
shaft can be beneficial. Hence, a parametric investigation of the nonlinear response of
pile-column bridge systems is conducted with the use of two models: (i) a beam-on-
nonlinear-Winkler-foundation model, and (ii) a 3-D continuum finite element model
utilizing advanced inelastic constitutive laws (including the one developed in Chapter 2).

Initially, the elastic response of a soil-pile- bridge system is investigated with the two
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methods. For the nonlinear response of pile-column bridge systems, a calibration
methodology of the “spring” and “dashpot” coefficients of the examined hybrid spring
configuration of the Beam-on-nonlinear-Winkler-foundation model is proposed.
Regarding the 3D finite element analysis, the constitutive model parameters of Chapter 2
are calibrated to fit published G-y and &-y curves by Ishibashi and Zhang (1993) and the
dynamic analysis of soil-pile-bridge systems is performed in a fully coupled manner. The
role of various key parameters, such as the soil compliance, the aboveground height of
the pile-column, the pile diameter and the location of the plastic hinge, is examined on
characteristic performance measures of the pile-column bridge system response, namely
the local curvature ductility demand pg, the global displacement ductility demand ps and
the maximum drift ratio ymay. It is clear that the location of the plastic hinge below the
ground surface rather than soil compliance has a beneficial influence on the response of

the structure.
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Figure 1.1: Soil reaction for head restrained short piles: (a) e/B<0 embedded cap,
(b) e/B<0 (Broms), and (c) e/B>0 cap over-ground (De Simone, 2012)

Figure 1.2: Soil reaction for long piles: (a) trapezoidal, (b) triangular (Broms), and
(c) e>0 (De Simone, 2012)
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b. Deflection Pattern of a Lateraily Loaded Pile
and Associated Strain Wedge
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Figure 1.4: Basic configuration of the Soil-Wedge model (Ashour and Norris, 2000)
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Figure 1.7: Element representation of the proposed model. m,, m, represent the
mass of the inner field lumped at two nodes; half (m,) at the node adjacent to the
pile, and the other half (m,) at the node adjacent to the outer field (El Naggar and
Bentley, 2000)
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Figure 1.11: Detailed three bent prototype Soil-Foundation-Structure-Interaction
Finite Element model (Jeremic et al, 2009)
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Figure 1.12: Lateral load versus pile head displacement relationships for Shanghai
pile tests (Georgiadis and Georgiadis, 2010)
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Figure 1.13: Broken pile cap in a wharf extension during the Chile 2010 earthquake
(Villalobos et al, 2011)
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Figure 1.14: Western abutment of South Bridge Road Bridge after Christchurch
earthquake: (a) Concrete spalling exposing the pile reinforcement, (b) Flexural cracks
developed at the top of the piles indicating plastic hinging (Tasiopoulou et al, 2011)
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CHAPTER 2:
A CONSTITUTIVE MODEL FOR THE CYCLIC RESPONSE OF PILES IN
COHESIONLESS SOIL

2.1 PILES UNDER CYCLIC LOADING

The design of piles, such as offshore piles and foundation piles for wind turbines,
needs to take into consideration: (i) the necessary depth to which the piles should be
driven in order to carry the vertical loads, and (ii) the response of the piles to cyclic
lateral forces and moments. There are many simple methods for estimating the required
length of the piles to safely carry the vertical loads. On the other hand, more complex
methods which account for the nonlinear behavior of the soil are required for the cyclic
loading. The behavior of a vertical pile subjected to repetitive lateral loads depends upon
the characteristics of the lateral load, the geometrical and structural properties of the
pile, the properties of the soil in which the pile is embedded, and the change in soil
properties as the pile is loaded repetitively.

The analysis of pile response to cyclic lateral loading can be performed with: (i) an
elastic continuum analysis, (ii) a pile connected to nonlinear Winkler springs, p-y analysis,
(iii) nonlinear finite element analysis, and (iv) a macro-element analysis. The p-y analysis
considers the effects of cyclic loading, usually by extending the static p-y curves in the
cyclic domain, but envelopes the response of a pile under cyclic loading without
considering the change in pile behavior as the number of cycles increases. On the
contrary, a successful implementation of the finite element method depends on the
appropriate use of various parameters, such as soil constitutive models, the soil-pile
interface and the stiffness degradation in soil during cyclic loading.

The response of piles to lateral loading has been the subject of numerous studies
in the last decades. However, only a limited amount of them addresses the effects of
cyclic loading on pile response. Different methods of varying degree of accuracy have

been used, incorporating simplified (Dawson, 1980; Lin et al, 1999; Long et al, 1994) or
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advanced (Grashuis et al, 1990; Hutchinson et al, 2005; Achmus et al, 2009; Zhang et al,

2000; Bourgeois et al, 2010) numerical models. Centrifuge experiments (Verdure et al,

2003) and full-scale tests have also been performed on the cyclic behavior of piles

embedded in sand (Brown et al, 1987; Tuladhar et al, 2008; Rollins et al, 2006).

One of the first thorough studies on the lateral response of cyclically loaded piles

was carried out by Poulos (1982). According to this study, there are two phenomena that

may contribute to the increased deflection of laterally loaded piles with increasing

number of cycles:

(1) Structural “shakedown” of the pile-soil system. This phenomenon occurs on

every pile embedded in an elastoplastic soil mass whose properties remain

unaltered. When the accumulated permanent deformations stabilize

“shakedown” will occur. In other words, incremental collapse will result.

(2) Soil stiffness decay and strength degradation.

In general, during cyclic loading it is observed that:

(i)

(ii)

(iii)
(iv)

(v)

(vi)

(vii)

(viii)

both deflection and moment increase with increasing number of cycles
and load magnitude,

the ultimate lateral load capacity decreases with increasing number of
cycles and load magnitude,

effects of cyclic degradation are more severe for stiff than for soft soils,
the main features of pile response to cyclic loading are practically
unaffected by soil inhomogeneity,

the loading rate has a significant effect on the pile response, with the
deflections at a given load decreasing as the loading rate increases,

the location of the plastic hinge moves deeper when the pile is subjected
to fully cyclic loading than to monotonic loading, due to soil stiffness
degradation (Tuladhar et al, 2008),

one-way cyclic lateral loads induce more permanent strains and greater
cumulative deformations of the piles than the two-way cyclic lateral loads
(Long et al, 1994),

the effect of group action increases with increasing load. Thus at large
deformations, the group capacity appears to be significantly lower than

the sum of the capacities of each individual pile (Brown et al, 1987),
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(ix) the deflection of the piles in the group is significantly greater than that of
a single pile under a load equal to the average load per pile (Brown et al,
1987), and

(x) for a given displacement the leading row piles carry the largest load,
while for a given load the maximum bending moment develops at the
trailing row (Rollins et al, 2006).

A simplified theory has been developed by Dawson (1980) for predicting the
deflection and internal bending moment of piles embedded in sand or clay subjected to
cyclic lateral loading. Lin et al (1999) used an empirical approach to calculate the cyclic
deformations of laterally loaded piles as a function of the number of cycles. Linear elastic
response is assumed and values of a degradation parameter of the soil resistance are
estimated from pile test results as a function of the pile length, the soil-pile relative
stiffness, the soil density, the installation method and the cyclic load ratio. The developed
method is empirical and some differences are justified by the densification of the soil
after a number of cycles of loading which is not taken into consideration.

Long et al (1994) observed that the effects of repetitive lateral loads on
deflections of two drilled piers in Tampa Bay were significantly greater than predicted by
a p-y procedure used in practice outlined by Reese et at (1974). The behavior of an
elastic vertical pile, infinitely long, and embedded in cohesionless soil during one cycle of
load is described in four phases. During the first phase, the magnitude of the lateral load
varies from a value of zero to a maximum horizontal load. The resistance to pile
deflection is provided by the soil along the loading side of the pile, while the soil on the
opposite side remains in contact with the pile. The soil surrounding the pile may change
in volume depending on its initial density and stress state. During the second phase, the
load decreases to zero and the soil pressure along the opposite side decreases to an
active state. The cohesionless soil flows to prevent the gap formation and maintains
contact with the pile. During the third phase, the load reaches a minimum value at the
opposite direction. The response of the pile for the fourth phase is similar to the second
one but in the opposite direction. It was noted that one-way cyclic lateral loads induce
more permanent strains and greater cumulative deformations of the piles than the two-
way cyclic lateral loads. Furthermore, the cyclic lateral loads result in deformations that

may increase with every cycle. The effect of the cyclic loading is greatest for the first
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cycle of loading with the effect of subsequent cycles diminishing. Finally, two methods
were developed to model the cyclic lateral load behavior of a pile by degrading soil
resistance as a function of the number of cycles of load, the method of pile installation,
the soil density and the character of cyclic load. The first method is based upon a closed-
form solution for a beam on an elastic foundation with a linearly increasing soil reaction
modulus. This is a simple method for predicting the effects of cyclic lateral loading but
cannot account for the effects of nonlinear soil response. In the second method, a p-y
curve for static loading is modified to a cyclic p-y curve by reducing the static soil
resistance p while increasing the static displacement y.

Regarding numerical analysis, Grashuis et al (1990) developed an element that
models the gap formation around the pile, the degradation of the soil strength and the
backsliding of the soil into the gap taking into account the friction between the pile and
the gap walls and the plastic soil behavior at larger depths. Hutchinson et al (2005)
performed finite element analyses with computer code FEAP trying to capture the
hysteretic behavior of reinforced concrete shafts in sand. For this reason four piles were
tested in full-scale combining axial compression and reversed cyclic quasistatic lateral
loading in dry sand. This model takes into consideration the gap formation and captures
the P-A moments together with the post-peak strength degradation and the loading and
unloading response of the soil-pile system.

Zhang et al (2000) performed three-dimensional elastoplastic finite element
analysis with computer code DGPILE-3D for filed tests of cast-in-place reinforced
concrete piles embedded in sand subjected to one way cyclic lateral loading. In the
analysis four different constitutive models were compared: (i) the Drucker-Prager model,
(ii) a Modified Drucker-Prager model, (iii) the Cam-Clay model, and (iv) the Nekai and
Matsuoka sand model. The cracking moment, the yielding moment and the ultimate
moment of the pile were taken into account. For small loading stages the load
displacement relation from the models had little difference, but as the loading reached
the ultimate state, deformation became quite different due to the different shear
strength and the stress-strain relation predicted from every model.

Allotey and El Naggar (2008) employed a beam-on-nonlinear-Winkler-foundation
model to conduct a numerical assessment of the effects of gapping and soil cave-in and

recompression on the lateral cyclic response of soil-pile systems. It was noted that the

52



effect of soil cave-in and recompression is to decrease pile maximum moment, move its
point of occurrence closer to ground surface, and increase hysteretic energy dissipation.
For damaged piles that develop plastic hinges at some depth below ground surface, soil
cave-in could be beneficial as it helps increase the effective confinement of the plastic
hinge which in turn spreads the curvature demand, resulting in an increase of the
effective length of the plastic hinge.

Gerolymos et al (2009) simulated numerically the response of a vertical pile
embedded in dry sand and subjected to lateral loading in centrifuge tests for both one-
way and two-way cyclic loading. The tests were simulated using a cyclic nonlinear
Winkler spring model, which describes the full range of inelastic phenomena, including
separation and reattachment of the pile from the soil. The model is also able to capture
the soil plastification at an early stage of loading, the pinching behavior due to the
formation of a relaxation zone around the upper part of the pile and stiffness and
strength changes due to cyclic loading. Recently, Bourgeois et al (2010) simulated in 3D
the behavior of a pile subjected to one-way cyclic lateral loading with a suitable
constitutive model which combined a linear isotropic elastic law with only one deviatoric
plastic mechanism and a kinematic hardening law. The model was compared with
monotonic triaxial compression tests and a cyclic triaxial compression test and then it
was applied to simulate a centrifuge experiment on a model pile subjected to cyclic
lateral loading.

Achmus et al (2009) developed design charts independent of the pile bending
stiffness for monopole foundations of wind turbines in sandy soil under long-term cyclic
lateral load. The calculation of the accumulated displacements is based on cyclic triaxial
tests for the stiffness degradation of the soil. An elastoplastic soil model with Mohr-
Coulomb failure criterion was used for the analysis. Effects of pile length, diameter,
loading state and embedded length were studied. It was found that the soil stiffness
decreases along the whole length of a short pile, while it decreases only in the upper part
of a longer pile. Additionally, it was shown that the length of the pile rather than its
diameter has a significant role on the cyclic performance of the pile. Finally, the
displacement accumulation rate is strongly dependent on the ratio of the actual load to

the ultimate load and thus on the embedded pile length.
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As far as experiments and full-scale tests are concerned, Brown et al (1987)
performed a test to a large-scale group of nine steel pipe piles in a closely spaced
arrangement subjected to two-way cyclic lateral loading embedded in stiff
overconsolidated clay with water above the ground surface. It was found that the effect
of group action increases with increasing load. Thus at large deformations, the group
capacity appears to be significantly lower than the sum of the capacities of each
individual pile. The maximum cyclic soil resistance on a pile in the pile-group is greatly
reduced compared to that of the single pile, and this reduction is more significant with
depth. Moreover, the deflection of the piles in the group is significantly greater than that
of a single pile under a load equal to the average load per pile. It was noted that the
greatest portion of shear on the group is distributed as shear to the piles in the front row
of the group.

Verdure et al (2003) carried out centrifuge tests of lateral cyclic loading of a single
pile in cohesionless soil. It was shown that the global stiffness of the soil-pile system
increases dramatically during the first cycle and then varies slowly with the number of
cycles. Furthermore, it increases slightly for large cycle amplitude but for small cycle
amplitude remains nearly constant. It was also observed that the maximum bending
moment and the depth of the maximum bending moment increase with the number of
cycles.

Rollins et al (2006) performed full-scale cyclic lateral load tests on pile groups
with five rows of piles with free-head conditions embedded in stiff clay. It was shown
that group interaction effects decreased as pile spacing increased and that lateral
resistance is a function of row location in the group rather than location within a row.
Moreover, for a given displacement the leading row piles carry the largest load, while for
a given load the maximum bending moment develops at the trailing row.

Tuladhar et al (2008) studied the degradation of the lateral load capacity of piles
when subjected to cyclic loading compared to monotonic loading by performing full-scale
monotonic and reversed cyclic lateral loading tests on concrete piles embedded in
cohesive soil. It was observed that the location of the plastic hinge moves deeper when
the pile is subjected to reversed cyclic loading compared to monotonic loading because
of the degradation of the soil stiffness. When a pile embedded in cohesive soil is

subjected to lateral loading, the soil on the compression side (direction of the loading)
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moves with the pile while the soil on the extension side remains stable, thus a gap is
being formed. This gap is bigger in the case of reversed cyclic loading. The 3-D analysis
showed that for cohesive soils a perfect bond between the soil and the pile highly
overestimates the lateral load carrying capacity of the pile, while the use of gap elements
in the interface can realistically account for the gap formation.

In practice two-dimensional analyses are conducted for the response of a pile
subjected to cyclic lateral loading even though it is a typical three-dimensional problem.
Now with the computer progress and the appropriate constitutive model
implementation for soils it is possible to conduct three dimensional nonlinear analyses. In
the present chapter a simplified constitutive soil model for the cyclic lateral response of
piles in cohesionless soil is developed. The plasticity model used in this study for
cohesionless soil is an extension of the model used by Gerolymos et al (2005, 2006) for
cohesive soils. Despite its simplicity and lack of generality and rigor, for the particular
type of problem investigated herein such a constitutive model yields quite reasonable
results. Implemented in a three dimensional finite element code, the model is applied to
three centrifuge experiments on a pile in dry sand. The first test is used as benchmark for
the calibration of model parameters. The model is further utilized to the analysis of a
case study involving a group of 1x2 piles with similar characteristics to those of the
centrifuge tests. Interesting conclusions are highlighted for the “shadow” effect on soil
resistance and pile-to-pile interaction at small and large deformations.

The comparison sheds light on some complicated features of the pile response
regarding: (a) the observed plastic shakedown behavior, (b) the effect of the two
mechanisms that result in the plastic shakedown response of the pile, that is (b1) soil
densification due to voids reduction, and (b2) “system densification” due to the gradual
enlargement of the resisting soil mass to greater depths with cyclic loading, (c) the
influence of the number of cycles on the internal structural forces (residual and
maximum) and soil reactions of the pile, and (d) the efficiency of the pile group: (d1) it
presents the efficiency factor as a function of the horizontal pile displacement, (d2) it
bridges the gap between pile-to-pile interaction at extremely small (elastic response) and
at very large (plastic response) deformations. Finally, appropriately defined performance
measure parameters are introduced to evaluate the pile response and to unravel the

contribution of soil and “system” densification to the plastic shakedown mechanism.
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2.2 REVIEW OF CONSTITUTIVE MODEL FOR COHESIVE SOILS UNDER UNDRAINED
CONDITIONS
For the case of a flexible pile embedded in cohesive soil under undrained
conditions, Gerolymos et al (2005) described the soil behavior through a constitutive
model which is a reformulation of that originally developed by Lemaitre and Chaboche
(1990). It belongs to the general category of single surface plasticity models, and it is
available in the material library of ABAQUS (Dassault Systemes Simulia Corp, 2009).
According to this model, the evolution of stresses is described by the relation:
G=0,+a (2.1)
where oy is the value of stress at zero plastic strain, assumed to remain constant.
The parameter a is the “backstress”, which defines the kinematic evolution of the yield
surface in the stress space. Integration of the backstress evolution law over a half cycle of

a unidirectional load (e.g. tension or compression) yields the following expression:
C |
oa=—|1-exp(—yeP (2.2)
© [1- exp(12”)]

in which C and y are hardening parameters that define the maximum transition of
the yield surface, and the rate of transition, respectively, and ¢ is the plastic strain.
Differentiating o with respect to & and taking the limit at zero, one obtains for
parameter C (Gerolymos and Gazetas, 2006):

ool

@ ) = C = E (23)

-0

where E is the modulus of elasticity.

The evolution law of the model consists of two components: (i) a kinematic
hardening component, which describes the translation of the yield surface in the stress
space (defined through the backstress a), and (ii) an isotropic hardening component,
which defines the size of the yield surface oy at zero plastic deformation. The kinematic
hardening component is defined as an additive combination of a purely kinematic term
(linear Ziegler hardening law) and a relaxation term (the recall term), which introduces
the nonlinearity. The evolution of the kinematic component of the yield stress is

described as follows:
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o= Ci(o ~a)e” —yaE” (2.4)
Op

where " is the plastic flow rate (obtained through the equivalent plastic work),

£" the equivalent plastic strain rate:
- 2.0, .
e’ = =& & (2.5)

The evolution of the kinematic and the isotropic hardening components of the
hardening rule are illustrated in Figure 2.1 for unidirectional and multiaxial loading. The

evolution law for the kinematic hardening component implies that the backstress is

\/Zocsz 2¢ (2.6)
3 3y

where as is the magnitude of a at saturation. Since the yield surface remains

contained within a cylinder of radius:

bounded, this implies that any stress point must lie within a cylinder of radius (2/3) Oy.

At large plastic strains, any stress point is contained within a cylinder of radius (2/3)

(as + 05) where o is the equivalent stress defining the size of the yield surface at large
plastic strain.

The uniaxial yield stress o, is given by:

5, =2 + 6, (2.7)
Y

According to the Von Mises yield criterion this ultimate stress is:
s, =35, (2.8)
From Equations 2.3, 2.7 and 2.8 the hardening parameter y may be expressed as
(Gerolymos and Gazetas 2006):
E
Y=
\/§Su -0,

To avoid numerical instability, the stress at zero plastic strain, oo should be

(2.9)

expressed as a small fraction of the uniaxial strength o,.
G, = Kcy (2.10)

where A usually 0.1 to 0.3.
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This simplified model is appropriate for problems with cohesive soils and rapid

application of seismic load where the assumption of undrained behavior is reasonable.

2.3 EXTENSION TO COHESIONLESS SOILS UNDER DRAINED CONDITIONS

The model described in the previous section is extended to account for the
behavior of cohesionless soil under drained conditions. Soil behavior is modeled through
a constitutive model with nonlinear kinematic hardening and non-associated plastic flow
rule because isotropic hardening does not reproduce the plastic strain accumulation
under cyclic stress. In this case the Mohr-Coulomb failure criterion is used (Figure 2.2). In

the Mohr-Coulomb failure criterion oy is equal to:

o, =+/3J, (2.11)

in which /J, is the square root of the second deviatoric stress invariant at failure that

satisfies the following equation:
Ilsin(p+%[3(1—sin ¢)sinB++/3(3+sin (p)COSG]\/I—3CCOS(p =0 (2.12)

where |y is the first principal stress invariant, c cohesion, ¢ friction angle and 8 the Lode
angle (Chen and Mizuno, 1990) which is given by:

33 3,

cos(360) =
2 J¥?

(2.13)

where J, and J; are the second and third deviatoric stress invariants. Combining
Equations 2.3, 2.7, with 2.11 one obtains for y:
y=L (2.14)
3], —o,

A user subroutine is imported in ABAQUS, which relates the model parameters to
the vertical stress, the principal stresses and the Lode angle at every loading step.
Incorporating the Lode angle effect allows for significant accuracy in three-dimensional
shear response environments (Yang and Elgamal, 2008). The vyield surface of the
proposed constitutive model is determined to fit the Mohr-Coulomb failure response in a
triaxial loading test for both compression and extension conditions assuming linear

interpolation for the intermediate stress states.

For triaxial compression
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0,0y =(1-1) oD, S0C000 | (2.19
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and for triaxial compression

o =1 S0, S 219
3+sing 3+sine

where ¢ friction angle, c cohesion, and p hydrostatic pressure.
For this reason, the state parameter k is introduced which is a function of Lode
angle and takes values from 0 to 1.

k :E—M (2.17)
2 2
k = 0 corresponds to pure triaxial extension conditions, k = 1 to pure triaxial compression
conditions, while k = 0.5 corresponds to direct shear test. In summary, the constitutive
model parameters are calibrated to match the Coulomb failure criterion on the principal
stresses plane for every apex of the hexagon with the smooth envelope of Figure 2.2.
The proposed constitutive model is calibrated and validated against three
centrifuge experiments of single pile under cyclic lateral load. Obviously, the model in its
present form cannot reproduce either dilative response or volume contraction (soil
densification) with cyclic loading. Since soil volume reduction dominates the response in
a loading with a large number of cycles, the role of the first weakness is usually of
insignificant importance. The second drawback of the proposed model will be efficiently
used in the sequel as a reference point for evaluating the role of the two hardening

mechanisms (“system” and soil densification) responsible for the observed plastic

shakedown response of the pile.

2.4 VALIDATION AGAINST CENTRIFUGE EXPERIMENTS
2.4.1 Centrifuge lateral cyclic load pile experiments

Over the past decade, dynamic centrifuge experiments have been widely used to
gain insight in the dynamic behavior of geotechnical structures and to calibrate advanced
numerical models and procedures. Since cohesionless soils have stress-dependent
stiffness and strength characteristics the application of N times the gravitational

acceleration to a model with length dimensions 1/N, makes the stresses and mechanical
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properties of the model to become similar to those of the prototype. Three such
centrifuge tests are used for the calibration and the validation of the proposed model.

Three centrifuge tests on a single pile subjected to cyclic horizontal loading were
performed by Rosquoét et al (2004) at Laboratoire Central des Ponts et Chaussées
(LCPC). The centrifuge facility of the LCPC in Nantes has a radius of 5.5 m, a maximum
model mass of 2000 kg at a centrifuge acceleration of 100 g, and platform dimensions of
1.4 m x 1.15 m (Figure 2.3). It is capable of producing 200 g’s of centrifugal acceleration,
although of course at a much reduced “payload”. The acquisition of a servo-hydraulic
earthquake actuator has extended the scope of its activities.

The centrifuge models were 1/40 in scale and involved pile head loading with
three different force time histories. The loading time histories were: (i) 12 cycles from
960 kN to 480 kN (test P32), (ii) 12 cycles from 960 kN to O kN (test P344), (iii) 6 cycles
from 960 kN to -960 kN (test P330). The experimental set up and the loading time
histories (in prototype scale) are portrayed in Figure 2.4.

The cyclic lateral load tests were conducted on a vertical friction pile placed in a
sand mass of uniform density. The Fontainebleau sand centrifuge specimens were
prepared by the air sand-raining process into a rectangular container (80 cm wide by 120
cm long by 36 cm deep), with the use of a special automatic hopper developed at LCPC
(Garnier, 2002). The desired density of the dry sand was obtained by varying three
parameters: (a) the flow of sand (opening of the hopper), (b) the automatically
maintained drop height, and (c) the scanning rate. The unit weight and the relative
density of the specimen were measured to be yq = 16.5 + 0.04 kN/m3 and D, = 86%,
respectively. Laboratory results from drained and undrained torsional and direct shear
tests on Fontainebleau sand reconstituted specimens indicated mean values of peak and
critical-state angles of ¢, = 41.8° and ¢, = 33°, respectively. Evidently, in this dense sand
the pile used may be considered as flexible.

The model pile at scale 1/40 is a hollow aluminum cylinder of 18 mm external
diameter, 3 mm wall thickness, and 365 mm length. The flexural stiffness of the pile is
0.197 kNm? and the elastic limit stress of the aluminum is 245 MPa. The centrifuge tests
were carried out at 40 g and the characteristics of the model and the prototype pile are

presented in Table 2.1.
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The instrumentation included two displacement sensors, located at the section of
the pile above the ground surface, and 20 pairs of strain gauges, positioned along the
length of the pile, so that the bending moment profile M(z) could be measured during
the tests. The resultant earth pressure p = p(z), per unit length along the pile, was
obtained by double differentiation of M(z) as established by Matlock and Reese (Reese
and Van Impe, 2001). The strain gauges were spaced at 0.6 m in prototype scale starting
from the ground level to the pile tip. This single pile was driven into the sand at 1 g
before rotating of the centrifuge. In flight, the single pile was subjected quasi-statically to
horizontal cyclic loading through a servo-jack connected to the pile with a cable. With
such a configuration the pile head is not submitted to any parasitic bending moment.

The test results were obtained in the form of horizontal force-displacement time
histories at the head of the pile, as well as of bending moment along the pile. The
bending moment distribution with depth M(z), obtained from the bending strains
measured during each test through the strain gauges, was utilized to calculate the shear

force, Q(z), and soil reaction, p(z), diagram:

Q) =% (2.18)
V4
and
p(z) = d MZ(Z) (2.19)
dz

High-order spline functions which interpolate between two successive pairs of
experimental points (M, z) and (M1, zi+1) were utilized to this end. The experimental M
= M(z) curves were also integrated twice to get the pile deflection diagram y = y(z) and
the boundary conditions (assuming hinged boundary conditions at the pile tip) were used

to determine the two required constants (Gerolymos et al, 2009).

2.4.2 Finite element modeling

The above mentioned centrifuge tests were modeled numerically in 3D using the
finite element code ABAQUS. The pile is assumed to be linear elastic, while the cyclic soil
behavior is described via the proposed nonlinear constitutive law with kinematic
hardening law and non-associated plastic flow rule. Figure 2.5 depicts the finite element

discretization for the centrifuge tests. The distance from the pile tip to the bottom of the
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boundaries is 2.4 m (3.3 pile diameters). Approximately 43000 elements were used for
each analysis. The soil is modeled with 8-node brick elements, while the pile is replaced
by 3D beam elements placed at its center and connected with appropriate kinematic
restraints with the nodes at the perimeter of the pile, in order to model the complete
geometry of the pile (Figure 2.6). The solid elements inside the perimeter of the pile have
no stiffness. In this way, each pile section behaves as a rigid disc: rotation is allowed on
the condition that the disc remains always perpendicular to the beam axis, but stretching
cannot occur.

The element size was small enough (0.3 m in the vertical direction): (a) to capture
intense plastic strain concentration at the pile-soil interface, (b) to capture more
accurately the pile-to-pile interplay in case of a pile group, and (c) to coincide with the
vertical position of the strain gauges along the pile, so as to achieve a direct comparison
with the measurements. The mesh is refined up to a distance of 7 diameters around the
pile in order to acquire an accurate distribution of soil yielding. When the cohesionless
soil reaches the active state as the pile is laterally loaded, it collapses and flows with the
pile. Thus no gap is formed and no interface elements are used in the analysis. Finally,
the bottom and side boundaries were fixed in order to model the box of the centrifuge
tests.

The distribution of Young’s Modulus varies parabolically with depth according to:

m
C=E=E, (G—] (2.20)
Pa
where Eq is the reference Young’s Modulus, o, the vertical stress, P, the atmospheric
pressure (approximately 100 kPa) and m a parameter that defines the distribution of E
with depth. Eg is equal to 192 MPa and m is equal to 0.5 according to the calibration
performed by Gerolymos et al, (2009) based on Hardin’s formula (Hardin, 1978). The
hardening parameter y of the proposed constitutive model, which is a function of the
internal friction angle, was calibrated to correspond to the critical-state friction angle ¢

=33°
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2.4.3 Numerical simulation of the centrifuge tests

The model is first calibrated against the results of the one-way cyclic loading test
with maximum horizontal force 960 kN and minimum horizontal force 480 kN
(designated as P32). Subsequently it is applied to predict the measured data of the other
two tests (P330 and P344). The three tests differ by the characteristics of the cyclic
loading sequences since one-way and two-way loading at different load amplitudes are
used. It should be noted that the applied loads always stay in the domain of service

loads.

2.4.3.1 Calibration of model parameters against test P32

As already stated above, the model is calibrated against the one-way cyclic
loading test with maximum horizontal force 960 kN and minimum horizontal force 480
kN (test P32). The model parameters C (Eo = 192 MPa), m (= 0.5), and y (which is a
function of the critical state friction angle ¢, = 33°), were calibrated to match the
experimental “force—displacement” loop at the head of the pile (Figure 2.7). In one way
cyclic loading, the pile displacement increases with every cycle of loading. The model is
capable of predicting the plastic shakedown response of the pile. This response is the
resultant of the following two mechanisms: (a) Soil densification due to the reduction of
voids, and (b) “System densification” due to the gradual extension of the resisting soil
mass, towards greater depths with cyclic loading. Only the second mechanism is
captured by the proposed model.

Figure 2.8 compares the bending moment profiles at the first and sixth cycle of
loading. In general, the agreement between the measured and the computed curves is
quite satisfactory. The model predicts well the shape of the moment distribution and the
increase of the bending moments with increasing number of cycles. The model is also
capable of predicting the depth of the maximum bending moment both for loading and
unloading conditions as well as the shift of the maximum bending moment at a higher
depth as the number of cycles increases.

Because shear force and soil reaction were calculated indirectly from the
measured bending moment during the experiment, a comparison with the calculated
bending moment, shear force and soil reaction at different stages of virgin loading is

presented in Figure 2.9. In general, the agreement between measured and computed
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curves is quite satisfactory. Some differences noted at the soil reaction curves are
attributed to the fact that the measured values derive from the bending moment
distribution with the use of spline interpolation process, while the computed values
derive from differentiation of the shear force. But even in this case, the model captures
the increase in both (a) the magnitude of the maximum soil reaction, and (b) the depth at
which this maximum occurs.

Figure 2.10 shows the comparison between the displacement profiles at the end
of the first and twelfth cycle. The difference is attributed to the accumulation of soil
plastification with the number of cycles. It should be noted that the displacement profiles
have a nearly triangular shape, vanishing at z = 6 m, implying that the effective length of
the pile is only a 50% of its total length. Figure 2.11 depicts the contours of the active
and passive stress states in terms of the state parameter k at three different stages of
loading: (a) at the 1% cycle at 960 kN, (b) at the 12" cycle at 480 kN, and (c) at the 12"
cycle at 960 kN. k = 1 corresponds to pure triaxial compression loading condition (passive
state), and k = 0 to pure triaxial extension loading condition (active state) while k = 0.5
corresponds to the response of the soil in direct shear test. Finally, Figure 2.12 illustrates
snapshots of contours of the horizontal displacement of the pile subjected to lateral
loading at the pile head at three different stages of loading: (a) at the 1% cycle at 960 kN,
(b) at the 12™" cycle at 480 kN, and (c) at the 12™" cycle at 960 kN.

2.4.3.2 Comparison of numerical results with tests P344 (asymmetric cyclic loading) and
P330 (symmetric cyclic loading)

The calibrated model (from the P32 test) is utilized to predict the results of the
P344 test (cyclic loading without sign reversal) and the P330 test (fully cyclic loading with
sign reversal).

Test P344 is a full one-way cyclic loading test with maximum horizontal force 960
kN and minimum horizontal force 0 kN. The computed force-displacement curve at the
pile head is compared to the experimental data in Figure 2.13 for the 12 cycles of
loading. Despite the discrepancy in the residual displacement at the pivot point of each
unloading phase, the comparison is quite satisfactory. Figure 2.14 shows comparison
between measured and computed bending moment profiles. Although the bending

moment profiles from the analysis at the end of the loading phase agree well with the
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experimental values, there is a discrepancy during the unloading phase. The discrepancy
in the unloading phase is attributed to the developed soil constitutive model not
reproducing soil densification and loosening. Hence, the mobilized soil mass behind the
pile, which follows the movement of the pile during the loading phase of the analysis,
provides higher resistance than the loosened soil of the experiment during the unloading
phase when the pile tries to reach its initial position.

Computed shear force distributions are presented in Figure 2.15. It is observed
that for asymmetric cyclic loading the maximum of the shear force decreases with the
number of cycles while the depth of the maximum shear force increases. On the
contrary, the maximum of soil reaction (Figure 2.16) increases with the number of cycles.
The irregular shape of the soil reaction after twelve cycles of loading is attributed to the
fact that it is not directly measured but derives from differentiation of the shear force.
Figure 2.17 shows the increase of the horizontal pile displacement in one-way loading as
the number of loading cycles increases. As expected, these values are higher than in test
P32 because the range of loading-unloading is also higher. It is also observed that the
effective length of the pile increases in comparison to test P32, even though the
maximum applied load is the same for both tests (960 kN).

Finally, Figure 2.18 depicts the contours of the active and passive stress states in
terms of the state parameter k at three different stages of: (a) at the 1% cycle at 960 kN,
(b) at the 12t cycle at 0 kN, and (c) at the 12 cycle at 960 kN. It is interesting to observe
that the plastic shakedown effect is reflected by the gradually developing fan-shaped
stress bulb, the frontal part of which represents the mobilized soil mass that is in a
passive state and expands with increasing cycles of loading, while the trailing part
corresponds to the mobilized soil zone that is in an active state and shrinks with
increasing number of cycles. The larger the bulb of “passive” stresses the greater the
lateral soil reactions that resist the applied load, and finally, the pile reaches a steady
state equilibrium of constant plastic strain (plastic shakedown). In Figure 2.18b it must be
observed that even though there is no lateral force acting on the pile (unloading phase),
the pile has not returned to its initial position because of the resistance of the soil that
has already moved with the pile during the cyclic loading phase and has now taken the
part of the initial position of the pile. This is also verified from the contours of the soil

yielding around the pile in Figure 2.19.
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Test P330 is a two-way cyclic loading test with maximum horizontal force 960 kN
and minimum horizontal force -960 kN. The computed force-displacement curve at the
pile head is compared to the experimental data for the 6 cycles of loading in Figure 2.20.
It is observed that the pile displacement at reversal decreases at a decreasing rate as the
number of loading cycles increases, in contrast to the previous experiments. This
hardening behavior in the pile response is attributed to the extensive soil plastification
that takes place around the pile, which leads to an increase of the soil pressure on the
pile. In addition, a discrepancy in the displacement of about 1.5 cm is observed at the
end of the virgin loading among test P330 and tests P32 and P344. This means that the
sand in this experiment was not at the same initial condition as it was in tests P32 and
P344. The results in this case are more qualitative than quantitative since no calibration
of the proposed model was performed for the new soil condition.

Figure 2.21 depicts bending moment profiles at the first and sixth cycle of
loading. For fully cyclic lateral loading, the computed values of bending moment agree
well with the experimental ones. It is of interest to note, that the bending moment
distributions at 960 kN and -960 kN are not exactly symmetric, but are slightly higher
towards the direction of the virgin loading. This effect is attributed to the fact that the
trailing part of the soil during the virgin loading flows with the pile and thus, there is an
increase of the soil pressure on the pile during the unloading and the loading on the
opposite direction. Shear force profiles for the first and sixth cycle (Figure 2.22) show
that for fully cyclic loading the depth of the maximum shear force moves closer to the
ground surface because of the system hardening due to the increased soil pressure on
the pile. Similarly, the maximum soil reaction increases and the depth of the maximum
soil reaction also shifts closer to the ground surface as depicted in Figure 2.23. Figure
2.24 depicts the decrease of the horizontal pile displacement in fully cyclic lateral loading
as the number of loading cycles increases. It is also observed that the horizontal pile
displacement at the end of the loading phase of the sixth cycle is higher (1.44 cm) than
the unloading phase of the same cycle (1.3 cm), even though the absolute value of the
lateral force is the same in both cases. Finally, Figure 2.25 depicts the contours of the
active and passive stress states in terms of the state parameter k at three different stages
of: (a) at the 1% cycle at 960 kN, (b) at the 6™ cycle at -960 kN, and (c) at the 6™ cycle at

960 kN. k = 1 corresponds to pure triaxial compression loading condition (passive state),
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and k = 0 to pure triaxial extension loading condition (active state) while k = 0.5
corresponds to the response of the soil in direct shear test. When the pile reaches a
steady state equilibrium of constant plastic strain (plastic shakedown) at the twelfth

cycle the developed fan-shaped stress bulbs during unloading and reloading are identical.

2.4.4 Influence of the n-plane shape of the yield surface on pile response

As already stated above, a user subroutine is imported in ABAQUS, which
correlates the Young’s Modulus of the sand with the vertical stress, the principal stresses
and the Lode angle at every step of the loading. The sand behavior is defined for triaxial
extension and triaxial compression conditions and linear interpolation is performed for
the intermediate states. On the loading side of the pile where compression prevails the
soil is in the passive state, while at the back of the pile, where extension dominates the
response, the soil is in the active state. For this reason, the predictions of the developed
constitutive model (hereafter designated as Model CT) are compared with those from
matching the Mohr-Coulomb vyield criterion on its m-plane with a circle, in two different
ways. In the first case (Model C), the circle circumscribes the Mohr-Coulomb shaped
hexagonal pyramid (compressive meridian matching), while in the second case (Model T),
the hexagonal pyramid is inscribed by the circle (tensile meridian matching), as
illustrated in Figure 2.26. The results for all three tests performed are presented herein.

For the case of one-way loading test P32, the computed force-displacement
curves at the pile head of the three models are presented in Figure 2.27. Obviously,
model CT provides the best response. Model C is close to the experimental values but
with stiffer response, while Model T leads to a "softer" response. The bending moment
profiles at the 1*" and 12 cycle of loading are compared in Figure 2.28. It is observed
that model CT captures well the bending moment distribution while the response of
triaxial compression model (Model C) prediction is also close to the measured values,
since the passive soil resistance is an order of magnitude greater than the active one. As
expected, the triaxial extension model (Model T) overestimates the response. Figure 2.29
presents the shear force profiles at the end of the first cycle. The proposed model (Model
CT) captures better the depth of the maximum shear force in comparison to the triaxial
compression model. Again, the triaxial extension model overestimates the response.

Finally, Figure 2.30 depicts the horizontal displacement profiles at two different levels of
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cyclic loading, computed from the three models. As expected, the triaxial compression
model has a stiffer response than the proposed model, while the triaxial extension model
predicts larger displacements and larger effective pile lengths.

For the case of one-way loading test P344, the predictions of the three models
are shown comparatively in Figure 2.31. Again, Model CT coincides with the
experimental values, the model C is close to the experimental values, while Model T has
a softer response. Regarding the bending moment profiles in Figure 2.32 each model
exhibits similar behavior to that of test P32. As stated before, some differences noted at
the soil reaction curves at Figure 2.33 are attributed to the fact that the measured values
derive from the bending moment distribution, while the computed values derive from
differentiation of the shear force. The Model C and Model CT have a response close to
the one derived from the experiment with the use of spline interpolation process. On the
contrary, the Model T underpredicts the maximum soil reaction near the surface, while it
overpredicts the soil reaction at the lower part of the pile. Finally, Figure 2.34 depicts the
increase of the horizontal pile displacement as the number of loading cycles increases for
all three models, with the triaxial extension model producing the largest displacement as
in test P32. The effective length of the pile increases with the number of cycles for all
three models as expected.

For the case of two-way loading test P330 the predictions of the three models are
shown comparatively in Figure 2.35. As already noted, a discrepancy at the displacement
is observed at the end of the virgin loading among test P330 and tests P32 and P344 that
indicates that the sand in this experiment is not at the same initial condition as it was in
tests P32 and P344. Model C has a stiffer response than Model CT and the force—
displacement loops stabilize almost at the second cycle of loading. Bending moment
profiles at the 1% and 6" cycle are compared in Figure 2.36. In this type of loading the
measured values are closer to the response of Model T and Model CT. This is expected,
because in two-way loading the role of the active zone during the loading and unloading
stage is more important than in the one-way loading. This also underlines that for fully
cyclic lateral loading, the proper simulation of both triaxial compression and extension
states of the soil are important. Finally, Figure 2.37 depicts the decrease of the horizontal

pile displacement as the number of loading cycles increases for all three models, with
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Model T predicting the larger reduction in the displacements and the larger effective pile
lengths.

Finally, it should be noted that the same problem of cyclic lateral loading of a pile
in nonhomogeneous sand with increasing shear modulus Gg with depth was attempted
to be simulated with two other constitutive models: Mohr-Coulomb and Drucker-Prager.
Because of the complicated loading conditions, the above mentioned models were
unable to perform the analysis with the existing soil properties. The analyses would fail
numerically and unrealistic soil properties should be introduced for the numerical

solution of the cyclic loading.

2.4.5 Evaluation of model predictions

Three performance measure parameters are introduced to evaluate the response
of the pile-soil system. Figure 2.38 depicts the tangent stiffness at each unloading-
reloading reversal point divided by the tangent stiffness at unloading-reloading reversal
point of the first cycle, which is indicative of the elastic response of the pile. It is
interesting to observe that the computed tangent stiffness remains constant for the
proposed model described above, unaffected by cyclic loading, while the measured
tangent stiffness increases in tests P344 and P330. This increase in the measured tangent
stiffness is attributed to soil (material) densification during cyclic loading, an effect that is
not simulated by the utilized soil constitutive model and which prevails in the elastic
response of the pile. In test P32 the measured tangent stiffness shows a small variation
without exhibiting a clear trend of hardening response, remaining practically unaffected
by cyclic loading, the amplitude of which is too small to trigger soil densification.

Figure 2.39 presents the secant stiffness between two sequential reversal points
normalized by the secant stiffness of the first cycle, which is indicative of the overall
response of the pile during cyclic loading. It is worthy of note that both the computed
and the measured secant stiffnesses increase with the number of cycles. Given that the
system densification is captured numerically, the difference between measured and
computed response is only attributed to soil densification.

Figure 2.40 presents the relative pile head displacement between two
consecutive re-loading—unloading reversal points normalized with the one between the

virgin loading-unloading and the first re-loading—unloading reversal points. The pile
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displacement at pivot points increases in the asymmetric cyclic loading or decreases in
the symmetric two-way cyclic loading with a decreasing rate and the pile finally reaches a
zero-plastic strain rate equilibrium. It is observed that the computed versus measured
response is in well agreement, implying that the mechanism of “system densification”

dominates upon that of soil densification.

2.5 APPLICATION TO 1x2 PILE GROUP

For a pile group, the Winkler model has no interaction between adjacent piles
and for this reason p-multipliers are introduced, factors that decrease the soil resistance
p in p-y curves. In the elastic continuum model, the deformation of a pile under load is
accompanied by deformations of the surrounding soil which decrease with distance from
the pile and thus, the application of a load on a pile causes the movement of the
adjacent pile. This effect is quantified with the use of interaction factors.

Having compared and validated the developed constitutive model with the
analysis of a single free-head pile under lateral cyclic loading in nonhomogeneous sand,
its capability for lateral response of piles in sand is further investigated through analysis
of a 1x2 pile group. The piles, located at a distance of three diameters, are parallel to the
load direction. Figure 2.41 shows that the pile heads are hinged (zero bending moment)
to the pile cap via appropriate kinematic constraints: (a) in order to have the identical
pile head displacement as in a pile group, and (b) so that the results could be compared
with those from the analyses of the free-head single pile. The pile cap is considered
axially incompressible so that the spacing among the pile heads is kept constant. The
load is applied at the middle of the pile heads from left to right appointing the left pile
the trailing pile and the right pile the leading pile. Figure 2.42 illustrates the finite

element discretization of the pile group.

2.5.1 Test P344 (asymmetric cyclic loading)

The pile group is subjected to an asymmetric cyclic lateral loading similar to that
of test P344 but with double amplitude (1920 kN). Figure 2.43 plots the average force
per pile versus group displacement and compares it with the corresponding
force-displacement loop of the single isolated pile. For the same average load, the group

displacement is greater than that of the solitary pile. Similar results have been derived by
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Rollins et al (2006) and Papadopoulou et al (2010). This behavior is attributed to the fact
that the passive failure zones of the piles in the group tend to overlap (shadow effect) as
the lateral load increases, thus reducing the average soil resistance on the piles in the
group. The shadow effect becomes more dominant with decreasing pile-to-pile distance.
As in the case of the free-head single pile under asymmetric cyclic loading, the group
displacement increases at a decreasing rate with the number of cycles finally reaching a
plastic shakedown equilibrium. Interestingly, the force-displacement loop of the pile
group is wider than the corresponding of the single isolated pile, implying greater soil
plastification.

Figures 2.44 through 2.46 depict the detailed distribution of the bending
moments, the shear forces, and the lateral soil reaction with depth along each pile in the
group computed for different stages of loading. Comparison is given with the respective
results from the analysis of the single isolated pile. The following observations are
worthy of note:

e The maximum bending moment increases with the number of cycles and shifts to
greater depths following the progressive extension of soil yielding. A similar trend
in the behavior is exhibited by both the shear force and the lateral soil reaction.

e The leading pile develops the largest bending moment in comparison to both the
trailing and the single pile which shows an intermediate response. The
discrepancy in the bending moment distribution between the trailing and the
leading pile is attributed to the shadow effect. Similar trends are also observed in
the shear force and lateral soil reaction profiles.

e Upon unloading, and for zero applied lateral force, the bending moments, shear
forces and lateral soil reactions are not zero. Instead, they retain large values
comparable to those for the maximum applied load. Indeed, the reduction in the
maximum values is about 40% for the bending moments and shear forces, and
rather negligible for the lateral soil reactions. It should be noted that in the case
of a linear soil all the aforementioned quantities would vanish to zero, as soil
elasticity would act as a restoring force for the pile.

The contours of the state parameter k are presented for the 1% and 12 cycle of
loading are shown in Figure 2.47. Evidently, the picture is similar to that of Figure 2.18

for single pile response. The gradual expansion of the compression stress bulb with the
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number of cycles signals the plastic shakedown process until the pile group reaches a
steady state equilibrium of constant plastic strain. The shadow effect is manifested by
the formation of a relaxation zone (k = 0) at the back of the leading pile which softens the
response of the trailing one. Figure 2.47b shows that even though there is no lateral
force acting on the pile (unloading phase), the pile group has not returned at its initial
position because of the resistance of the soil that has already flown with the pile group
during the cyclic loading phase and has now taken the part of the initial position of the
pile group. The evolution of soil yielding around the pile group is depicted in Figure 2.48.
The plastic strains are plotted on the same scale at each loading phase. It is evident that
the plastic strains increase with the number of cycles. Another observation worthy of
note is that the soil around the trailing pile yields more than in that around the leading

pile.

2.5.2 Test P32 (asymmetric cyclic loading)

Similarly, the pile group is subjected to an asymmetric cyclic lateral loading similar
to that of test P32 but with double amplitude (maximum applied load 1920 kN and
minimum applied load 960 kN). Figure 2.49 plots the average force per pile versus group
displacement and compares it with the corresponding force-displacement loop of the
single isolated pile. For asymmetric cyclic loading, the behavior of the pile group is
identical to that of test P344: for the same average load, the group displacement is
greater than that of the solitary pile.

Figures 2.50 and 2.51 illustrate the detailed distribution of the bending moments
and the shear forces, respectively, with depth along each pile in the group computed for
the first and sixth cycle of loading. As in the case of cyclic loading of test P344, the
leading pile develops the maximum bending moment and shear force at the same depth
with the single pile for both loading and unloading while in the case of the trailing pile
they develop at higher depth due to the shadow effect. It is worthy of note that the
shear force at the leading pile at the ground surface is about 1.2 times that of the single
pile at the end of loading. Equivalently, the shear force at the trailing pile is about 0.8
times that of the single pile at the end of loading.

Finally, Figure 2.52 presents the contours of the state parameter k for the 1*" and

12 cycle of loading. During the loading phase of the first cycle, the soil in front of the
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leading pile is at the passive state while behind the trailing pile is at the active state. The
soil located between the two piles is in an intermediate state, due to tension near the
leading pile and compression near the trailing pile. In general, the soil between the piles
provides less resistance to the trailing pile than in the case of a single pile since it tends
to flow with the leading pile. On the contrary the soil in front of the leading pile provides
similar resistance to the case of a single pile because of the stable soil mass around it.
When the direction of the loading changes (unloading) the soil between the piles is not
compressed enough in order to change its condition to a complete passive one, so it
remains in an intermediate state. This indication of shadow effect is more intense as the

number of cycles increases.

2.5.3 Test P330 (symmetric cyclic loading)

Finally, the pile group is subjected to the symmetric cyclic lateral loading of test
P330 with double amplitude (maximum applied load 1920 kN and minimum applied load
-1920 kN). Figure 2.53 plots the average force per pile versus group displacement and
compares it with the corresponding force-displacement loop of the single isolated pile
for the 6 cycles of loading. Even for two-way cyclic loading, the shadow effect causes
greater group displacement than that of the solitary pile. As in the case of the single pile,
the pile group displacement at reversal decreases with decreasing rate as the number of
loading cycles increases due to the extensive soil plastification that takes places around
the pile group.

Figures 2.54 and 2.55 present bending moment and shear force profiles of the
single pile and the pile group at the first and third cycle of loading. For fully cyclic lateral
loading, the maximum bending moment per cycle decreases. Similar behavior is observed
for the shear force profile for the first and third cycle. It is also observed that the piles at
the end of loading and unloading stage undertake the same percentage of the total load
on the pile group depending only on whether they behave as the leading or the trailing
pile. Finally, the contours of the state parameter k are presented for the 1°* and 6" cycle
of loading are shown in Figure 2.56. For fully cyclic lateral loading, the fan-shaped stress
bulbs developed during loading and unloading are almost identical at the steady state

equilibrium (cycle 6).

73



2.5.4 Efficiency factors

Pushover Tests are performed for the 1x2 pile group with pile diameter d = 0.72
m. Figure 2.57 compares the efficiency factors, which should not be confused with pile-
to-pile interaction factors, for the 1x2 pile group loaded at a height 1.6 meters above the
ground surface: (a) calculated with Model CT through complete modeling, and (b) as
proposed by Reese and Van Impe (2001):

for the leading pile

S 0.26
n 20'7(5) (2.21)

for the trailing pile

S 0.38
u :0.48&) (2.22)

with d the pile diameter, and s the pile-to-pile distance. Interestingly, the calculated
efficiency factors converge to those of Reese and Van Impe (2001) at very large pile head
displacements, with a small discrepancy for the leading pile which shows to recover its
initial stiffness (n. = 1). This hardening response may be attributed to the plastic
shakedown effect. On the contrary, the computed efficiency factor for the trailing pile
decreases with increasing horizontal displacement, as a result of the shadow effect, but
at decreasing rate due to the “plastic shakedown-induced” hardening response of the
pile group reaching a minimum value of (nt = 0.7).

Of equal if not greater interest is that at zero and/or very small pile displacements
(elastic response), all three computed efficiency factors (for the leading pile, the trailing
pile and the pile group) are very close to 1 (= 0.97), implying that pile-to-pile interaction
has an insignificant effect on the elastic response of the pile group. This could possibly
suggest a “destructive” interference in pile-to-pile interaction rather than that pile-to-
pile interaction factors are zero which are certainly not, according to valid published
results, e.g. Mylonakis and Gazetas (1998). It is recalled that the efficiency factor for a
group of two piles, assuming elastic soil response and neglecting the cross-coupling
(displacement/rotation atop the passive pile for a unit rotation/displacement atop the
active pile) and rotational (rotation atop the passive pile for a unit rotation atop the

active pile) pile-to-pile interaction factors, is expressed by:
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= 2.23
N 1+ a, ( )

in which ay, is the horizontal pile-to-pile interaction factor, approximated by Mylonakis

and Gazetas (1998):

d
o & o (2.24)

with d the pile diameter, and s the pile-to-pile distance. For d =1 m and s = 3 m,
Equation 2.23 yields n = 0.71 compared to 0.97 from the analysis. The negligible pile-to-
pile interaction effect in the elastic response is also evident in Figures 2.43, 2.49 and 2.53
which compare the computed force - displacement response of the single pile and the
pile group.

Figure 2.58 depicts the average force per pile versus group displacement and
compares it with the corresponding force-displacement of the single isolated pile for
different soil types: (a) elastic soil with constant Young’s modulus with depth, (b) elastic
soil with parabolic Young’s modulus with depth, and (c) for inelastic soil response. For
small displacements (elastic response) the efficiency factor of the pile group is 1 when
the pile spacing is three pile diameters. Obviously, the efficiency factor is unaffected by
the variation of the soil modulus with depth.

Figure 2.59 illustrates the average force per pile versus group displacement and
compares it with the corresponding force-displacement of the single isolated pile for
different pile group connections and height of connections. Comparing Figure 2.59¢ and
2.59d it is verified that the hinged connection of the piles is identical as the case of two
free-head piles with load acting at both individual piles. Thus, n = 0.78 is attributed
directly to the horizontal pile-to-pile interaction. Comparing Figure 2.59a and 2.59b it is
shown that the fixed-head connection leads to even smaller efficiency factor than the
hinged-head connection. The comparison of Figure 2.59a and 2.59c proves that the
eccentricity of loading greatly affects the efficiency factor (n =0.97 fore=1.6 mand n =
0.78 fore =0 m).

2.6 SUMMARY AND CONCLUSIONS

A simplified constitutive soil model for the static and cyclic response of piles

embedded in cohesionless soil under drained conditions is presented. Materialized into a
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three-dimensional finite element code, the model predictions were compared with
experimental results of a single pile in dry sand, and subsequently the model was utilized
in @ numerical study. The numerical study addressed the cyclic lateral response of a
group of two piles with similar geometric characteristics and soil conditions to those of
the experimental tests. The main conclusions are:

e The plastic shakedown response of the single pile is attributed to the so-called
“system” densification and the cyclically-induced material (soil) densification.

e During cyclic loading, the mechanism of “system” densification dominates upon
soil densification with the contribution of the latter to the macroscopic response
of the piles (or pile group) being rather insignificant.

e Upon unloading to zero lateral force, the residual internal structural forces and
the lateral soil reactions of the piles are substantial.

e For fully cyclic lateral loading, the proper simulation of both triaxial compression
and extension states of the soil are important.

e The formation of a relaxation zone at the back of a leading pile in the pile group
significantly reduces the lateral soil resistance on the trailing pile. This behavior,
well-known in the literature as “shadow effect”, is more prominent at large pile
deformations.

e The efficiency factor of the leading pile decreases with increasing pile
displacement, but at extremely large deformations recovers if not overpasses its
initial (near zero-amplitude-strain) value. On the contrary, the efficiency factor of
the trailing pile decreases monotonically with loading, but at a decreasing rate,
finally reaching an asymptotic value.

e The asymptotic values of all three efficiency factors (for the leading pile, the
trailing pile and the pile group) compare well with those by Reese and Van Impe
(2001). But, interestingly, and perhaps surprisingly, all the computed nearly
elastic efficiency factors are very close to 1, suggesting that pile-to-pile
interaction effects are negligible. This stems mainly from the fact that the load is

applied at a height above the soil surface, while the piles are hinged at their top.
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Table 2.1: Pile characteristics

Name Symbol Model scale  Prototype scale (40 g)
Length L 36.5cm 14.6 m
Depth of pile tip from D 30 em 12m
ground surface
External diameter B 1.8cm 0.72 m
Internal diameter 1.5cm 0.6m
Young’s modulus E 7.4 x 104 MPa
Moment of inertia | 2.67x10° m* 6.83x10° m*
Bending stiffness El 197 Nm? 505 MNm?
Elastic limit Ce 245 MPa
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Figure 2.1: (a) Simplified one-dimensional representation of the hardening of the
constitutive model for cohesive soils, (b) Three-dimensional representation of the
hardening in the nonlinear kinematic model
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Figure 2.2: (a) Simplified one-dimensional representation of the hardening of the
proposed constitutive model for cohesionless soils, (b) Three-dimensional
representation of the hardening in the nonlinear kinematic model
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Figure 2.3: The centrifuge at LCPC in Nantes, France
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Figure 2.4: (a) Experimental setup of the centrifuge tests conducted in LCPC, (b)
Load time histories of the three tests (P32, P344 and P330). All dimensions refer to

the modeled prototype
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Figure 2.7: Experimental and computed force—displacement curves at pile head for
test P32
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Figure 2.8: Comparison of computed and recorded bending moment distributions
for test P32 at two different stages of loading: at 15t and 6t cycles. The maximum
applied load is 960 kN and the minimum 480 kN
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Figure 2.9: Comparison of computed and recorded (a) bending moment, (b) shear
force, and (c) soil reaction distributions for virgin loading of test P32 for different
loads increments during virgin loading
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Figure 2.10: Comparison of computed horizontal displacement of the pile for test
P32 at two different stages of loading: at the end of the 15t and the 12t cycle. The
maximum applied load is 960 kN
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Figure 2.12: Contours of the horizontal displacement, plotted on the deformed
mesh, at three different stages of loading of the single pile of test P32: (a) at the
1st cycle at 960 kN, (b) at the 12t cycle at 480 kN, and (c) at the 12t cycle at 960
kN. (Deformation Scale Factor = 5)

90



1200

—— Experiment

1000
— Analysis

800 +

600 -

Force (kN)

400 -

200 -

0 ‘ ‘
0 0.05 0.1 0.15 0.2
Lateral displacement at pile head (m)

Figure 2.13: Experimental and computed force—displacement curves at pile head
for test P344
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Figure 2.14: Comparison of computed and recorded bending moment distributions
for test P344 at two different stages of loading: at 1%t and 6" cycle. The maximum
applied load is 960 kN and the minimum 0 kN
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Figure 2.15: Computed shear force distributions for test P344 at 15t and 12t cycle
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Figure 2.16: Computed soil reaction distributions for test P344 at 15t and 12t cycle
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Figure 2.17: Comparison of computed horizontal displacement of the pile for test
P344 at two different stages of loading: at the end of the 15t and the 12t cycle. The
maximum applied load is 960 kN
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a) PEMAG
Angle = -90.0000
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Angle = -90.0000
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Figure 2.19: Contours of the plastic strain magnitude (plotted on the deformed
mesh) at three different stages of loading of the single pile of test P344: (a) at the
1t cycle at 960 kN, (b) at the 12t cycle at 0 kN, and (c) at the 12t cycle at 960 kN.
(Deformation Scale Factor = 5)
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Figure 2.20: Experimental and computed force—displacement curves at pile head
for test P330
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Figure 2.21: Comparison of computed and recorded bending moment distributions
for test P330 at two different stages of loading: at 15t and 6" cycle. The maximum
applied load is 960 kN and the minimum -960 kN
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Figure 2.22: Computed shear force distributions for test P330 at 15t and 6" cycle of
loading for maximum applied load 960 kN
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Figure 2.23: Computed soil reaction distributions for test P330 at 15t and 6t cycle
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Figure 2.24: Comparison of computed horizontal displacement of the pile for test
P330 at two different stages of loading: at the end of the 15t and the 6% cycle. The
maximum applied load is 960 kN
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Figure 2.26: Examined yield criteria matching the Mohr-Coulomb yield criterion on
the m-plane: (a) the developed constitutive model (Model CT), (b) compressive
meridian matching (Model C), and (c) tensile meridian matching (Model T)
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Figure 2.27: Force—displacement curves at pile head for test P32 computed by the

three constitutive soil models
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Figure 2.28: Comparison of computed (solid lines) with the three constitutive soil
models and recorded (circles) bending moment distributions for test P32, at two
different stages of loading: at the end of the 15t and the 12t cycle. The maximum
applied load is 960 kN
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Figure 2.29: Comparison of computed (solid lines) with the three constitutive soil
models and recorded (circles) shear force distributions for test P32, at the end of
the first cycle. The maximum applied load is 960 kN
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Figure 2.30: Comparison of horizontal displacement distributions for test P32,

computed with the three constitutive soil models, at different stages of loading: at

the end of the 15t and the 12t cycle. The maximum applied load is 960 kN

103



Force (kN)

1200

—— Experiment
1000 | — Model CT
—— Model C
800 | — Model T
600 -
400 -
200 A
0 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

Lateral displacement at pile head (m)

Figure 2.31: Force—displacement curves at pile head for test P344 computed by the
three constitutive soil models
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Figure 2.32: Comparison of computed (solid lines) with the three constitutive soil
models and recorded (circles) bending moment distributions for test P344, at two
different stages of loading: at the end of the 15t and the 12t cycle. The maximum
applied load is 960 kN
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Figure 2.33: Comparison of computed (solid lines) with the three constitutive soil

models and recorded (circles) soil reaction distributions for test P344, at the end of
the first cycle. The maximum applied load is 960 kN
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Figure 2.34: Comparison of horizontal displacement distributions for test P344,

computed with the three constitutive soil models, at different stages of loading: at

the end of the 15t and the 12t cycle. The maximum applied load is 960 kN
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Figure 2.35: Force—displacement curves at pile head for test P330 computed by the
three constitutive soil models
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Figure 2.36: Comparison of computed (solid lines) with the three constitutive soil
models and recorded (circles) bending moment distributions for test P330, at two
different stages of loading: at the end of the 15t and the 6t cycle. The maximum
applied load is 960 kN
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Figure 2.37: Comparison of horizontal displacement distributions for test P330,
computed with the three constitutive soil models, at different stages of loading: at
the end of the 15t and the 6% cycle. The maximum applied load is 960 kN
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Figure 2.38: Normalized tangent stiffness with respect to the first cycle of loading,

for: (a) test P32, (b) test P344, and (c) test P330
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Figure 2.39: Normalized secant horizontal pile stiffness with respect to the first
cycle of loading, for: (a) test P32, (b) test P344, and (c) test P330
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Figure 2.40: Relative pile head displacement between two consecutive re-loading—
unloading reversal points normalized with the one between the virgin
loading-unloading and the first re-loading—unloading reversal points, for: (a) test

P32, (b) test P344, and (c) test P330
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Figure 2.41: Connection of the pile heads in the group and definition of the piles

114



\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

i
§§“§ /

il

%ﬁ%@%ﬁ%
_ﬁ“mﬁ____mﬁm“_mﬁﬁﬁm“.mmmmms
UHHLLHATTIIII, 7
LI E&m&ﬁ&%ﬁﬁ.ﬁ\

1117
JEERFIRRRERIENIEE T

_:h:__-_hhhhn______n____-___h_::_hhh\\._-_a_hh\ﬁ:
i
_-_..__q_-________._..ﬂ_ﬂﬂ“.Eaﬁgﬁhﬁu.ﬁh&_\.._.5...__.5..

T T

\\\E\aﬁﬁ: i
§§§§\§
%§§§

Finite element modeling for the pile group

Figure 2.42
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Figure 2.43
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Figure 2.44: Comparison of computed bending moment distributions of the pile
group and the single pile for test P344 at two different stages of loading: (atop) at
the 15t and 6t cycle and at 960 kN per pile, and (bottom) at the 1t and 6 cycle
and at O kN per pile. The maximum applied load per pile is 960 kN and the
minimum applied one is 0 kN
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Figure 2.45: Comparison of computed shear force distributions of the pile group
and the single pile for test P344 at two different stages of loading: (atop) at the 1°t
and 6t cycle and at 960 kN, and (bottom) at the 1t and 6" cycle and at O kN. The
maximum applied load is 960 kN and the minimum applied one is 0 kN
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Figure 2.46: Comparison of computed soil reaction distributions of the pile group

and the single pile for test P344 at two different stages of loading: (atop) at the 1°t
and 6t cycle and at 960 kN, and (bottom) at the 1%t and 6" cycle and at 0 kN. The

maximum applied load is 960 kN and the minimum applied one is 0 kN
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Figure 2.48: Contours of the plastic strain magnitude (plotted on the deformed
mesh) at three different stages of loading of the pile group of test P344: (a) at the
15t cycle at 960 kN per pile, (b) at the 12t cycle at 0 kN per pile, and (c) at the 12t
cycle at 960 kN per pile. (Deformation Scale Factor = 5)
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Figure 2.49: Force—displacement curves of the single pile and the pile group for the

loading of test P32
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Figure 2.50: Comparison of computed bending moment distributions of the pile
group and the single pile for test P32 at two different stages of loading: (atop) at
the 15t and 6t cycle and at 960 kN per pile, and (bottom) at the 1t and 6 cycle
and at 480 kN per pile. The maximum applied load per pile is 960 kN and the
minimum applied one is 480 kN
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Figure 2.51: Comparison of computed shear force distributions of the pile group
and the single pile for test P32 at two different stages of loading: (atop) at the 1*t
and 6t cycle and at 960 kN, and (bottom) at the 15t and 6t cycle and at 480 kN.
The maximum applied load is 960 kN and the minimum applied one is 480 kN
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Figure 2.53: Force—displacement curves of the single pile and the pile group for the

loading of test P330
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Figure 2.54: Comparison of computed bending moment distributions of the pile
group and the single pile for test P330 at two different stages of loading: (atop) at
the 15t and 3™ cycle and at 960 kN per pile, and (bottom) at the 15t and 3 cycle
and at -960 kN per pile. The maximum applied load per pile is 960 kN and the
minimum applied one is -960 kN
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Figure 2.55: Comparison of computed shear force distributions of the pile group
and the single pile for test P330 at two different stages of loading: (atop) at the 1°t
and 3" cycle and at 960 kN, and (bottom) at the 15t and 3™ cycle and at -960 kN.
The maximum applied load is 960 kN and the minimum applied one is -960 kN
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Figure 2.57: Comparison of the calculated efficiency factors for a 1x2 pile group
loaded at a height 1.6 meters above the ground surface with those proposed by
Reese and Van Impe (2001)
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Figure 2.58: Force—displacement curves of the single pile and the pile group for
different soil types: (a) elastic soil with constant Young’s modulus with depth, (b)
elastic soil with parabolic Young’s modulus with depth, and (c) for inelastic soil
response
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Figure 2.59: Force—displacement curves of the single pile and the pile group for
different pile group connections and heights of connections: (a) force acting at 1.6
m above ground surface at both individual free-head piles, (b) force acting at 1.6 m
above ground surface for fixed-head piles, (c) force acting at ground surface at both
individual free-head piles, and (d) force acting at ground surface at hinged-head

piles
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CHAPTER 3:
MACRO-ELEMENT MODELING OF THE LATERAL RESPONSE OF FLEXIBLE
PILES: FAILURE SURFACE AND PLASTIC FLOW RULE — ANALYTICAL
FORMULATION

3.1 MACRO-ELEMENT FORMULATION AND REQUIREMENTS

The macro-element can be thought of as a generalized inelastic stiffness matrix
representing the soil-foundation response to applied forces and moments. Placed at the
base of the superstructure, it reproduces nonlinear interaction phenomena arising at
soil-foundation interface. Thus, instead of executing real-time expensive numerical
analyses for the soil, one can alternatively use macro-elements involving minimum
calculation effort, as there is no need to model explicitly the soil domain. It exhibits a
straightforward and quick calibration procedure, an excellent degree of qualitative
insight on foundation dynamic behavior and sufficiently accurate quantitative
performance.

In general, macro-element modeling is related to the process of capturing, from
the global response of a complex system consisting of the soil and the foundation
substructure, only those elements that contribute to the interaction with the
superstructure. In order to do so, it is important to investigate and understand in depth
the characteristics of soil-foundation response. The basic and realistic modeling
assumption is that the foundation is structurally rigid. Thus, one can achieve the
condensation of the degrees of freedom of the entire soil-foundation substructure to
those of a single point. Accordingly, applied loading on the foundation can be expressed
by means of a limited number of force parameters that are work conjugate to the
retained degrees of freedom.

According to Martin and Houlsby (2001) the four basic components needed for

the formation of a macro-element are (Figure 3.1):
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(a) Expression of the yield surface (failure envelope) of the foundation in three
dimensional moment, horizontal and vertical loading M—-Q-N space, that
defines the limits of the elastic and inelastic response of the soil-foundation
system (large-strain behavior)

(b) Expression of the elastic response of the foundation within the yield surface
(small-strain behavior)

(c) Expression of a plastic flow rule for the incremental plastic displacements at
failure of the reference point of the foundation

(d) Expression of a hardening law which controls the transition from the elastic
(small-strain) response to the yielding (large-strain) response.

Components (b) and (d) can be derived from the literature. For the lateral
response of flexible pile, the initial elastic response of the pile-head macro-element
(component (b)) can be characterized by approximate expressions for pile-head
equivalent-linear impedances such as the ones proposed by Gazetas (1991) or Mylonakis
(1995). Hardening and hysteretic behavior (component (d)) can be introduced through a
Bouc-Wen type law based on work-hardening plasticity theory such as the one utilized by
Gerolymos and Gazetas (2005).

Regarding component (a), the definition of the bearing capacity of the foundation
is necessary. In having performed condensation of degrees of freedom and introduced a
limited number of force parameters, the definition of bearing capacity may be conceived
as the determination of all possible combinations of these force parameters that can be
supported by the foundation. Equivalently, bearing capacity of the foundation can be
thought of as a surface (failure envelope) in the space of force parameters with the
following property: any point in the interior of this surface corresponds to a combination
of force parameters that can be supported by the footing. Inversely, any point outside
this surface corresponds to a combination of force parameters that cannot be supported
by the foundation. One of the advantages of describing bearing capacity as an ultimate
surface in the space of force parameters is that it elucidates the existence of different
foundation failure mechanisms associated to different combinations of force parameters.
In particular, each point or neighborhood in the ultimate surface can be thought of as
corresponding to a distinct failure mechanism of the foundation. Inversely, the failure

envelope can be determined on the basis of a number of anticipated failure mechanisms,
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optimized to yield the most conservative combination of external applied loading. This
methodology has been applied successfully for the determination of seismic bearing
capacity of strip footings by Salencon and Pecker (1995a, 1995b) and Paolucci and Pecker
(1997), and for the seismic bearing capacity of circular footings on cohesive soils by
Chatzigogos et al (2007).

Regarding the component (c), the plastic potential expresses the relation of the
increments of plastic displacements at failure (v*, u”, 8”) with the loads M—Q—N. In the
majority of the studies on embedded foundations, it is assumed that the plastic potential
function, g, coincides with the yield function (failure envelope), f, without further
verification of this assumption (associated flow rule, eg. Cremer et al, 2001).

In the present chapter, closed-form solutions for failure envelopes of flexible
single piles under combined Q—M loading for different soil conditions are proposed
based on limit equilibrium analysis. The plastic flow rule is also investigated analytically
and is proposed to be of the associated type. Hence, plastic strains are directly obtained

through the analytical expression of the failure envelope.

3.2 FAILURE ENVELOPES: A REVIEW

A failure envelope in the vertical, horizontal, and moment space N-Q-M is a
simple tool to estimate the ultimate loading of a foundation. A number of undrained
failure envelope analytical formulations can be found in the literature for plane strain
and axisymmetric conditions and different interface properties for shallow foundations
(Bransby and Randolph, 1998; Taiebat and Carter, 2000; 2010; Cremer et al., 2001;
Gourvenec, 2007 among others). For shallow foundations resting on sand, ultimate
bearing capacity has been investigated experimentally for strip, rectangular and circular
foundations by Ticof (1977), Butterfield and Gottardi (1994), Nova and Montrasio (1991;
1997), Gottardi et al (1999) and Houlsby and Cassidy (2002). Recently, Gerolymos et al
(2012) developed failure envelope for caisson foundations in cohesive soils for different
embedment ratios.

The shape of the failure envelope is highly influenced by the choice of reference
point for footing loads and displacements. Hence, in shallow foundations the reference

point is located at their base, in caisson foundations at the centre of their mass (Martin,
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1994) or at the centre of their base (Cassidy et al, 2004) or at the centre of the caisson
top (Gerolymos et al, 2012) while in pile foundations the obvious point is the pile head.

For pile foundation, the current design practice is to consider axial and lateral
loads separately and independently without considering the effect of interaction
between the different load directions. Hence, there are limited references in the
literature. Poulos and Davis (1980) presented a failure envelope for a perfectly-rigid free-
head imbedded vertical plate under moment and horizontal force in a purely cohesive
weightless soil for plane-strain conditions. Upper and lower-bound solutions were
obtained as shown in Figure 3.2. These solutions are only for weightless soil and will tend
to be conservative for soil having appreciable weight. Comparisons between the
solutions of Figure 3.2 and those obtained from Broms’ theory show that the ultimate
lateral resistance calculated from plasticity theory is much less than that from Broms’
theory. This difference arises largely from the lower ultimate soil resistances used in the
plasticity approach (plasticity theory uses a value of 2S, to 5.14S, while Broms’ theory
uses a value of 9S,). The above plasticity solutions while unduly conservative for normal
proportions of pile are relevant to the case of shallow-embedded sheet piling. Also,
Murff (1987) has presented an upper bound plasticity method for the plastic collapse
analysis of long piles typical of offshore foundations subjected to inclined loading.
According to Murff, the assumption of associated plastic flow rule (particularly where the
pile yield surface actually represents combined soil-steel behavior) is used primarily for
computational convenience, but nevertheless the application of the proposed method to
a number of special cases with idealized soil resistance profiles showed that the choice
led to excellent results.

Meyerhof (1995) was the first to propose a complete failure envelope
formulation for piles by incorporating his previous research results on the ultimate
resistance and displacement of rigid piles under lateral loads and moments (Meyerhof
and Sastry, 1985) and the general case of eccentric and inclined loads on flexible piles
through an equivalent rigid pile method. To this end, a vertical rigid pile of diameter B
and fully embedded depth D was subjected at its free-head to the ultimate load Q, (load
height h = 0) with an eccentricity e and inclination a to the vertical (Figure 3.3a). The
total lateral soil pressures p; and p, on the shaft were assumed to be trapezoidally

distributed: a triangular distribution for the component due to friction and a uniform
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distribution for the component due to cohesion. In addition, adhesion forces C; and C,
act on the shaft and the point resistance Q, at the toe. The net ultimate unit lateral soil
pressure p, on the shaft at any depth z above the critical depth z. can be expressed by
(Hansen, 1961)

p, =vZK, + cK < g, (3.1)
where y is the unit weight of the soil, K, and K. are the net lateral soil-pressure
coefficients for friction and cohesion with zero shaft friction angle & and q, is the
ultimate bearing capacity of a vertical strip footing under horizontal load.

The ultimate horizontal load Q, (a = 90°) was approximately expressed by
(Meyerhof and Sastry, 1985):

Q,= (0.12yDK,, + 0.4¢cK_)BD < Q (3.2)

nl
where

Q,= 0.4p,BD (3.3)
p: the limit pressure obtained from pressuremeter tests, and Ky, < Ky and K¢ < K. the
resultant net lateral soil pressure coefficients for friction and cohesion. Further, for a pile
under pure moment M, at the free head the ultimate moment is given by

M, = (0.09DK, + 0.2¢cK ) BD*< M, (3.4)

where

M, = 0.2 p,BD? (3.5)
Under Q, the maximum bending moment in the pile to prevent structural failure is

M,=mQD < M (3.6)

y
where m is the bending moment coefficient, which is about 0.35 and 0.22 for piles in
sand and clay respectively and M, is the yield moment of pile section. For a pile under
pure moment: My < M.

The experimental “interaction diagrams” (failure envelope) for eccentricity e and

inclination a of the ultimate load was found based on an ultimate eccentric vertical load

Que (a=0):
2 M 2
[Quej ( j 1 3.
Qa MO
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where Q; is the ultimate axial pile capacity (a = 0), M, = Que€ and My, is the pure moment
at the free pile head. Similarly, for an ultimate central inclined load Q. (e = 0) its vertical

and horizontal components Qu, and Qg respectively, can be approximated by the

(%) (Q_] 4 (3.8)
Q, Q.

where Q,, the ultimate horizontal load.

semiempirical relationship:

For the case of flexible piles the concept of effective embedment depths of
equivalent rigid piles for both ultimate bearing capacity and elastic displacements was
used. According to Poulos and Davis (1980), a pile is considered flexible when its relative
stiffness K, compared to that of the soil is less than about 0.01:

. =% (3.9)
where E,l, is the flexural rigidity of the pile and E, is the average normal soil modulus
along the embedded depth D. For a laterally loaded flexible pile in the absence of
structural pile failure it was suggested that the ultimate horizontal load Q, and pure
moment M, for soil failure can be estimated from the equations of rigid piles by using a
corresponding smaller ultimate effective embedment depth De, instead of D (Figure
3.3b) because of the strength properties of the upper part of the soil mainly govern the
lateral resistance of piles. The theoretical relationship between D¢, / D and K, of free-
head piles under an ultimate horizontal load Q, (¢ = 90°) or pure moment M, is

approximately:

% =f K2 <1 (3.10)

where the factor f, = 1.65 for sand and f, = 1.5 for clay. The ratio De, / D increases
roughly parabolically with decreasing a from the above equation for a = 90° to unity for a
= 0° Accordingly, for the case of flexible piles under eccentric and inclined loads the

eccentricity and inclination factors have to be multiplied by a depth factor:

2
id=%+ 1-Du |y @ (3.11)
D D 90°
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Model tests were performed by Sastry and Meyehoff (1985, 1990) for rigid steel pipe
piles in loose sand validated the proposed interaction diagrams and found them
somewhat conservative.

Cho and Bang (2002) based on Bransby and Randolph (1998) used the concept of
the failure envelope in order to present an analytical solution for the estimation of the
ultimate inclined loading capacity of suction rigid piles in clay. The failure envelope was
defined on the space V/V, and H/H, where V/V, is the ratio of the vertical load
component and the ultimate vertical loading capacity and H/H, the ratio of the horizontal
load component and the ultimate horizontal loading capacity for a given load inclination
angle (Figure 3.4). The failure envelope labeled as kD/S,, = 0 is for piles in a soil with
constant undrained soil shear strength whereas the failure envelope labeled as kD/S,, = 6
is for piles in a soil whose undrained shear strength increases linearly with a slope of 6 SI
units. Recently, Correia et al (2012) proposed a failure envelope for pile foundations in
saturated cohesive soils with constant or linearly varying undrained shear strength based

on the results from three-dimensional numerical analyses (Figure 3.5).

3.3 DERIVATION OF FAILURE ENVELOPES AND PLASTIC FLOW RULE FOR FLEXIBLE PILES:
A LIMIT EQUILIBRIUM APPROACH

Broms (1964a,b, 1965) employed a limit analysis solution for laterally loaded pile
response. Broms’ method addresses both rigid and flexible piles embedded in idealized
cohesionless or cohesive soils. In this study, only flexible piles are considered.

For cohesive soils, Broms adopted a constant distribution of soil resistance with
depth. The ultimate lateral load can be computed from limit equilibrium. The soil
resistance is neglected in the top 1.5 pile diameters because of the lower soil resistance
in that zone as the soil wedge can move up and out when the pile is deflected. In general
the ultimate soil reaction for cohesive soils can be evaluated from the expression:

P =aS,d (3.12)
where S, is the undrained shear strength, d is the diameter of the pile and a an empirical
parameter taking values from 9 to 12, depending on the friction ratio f; / S, at the pile-
soil interface. Usually a value of a = 9 is used for soft clay and a = 11 for stiff clay (Reese

and Vanimpe, 2001).
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For cohesionless soils, Broms adopted a linear distribution of soil resistance with
depth. The ultimate soil resistance was assumed to be equal to 3 times the Rankine
passive pressure. Thus, at a depth z below the ground surface the soil resistance per unit
of length p can be obtained by:

p(z) =3yzK d (3.13)
where vy is the unit weight of the soil, d the pile diameter, and K, the Rankine passive
earth pressure coefficient given by:

K, =tan®(45° +¢/2) (3.14)

For a free-head long pile when only lateral load is applied, failure will occur with
the formation of a plastic hinge (Mmax = Myieiq) at a depth h. The sign conventions for
loads and displacements adopted herein (Figure 3.6) obey the right-handed system and
clockwise positive convention as proposed by Butterfield et al (1997). The lateral
capacities for pure loading are denoted by the subscript “y”, whereas the maximum
attained loads are subscripted with “max”. It should be noted that the reference point

for the failure envelopes proposed herein is the pile-head.

3.3.1 Failure envelope for pile in homogeneous cohesive soil

Figure 3.7 shows the problem studied herein. A free-head flexible pile is
embedded in cohesive soil with constant undrained shear strength S, as in the case of
overconsolidated clays. Based on Broms’ theory, at the ultimate state (upon the
formation of a plastic hinge) the pair of horizontal force Q and overturning moment M
that act at the pile head at the soil surface are balanced by the ultimate moment of the
pile cross-section My (which is also the maximum moment of the pile and a pile cross-
section property) and the ultimate soil resistance p,h (where h is the depth of the plastic
hinge formation). For simplicity, the ultimate soil resistance per unit length is considered
as py = 10S,d as proposed by Randolph and Houlsby (1984) and the maximum moment of
the pile Mmax = Mpastic = Myield

From limit equilibrium:

p,h=Q (3.15)

pyhg:QhH\A—My (3.16)

140



From Equation 3.15 the depth of plastic hinge formation is:

h:g (3.17)
Py
From which:
2
My+py[g] %:Q§+M
y y
and hence
) 2
M, Qe 4 M |4 (3.18)

My 2pyMy My \lzpyMy
Setting Q, = (2pyMy)0'5 Equation 3.18 becomes:

ﬂ+(£} =1 (3.19)
M Q,

y
In Equation 3.19 the applied horizontal force Q and overturning moment M are
normalized with the respective ultimate capacities. Taking into consideration all possible
Q-M combinations at the pile head the failure envelope for a flexible pile embedded in

clay with constant S is derived:

2
f= sgn(Q)[g} + M sgn(M)(-1=0 for M <1 (3.20)
Qy My y
and
f= M -1=0 for M =1 (3.21)
y My

Thus, the failure envelope is normalized against the ultimate lateral load and the
ultimate overturning moment of the soil-pile system. The proposed failure envelope is
presented in Figure 3.8 and is symmetric to the beginning of the Q/Q,~M/M, axes (zero
value). When the overturning moment acts in the same direction with the horizontal
force Q, the soil resistance to lateral load decreases in comparison to the ultimate lateral
load resistance (Q/ Qy =1, M/ M, = 0). What is of great interest is that the maximum
horizontal force Q. is sustained with a negative moment loading and is achieved when
the pile yields due to that negative moment. This overstrength in the response is

obviously attributed to the fact that the overturning moment M acting on the opposite
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direction of the horizontal force Q tends to counterbalance a part of that load. When the
horizontal load capacity of the soil and the maximum yielding moment of the pile are
achieved, the pile-soil system reaches its maximum horizontal capacity. It can be seen
that the maximum absolute value of Q / Qy for the case of a uniform clay layer with
constant undrained shear strength is 2°°. As already stated, the maximum overturning
moment cannot exceed the ultimate moment capacity of the pile (Mmax / My = 1) since
the soil does not contribute to the ultimate moment capacity M, which is a property of
the pile cross-section.

The great advantage of the normalized failure envelope with the ultimate values
of moment and lateral load is that its shape remains unaffected from any other strength
parameter of the soil or the pile. The failure envelope can be defined if the ultimate
lateral capacity Q, and ultimate moment capacity M, are known.

Assuming an associated plastic flow rule (where the plastic potential function g
coincides with the yield function f, g = f) the incremental plastic displacement and the

incremental plastic rotation are expressed as:

ou =xaQ=2x% (3.22)
y
00" :x%: xMi (3.23)
y
o 20M
u-_ Q2 y (3.24)
00P Q

y
where A a positive factor that defines the magnitude of the plastic displacement and
rotation at failure. It can be seen that the plastic flow rule at the Q—M space is
independent of the moment M that acts at the pile head and depends only on the
horizontal force Q. This equation connects the variations of moment M and horizontal
force Q of the failure envelope to the incremental variations of the plastic displacement
and rotation at failure. In fact, the vector that starts at a point on the failure envelope
and has as inclination the ratio of the plastic incremental displacement to incremental
rotation at failure (6u/60) is perpendicular at any point to the failure envelope.
According to the assumption of the associated plastic flow rule, at the points of
the maximum overturning moment M,a the ratio of the displacement increment to the

one of rotation will be zero, since only rotation exists at the pile head. Hence,
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On the contrary, at the point of the maximum lateral load Quax apart from displacement
there is also rotation at the pile head, since the pile is considered long enough and the
failure mechanism is the formation of a plastic hinge at the pile. In the case of a rigid pile,
where the soil fails instead of the pile, there would only be a displacement increment
and the ratio of the displacement increment to the one of rotation would be infinite.

It must be noted that an associated plastic flow rule implies that the foundation
at failure behaves as a rigid body. Thus, the ratio of the plastic displacement to rotation
at failure (6u/60) equals the depth of the plastic hinge formation of the rigid body

measured from the ground surface as will be shown in Chapter 4.

3.3.2 Failure envelope for pile in cohesive Gibson soil

In addition to Broms’ assumption of a constant soil reaction for clays, a linear
distribution of the soil reaction is examined. Figure 3.9 presents the problem studied
herein. A free-head flexible pile is embedded in cohesive soil with linear undrained shear
strength S, distribution with depth, for example S,=a &'y, as in the case of normally
consolidated clays. Based on Broms’ theory, at the ultimate state the pair of the
horizontal load Q and moment M that act at the pile head at the soil surface are
balanced by the ultimate moment of the pile Mmax = Mpjastic = Myiels and the ultimate soil
resistance which in this case is:

p,=10S,d=10ac, d=10ayhd (3.26)

where a multiplier for ¢’y, y unit weight of the soil, h depth of the plastic hinge and d pile
diameter.

From limit equilibrium:

h
py§= Q (3.27)
h h
py—E:Q +M-M, (3.28)
From Equations 3.26 and 3.27:
h= i (3.29)
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And by applying Equation 3.29 in 3.28:

3/2

I\I>I/| + Q T =1 (3.30)
y 45 3
( 4 Miayd)

45 e
Setting Q, = [T Miaydj Equation 3.30 becomes:

3/2
ML) 1 (3.31)
M, (Q,

y
In Equation 3.31 the applied horizontal force Q and overturning moment M are
normalized with the respective ultimate capacities. Taking into consideration all possible
Q—M combinations at the pile head the failure envelope for a flexible pile embedded in

clay with linear S, with depth is derived (Figure 3.10):

3/2

f =|sgn(Q) Q +|——|sgn(M)|-1=0 for M <1 (3.32)
Qy y y
and
f= M -1=0 for M =1 (3.33)
My My

Assuming an associated plastic flow, g = f, the incremental plastic displacement

and the incremental plastic rotation are given:

1/2

ou” =x%= %83,2 (3.34)
y

00" :xiz xi (3.35)

M M,
pl ]JZM
g;pl :gQQS/z * (3.36)
y

Again the derived expression for the plastic flow rule which applies at the Q—-M
space is independent from the moment M that acts at the pile and depends only on the

horizontal force Q.
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3.3.3 Failure envelope for pile in cohesionless soil

For cohesionless soils, Broms (1964b) adopted a linear distribution of soil
resistance with depth and the ultimate soil resistance was assumed to be equalton =3
times the Rankine passive pressure, allowing for two dimensional and arching effects.
Pender (1995) proposed a value of n = 5 times the Rankine passive pressure because it
gave closer match with finite element results. However, the assumption of Broms is
adopted here (Figure 3.11) for a free-head flexible pile in cohesionless soil. Based on
Broms’ theory at the ultimate state the pair of horizontal force Q moment M that act at
the pile head at the soil surface are balanced by the ultimate soil resistance and the
ultimate structural capacity of the pile, Mmax = Myjastic = Myieig. In this case the soil
resistance per unit of length p is obtained:

p(z) =myzK d (3.37)

where n = 3, y is the unit weight of the soil, d the pile diameter, z the depth and K, the
Rankine passive earth pressure coefficient.

From limit equilibrium:

h
3prdh§ =Q (3.38)
py%gﬂ)h +M-M, (3.39)
From Equations 3.38 and 3.39:
h- [2Q (3.40)
3K, vd
from which Equation 3.39 leads to:
3/2
M, Q —| =1 (3.41)
M, 27 M2K vd
? y oY
27 3
Setting Q, = (? Miprdj Equation 3.41 becomes:
3/2
L(&j 4 .42
My Qy
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In Equation 3.42 the applied horizontal force Q and overturning moment M are
normalized with the respective ultimate capacities. Taking into consideration all possible
Q-M combinations at the pile head the failure envelope for a flexible pile embedded in

cohesionless soil is derived (Figure 3.12):

3/2

f =|sgn(Q) Q +|——|sgn(M)|-1=0 for M <1 (3.43)
Qy y y
and
f= M -1=0 for M =1 (3.44)
y My

Assuming an associated plastic flow rule, g = f, the incremental plastic

displacement and rotation are:

1/2

ou® ﬂ%zxgé)m (3.45)
y

00" =xi= xi (3.46)

oM M,
pl l/ZM
ngl :gQQs/z - (3.47)
y

As before, the derived expression for the plastic flow rule which applies at the Q-
M space is independent from the moment M that acts at the pile and depends only on

the horizontal force Q.

3.3.4 Failure envelope for pile in two cohesive layers

For a free-head flexible pile embedded in two clay layers with constant undrained
shear strengths S,; and S, (Figure 3.13) the soil resistance is Py; = 10S,:d and Py, =
10S,,d. It is assumed that the first layer has thickness b and the plastic hinge is formed in
the second layer at a depth h from the surface. For this reason the horizontal force at the
pile head Q must be higher than the ultimate resistance of the first layer Q > Pyb,
otherwise the pile will behave as embedded in one cohesive layer.

From limit equilibrium:

pb+p,,(h-b)

Q (3.48)
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pylb(h—b%}pyz(h-b)@:|v|—|v|y+Qh (3.49)

From Equation 3.48:

_Q-pyb
pyZ

h b (3.50)

And by applying Equation 3.50 in 3.49:
M Q”+2Qb(p,, -p,,)

pylb2 (pyl_ pyz) ' pylbz (pyl_pyz)
M, | 1- 2p,,M, | 1-

2py2My 2py2My

=1 (3.51)

or

0 Pyb” (P =Py, )
+2b(py2—pyl)2 =1 y 5 YM ! (3.52)
Py2M, Py2M,

2
M. _Q
M 2py2My

y

Setting

QyZ = \lzpyZMy
A _ 2b(pyz - pyl)

‘/2py2My

And

C _ py:l_b2 (pyl - pyZ)
2p,,M,

Equation 3.52 becomes:

2
ﬂ-i— i +Ai+C:1 (353)
M Qy2 y2

y
Equations 3.52 and 3.53 are general expressions of failure envelope for a free-head

flexible pile embedded in two clay layers. For the case where Sy; < Sy, Equation 3.51

leads to:
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Q

2b<py2 - pyl)

b? -
o[
y2 y

Q

_l_
p,.b* (P, —P p,.b* (P, —P
\/Zpszy[l_ - 25) yll\/l yz)] \/Zpszy[l_ - 25) yll\/l y2)
y2'Vly y2' 'y

and setting:

pylb2 (pyl - py2 )\J

2py2My

* b2 -
Qy _ Zpszy 1_ pyl (pyl pyZ)
2p,,M,

and

M; = My[l—

2b (pyZ - pyl)

b? -
o222
y2 y

Equation 3.51 becomes:

M* 4{%] +Ag*:1 (3.54)

M

y y y
Taking into consideration all possible Q—M combinations at the pile head for Q >
P,1b the failure envelope for a flexible pile embedded in two cohesive layers with

constant undrained shear strengths with Su; < Su, is derived:

2
f= sgn(Q)[%} +sgn(Q)A%+sgn(M) M* -1=0 for M <1 (3.55)
Qy y y My
and
f= ﬂ -1=0 for M =1 (3.56)
My My
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Assuming an associated plastic flow rule, g = f, the incremental plastic

displacement and the incremental plastic rotation are:

o =2 252 ?2+Ai* (3.57)
aQ (Qy) Q,

oot =2y L (3.58)
oM M

y

' (2Q+AQ; )M, 550

oo" (Q;)Z

Note that the derived expression for the plastic flow rule at the Q—M space is

independent from the moment M that acts at the pile and depends only on the lateral

force Q.

3.3.5 Failure envelope for pile-column in cohesionless soil with horizontal force Q and
moment M at a distance e from the ground surface

Up to this point, lateral force Q and moment M were applied at the ground
surface. Now, the application of Q and M at a distance e above the ground surface is
examined, in other words the reference point is considered at distance e from the
ground surface, as illustrated in Figure 3.14 (herein lateral force and moment acting at
distance e from the ground surface are noted Q' and M’ respectively). A free-head
flexible pile-column is embedded in sand.

From limit equilibrium:

h :
3prdh§ =Q (3.60)
dh hh ' h '
3pr E§=Q (e+ )+M —My (3.61)
From which:
h= 2Q (3.62)
3K, vd

And by applying Equation 3.62 in 3.61:
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3/2

3
27
, , e( prdMij .
II\\/IA + Q |+ v Q =1 (3.63)
y 27 3 y 27 3
(8 Kﬂdl\/li] (Sprdlvl;j
Setting
. 27 v3
Qy :(? Mpr'Ydj
and
1/3
e(27 prde,]
8
A =
My
Equation 3.63 leads to:
3/2
ﬂ{%} A g (3.64)
My Qy y

Hence, the failure envelope for a flexible pile embedded in cohesionless soil with

the pile head at a distance e from the ground surface is derived:

3/2
f=sgn(Q')% Jrsgn(Q')A&*Jrsgn(M')ﬂ -1=0 for &<1 (3.65)
y y y y
and
f= M -1=0 for M =1 (3.66)
My My
Again the associated plastic flow rule, g = f, gives:
11/2
ou® :xi:x 3 Q* s PAL (3.67)
oQ 2 (Qy) Q,
o =2 L (3.68)
oM M,
3 /2 *\V2
(30w,
= (3.69)
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Once again the plastic flow rule is independent of the moment M’ that acts at the
pile at a distance e from the ground surface and depends only on the lateral force Q. It is
obvious that in order to transfer the QM pairs at the ground surface (if the pile-head is
considered at the ground surface) by setting Q = Q" and M = (M’ + Qe) in Equation 3.61,

Equations 3.43 and 3.44 for pile in cohesionless soil derive.

3.4 SUMMARY AND CONCLUSIONS

Based on limit equilibrium analysis, failure envelopes in normalized form for
flexible single pile in different soil conditions under combined Q—M loading are proposed.
The failure envelope is normalized against the ultimate lateral load (lateral load capacity)
and the ultimate overturning moment (overturning moment capacity) of the soil-pile
system. The great advantage of the normalized failure envelopes with the ultimate
values of moment and lateral load is that their shape remains unaffected from any other
strength parameter of the soil or the pile.

All the above failure envelopes can be summarized in the following closed-form

expression:
B
f =|sgn(Q) g* +sgn(Q)Ag* +sgn(M) M* -1=0 for M <1 (3.70)
y y y y
and
f= M -1=0 for M =1 (3.71)
y MY

with A, B, Q,* and M* constant values, depending on the problem studied (Table 3.1).
The same methodology can be used for other cases of piles embedded in soil (eg. pile
embedded in three layers).

The plastic flow rule is also investigated analytically and is proposed to be of the
associated type, in other words the plastic strains are directly associated with the yield
surface. By differentiating Equations 3.70 and 3.71 the associated plastic flow rule can be
derived. An associated plastic flow rule implies that the foundation at failure behaves as
a rigid body. Thus, the ratio of the plastic displacement to rotation at failure (6u/66)
equals to the depth of the plastic hinge formation of the rigid body measured from the

ground surface.
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Table 3.1. Failure envelope constants

Pile embedded in: A B Q,*
Homogeneous cohesive 1/2
soil 0 2 (2 b,M V)
45 2
Cohesive Gibson soil 0 3/2 [T M’ayd j
27 e
Cohesionless soil 0 3/2 (?Mijpydj
2b( pyz - pyl) bz( )
Two cohesive layers ) PyP { Py — Py2
With Su1 < SUZ 2 p M 1_ pylb ( pyl pyZ) 2 \/2 py2M y [1 2 p M
y2'Vly 2 M y2' "y
Py2M,
Cohesionless soil with "
horizontal force Q and ol 2Tk ydM? 57 3
moment M at a distance g °F Y 3/2 (— MK yd J
e from the ground M ,
surface




a) Failure Envelope
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=3 () Plastic flow
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Figure 3.1: Four components needed for a macro-element development and their
influence on the force-displacement or moment-rotation curves
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Figure 3.2: Failure of a rigid vertical plate under moment and horizontal load
(Poulos and Davis, 1980)
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Figure 3.3: (a) Lateral soil pressures and forces on a rigid pile under ultimate
eccentric inclined load, (b) Displacements of flexible and equivalent rigid piles

(Meyerhof, 1995)
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Bang, 2002)
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Figure 3.8: Proposed failure envelope for flexible pile in homogeneous cohesive
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CHAPTER 4:
MACRO-ELEMENT MODELING OF THE LATERAL RESPONSE OF FLEXIBLE
PILES: FAILURE SURFACE AND PLASTIC FLOW RULE - NUMERICAL
VERIFICATION

4.1 INTRODUCTION

The failure envelope and associated plastic flow rule developed in Chapter 3 are
verified against numerical analysis. Two methods of analysis are applied: (a) a Beam-on-
Winkler-foundation method, and (b) a 3D Finite Element one in which both the pile and
the soil are represented by 3D solid elements. In each method of analysis the pile is
subjected to a single load path to failure in Q—M space. A combined load of overturning
moment and horizontal force is imposed to the pile head under a constant ratio M/Q
(radial paths in Q—M space, Gouvernec, 2004) until complete failure of the pile-soil
system. Figure 4.1 illustrates the concept of radial paths in the Q—M space according to
Cremer et al (2001). From each individual load path the points at which the pile yields are
used to determine a continuous failure envelope in the normalized M/M,—Q/Q, space. In
addition to assessing the shape of the failure envelope, the force-controlled analyses are
used to estimate the displacement increments at yield (u", o ). Hence, the incremental
displacement vectors from the analyses are compared to the analytical expressions
under the assumption of an associated plastic flow rule. The validity of each analytical
expression for the failure envelopes developed in Chapter 3 is checked through the
results from two different types of analysis: (a) a Beam-on-Winkler-foundation analysis,

and (b) a 3D Finite Element analysis.
4.2 WINKLER APPROACH

Numerical static pushover analyses based on the Winkler model for the soil

resistance are conducted on the Q—M space in order to verify the analytical expressions
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of the failure envelope and the associated plastic flow rules derived in Chapter 3. The
simple numerical model, shown in Figure 4.2, is used for analyzing the responses of the
pile-soil system under different specified parameters. The Finite Element Code ABAQUS
(Dassault Systémes Simulia Corp, 2009) is employed to perform pushover analyses. The
Beam-on-Winkler-foundation model uses 2D beam elements to simulate the pile and
adopts a series of independent springs to model the soil reactions, thus the displacement
at any point is directly related to the contact pressure at that point. A free-head pile is
embedded 20 m in a homogeneous elastic-perfectly plastic soil of Winkler type. The
moment-curvature behavior of the pile cross-section is assumed to be bilinear,
determined from point (M,, k,) where M, is the yield moment and «, is the yield
curvature and point (M, k,) where M, is the ultimate moment and k, is the ultimate

curvature (Figure 4.2).

4.2.1 Failure envelope for pile in homogeneous cohesive soil

A beam-on-Winkler-foundation model is used to verify analytically the failure
envelope for a pile embedded in homogeneous cohesive soil (Equations 3.20 and 3.21).
The ultimate soil resistance is defined as

p,. =10S,d (4.1)
where S, is the undrained shear strength and d is the diameter of the pile. The undrained
shear strength of the soil is constant with depth. Different pairs of moment M and lateral
force Q are applied at the pile head (at the ground level) until the failure of the pile-soil
system. The ratio of incremental displacement to incremental rotation at failure is
compared with that from Equation 3.24.

Initially, the influence of the mesh density on the model response is
parametrically examined. For this reason, a pile 20 m long with diameter d =1 m is
considered embedded in a homogeneous clay layer with constant undrained shear
strength S, = 200 kPa. Three different meshes are studied regarding the spatial
discretization of piles: 1 m, 0.25 m and 0.1 m. The pairs of moment M and lateral force Q
at failure are normalized with the corresponding values for pure moment and lateral
force loading conditions, respectively. Figure 4.3 shows the dependence of the problem

on the mesh density. A very coarse mesh gives overstrength to the system for the area of
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the failure envelope where the overturning moment M dominates upon the lateral force
Q on the response of the pile and has the opposite direction of the lateral force Q. In this
area the ratio of the moment to the plastic moment can be higher than 1, as Poulos and
Davis (1980) supported based on plasticity theory. However, this behavior is not
observed when the mesh is fine, highlighting the importance of a fine mesh for the
lateral response of a pile.

Figure 4.4 presents the vectors from the analytical expression with the
assumption of an associated plastic flow rule (Equation 3.24) along with the incremental
displacement vectors at failure from the Winkler model for the three meshes examined
(vertical distance z of the Winkler springs (a) z=1m, (b) z=0.25m, and (c) z=0.1 m). It
can be observed that the assumption of an associated plastic flow rule is in accord with
the elasto-plastic Winkler model predictions. A very dense mesh is needed in order to
capture this behavior correctly. It is also obvious that the ultimate moment and the
ultimate lateral force from the Winkler model coincide with the ones from the analytical
expression. Hence, the following results presented herein refer to a mesh with vertical
distance z=0.1 m.

Having investigated the importance of the mesh density, the relative stiffness and
the relative strength of the pile and the soil are investigated. The relative stiffness B is
defined as:

K V4
p= (E—SJ (4.2)
where kg is the Winkler stiffness according to Makris and Gazetas, (1992) (ks = 1.2E;, E;
Young’s Modulus of the soil) and El the elastic flexural rigidity of the pile (E the elastic
modulus of the pile and | the moment of inertia). The relative strength is defined as:
M U3
A= (—”'J (4.3)
S,
where My, the plastic moment of the pile and S, the undrained shear strength of the
cohesive soil.

A parametric study (1200 analyses) is performed to study the influence of the

undrained shear strength S, the Young’s Modulus of the soil Es and the diameter of the

pile d on the failure envelope and the plastic flow rule. The selected values for the
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undrained shear strength S, are 25, 50, 100, 200 and 400 kPa, for the pile diameter 0.5,
1.0 and 1.5 m and for the Young’s Modulus E; of the soil 10, 50, 100 and 300 MPa. Figure
4.5 illustrates the influence of the undrained shear strength S, on the failure envelope for
the case of a pile of diameter d = 1 m, embedded in a homogeneous cohesive layer with
uniform Young’s modulus Es = 100 MPa. The increase of the undrained shear strength of
the soil (and thus the decrease of the relative strength A) has no influence on the failure
envelope on the normalized Q/Q,~M/M, space. Figure 4.6 shows the influence of the
undrained shear strength S, on the plastic flow rule on the Q—M space. It is obvious that
as the undrained shear strength increases, the lateral soil resistance increases while the
ultimate moment capacity M, remains constant. The associated plastic flow rule remains
unaffected in the Q—M space.

The effect of pile diameter and a corresponding increase of plastic moment are
also examined. The pile diameter will change the pile stiffness and the ultimate soil
resistance at the same time exhibiting a stiffer response. Figure 4.7 illustrates the
influence of the pile diameter d on the failure envelope on the normalized Q/Q,~M/M,
space for the case of a pile embedded in a homogeneous cohesive layer with uniform
Young’s modulus Es = 50 MPa and undrained shear strength S, = 50 kPa. The increase in
pile diameter (and thus the increase of the relative strength A and the decrease of the
relative stiffness B) has no influence on the failure envelope on the normalized Q/Q,~
M/M, space. Figure 4.8 depicts the influence of the pile diameter d on the plastic flow
rule on the Q—M space. As the pile diameter d increases both the soil resistance and the
ultimate moment increases, but the associativity in plastic flow rule is not violated.

Regarding the effect of the Young’s Modulus Es of the soil, its increase will
increase the soil stiffness. Figure 4.9 presents the influence of Young’s Modulus E of the
soil on the failure envelope for the case of a pile of diameter d = 0.5 m embedded in a
homogeneous cohesive layer with undrained shear strength S, = 100 kPa. Again, the
increase of Young’s Modulus (and thus the increase of the relative stiffness B) has no
influence on the failure envelope on the normalized Q/Q,~M/M, space. Even though
both the soil resistance and the ultimate moment increase as the Young’s Modulus of the
soil increases, the variation of Young’s Modulus Es of the soil has no influence on the

plastic flow rule on the Q—M space (Figure 4.10).
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It is thus verified the great advantage of the normalized failure envelopes. When
failure envelopes of piles are normalized with their ultimate values, their shape remains
unaffected from any other strength parameter of the soil or the pile. In other words, the
proposed analytical expressions need no modification. Bransby and Randolph (1999)

have also reached a similar conclusion for skirted foundations.

4.2.2 Failure envelope for pile in cohesive Gibson soil

Numerical pushover analyses based on the Winkler model are conducted to verify
the failure envelope from Equations 3.32 and 3.33 using the simple model described
before. The problem analyzed is a free-head pile of length 20 m embedded in cohesive
Gibson soil. Elastic-perfectly plastic p-y curves are used to define the force-displacement
relations of the soil springs. For this problem undrained shear distribution of S, = 0.4 ¢,
unit weight of y’ = 10 kN/m?, pile plastic moment My = 1.5 MNm, pile diameter d = 1.0 m
and Young’s Modulus Es = 1800 S, are assumed while the vertical distance of the soil
springs is z = 0.1 m. Different pairs of moment M and lateral force Q are applied at the
pile head (at the ground level) until the failure of the pile-soil system. The ratio of
incremental displacement to incremental rotation at failure is compared with the one
predicted by Equation 3.36.

Figure 4.11 depicts the pairs of normalized moment M and lateral force Q at
failure. The comparison of the failure envelope calculated by the Winkler model and
predicted by the analytical expression is excellent. It can be seen that the maximum
absolute value of Q/Q for this case is approximately 1.58.

Figure 4.12 shows the vectors from the analytical expression with the
assumption of an associated plastic flow rule together with the vectors of incremental
displacement failure from the Winkler model. It is logically assumed that the elastic part
of the displacements is negligible in comparison to the plastic part of the displacements
and thus:

u=u®+u” ~u” (4.4)

and 0=0"+0" ~ 0" (4.5)

From geometry, the incremental plastic displacement to rotation ratio equals to the ratio

of the plastic displacement to rotation at failure (5u” / 66° = u” / 6'). The assumption of
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an associated plastic flow rule is verified graphically in the figure. Therefore, only the
analytical expression for the failure envelope is needed for the definition of the plastic

flow rule.

4.2.3 Failure envelope for pile in nonhomogeneous cohesionless soil

Numerical pushover analyses based on the Winkler model are conducted to verify
the failure envelope from Equations 3.43 and 3.44. A free-head pile of length L = 20 m is
embedded in nonhomogeneous cohesionless soil. Elastic-plastic p-y curves are used to
define the force-displacement relations of the soil springs. Friction angle ¢ = 32°, unit

weight of y = 17 kN/m?, pile plastic moment Mpi = 3 MNm, pile diameter d = 1.0 m and
zZ
Young’s Modulus Es = 43700\/g are assumed for this problem while the vertical

distance of the soil springs is z = 0.1 m. Different pairs of moment M and lateral force Q
are applied at the pile head (at the ground level) until the failure of the pile-soil system.
The ratio of displacement to rotation at failure is compared with Equation 3.47.

Figure 4.13 presents the pairs of normalized moment M and lateral force Q at
failure. Despite the fact that the cohesionless soil is nonhomogeneous, the comparison of
the failure envelope calculated by the Winkler model and predicted by the analytical
expression is excellent. As in the case of cohesive Gibson soil, the maximum absolute
value of Q/Q, for this case is approximately 1.58. The vectors from the analytical
expression with the assumption of an associated plastic flow rule together with the
incremental displacement vectors at failure calculated by the Winkler model are
compared in Figure 4.14. The vectors from both solutions are graphically identical.

As already mentioned, an associated plastic flow rule implies that the foundation
at failure behaves as a rigid body. Thus, the plastic displacement to rotation ratio at
failure (6up'/69p') is equal to the depth of plastic hinge. Defining B as the angle of the
pairs QM at failure starting from B = 0° for point Q = Q, and M = 0 and going
counterclockwise on the Q/Q,—~M/M, space, Figure 4.15 compares the variation of the
displacement over rotation ratio at failure for different failure points with the depth of

plastic hinge for the same points. It can be seen that apart from the regions where

|M / My|=1 (in this case for B = 90° - 145° and B = 270° - 325°) where the structural
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failure of the pile takes place at the pile head, the plastic displacement to rotation ratio
coincides with the depth of plastic hinge. This is an indication of an associated plastic

flow rule.

4.2.4 Failure envelope for pile in two cohesive layers with Sy1 < Sy,

Numerical pushover analyses based on the Winkler-beam model are conducted to
verify the failure envelope from Equations 3.55 and 3.56. A free-head pile of length L =
20 m is embedded in two layers of cohesive soils with S,; < Su. The first layer has an
undrained shear strength S,; = 40 kPa, Young’s Modulus E; = 1800 S,; and thickness b = 2
m, the second layer has an undrained shear strength S,; = 100 kPa and Young’s Modulus
E; = 1800 Sy, and pile plastic moment Mg = 3 MNm and diameter d = 1.0 m are assumed
for this problem. Different pairs of moment M and lateral force Q are applied at the pile
head (at the ground level) until the failure of the pile-soil system. The ratio of
displacement to rotation at failure is compared with Equation 3.59.

Figure 4.16 shows the pairs of normalized moment M and lateral force Q at
failure. Again the failure envelope from the Winkler model coincides with the failure
envelope from the analytical expression. Figure 4.17 compares the vectors from the
analytical expression with the assumption of an associated plastic flow rule together with
the incremental displacement vectors at failure calculated by the Winkler model. The
assumption of an associated plastic flow rule is verified also in this case. This result was
somehow expected since the macroscopic soil-foundation response is examined. Similar
results for the macroscopic response of soil-shallow foundations have been observed

(Cremer et al, 2001; Chatzigogos et al, 2011).

4.2.5 Failure envelope for pile in cohesionless soil with horizontal force Q and moment
M at a distance e from the ground surface

Numerical pushover analyses based on the Winkler-beam model are conducted to
verify the failure envelope from Equations 3.65 and 3.66. The case adopted for the
analyses is a free-head pile-column with 24 m length, 20 m of which are embedded in
nonhomogeneous cohesionless soil. For this problem a friction angle ¢ = 32°, unit weight

ofy=17 kN/m?, pile plastic moment Mg = 3 MNm, pile diameter d = 1.0 m and Young's
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z
Modulus E; = 43700 \/g are assumed. Different pairs of moment M and lateral force Q

are applied at the pile head (4 m above the ground level) until the failure of the pile-soil
system. The ratio of displacement to rotation at failure is compared with that from
Equation 3.65.

Figure 4.18 shows the pairs of normalized moment M and lateral force Q at
failure. As expected, the failure envelope from the Winkler model coincides with that
from the analytical expression. Again, the assumption of an associated plastic flow rule is
verified since the vectors from the analytical expression with the assumption of an
associated plastic flow rule are parallel to those from the incremental displacements at

failure calculated by the Winkler model as shown in Figure 4.19.

4.3 3D FINITE ELEMENT APPROACH

The proposed failure envelope and associated plastic flow rule have been
confirmed by the Winkler model. The Winkler model is a widespread used tool for the
simulation of the pile but it does not take into consideration the exact physics of the
problem, especially the geometric nonlinearities. For this reason the proposed failure
envelope and the plastic flow rule are further verified against three-dimensional
numerical analyses for a flexible pile embedded in cohesive or cohesionless soil using the
finite element code ABAQUS. The 3D numerical analyses examine the influence of: (a)
different constitutive soil models that consist of non-associated flow rules, (b) geometric

nonlinearities, and (c) the vertical load acting at the pile head.

4.3.1 Finite element modeling

A 12 m long pile with 0.72m diameter embedded in the soil is considered. The
distance from the pile tip to the bottom of the model is 3.33 diameters. The pile is
assumed to be elastoplastic. Figure 4.20 depicts the cross-section for the finite element
discretization of the problem. Approximately 40000 elements were used for each
analysis. The soil and the pile are modeled as described in Chapter 2.

The vertical distance of the elements is 0.3 m, small enough to avoid mesh
sensitivity problems as was observed in the Winkler analysis but also big enough to

ensure a reasonable computational time. The mesh is refined up to a distance of 7
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diameters around the pile to better capture the intense nonlinearity of this area. Zero-
displacement boundary conditions prevent the out-of-plane displacements at the vertical
sides of the model, while the base is fixed in all three coordinate directions. Despite the
symmetry of the problem the whole model is analyzed. Approximately 40000 elements

were used for each analysis.

4.3.2 Flexible pile in cohesionless soil — Verification against different constitutive soil
models

For the case of a flexible pile embedded in nonhomogeneous cohesionless soil
two different soil constitutive models are concerned: (a) the constitutive model (Model
CT) proposed in Chapter 2 that has nonlinear kinematic hardening and non-associated
plastic flow rule, and (b) the Mohr-Coulomb constitutive model that has a non-associated
flow rule. No separation at the pile- soil interface is allowed in the analysis, since the
cohesionless soil collapses and moves with the pile as the pile is laterally loaded.

A similar problem as in the case of a flexible pile embedded in sand in the Winkler

model is studied. A friction angle ¢ = 32° unit weight of y = 17 kN/m?, and Young’s
Z
Modulus ES=43700\/% are assumed for the soil, while pile has plastic moment Mg = 1.2

MNm and Young’s Modulus E, = 25 GPa.

Initially, the three-dimensional analysis is compared with a beam-on-Winkler-
foundation model. Different methods are used in order to calculate the ultimate lateral
response of the pile on the Winkler model. For cohesionless soils, Broms (1964) adopted
a linear distribution of soil resistance with depth and the ultimate soil resistance was
assumed to be equal to n = 3 times the Rankine passive pressure K. Pender (1995)
proposed a value of n = 5 times the Rankine passive pressure according to his results
from finite element programs.

Reese et al (1974) in order to compute the ultimate soil resistance per unit length
of a pile embedded in cohesionless soil proposed using the smaller of the values of the

following equations:

K,ztangsinf  tanp(b+ztanBtano) _
= K.zt t —t -K_b 4.6
Py = V2 tan (—9)coso + @ (p—0) +KyztanB(tanpsinp—tana)-K, (4.6)
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Py = K, byz(tan® p-1)+ K byztangtan* (4.7)
where a = ¢/2, B = 45+d/2, Ko = 0.4, Ko = tan’(45-d/2), y the unit weight of the sand, b
the diameter of the pile, and z depth.
According to API (2000) the ultimate lateral bearing capacity for sand is the
smallest value of the following equations:
Py = (ClH + C2D)yH (4.8)
Pu = C;DyH (4.9)
where p, ultimate resistance (force/unit length for shallow or deep depths), y effective
soil weight, H depth, C;, C;, C3 coefficients determined from Figure 4.21 as function of
the friction angle of the sand and D average pile diameter from surface to depth.

Reese and Van Impe (2001) proposed the following equation for the ultimate soil

resistance per unit length of a pile in c-¢ soils:

Pur = Apulttp *+ Puic (4.10)
where Acan be taken from Figure 4.22, pu the friction component of the soil
resistance taken as the smaller of the values below:

K,ztanpsin . tanp(b+ztanBtana)
tan(B—@)cosa tan(B—o)

Pute = V2 +KyztanB(tanesinp—tana)-K b | (4.11)

Pure = Kmbyz(tan8 B—1)+Kobyz tan ptan” B (4.12)

and puic the cohesion component of the soil resistance taken as the smaller of the values

below:
Y J
Puc =| 3+—2+—2 |Cb (4.13)
C b

Py = 9cb (4.14)

where J =0.25 - 0.5.

Thus, the lateral response of a pile in sand from the aforementioned theoretical
expressions and calculated from the Finite Element analysis is compared in Figure 4.23.
More precisely, the methods of analysis are: (1) the numerical three-dimensional model
with the Mohr-Coulomb constitutive model for soil cohesion ¢ = 1 kPa, (2) the numerical
three-dimensional model with the Mohr-Coulomb constitutive model for soil cohesion ¢

= 5 kPa, (3) the numerical three-dimensional model with Model CT from Chapter 2 with
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for soil cohesion ¢ = 5 kPa, (4) the Winkler model with Broms’ ultimate resistance nK; for
n =3, (5) the Winkler model with Broms’ ultimate resistance nK, for n =5, (6) the Winkler
model with Broms’ ultimate resistance nK, for n = 8, (7) the Winkler model with Reese’s
ultimate resistance for sand, (8) Reese’s ultimate resistance for c-¢ soils, and (9) the
Winkler model with API’s ultimate resistance for sand. It is obvious that all the Winkler
model solutions have lower ultimate lateral resistance and stiffness than those derived
from three-dimensional analyses which capture better the physics of the problem. To be
more precise, the response of the APl guidelines is the most flexible and gives the
smallest ultimate resistance from the methods examined. Broms’ method for n = 3 has
the second smallest response, then Reese’s method for cohesionless soils and finally
Reese’s method for c-¢ soils with cohesion ¢ = 5 kPa. Pender’s suggestion (1995) for
using Broms’ method with n = 5 is closer to the three-dimensional ultimate response
having also a similar stiffness. In order for Broms’ method to match exactly the ultimate
lateral response of the pile with that calculated from the Mohr-Coulomb constitutive
model with cohesion c = 1 kPa, n = 8 must be used. As expected, when the soil cohesion
in the Mohr-Coulomb constitutive model increases from ¢ = 1 kPa to ¢ = 5 kPa the
ultimate lateral response of the pile and the stiffness also increase. Finally, it is noted
that the Mohr-Coulomb model has a similar response to Model CT from Chapter 2. It is
thus evident that the method of analysis influences the predicted pile response.

Figures 4.24 compares the normalized M-Q failure envelope predicted by the
analytical expression (Equations 3.43 and 3.44) and calculated by the three-dimensional
numerical analysis with: (a) the constitutive model CT for cohesionless soil, and (b) the
Mohr-Coulomb constitutive model. In general, the comparison is very satisfactory with a
minor deviation at the vertices of the envelope. This is attributed to the mesh
coarseness, since the vertical thickness of the solid elements is 0.3 m. Denser Finite
Element model leads to even more accurate results.

Figure 4.25 illustrates the vectors from the analytical expression with the
assumption of an associated plastic flow rule together with the incremental displacement
vectors at failure from the three-dimensional numerical analyses with (a) the constitutive
model CT, and (b) the Mohr-Coulomb constitutive model for the case of pile embedded
in cohesionless soil. It can be observed that the 3D Finite Element results support the

assumption of an associated plastic flow rule. This is verified by both constitutive models
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with non-associated flow rules. The macroscopic soil-foundation response (in terms of
M-Q failure envelope) is practically insensitive to the parameters of the applied
constitutive model. From this figure it can also be observed that the ultimate moment of
the pile is the same for the analytical expression and both three-dimensional analyses.
On the contrary, the ultimate lateral force calculated by the three-dimensional analyses
is larger than the predicted one by the analytical expression which is calculated from
limit equilibrium analysis. It is noted that the associated flow rule is unaffected by the
method of analysis employed.

Figure 4.26 shows the contours of the plastic strain magnitude (plotted on the
deformed mesh) for a flexible pile embedded in nonhomogeneous cohesionless soil
calculated with the constitutive model proposed in Chapter 2 for three different angles
of loading: (a) B=0°(Q/Q,=1,M/M,=0), (b)B=70°(Q/Q,=0.28, M/ M, = 0.88),
and (c) B =160° (Q/ Q, =-1.3, M/ M, = 0.47). The plastic strains are plotted on the same
scale. It is evident that larger plastic strains develop around the pile when the moment
acts on a different direction than the lateral force. Similarly, when the moment acts on
the same direction with the lateral force, the developed plastic strains are less than in

the case of the pure lateral loading.

4.3.3 Flexible pile in cohesive soil — Verification against geometric nonlinearities

For the case of a flexible pile embedded in cohesive soil, the soil constitutive
model for cohesive soils introduced by Gerolymos et al (2005) which takes into
consideration the material nonlinearity of the soil and presented in Chapter 2 is used. In
addition to soil plastification, geometric nonlinearities, such as gapping and slippage, are
another important source of nonlinearity for cohesive soils. To simulate this behavior,
surface interaction elements are used at the pile-soil interface that allow sliding and
detachment of the pile from the soil. When the tensile forces overcome the initial
confining pressure, a gap occurs.

For this problem the yield stress at zero plastic strain o, is assumed to be equal to
1/3 of the maximum yield stress o,. In these FE analyses a homogeneous cohesive soil is
considered with constant undrained shear strength S, = 60 kPa and constant Young’s
Modulus distribution E; = 90 MPa with depth. Two cases are studied regarding the pile-

soil interface conditions: (a) fully bonded conditions, and (b) displacement-free
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conditions (separation and slippage are allowed as shown in Figure 4.27). For the latter
case, the friction coefficient for the pile-soil interface is considered to be p=0.7.

The pairs of moment M and lateral force Q at failure normalized with the values
of moment at failure for pure moment conditions M, and lateral force at failure for pure
lateral force conditions Q, from the three-dimensional numerical analysis with and
without the formation of the gap are shown in Figure 4.28. The comparison of the failure
envelope calculated by the Finite Element models against that predicted by the analytical
expression is satisfactory. As in the case of the pile embedded in cohesionless soils, a
small discrepancy is observed at the part where the moment on the pile head acts on the
opposite direction from the lateral force, at the region where the moment prevails on
the behavior of the pile which is attributed to the mesh density of the model. The
formation of a gap has no influence on the shape of the failure envelope since in every
case the lateral force and the moment at failure are normalized with the corresponding
maximum moment and lateral force of each case.

Furthermore, Figure 4.29 illustrates the characteristic zones of the pile response
at the M-Q failure envelope. Due to symmetry only half of the failure envelope is
presented. The following four zones can be identified:

(1) Zone of combined positive M—Q loading where the moment prevails in the
response of the system. The pile is subjected to small horizontal displacement
and large positive rotation. The plastic hinge is developed at the region close
to the pile head.

(2) Zone of combined positive M—Q loading where the horizontal force prevails in
the response of the system. The pile is subjected to large horizontal
displacement and small positive rotation. The plastic hinge is developed at a
certain depth.

(3) Zone of combined horizontal force and negative moment where the
horizontal force prevails in the response of the system. The pile is subjected
to large horizontal displacement and small positive rotation. The plastic hinge
is developed at higher depths (compared to zone 2) since the opposite acting

moment increases the bending moment capacity of the foundation.
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(4) Zone of combined horizontal force and negative moment where the moment
prevails in the response of the system. The pile is subjected only to a large
negative rotation. The plastic hinge is developed at the pile head.

Figure 4.30 compares the horizontal force—lateral displacement curves at the pile

head for pile embedded in cohesive soil with (a) fully bonded conditions, and (b)
displacement-free conditions at characteristic points along the failure envelope. As
already stated, in the case of pile embedded in homogeneous cohesive soil, the
horizontal force capacity increases from point A (M/M, = 1, Q/Q, = 0) up to point (M/M,
=-1, Q/Q, = 20'5). It can be observed the horizontal force calculated from the analysis
with fully bonded conditions is always higher than the one from the analysis with
displacement-free conditions. For Point D (pure horizontal force at the pile head), the
calculated ultimate horizontal force from the analysis with fully bonded conditions is
larger than the one predicted by the analytical expression. On the contrary, the ultimate
horizontal force calculated by the three-dimensional analysis with displacement-free
conditions is about 0.7 times the ultimate lateral response of the pile with fully bonded
conditions, which was expected since the soil resistance p, decreases with the gap
formation and the ultimate lateral resistance of the pile-soil system is a function of the
square root of the soil resistance. What is of interest is that according to the soil
resistance p, calculated from the analysis with fully bonded conditions, the ultimate soil
reaction predicted by Broms’ method should have a = 12 rather than a = 10 which was
used in this case. For Point F, even though the horizontal force is acting at the pile head,
the latter does not move up to the point of failure due to the moment acting towards the
opposite direction.

Figure 4.31 presents the computed bending moment distributions at different
stages of loading for pile embedded in cohesive soil with fully bonded conditions at
characteristic points along the failure envelope. As can be observed, the developed
bending moment at failure never exceeds the yielding moment of the pile. Moving from
point A to point E, the depth of the maximum bending moment increases, while at points
A and F (where the bending moment is the loading that causes the pile failure) the depth
of the maximum bending moment is at the ground surface. Similar behavior is observed

for the shear force distributions (Figure 4.32).
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Figures 4.33 illustrates the vectors from the analytical expression with the
assumption of an associated plastic flow rule along with the incremental displacement
vectors at failure from the three-dimensional numerical analyses with (a) fully bonded
conditions, and (b) displacement-free conditions for the case of pile embedded in
cohesive soil. Apparently, the vectors of incremental displacements in the three
dimensional analysis are vertical to the failure envelope on the Q—M space. From this
figure it can also be observed that the ultimate moment of the pile is the same for both
the analytical expression from Broms’ method and the three-dimensional analysis. For
the analysis with fully bonded conditions, the calculated ultimate lateral force is larger
than the one predicted by the analytical expression. On the contrary, the ultimate lateral
force calculated by the three-dimensional analysis with displacement-free conditions is
about 0.7 times the ultimate lateral response of the pile with fully bonded conditions,
which was expected since the soil resistance p, decreases with the pile-soil separation
and the ultimate lateral resistance of the pile-soil system is a function of the square root

of the soil resistance.

4.3.4 M-Q-N Failure envelope for flexible pile in cohesive soil

The problem of a pile in cohesive soil under undrained conditions is studied
further by taking into consideration the effect of vertical loading. In this case, the
distance from the pile tip to the bottom of the model is 23.33 diameters ensuring that
the boundaries do not affect the response of the pile-soil system. The pile is assumed to
behave elastoplasticaly. Figure 4.34 depicts the finite element discretization for the
problem studied. Approximately 80000 elements were used for each analysis. The
friction coefficient of the pile-soil interface is considered to be pu = 0.5.

Initially, the tip resistance of the pile is examined under static vertical load. The
tip resistance of a pile embedded in cohesive soil is given by:

Q, =f,A, =S,N.A, (4.15)
where A, is the cross-sectional area of the pile tip, S, the undrained shear strength of the
soil and N a bearing capacity coefficient which equals to N, = 13 from back-calculation of
this analysis. The shaft resistance of the pile is given by:

Q, =T, (contact area) = uK (o, (perimeter)(length) (4.16)
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where Kg the lateral earth pressure coefficient at rest.

The ultimate resistance from the pile is then calculated as:

N, =Q, +Q; (4.17)
and the comparison of N, from the 3D Finite Element analysis with the one from the
analytical expression is quite satisfactory (Ny asq = 1162kN and Ny analyticat = 1137kN).

Having determined the ultimate vertical load of the pile, the failure envelopes on
the Q—M space are examined under the influence of different portion of the ultimate
vertical load of the pile, N,. For this reason, the ultimate lateral force capacity (under
pure horizontal force at the pile head, Q,) and the ultimate moment capacity (under pure
moment acting on the pile head, M,) of the pile are first computed from the 3D Finite
Element model. Then, the Q—M failure envelopes are derived by two loading stage
analyses. In the first loading stage, a prescribed vertical load, selected as a percentage of
the ultimate vertical capacity of the pile, is applied on the pile head. In the second
loading stage, the vertical load remains constant, and a combination of overturning
moment M and horizontal force Q are applied to the pile head. Both the horizontal force
and overturning moment are gradually increased until complete failure of the pile. Figure
4.35 shows the failure envelope M/M,~Q/Q, for four different levels of the ultimate
vertical load: 0, 0.25N,, 0.5N, and 0.75N,. The developed normalized failure envelopes
are identical regardless of the magnitude of the vertical load.

Figure 4.36 depicts a representative envelope calculated for 0.25N,, 0.5N, and
0.75N, and the plastic strains for characteristic points along the envelope. Due to
symmetry, only half of the envelope is presented. As the vertical load increases, the
failure mechanism in each point remains unaffected and minor increase of the plastic
strains is observed. The six characteristic points along the surface correspond to:

(a) pure overturning moment M,

(b) combined positive M—Q loading where the moment governs the response of

the system

(c) combined positive M—Q loading where the horizontal force governs in the

response of the system

(d) pure horizontal force Q;
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(e) combined maximum horizontal force and maximum overturning moment

acting on the opposite direction

(f) combined maximum overturning moment and horizontal force where the

moment governs the response of the system.
Points (a) and (f) correspond to pure structural failure, while the plastic strain increase
when moving from point (b) towards (e).

Furthermore, the plastic flow rule remains also associated, unaffected by the
presence of the vertical load (Figure 4.37). In other words, all the points with the same
inclination angle on the Q/Q,—M/M, space (same angle B), regardless the applied vertical
load, have the same ratio of incremental displacement to incremental rotation at failure.
The above remarks justify the current design practice that considers axial and lateral
loads separately and independently without considering the effect of interaction
between the different load directions.

The influence of the horizontal force on the action of moment and vertical load
on the pile head was studied, as shown in Figure 4.38 for values of: 0, 0.5Q, and 0.9Q,.
When no horizontal force acts on the pile head (Figure 4.38a), the failure envelope on
the M/M,—N/N, space is completely symmetric and the maximum vertical force imposed
to the pile overexceeds the axial bearing capacity at vertical loading. This increase of the
axial bearing capacity is attributed to the increase of shear resistance with increasing
passive pressures (Coulomb theory) due to the lateral loading. When the horizontal force
acting on the pile head is half of the ultimate horizontal force (Figure 4.38b), the
symmetry is lost. The overturning moment acting towards the same direction with the
horizontal force is less than the ultimate moment, since the horizontal force contributes
also to the plasticization of the soil. On the other hand, the maximum vertical load of the
pile exceeds the ultimate vertical load of the pile, since passive pressures increase due to
the lateral loading. When the overturning moment and the horizontal force are of the
same sign the increase of the maximum vertical load is higher than in the case of the
negative sign. This Behavior increases further when the horizontal force is close to its
ultimate value (Figure 4.38c). However, in this case the increase of the maximum vertical
load takes place when the moment is applied towards the opposite direction of the
horizontal force, since the moment acts beneficially to the plasticized soil which is close

to failure under the action of the horizontal force.
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Figure 4.39 presents the failure envelope of a single pile embedded in cohesive
soil on the three-dimensional space M/M,—Q/Q,—N/N, with the simplification that the
maximum vertical load of a flexible pile cannot exceed its ultimate vertical load. It should
be noted that this failure envelope refers to pile-soil system failure for constant values of
plastic moment of the pile material (its lowest value) under any loading combination. A
more precise failure envelope should also take into consideration the interaction

diagrams of the pile material.

4.4 SUMMARY AND CONCLUSIONS

The failure envelope of flexible single pile under combine Q—M loading for
different soil conditions derived from the analytical expressions of Chapter 3 as well as
the assumption of an associated plastic flow rule are verified through force-controlled
Winkler model analyses. The shape of the failure envelope in the normalized Q/Q,~M/M,
space remains unaffected from any other strength parameter of the soil or the pile such
as the soil Young’s Modulus, the soil strength and the pile diameter. The failure envelope
can be determined when the ultimate horizontal capacity Q, (from pure horizontal
loading) and the ultimate moment capacity M, (from pure overturning moment loading)
of the soil-pile system are known.

The assumption of an associated plastic flow rule is graphically verified by the
normality of the incremental displacement vectors at failure from the Winkler model. It is
also found that the plastic displacement to rotation ratio at failure (éup'/sep') is equal to
the depth of the plastic hinge. Since the plastic flow rule is confirmed to be of associated
type, only the analytical expression for the failure envelope is needed for its
determination.

Both the theoretical expression of the failure envelope and the associated plastic
flow rule are further evaluated against 3D numerical analyses with two different
constitutive models comprised of non-associated flow rules. It is shown that the
macroscopic soil-foundation response is insensitive to the features of the constitutive
model used in the analyses. The effect of slippage and separation at the pile-soil
interface is also examined and proven to have no influence on the shape of the
normalized failure envelope and on the associated plastic flow rule.

The M-Q failure envelope is characterized by the following four zones:
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(1) Zone of combined positive M-Q loading where the moment prevails in the
response of the system. The pile is subjected to small horizontal displacement
and large positive rotation. The plastic hinge is developed at the region close
to the pile head.

(2) Zone of combined positive M—Q_loading where the horizontal force prevails in
the response of the system. The pile is subjected to large horizontal
displacement and small positive rotation. The plastic hinge is developed at a
certain depth.

(3) Zone of combined horizontal force and negative moment where the
horizontal force prevails in the response of the system. The pile is subjected
to large horizontal displacement and small positive rotation. The plastic hinge
is developed at higher depths (compared to zone 2) since the opposite acting
moment increases the bending moment capacity of the foundation.

(4) Zone of combined horizontal force and negative moment where the moment
prevails in the response of the system. The pile is subjected only to a large
negative rotation. The plastic hinge is developed at the pile head.

Based on the 3-D analyses, analytical expression of the failure envelope for M—Q-

N loading is proposed without taking into consideration the interaction diagrams of the
pile material. This envelope is an extension of the proposed failure envelopes for the Q—
M space being insensitive to the vertical load. The general expression of the yield surface

of a flexible pile (with reference to its top) in M—Q—N space could be approximated by:

B
f =|sgn(Q) g* +sgn(Q)A g* +sgn(M) M* -1=0 for M <1 (4.18)
y y y MY
f= M -1=0 for M =1 (4.19)
y My
f= N -1=0 for N =1 (4.20)
y Ny

with A, B, Q,* and M,* constant values, depending on the problem studied (Table 3.1).
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-
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tanB; = MQ, / QM,

Figure 4.1: The concept of radial paths of loading which is used in the force-
controlled analyses for the lateral response of pile foundations
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Figure 4.2: Ideal analytical Winkler model: (a) Free-head pile in homogeneous
Winkler soil, (b) moment—curvature relationship, and (c) soil reaction—
displacement relationship
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Figure 4.3: Influence of the vertical distance z of the Winkler springs on the failure
envelope
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Figure 4.5: Influence of the undrained shear strength S, on the failure envelope
from the analytical expression for the case of a pile of diameter d =1 m, embedded
in a homogeneous cohesive layer with uniform Young’s modulus E, = 100 MPa
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Figure 4.7: Influence of the pile diameter d on the failure envelope from the analytical
expression for the case of a pile embedded in a homogeneous cohesive layer with
uniform Young’s modulus E, = 50 MPa and undrained shear strength S, = 50 kPa
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Figure 4.9: Influence of Young’s Modulus E of the soil on the failure envelope from
the analytical expression for the case of a pile of diameter d = 0.5 m embedded in a
homogeneous cohesive layer with undrained shear strength S, = 100 kPa
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Figure 4.11: Comparison of the failure envelope calculated by the Winkler model
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Figure 4.12: Comparison of the vectors from the analytical expression with the
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193



2.0 7

< Winkler Model
1.0 — Analytical Expression
>
g o
I 1
S
-1.0
-2.0 i
-2.0 -1.0 0 1.0 2.0
Q/qQ,

Figure 4.13: Comparison of the failure envelope calculated by the Winkler model
and predicted by the analytical expression. The pile is embedded in
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Figure 4.14: Comparison of the vectors from the analytical expression with the
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Figure 4.16: Comparison of the failure envelope calculated by the Winkler model
and predicted by the analytical expression. The pile is embedded in two cohesive
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Figure 4.18: Comparison of the failure envelope calculated by the Winkler model
and predicted by the analytical expression. The pile-column is embedded in
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Figure 4.20: Cross section of the finite element discretization
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Figure 4.24: Comparison of the failure envelope calculated by three-dimensional
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Figure 4.26: Contours of the plastic strain magnitude (plotted on the deformed
mesh) for a flexible pile embedded in nonhomogeneous cohesionless soil
calculated with the constitutive model CT for three different angles of loading: (a) B
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Figure 4.27: Gap formation from the action of the ultimate moment at the pile
head. (Deformation Scale Factor = 40)
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Figure 4.28: Comparison of the failure envelope predicted by the analytical
expression for pile in cohesive soil and calculated by three-dimensional numerical
analysis with (a) displacement-free conditions, and (b) fully bonded conditions
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Figure 4.29: Characteristic zones of the pile response at the M-Q failure envelope
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Figure 4.34: Cross section of the finite element discretization for case of vertical
load acting on the head of the pile
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CHAPTER 5:
MACRO-ELEMENT MODELING OF THE LATERAL RESPONSE OF FLEXIBLE
PILES: FAILURE SURFACE AND PLASTIC FLOW RULE — EXPERIMENTAL
VALIDATION

5.1 INTRODUCTION

Failure envelopes are a simple tool to estimate the ultimate loading of
foundations. In order to validate the adequacy of the proposed failure envelope
described in the previous chapters, results from a real-scale pushover test on a vertical
flexible pile are compared with the analytical expression. The result of the real-scale pile
is expressed as a single point at the failure envelope. A series of pushover tests on a
vertical single pile embedded in dry sand under different load paths to failure in Q—M
space was conducted in the Laboratory of Soil Mechanics / Dynamics in NTUA, thus
providing several points on a failure envelope. The reference point is at the ground
surface and the pile was modeled to behave as a flexible pile. To avoid reduced-scale

testing problems, the model was tested in true scale (micro-pile).

5.2 VALIDATION AGAINST FULL-SCALE TEST

In this paragraph the proposed failure envelope is evaluated by comparing the
prediction from the analytical expression against measured response of a pile at a test
site in Iraq (Gerolymos, 2013).

A reinforced concrete pile with an overall length L = 25 m, diameter d = 0.8 m,
and plastic moment M, = 800 kNm was installed in a construction site and was laterally
loaded. The load was applied at 19 cm above the ground surface. The top 11 m of soil
consist of soft homogeneous clay. The soil layers together with the SPT data are depicted
in Figure 5.1.

Figure 5.2 presents the experimental setup. The loading frame was designed to

apply a maximum lateral load of more than 37 tons in order to accommodate the
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required load increments of the loading stages as instructed by ASTM D3966 — 07. Lateral
loads and movements were recorded at various time points throughout the testing along
one cycle of loading and unloading. The hydraulic cylinder and load cell were set against
the test plate to the pile head in a horizontal position. The lateral movements were
measured by two displacement gages attached to the pile head from the opposite side of
the applied load.

The test was intended to determine whether the pile capacity was adequate
throughout one cycle of loading and unloading under the applied lateral loads. During
the loading stage a force equal to twice the working load is applied through 8 loading
increments. After completing the loading stage, the unloading stage is conducted by
unloading the total applied load through 4 loading decrements. The force—displacement
curve of the loading stage is depicted in Figure 5.3.

The undrained shear strength of the clay deposit used for the comparison of the
experiment with the proposed failure envelope was obtained from the SPT results
according to Stroud and Butler (1975) with reasonable assumptions. Thus, a uniform
undrained shear strength of S, = 18 kPa was selected. According to Fleming et al (1992),
the limiting lateral pressures for a pile in cohesive soils are given by:

P Z
=4=25 +5' +aS — 5.1
pU d u \ Ud ( )

where the factor a lies between 0.5 and 3. Thus, a uniform limiting lateral pressure was
calculated with p, = 5 S;. The corresponding point at failure from the experiment in
comparison to the proposed failure envelope is shown in Figure 5.4. The comparison is
really satisfactory, but only one point on the failure envelope is determined. In addition,
no data are available for the verification of the associated plastic flow rule. For this
reason, a series of pushover tests on a vertical single pile embedded in dry sand under
different loading paths was conducted in the Laboratory of Soil Mechanics / Dynamics in

NTUA.

5.3 VALIDATION AGAINST LABORATORY TESTS
For most applications in civil engineering, the major and fundamental difference
between soil and concrete is that the behavior of the former is strongly dependent on

the stress state and stress path, whereas the latter is generally not. This implies that any
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laboratory or field test which fails to correctly model the stress state and stress path will
likely produce incorrect results. The main shortcoming of small-scale testing, which is
alleviated by centrifuge model testing, is that generally involves low stresses. The
significantly lower levels of effective stress in the model result in overestimating ¢', as
the latter is in fact a function of confining stress (Bolton, 1986) rather than a constant
value, and as a result the soil appears to have larger strength and dilatancy in comparison
to real-scale conditions. Nevertheless, 1 g testing is a valid method, provided that the
scale effects and the stress-dependent soil behavior are considered in the design of the
experiments and results are interpreted appropriately (Drosos et al, 2012). Although
reduced-scale testing generally involves low stresses, this is not quite the case here
owing to the significant load conditions of the pile and the normalized nature of the

proposed failure envelope.

5.3.1 Experimental equipment

The response of a tubular single vertical pile (doywt = 3.0 cm, dij,=2.8 cm, | = 60 cm)
embedded in dry sand under different load paths to failure in Q—M space is studied
experimentally. The pile head, considered as the reference point at the ground surface, is
subjected to a combined load of overturning moment and horizontal force under a
constant ratio M/Q (radial paths in Q—M space, Gouvernec, 2004) until the pile failure.
The piles used are tubular made of aluminum alloy 6063 — F25 whose characteristics are
given in Table 5.1. Each pile is instrumented with wire displacements transducers in
order to measure the displacement and rotation at the pile-head. The length of the pile
embedded in the sand is long enough to ensure that the pile will behave as flexible, in
other words the plastic moment of the material will be lower than the maximum
moment that the soil can sustain in the case of a short pile. Figure 5.5 presents the
experimental setup. In order to ensure repeatability of the test results, floating piles
were abandoned and the piles tested are resting on the bottom of the sandbox. For no
vertical load N, the ultimate lateral load Q, and overturning moment M, are determined.
Different combinations of moment and lateral force at the ground surface can be
produced by changing the height e of application of the horizontal load Q (hence M =
Qe).

217



Longstone sand, an industrially produced fine and uniform quartz sand with Dsg =
0.15 mm and uniformity coefficient C, = Dgo/D1o = 1.42, is used in the experiments. The
void ratios at the loosest and densest state have been measured as emax = 0.995 and enin
= 0.614, and the specific weight of the solids as G = 2.64. The grain size distribution curve
for the sand is shown in Figure 5.6. The material and strength characteristics of the sand,
as derived through a series of laboratory tests, have been documented in
Anastasopoulos et al (2010). In the present study, the initial soil sample was chosen to be
of high density, D, = 94% for all tests, to avoid soil densification during loading.

The sandbox is of internal dimensions, (length x width x height) 1.48 m x 0.78 m x
0.645 m, respectively. Transparent barriers have been placed at the two opposite larger
sides of the box, in order to better observe the experimental procedure. These barriers
are a combination of Plexiglas and glass. Plexiglas has been placed at the external side so
that rigidity and durability are achieved, whereas glass has been put at the internal side,
in order to minimize friction and simultaneously avoid scratching of the Plexiglas from
the sand particles.

The Pushover Test apparatus, designed and constructed in the Laboratory of Soil
Mechanics / Dynamics in NTUA, is used for monotonic and slow-cyclic pushover testing
of soil-foundation-structure systems. The Pushover Test apparatus is equipped with an
electronically controlled screw-jack actuator, having a capacity of 1 ton and producing a
stroke of +/- 500 mm, with a maximum velocity of 50 mm/sec. The apparatus is rigidly
attached to a reaction wall, while its free end is connected to the model through a linear
guideway and a hinged connection in series, allowing the system to freely settle, slide,
and rotate as horizontal displacement is imposed (Figure 5.7). A device capable of
measuring the applied load on the pile (load cell) is connected at the edge of the
actuator.

The wire displacement transducers (Space Age Series 6) were installed after
completion of the model. The body of each transducer was fixed on the rigid walls of the
sandbox, and the sensing wires were connected to the pile model. All sensors were

connected to the data acquisition system.

218



5.3.2 Model preparation

The pile is first installed in the empty sandbox with its tip resting at the bottom.
The vertical position of the pile is checked and wires from the rigid walls of the sandbox
are connected to the pile head to maintain its vertical position during the raining process
of the sand (Figure 5.8).

The sand specimens are prepared by an air sand raining process into the
rectangular sandbox. The raining system, shown in Figure 5.9, consists of a bucket
hanged from a steel beam, which is fixed on the roof of the laboratory. An electric motor
moves the bucket horizontally along the length of the roof beam with a controllable
speed. Moreover, another motor makes the bucket move in the vertical direction, sliding
along the two vertical support beams. The bucket movement in both directions is
operated by an electronic system, which allows remotely controlling of the pluviation
speed and height during the sample preparation.

The bucket is filled with sand, which is poured through an opening of controllable
aperture. After the bucket is fixed at a certain height above the sandbox, the shutter is
removed and sand flows through the opening (Figure 5.10). Pluviation is conducted in
steps of about 5 cm of soil layer. At each step the pluviation height (height of the bucket)
is increased proportionally to achieve uniform distribution of the density with depth.

The achieved soil sample density during raining pluviation depends on the drop
height and the discharge rate of the sand. The drop height is specified by the vertical
position of the soil bucket whereas the sand discharge rate is controlled by the bucket
opening and the velocity of its movement in the horizontal direction (pluviation speed).
Hence, the calibration of the raining system focused on these three variables: (a) the
bucket opening aperture, (b) the pluviation height, and (c) the pluviation speed.

The procedure followed for the preparation of the model is as follows:

(i) The aluminum model pile is covered with an artificial in-house interface
consisting of glue-paper and sand, aiming to produce realistically rough soil—
foundation interfaces

(ii) The model pile is installed in the empty sandbox in a vertical position and a
cap is placed on its top to prevent sand from entering through the open tube
while raining.

(iii) The sand is rained in layers until the edges of the sandbox.
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(iv) When the sand reaches the desired height the surface is leveled and the cap
removed.

After the sand raining is completed, a crane is used to position the sandbox from
the sand raining room to the Pushover Test apparatus. When the sandbox is placed in
position, the wire displacement transducers (Space Age Series 6) and the load cell that
measures the impact load are installed and connected to the data acquisition system.

When all connections are made the model is ready to be tested (Figure 5.11).

5.3.3 Experimental results
5.3.3.1 Results of preliminary tests

The pile is subjected to displacement control lateral loading. Preliminary tests
were performed in order to figure out the influence of parameters such as pile diameter,
soil-pile interface, soil density and pile position in the sandbox.

Initially, three very thin tubular piles of different diameter (6x4 mm, 8x6 mm and
10x8 mm) were tested in loose sand (D, = 45%) under pure lateral loading conditions. The
embedded length of the pile was 53 cm. No special interface was used between the soil
and the pile. The experimental results are presented in terms of lateral load with respect
to horizontal displacement at the ground surface. Figure 5.12 depicts the influence of the
pile diameter on the system response. As expected, the increase of the pile diameter
increases the maximum soil reaction. The spikes observed in the load—displacement
diagram are attributed to the sliding of the Pushover Test apparatus on the aluminum
pile surface. The maximum system response is almost two times higher than the one
predicted by Broms’ method for friction angle of the sand at critical state, a fact that can
be attributed to several factors such as the change of the friction angle, the high
dilatancy, the small-scale effects and the stress-dependent soil behavior. But since the
proposed failure envelope is normalized and the measured ultimate lateral load is used
for the definition of the failure envelope, this difference is eliminated. Another important
point is that the depth of plastic hinge from the ground surface increases with the pile
diameter from 16 cm for the 6x4 mm pile to 18 cm for the 8x6 mm pile and 19 cm for the
10x8 mm pile.

The next test took place in dense sand of D, = 94% and the embedded pile length

reached 60 cm. Because the ultimate lateral loads for the previous pile tests were low
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compared to the capacity of the utilized equipment, piles of larger diameters were also
tested. In this experiment the influence of the relative density of the sand as well as the
influence of the existence of different interfaces was tested. Thus, the piles tested were
(i) a 8x6 mm pile with no interface, (ii) a 10x8 mm pile with no interface, (iii) a 10x8 mm
pile with an in-house made soil-pile interface consisting of glue-paper and sand, (iv) a
30x28 mm pile with no interface, (v) a 30x28 mm pile with an in-house made soil-pile
interface consisting of glue-paper and sand, and (vi) a 30x28 mm pile with sandpaper N
120 as soil-pile interface. Figure 5.13 demonstrates the increase in soil resistance with
increasing soil density from D, = 45% (loose sand) to D, = 94% (dense sand). It is observed
that after reaching a maximum loading for the case of dense sand, the system exhibits a
softening-like behavior. The piles examined are the ones with diameter 8x6 mm and 10x8
mm (outer and inner diameter, respectively) without the use of extra soil-pile interface.
In the case of the dense sand the depth of plastic hinge from the surface of the pile
decreased compared to the loose sand from 18 cm to 13 cm and from 19 cm to 15 cm for
the 8x6 mm and the 10x8 mm pile, respectively.

Figure 5.14 depicts the influence of the soil-pile interface on the soil reaction. In
Figure 5.14a the response to lateral loading of a 10x8 mm pile with no interface (smooth
interface) is compared to the one of a 10x8 mm pile with an in-house made soil-pile
interface consisting of glue-paper and sand (rough interface). It is observed that the
existence of an interface smoothes the load-displacement curve since the developed
friction on the new interface prevents the Pushover Test apparatus from sliding on the
pile as the latter bends. The diameter of the pile is very small though, and no difference
is observed on the lateral system capacity. For this reason, piles of bigger diameter were
also checked (30x28 mm) with three different soil-pile interfaces: (1) no interface
(smooth), (2) the in-house made (rough) interface, and (3) a (very rough) interface with N
120 sandpaper (Figure 14b). It is observed that in the case of the pile with no interface,
the Pushover Test apparatus slides in the beginning of the test and the load is acting in a
higher point on the pile, thus changing the loading conditions. The measured soil
resistance is almost 30% less than in the case of the rough interfaces. The difference in
the lateral response of the piles with the rough and the very rough interface is minor and

thus, the in-house made (rough) interface was selected for the subsequent pile tests. It
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has to be noted that the plastic hinge was developed at 20 cm for the pile without
interface and at 23 cm at the other two piles.

The influence of pile position on the measured response for the same
experimental conditions was checked by testing a 30x28 mm pile with rough interface at
two different locations: (i) at the center of the sandbox (Figure 5.15), and (ii) at a position
of 1/3 of the length of the sandbox. Figure 5.16 compares the two alternative pile
locations in the sandbox through the monotonic loading response curves. For the same
experimental conditions, no significant differences are observed in terms of stiffness and
ultimate lateral load capacity. The maximum lateral capacity was measured 102 kg and
98 kg for the first and the second experiment, respectively, while in both experiments
the depth of plastic hinge was 24 cm from the surface. Moreover, upon reaching a peak

value, the pile exhibits a softening - like response.

5.3.3.2 Results of the pushover test series
Having figured out the influence of parameters such as pile diameter, soil-pile
interface, soil density and pile position in the sandbox, it was decided to test a tubular
pile of 30x28 mm diameter with rough in-house made soil-pile interface consisting of
glue-paper and sand embedded in dense sand (D, = 94%) at the center of the sandbox for
the whole series of tests performed. As already mentioned, the piles studied are
subjected to displacement control lateral loading. Monotonic loading is imposed either at
the pile head considered to be at the ground surface, or at a specified distance from
ground surface in order to produce a moment acting at the ground surface. The
sequence of the experiments performed was:
(1) lateral load at the ground surface level in order to determine Q, (97.15kg;
Point 1,0)
(2) pure moment conditions in order to validate the plastic yield moment M, of
the pile (18.19 kgm; Point 0, 1)
(3) lateral load applied at 32 cm above the ground surface (Point 0.47, 0.80)
(4) lateral load applied at 20 cm above the ground surface (Point 0.59, 0.63)
(5) retest of the pile under lateral load applied at 32 cm above the ground surface
in order to check the repeatability of the experiments (Point 0.46, 0.79)

(6) lateral load applied at 10 cm above the ground surface (Point 0.75, 0.40)
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(7) lateral load applied at 6 cm above the ground surface (Point 0.88, 0.28)

(8) first test of pile under lateral load applied at the ground surface and moment
acting on the opposite direction (Point 1.27, -0.47)

(9) second test of pile under lateral load applied at the ground surface and
moment acting on the opposite direction (Point 1.44, -0.62)

(10) lateral load applied at 56 cm above the ground surface (Point 0.28, 0.84)

Aiming to ensure the validity and repeatability of the testing procedure and gain
confidence in the presented data, the lateral pushover test for the pile subjected to
lateral load at 32 cm above the ground surface (Test 3) was repeated (Test 5) and,
indeed, the results were very consistent. In Figure 5.17 the comparison of the lateral
force-horizontal displacement at the pile head curves shows quite satisfactory
agreement between the results of the original and repeated test, indicating that the
experimental conditions are repeated with accuracy in every experiment.

Figure 5.18 compares the failure envelope of the analytical expression for piles
embedded in cohesionless soil with the points of the pairs of overturning moment M and
lateral force Q at failure normalized with the values of pure moment capacity M, and
pure lateral loading capacity Q,, respectively, as derived from the laboratory
experiments. Despite small-scale effects, it is observed that the points almost coincide
with the proposed failure envelope, since the methodology used eliminates the possible
errors. The red triangle on the figure corresponds to the repeated test performed in
order to check the repeatability of the experiments for pile under lateral load applied at
32 cm above the ground surface.

Figure 5.19 illustrates the vectors from the analytical expression with the
assumption of an associated plastic flow rule along with those from the measured
incremental displacements at failure. Rotation was not measured for the two
experiments of a pile subjected to lateral load applied at the ground surface and moment
acting on the opposite direction because the deflected shape of the pile prevented
precise measurements. However, when the moment and lateral load act on the same
direction, the vectors from both approaches are graphically identical. Therefore, the
assumption of an associated plastic flow rule for the macroscopic behavior of a flexible
pile is justified. Thus, the analytical expression for the failure envelope is only needed for

the definition of the plastic flow rule.

223



5.4 NUMERICAL MODELING OF THE PUSHOVER TESTS
The pushover tests described in the previous section are modeled numerically
with three different numerical models:
e A simplified beam-on-nonlinear-Winkler-foundation model (Model 1) for static
analysis. The soil is modeled with spring elements while the pile is modeled with
2-node beam elements (in plane). Model 1 is used for the validation of the
experiments through Class B predictions (Lambe, 1973).
e A fully 3D Finite Element model taking into account material nonlinearities
(Model 2) for static analysis. The soil is modeled with 8-node brick elements while
the pile is modeled with 2-node beam elements (in space) and 8-node brick
elements with appropriate kinematic restraints. Model 2 is used as a tool to
reproduce the experimental results by introducing a fourth parameter to the
proposed constitutive model of Chapter 2 which accounts for soil softening
through the variation of friction angle with octahedral strain.
e A 3D Finite Element model of the pile without the soil (Model 3) for static analysis
with Riks method. The pile is modeled with 4-node shell elements. Model 3 is
used to validate the moment-displacement response of the tested pile.
All models are created using the finite element code ABAQUS (Dassault Systémes Simulia
Corp, 2009).

The beam-on-nonlinear-Winkler-foundation model (Model 1) was created after
Test 2 was performed, having defined the lateral capacities for pure lateral loading Q,
and moment M,. As in Chapter 4, a simple ideal model is applied to construct the
numerical model shown in Figure 4.2 for analyzing the responses of the pile-soil model
system under different load conditions. Model 1 uses 2D beam elements to simulate the
pile and adopts a series of independent springs to model the soil reaction. A free-head
pile is embedded 60 cm in uniform elastic-perfectly plastic soil of Winkler type. The
structural moment-curvature response of the pile cross-section is assumed to be
bilinear, defined with the yield point (M, k,) where M, is the yield moment and k, is the
yield curvature and an ultimate point (M, k,) where M, is the ultimate moment and K, is
the ultimate curvature. The stiffness coefficients of the soil springs are calculated

according to Makris and Gazetas (1992). The distribution of Young’s Modulus for the
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Longstone Sand varies parabolically with depth according to the empirical equation of
Loli et al (2011):

E =2000p°* (5.2)
where p the hydrostatic pressure. Based on Broms’ method for flexible piles in
cohesionless soils (Broms, 1964), an equivalent constant friction angle of ¢ = 64° was
found for the sand through back analysis of Test 1 and was used for the calculation of
ultimate soil resistance of the springs. Having calibrated the model to match the values
of the moment capacity and the lateral load capacity of the pile, Class B (Lambe, 1973)
predictions of Tests 3 — 7 and 10 were performed (M and Q act on the same direction) in
order to gain insight on the selection of the appropriate height of the load application.

After the completion of the experiments, the tests were simulated in 3D. The pile
and soil are analyzed at model scale, assuming model parameters appropriate for very
small confining pressures. The cross-section of the Finite Element mesh of the pile with
the sandbox is depicted in Figure 5.20. Approximately 45000 elements were used for
each analysis. The pile in Model 2 is modeled as elastic-perfectly plastic with 3D beam
elements placed at its center and connected with appropriate kinematic restraints with
the nodes at the perimeter of the pile in order to model the complete geometry of the
pile.

The behavior of the soil-pile system under pure moment depends only upon the
pile characteristics. Thus, the numerical behavior of the pile is validated against Test 2
which was performed in order to verify the ultimate moment capacity of the pile as
derived from the alloy specifications. In this test, the pile was fixed to the sandbox
through an aluminum plate and a lateral load was applied at 32 cm above the fixity point
(Figure 5.21). Due to the existence of initial gaps between the plate and the pile and to
the flexibility of the equipment used for this measurement, only the value of the ultimate
moment capacity was verified. For the flexural stiffness, a model of the pile alone (Model
3) consisting of 4-node shell elements was created (Figure 5.22) in ABAQUS which
captured the shape of the vyielding pile and the force—displacement curve for a load
acting at 32 cm from the fixed points of the pile. Model 3 uses the Riks method of
analysis which is suitable for unstable collapse and postbuckling analysis (Riks, 1979). As

observed, the deformed shape of the pile of Model 3 is remarkably similar to the
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deformed shape of the tested pile. Thus, the flexural stiffness from Model 3 was used as
the flexural stiffness of the pile in Models 1 and 2 (Figure 5.23). It can be observed that
Model 3 with Riks method of analysis captures satisfactorily the experimental response.
The same figure depicts the elasto-plastic behavior of Models 1 and 2.

Having calibrated the pile structural behavior, the soil-pile system behavior of
Models 1 and 2 are calibrated against Test 1 (lateral load at the ground surface). The
constitutive model for cohesionless soils developed in Chapter 2 is encoded in ABAQUS
through a user subroutine. Isotropic strain softening is also implemented as a fourth
parameter in the model. As depicted in Figure 5.24, strain softening is introduced by
reducing the mobilized friction angle ¢ with the increase of the octahedral plastic shear
strain. Initially, from 0 to 5 % strain, the friction angle of the soil equals to the peak
friction angle @peak Which varies with the vertical stress o, according to

Anastastasopoulos et al (2010):
P peak :53.1—2.8|n(cv) (5.3)

From 15 % strain and onwards, the friction angle of the soil equals to the friction angle at
critical state ¢ = 32° and from 5 to 15 % strain linear interpolation is performed for the
values of the friction angle. It must be noted that the proposed constitutive model
cannot reproduce dilative response. The remaining model parameters are calibrated
through the experimental data for small confining pressures. The empirical correlation of
the Young’s modulus distribution with depth for the Longstone Sand of Loli et al (2011) is

utilized for the calibration of model parameter C, leading to:

08
GV

C=17000

(5.4)

a
where o, the vertical stress and P, the atmospheric pressure (approximately 100 kPa),
while soil cohesion is ¢ = 0.7 kPa. Figure 5.25 presents the force—lateral displacement
curve at the pile head derived from the experiment and the calibration of Model 2. It is
observed that both the stiffness and the maximum lateral capacity of the pile of the
calibrated 3D model match the experimental values. On the contrary, Model 1 was
calibrated to match only the maximum lateral capacity of the pile.

Figure 5.26 shows the contours of the plastic strain magnitude of Model 2,

plotted on the undeformed mesh, for the experimental setup of: (a) Test 1 (lateral load
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at the ground surface), (b) Test 4 (lateral load at 20 cm above the ground surface), and (c)
Test 10 (lateral force at 56 cm above the ground surface). The plastic strains are plotted
on the same scale. It is obvious that larger plastic strains develop around the pile for the
case of the pure lateral loading. Similarly, Figure 5.27 depicts the contours of the active
and passive stress states in terms of the state parameter k at the maximum measured
lateral loading of the single pile in Test 1. k = 1 corresponds to pure triaxial compression
loading condition (passive state) and k = 0 to pure triaxial extension loading condition
(active state), while k = 0.5 corresponds to the response of the soil in direct shear test.
The calculated depth of plastic hinge formation coincides with the measured depth in the
experiment.

Having calibrated Model 2 to match the measured lateral capacities M, and Q,,
the behavior of the pile-soil system in the other tests was investigated. Figures 5.28 to
5.34 compare the measured with the computed lateral force acting at various heights on
the pile with the pile displacement at the ground surface. Both the stiffness and
maximum force values from the numerical analysis compare well with the measured
ones from the experiment. Some small differences that are observed can be attributed to
the small soil variation from test to test and the soil dilatancy that is not captured by the
proposed constitutive model. On Figures 5.28 to 5.32 the predicted behavior of the pile-
soil system with Model 1 is also plotted. Given the simplicity of the beam-on-nonlinear-
Winkler-foundation model the results are quite satisfactory and the predicted radial

paths in Q-M space compare well with the experimental ones.

5.5 SUMMARY AND CONCLUSIONS

In order to validate the analytically derived failure envelope presented in Chapter
3, the derived analytical expression is compared with results from a real-scale pushover
test on a vertical flexible pile. Since the failure of the real-scale pile provides only a single
point at the failure envelope, a series of pushover tests on a vertical single pile
embedded in dry sand under lateral force and overturning moment combinations at the
pile head were performed. Preliminary tests were carried out in order to examine the
influence of parameters such as pile diameter, soil-pile interface, soil density and pile

position in the sandbox. It was found that:
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e In general, the maximum lateral soil reaction is higher than the one predicted by
Broms’ method for friction angle of the sand at critical state, a fact that could be
attributed to several factors the most important of which is the strain
dependency of the soil properties. However, the normalized failure envelope is
not particularly affected by the aforementioned factors.

e The depth of plastic hinge from the ground surface and the maximum soil
reaction increase with the pile diameter.

e The lateral pile resistance increases with increasing soil density from D, = 45%
(loose state) to D, = 94% (dense state), while it remains almost unaffected by the
pile position in the sandbox.

e Piles with three different soil-pile interfaces were tested: (1) no interface, (2) an
in-house made (rough) interface, and (3) a (very rough) interface with N 120
sandpaper. In the case of the pile with no interface, the Pushover Test apparatus
slides easily at pile surface as the pile deflects and the load is acting in a higher
point on the pile, thus changing the loading conditions. Furthermore, the soil
resistance is almost 30% less than in the case of the rough interface. The
difference in the lateral response of the piles with the other two interfaces is
minor.

The results from the Pushover Tests validate the proposed failure envelope and
connect theory and numerical analysis from Chapters 3 and 4 with practical applications,
strengthening the accuracy of the analytical expression. From the perspective of a
macro-element approach of the pile response the results encourage the hypothesis of
normality rule for plastic flow.

Validation of the experiments was achieved through comparisons with results
from Class B predictions from a simplified beam-on-nonlinear-Winkler-foundation model.

The Pushover Tests were modeled in 3D using the Finite Element method taking
into account the nonlinear behavior of both the soil and the pile. A fourth parameter is
introduced to the proposed constitutive model of Chapter 2 which accounts for soil
softening through the variation of friction angle with octahedral strain. The 3D Finite
Element analysis yielded results that compare well with the measured pile response in

terms of lateral load-lateral displacement at pile head, and is capable of reproducing the
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failure modes observed in the experiments. The easy implementation of the Finite
Element model provides a useful tool that captures the key parameters that influence

the lateral response of piles.
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Table 5.1: Pile characteristics

Name Symbol Model scale
Embedded Length L 60 cm
External diameter dout 3cm
Internal diameter din 2.8cm
Young’s modulus E 7.x 10" MPa

Yield Stress oy 215 MPa
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Figure 5.1: Soil layers and the SPT N values at the test site

Figure 5.2: Experimental setup (Gerolymos, 2013)
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Figure 5.3: Experimental force—displacement curve at pile head for test
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envelope from the analytical expression for pile in embedded in cohesive soil
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Figure 5.5: Pushover model setup: geometry and instrumentation
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Figure 5.6: Grain size distribution of the “Longstone” sand used in the experiments, a
fine uniform sand with ds; = 0.15 mm and uniformity coefficient C, = 1.42
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Figure 5.7: Push-over Test Apparatus
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Figure 5.9: Electronically controlled raining system used for soil samples preparation
in the Laboratory of Soil Mechanics / Dynamics in NTUA
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Figure 5.11: Pile model ready to be tested
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Figure 5.13: Influence of the soil density on the system response
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Figure 5.14: Influence of the soil-pile interface on the system response (a) on 10x8 mm
(small) diameter pile, and (b) on 30x28 mm (big) diameter pile
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Figure 5.15: Lateral Push-Over test on the 30x28mm pile: (a) before the test, and (b)
after the test

240



Force (kg)

Force (kg)

120

100

80

60 A

40 -

20 .
— 30x28 Pile, Near the wall
— 30x28 Pile, Center of box

O T T T T T T T
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Lateral displacement at pile head (m)

Figure 5.16: Influence of the position of the pile in the sandbox on the system
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Figure 5.17: Comparison of the lateral load versus lateral displacement curves of two
identical tests (Test 3 and 5) for pile under lateral load applied at 32 cm above the

ground surface
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Figure 5.18: Comparison of the experimental results with the failure envelope from
the analytical expression for pile embedded in cohesionless soil
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Figure 5.19: Comparison of the vectors from the analytical expression with the
assumption of an associated flow rule with those from the measured incremental
displacements at failure for pile embedded in cohesionless soil
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Figure 5.20: Cross-section of the 3D Finite Element mesh of Model 2 for the
Pushover Tests

Figure 5.21: Pile under pure moment conditions (Test 2) in order to validate the
yield moment M, of the pile
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Figure 5.22: Comparison of the tested pile with the pile of Model 3 for load acting at

32 cm from the yielding surface (Test 2)
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Figure 5.23: Experimental and numerical moment—displacement curves at pile
head for Test 2 (pure moment conditions) in order to validate the pile response
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Figure 5.24: Variation of the friction angle ¢ with the octahedral plastic shear
strain v,
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Figure 5.25: Experimental and calibrated (Models 1 and 2) force—displacement
curves at pile head for Test 1 (lateral loading acting at the pile head at the ground
surface)
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Figure 5.26: Contours of the plastic strain magnitude (plotted on the undeformed
mesh) for the experimental setup of: (a) Test 1 (pure lateral load), (b) Test 4 (lateral
load at 20 cm above the ground surface), and (c) Test 10 (lateral force at 56 cm
above the ground surface)
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Figure 5.27: Cross-section with the contours of the active and passive stress states in

terms of the state parameter k at the maximum measured lateral loading of the single
pile in Test 1: k = 1 corresponds to pure triaxial compression loading condition (passive
state) and k = 0 to pure triaxial extension loading condition (active state), while k = 0.5

sets the boundaries between the active and the passive state.

120
100
80 -
60 |
40
== Experiment
20 1
— 3D FE
- = BWNF
0 T T T T
0 0.02 0.04 0.06 0.08

Lateral displacement at pile head (m)

Figure 5.28: Experimental and computed force—displacement curves at pile head
for Test 7 (lateral force at 6 cm above the ground surface). The dashed line is Class
B prediction
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Figure 5.29: Experimental and computed force—displacement curves at pile head
for Test 6 (lateral force at 10 cm above the ground surface). The dashed line is Class

B prediction
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Figure 5.30: Experimental and computed force—displacement curves at pile head

for Test 4 (lateral force at 20 cm above the ground surface). The dashed line is Class

B prediction
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Figure 5.31: Experimental and computed force—displacement curves at pile head
for Tests 3 and 5 (lateral force at 32 cm above the ground surface). The dashed line

is Class B prediction
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Figure 5.32: Experimental and computed force—displacement curves at pile head
for Test 10 (lateral force at 56 cm above the ground surface). The dashed line is

Class B prediction
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Figure 5.33: Experimental and computed force—displacement curves at pile head
for Test 8 (first test of pile under lateral load applied at the ground surface and

moment acting on the opposite direction)
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Figure 5.34: Experimental and computed force—displacement curves at pile head
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CHAPTER 6:
APPLICATION TO THE SEISMIC RESPONSE OF BRIDGE PILE-COLUMNS

6.1 INTRODUCTION

In current practice, structures are designed so that their foundation system will
behave elastically for every type of loading, and the damage is concentrated on the
aboveground structural elements. Contrary to this belief, many researchers have proved
that allowing plastic hinging at the soil-foundation system can be beneficial, especially in
shallow foundations (Pecker, 1998; Makris and Roussos, 2000; Apostolou et al., 2007;
Chatzigogos et al., 2009; Gerolymos et al., 2009, Anastasopoulos et al., 2010 among
others).

In the present chapter, a parametric investigation of the nonlinear inelastic
response of pile-column bridge systems is conducted with a fully 3D finite element model
with the constitutive models described in Chapter 2 and the results are compared against
those from a nonlinear Winkler model. The influence of the pile inelastic behavior and
soil-structure interaction on structure ductility demand is examined based on the
concept proposed by Gerolymos et al. (2009). According to this concept the formation of
a plastic hinge in the pile shaft can be beneficial. Current seismic design of bridge
structures is based on the restriction of nonlinear response on the aboveground
elements of the bridge. For most bridges, the foundation system is designed to remain
structurally elastic while the pier dissipates energy and deforms inelastic. This approach
is intended to avoid: (a) the difficulty of post-earthquake inspection and repair of a
plastic hinge inside the soil, (b) the high cost which is associated to the repair of a
severely damaged foundation, and (c) the failure due to pile yielding prior to the soil
capacity mobilization. The elastic response of the foundation is ensured by increasing the
strength of the foundation above that of the bridge pier so that the plastic hinge forms at
the pier instead of the foundation. However, several case-histories have shown that: (a)

pile integrity checking after an earthquake is a cumbersome, yet feasible task, as proven
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by the Kobe 1995 earthquake, (b) the lateral confinement provided by the soil helps in
retarding the development of high levels of localized plastic rotation, thereby providing
an increase in ductility capacity, and (c) pile yielding under strong shaking cannot be
avoided, especially with piles embedded in soft soil. In the latter argument belong
structures like the pile-column foundation where plastic hinging of the foundation
cannot be avoided during a severe earthquake. In the case of a free-head pile-column the
plastic hinge that controls the inelastic response will form in the shaft below grade level
(Budek et al., 2000). If plastic hinging in the foundation system is prevented, then high
ductility demands might be imposed to the structure. On the contrary, if soil-foundation
yielding is allowed it can effectively limit the transmitted accelerations.

For these reasons, a parametric investigation of the nonlinear response of pile-
column bridge systems is conducted with the use of both beam-on-nonlinear-Winkler-
foundation model and 3D continuum finite element model utilizing advanced inelastic
constitutive laws. The influence of the inelastic behavior of the pile and the soil-structure
interaction on the ductility demand of the structure are investigated. The role of various
key parameters, such as the soil compliance, the aboveground height of the pile-column,
the pile diameter and the location of the plastic hinge, is examined on characteristic
performance measures of the pile-column bridge system response and precisely the local
curvature ductility demand g, the global displacement ductility demand ps and the

maximum drift ratio ymax.

6.2 ELASTIC ANALYSIS: EVALUATION OF THE METHODS USED
6.2.1 Problem investigated

Initially, the two numerical methods that will be used for the parametric
investigation of the nonlinear response of pile-column bridge systems, are evaluated in
the elastic response of the system. The studied problem is presented in Figure 6.1. A pile-
column monolithically connected to the bridge deck is embedded in two layers of clay
and is excited by a seismic motion. It is assumed that the transverse response of the
bridge structure may be characterized by the response of a single bent, as would be the
case for a regular bridge with coherent ground shaking applied to all bents.

The concentrated mass at the centre of the deck is 60 tons, the height of the pier

H is 10 m, the embedment length of the pile L is 30 m while the diameter d of the pile-
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column equals to 1.5 m. The pile-column is assumed to be linear elastic while the
idealized soil profile from the Agios Stefanos bay depicted in Figure 6.1 was used for the
ground response analyses. A soft to medium normally consolidated clay sets on top of a
stiff clay. The bedrock is assumed at 50 m depth. The soft clay has a thickness of 18 m
and a plasticity index Pl (%) = 35. The second layer is 32 m thick and has constant
undrained shear strength of 100 kPa. The maximum shear modulus is calculated by the
empirical equations of Seed and Idriss (1970).

The influence of shaking on the seismic response is investigated by selecting three

real acceleration records as seismic excitations:
e therecord from Aegion earthquake (1995)
e therecord from Lefkada earthquake (2003)
e the JMA record from Kobe earthquake (1995)

The first two records were chosen as two strong motions of the seismic
environment of Greece, with one and many cycles, respectively. JMA record is used to
investigate the dynamic response of the soil-pile-structure system to a quite unfavorable
incident. All the records were first scaled to a PGA of 0.5 g at the ground surface. Then,
through deconvolution analyses conducted with SHAKE91 (Idriss and Sun, 1991), the
bedrock motion as well as the motion at various depths along the pile were estimated.
The acceleration time histories at the surface scaled to a; = 0.5 g and the corresponding

elastic response spectra for 5% damping are presented in Figure 6.2.

6.2.2 Numerical models

The elastic seismic response of the soil-pile-structure system is investigated with
two different methods: (1) with a simplified method based on the beam-on-Winkler-
foundation model, and (2) with method based on the 3D Finite Element Model.

Generally, in the beam-on-Winkler-foundation model a beam supported in
discrete springs is used to model the lateral static and dynamic response of a pile. In this
method, the soil-pile contact is discretized into combinations of springs and dashpots.
Soil can also have nonlinear behavior modeled with p-y curves which derive from field
tests. Such curves have the advantage of including pile installation effects on the
surrounding soil. In advanced applications, capabilities for soil-pile gapping, cyclic

degradation and rate dependency are also provided. For seismic loadings, free-field soil
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response is calculated in separate site response analysis and the obtained displacement
time histories are applied externally to the ends of the soil-pile springs. This multi-staged
uncoupled approach has the disadvantage of potentially introducing numerical errors in
the presence of soil nonlinearities and artificially separating the overall soil-pile system
response. Another drawback of this method is that each soil spring responds
independently from the adjacent ones, thus ignoring the shear transfer between the soil
layers.

The advantages of a 3D finite element model include the capability of performing
the analysis of a pile in a fully coupled manner, without resorting to the independent
calculations of site or superstructure response. This method allows the use of more
complicated soil constitutive models that account for the nonlinear behavior and the use
of suitable transmitting boundaries for avoiding spurious wave reflections. Its main

disadvantage lies in the excessive computational time required.

6.2.2.1 Beam-on-Winkler-foundation model

The first method consists of two stages: (i) seismic analysis of the site response
without the presence of the structure with the computer program SHAKE91 and (ii)
analysis of the soil-pile-structure system (under the excitations derived from stage (i))
with the use of the beam-on-nonlinear-Winkler-foundation model in Finite Element
Program OpenSees.

The site response program SHAKE91 (Idriss and Sun, 1991) is a computer code
that computes the response of a semi-infinite horizontally layered soil deposit overlying a
uniform half-space subjected to vertically propagating shear waves. The soil profile is
idealized as a system of homogeneous visco-elastic sublayers of infinite horizontal
extend. An equivalent linear method models the nonlinear variation of soil shear
modulus and damping as a function of shear strain.

OpenSees (Mazzoni et al, 2005) is an open-source object-oriented software
framework for simulation of applications in earthquake engineering using the finite
element method. It has been developed in the Pacific Earthquake Engineering Center
(PEER) at University of California, Berkeley. OpenSees can simulate linear and nonlinear

structural and geotechnical models under static, cyclic and dynamic loading. It contains a
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large material library which is ever-growing as researchers have the permission to create
new material models and incorporate them into the platform.

For the second stage in OpenSees, the pile-column is discretized into linear elastic
beam elements with length of 1 m. The mass of the deck is simulated as a concentrated
mass at the top node of the pile-column, while the distributed mass of the extended pile
is simulated by lumped masses on the beam-element nodes.

Soil springs and dashpots elements are connected in parallel. The soil springs are
assumed to be linear elastic and the dashpots are calculated according to Makris and
Gazetas (1992). The free extremities of the soil springs were excited by the displacement
time histories obtained at each depth from the free-field seismic response analysis.
Rayleigh damping which represents material damping was taken equal to 5% in order to
avoid spurious oscillations at very small deformations. Figure 6.3 presents the model

used for the analyses.

6.2.2.2 3D finite element model

In this method, the site response and the soil-pile-structure interaction are
performed in a fully coupled manner with the Finite Element Code ABAQUS (Dassault
Systémes Simulia Corp, 2009).

The pile-column is modeled with 3D beam elements placed at its center and
connected with appropriate kinematic restraints with the nodes at the perimeter of the
pile in order to model the complete geometry of the pile. The solid elements inside the
perimeter of the pile have no stiffness. In this way, each pile section behaves as a rigid
disc: rotation is allowed on the condition that the disc remains always perpendicular to
the beam axis, but stretching cannot occur. The pile-column and the soil behavior are
assumed to be elastic. The soil is modeled with 8-node brick elements. The vertical
length of the elements is identical to the beam-on-Winkler-foundation model in order to
avoid mesh sensitivity differences. Appropriate kinematic constraints are imposed to the
lateral edges of the model, allowing it to move as the free-field.

The acceleration time histories derived from the site response analysis with
SHAKE91 at 30 m depth are used as the input excitation motion in the 3D finite element
model. Due to symmetry, only half of the problem is analyzed, thus significantly reducing

computational demands, leading to approximately 15000 elements for each analysis. The
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model used for the analyses is depicted in Figure 6.4. It must be noted that even though
both the developed models have the capability to reproduce higher order phenomena

like P-A effects, such phenomena were ignored.

6.2.3 Results of elastic analyses

In order to construct a rigorous and precise 3D Finite Element model and avoid
the “box effect” (Kramer, 1996), the free-field boundaries were first investigated by two
different types of boundaries: (1) three dashpots (one in each direction) on each node on
the boundaries of the 3D model were employed, while the soil motion at each depth
from the free-field seismic response analysis was imposed on every node on the
boundaries, and (2) appropriate kinematic constraints were used, imposed to the lateral
edges of the model, allowing it to move as the free-field, namely Multi-Point Constrains
(MPC) boundaries, and the soil motion at 30 m depth from the free-field seismic
response analysis was imposed only on the nodes of the bottom boundaries of the
model. Figure 6.5 presents the comparison of the acceleration, displacement and
rotation time histories at the deck of the 3D Finite Element Model with the boundary
types studied for the JMA record scaled at ag = 0.5. It is obvious that both types of
boundaries produce identical results. This behavior was expected since the effective
period of the soil was Tefsoi = 0.45 sec from Fast Fourier Transform Analysis while the
effective period of the soil-foundation-structure system was Tessyst = 0.63 sec, as shown
in Figure 6.6 and, thus no radiation of waves from the system to the soil takes place.
Hence, the MPC boundaries were selected for the analyses conducted.

An additional factor that had to be investigated in order to perform the 3-D
analysis was the damping of the soil elements. Rayleigh damping of 5% was initially
selected for the soil elements of the 3D Finite Element Model. As illustrated in Figure 6.7
this resulted in an overestimation of the computed acceleration, displacement and
rotation time histories in comparison to the Beam-on-Winkler-foundation Model. Hence,
the Rayleigh damping of the 3D soil elements was taken equal to the equivalent damping
from the dampers of the beam-on-Winkler-foundation Model according to:

_oC

oK (6.1)

g
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where w soil circular frequency, C damping coefficient of the damper, and K soil stiffness.
Figure 6.8 illustrates the improvement of the response of the 3D Finite Element Model in
comparison to the Beam-on-Winkler-foundation Model.

Figures 6.9 and 6.10 present the acceleration time histories and the
corresponding (£ = 5%) response spectra. The acceleration time histories from the 3D
Finite Element Model compare well with the Beam-on-Winkler-foundation Model, but
are slightly higher. As expected, the response spectra of the 3D Finite Element Model
produce higher peak acceleration values, due to the fact that the damping in this model
is less than in the Beam-on-Winkler-foundation Model, as shown before. Nevertheless,
the response spectra from both models produce the maximum acceleration values at the
same periods.

Figure 6.11 compares the displacement time histories of the two models used. As
in the case of the acceleration time histories, the peak displacement values calculated
with the 3D Finite Element Model are higher than those from the Beam-on-Winkler-
foundation Model. What is of interest is the case of Aegion (1995) where a great
difference in the response of the system is observed, even though the acceleration time
histories are similar. In order to verify the correctness of the Beam-on-Winkler-
foundation Model in the Finite Element code OpenSees, the same model was created in
the Finite Element code ABAQUS which provides a graphical interface. Figure 6.12
compares the displacement time histories from the two models. It is apparent that the
results are similar. Hence, the observed difference in the displacement time histories of
Figure 6.11 is attributed to the sequence of significant pulses of the Aegion (1995)
record. The response of the deck calculated by the Beam-on-Winkler-foundation Model
exhibits greater displacement at the first peak displacement (positive direction) than that
by the 3D Finite Element model. As the deck starts to move towards the opposite
direction, it does not pass far from its initial position in the Beam-on-Winkler-foundation
Model, while it moves greater towards the negative direction in the 3D Finite Element
Model. By the end of second positive peak displacement, the deck moves even further
towards the positive direction in both models. The distance covered until the second
negative peak displacement is smaller than the previous stages. Thus, in the 3D Finite
Element the deck moves to the left, while in the Beam-on-Winkler-foundation Model the

deck remains to the right side. As the distance covered among each peak displacement
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value decreases, the deck oscillates in the side that was before until the end of the
oscillation. The difference in the responses became greater when the peak ground
acceleration was increased from 0.5 to 0.8 g. However, this is a unique case, since
analyses with other records that contain asymmetric loading (e.g. Lefkada 1973) showed
no differences in the response of the system. Figure 6.13 illustrates snapshots of the
deformed pile-column for the Aegion (1995) excitation scaled to a; = 0.5 g at (a) t = 1.75
sec, (b) t = 2.65 sec, and (c) t = 4.5 sec in comparison to the undeformed state
(deformation scale factor = 50) from the 3D and the Winkler models in FE code ABAQUS,
verifying the aforementioned justification.

Finally, Figure 6.14 presents the comparison of the maximum bending moment
distributions calculated by the two models examined. In general, the agreement between
the computed curves is quite satisfactory. Both models predict similar shapes of the
moment distribution as well as the increase of the bending moment at the interface of
the two soil layers. The models also predict the same depth of the maximum bending
moment. The maximum bending moment predicted by the 3D Finite Element Model is
attributed to the higher predicted acceleration values at the deck level.

The results calculated with the 3D Finite Element Model and the Beam-on-
Winkler-foundation Model compare well for all cases. The sequence of significant pulses
of the Aegion (1995) record influences the response of the models examined for the case
of displacement time histories. Having compared the elastic response of the soil-pile-
structure system by two different methods, a parametric investigation of the nonlinear
response of pile-column bridge systems is conducted with the use of both nonlinear
Winkler and 3D continuum finite element models utilizing advanced inelastic constitutive
laws. In this study, the influence of the inelastic behavior of the pile and the soil-

structure interaction on the ductility demand of the structure are investigated.

6.3. INELASTIC ANALYSIS
6.3.1 Problem investigated

The problem studied herein is presented in Figure 6.15. A pile-column
monolithically connected to the bridge deck is embedded in clay or sand deposit and is
excited by a seismic motion. Initially the two soil profiles selected were: (a) sand with

friction angle ¢ = 40° and cohesion ¢ = 5 kPa constant with depth, and (b) clay with
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undrained shear strength S, with parabolic distribution with depth. Again, it is assumed
that the transverse response of the bridge structure may be characterized by the
response of a single bent, as would be the case for a regular bridge with coherent ground
shaking applied to all bents.

The height of the pier H is given parametrically the values of 5 and 10 m, so that a
typical urban bridge and a rather short viaduct are analyzed. The diameter b of the pile-
column aboveground takes values of 1.5 and 3.0 m. In order to investigate the influence
of the plastic hinge position on the system response, two more cases are examined: the
belowground pile-column diameter d is increased by 33% relatively to the aboveground
diameter b. Thus, for pile diameters d = 1.5, 2.0, 3.0 and 4.0 m the pier diameter equals
to b = 1.5, 1.5, 3.0 and 3.0 m, respectively. Table 6.1 shows the pile-column
characteristics for each of the eight structural configurations analyzed. The pile-columns
with constant diameter will inevitable lead to a belowground plastic hinge formation
while the variable-diameter pile-columns will appear a plastic hinge at the base of the
pier (SDC, 2010). The embedment length of the pile L is considered in every case equal to
30 m.

The mass of the deck is calculated so that the fundamental period of the fixed-
base pier would be T = 0.3 sec. The nonlinear behavior of the pile-column is characterized
through the predefined moment-curvature relations illustrated in Figure 6.16. These
curves have been obtained with the BWGG model (Gerolymos N. and Gazetas G., 2005a)
for n = 1, initial stiffness equal to the uncracked flexural stiffness El of the pile-column,
and ultimate strength equal to the conventionally calculated moment at the ground
surface considering that a critical acceleration of 0.2 g is applied on the deck mass. This
critical acceleration was selected in order to ensure that the system will enter the
inelastic regime under the used seismic excitations. It is noted that the objective of the
parametric study is to investigate the seismic response of the system in the inelastic
regime and not to design the structure.

A single soil profile is selected for the ground response analysis as depicted in
Figure 6.17 in order to avoid the differences in the free-field motions from the soil
response analysis of the different soil profiles that would complicate the results. The
bedrock was assumed at 50 m depth. The influence of shaking on the seismic response is

investigated by selecting the same seismic excitations used in the elastic analysis:
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i) the record from Aegion earthquake (1995)

ii) the record from Lefkada earthquake (2003)

iii) the JMA record from Kobe earthquake (1995)

The dominant periods of the acceleration time histories for the aforementioned
earthquake records range from 0.2 to 0.8 sec. For the inelastic analysis, all the records
were first scaled to a PGA value of 0.5 g and 0.8 g at the ground surface. Then through
deconvolution analyses conducted with SHAKE91, the bedrock motion as well as the
motion at various depths along the pile were estimated and used as input motions for
the Beam-on-nonlinear-Winkler-foundation model, while the acceleration time histories
at 30 m depth was used as the input excitation motion in the fully 3D finite element

model.

6.3.2 Numerical modeling

The inelastic seismic response of the soil-pile-structure system is investigated
parametrically with the same methods used in the elastic analysis: (1) a simplified
multiple method based on the Beam-on-nonlinear-Winkler-foundation Model, and (2) a

direct method based on the 3D Finite Element Model.

6.3.2.1 Beam-on-nonlinear-Winkler-foundation model

For the first stage, curves of shear modulus reduction G and damping ratio ¢
increase with shear strain y developed by Ishibashi and Zhang (1993) are used for the
analysis of the nonlinear seismic site response without the presence of the structure.

For the second stage, the pile-column is discretized into nonlinear beam elements
with length of 1 m, whose bending behavior is governed by the macroscopic constitutive
BWGG model (Gerolymos, 2002, Gerolymos and Gazetas, 2005a) as shown in Figure 6.16.
The BWGG model is an extension of the hysteretic Bouc-Wen model, a one-dimensional
action-reaction relationship suitable for the estimation of the nonlinear response of (i)
soil-pile interface, and (ii) moment-curvature behavior of a beam element in order to
simulate an inelastic pile. The relation between the pile bending moment M, and the pile

curvature k can be expressed as the sum of an elastic and an inelastic component:

M, (t)=a,E, | x(t)+(1-a,)M, &, (1) (6.2)
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where E; is the Young’s modulus of the pile, I, is the pile section moment of inertia, a, is
the post yielding stiffness ratio of the pile, M, is the yielding bending moment of the
pile idealized by an elastic-perfectly plastic behavior (ultimate bending moment), and {
is the hysteretic dimensionless parameter that controls the nonlinear structural response

given by

dt  x, O

d
i_ 1£A dx b dK|Cp

LSS di
Pdt P dt dt

,

”"lcpJ (6.3)

in which A, by, g, and n, are the dimensionless parameters of the original Bouc-Wen
model that control the shape of the moment-curvature loop and «, is the yielding
curvature (k, = My, / Eply). The mass of the deck is simulated as a concentrated mass at
the top node of the pile-column, while the distributed mass of the extended pile is
simulated by lumped masses on the beam-element nodes.

Soil nonlinearity is taken into consideration by means of a hybrid spring
configuration consisting of a nonlinear (p-y) spring connected in series to an elastic
spring—damper model as proposed by Wang et al (1998). The nonlinear spring captures
the near-field plastification of the soil while the spring—damper system (Kelvin—Voigt
element) represents the far-field visco-elastic character of the soil. Otherwise, having the
dashpot in parallel with the entire nonlinear element can result in excessive dashpot
forces when the element is loaded into the highly nonlinear range. The far-field soil
springs are assumed to be linear elastic while the near field soil-pile interface is
simulated with nonlinear p-y spring elements, the behavior of which is described also by
BWGG model. The lateral soil reaction against a deflecting pile is expressed as the sum of

an elastic and an inelastic component according to:

F(t)=aku(t)+(1-a,)F & (1) (6.4)
where ks is the horizontal stiffness coefficient of the soil spring, as is a parameter the
controls the post yielding stiffness ratio of the soil spring, Fs, is the force of an elastic-
perfectly plastic soil spring on yielding (ultimate soil reaction), and {, is the hysteretic
dimensionless parameter that controls the nonlinear structural response given by

dgs = i As d_u_ bs d_u|Cs
dt u dt dt

y

N

_gs

du
dt

€,

net QSJ (6.5)
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in which A, bs, g and ns are the dimensionless parameters of the original Bouc-Wen
model that control the shape of the force-displacement loop and uy is the horizontal
yielding displacement. BWGG parameters of the soil springs have been calibrated by
Drosos (2007) in order to predict sufficiently the p-y curves of Reese et al (1974) and
Matlock (1970) for the sand and clay, respectively.

A calibration methodology of the “spring” and “dashpot” coefficients of the
examined hybrid spring configuration is proposed. The lateral soil reaction against a
deflecting pile is expressed as the sum of a hysteretic elastic—perfectly plastic and a visco-
plastic component, according to the lumped parameter model, as depicted in Figure
6.18. In this way, the frequency—dependent characteristics of the subgrade reaction are
realistically captured through a series—parallel assembly of frequency—independent
springs and dashpots. In the elastic regime, the small-amplitude frequency—dependent
“spring” and “dashpot” coefficients for the lateral soil reaction are approximated by:

k :Re kell‘(nl—i_i(’ocelknl (66)
X k., +k, +ioc,

and

Cx — llm kelknl +|0‘)(-:elknl (67)
® k, +k, +ioc,

in which w is the circular frequency. The parameters ce, ke, and k. are appropriately
calibrated through an optimization procedure to match the stiffness and dashpot
coefficients (Figure 6.19) proposed by Makris and Gazetas (1992)

k, = 1.2E, (6.8)

c, = 6a,"p,V.d (6.9)
in which Es, Vs and ps are the Young’s modulus, shear wave velocity and mass density of
the supporting soil, and ag is a dimensionless frequency parameter defined as:

oy = de (6.10)

Having calibrated the stiffness k, and dashpot coefficient c, according to Equations 6.8
and 6.9, plastic behavior is then introduced by imposing a threshold value for the

reaction force of spring “k.” equal to the ultimate soil resistance per unit length of the
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pile, put, as determined by Broms (1964) for clay and Reese and Van Impe (2001) for c-¢
soils under cyclic loading, respectively (Figure 6.20). Obviously, when p, is reached the
arranged in-parallel spring and dashpot unit is deactivated and the radiation damping
vanishes.

The free extremities of the soil springs were excited by the displacement time
histories obtained at each depth from the free-field seismic response analysis. To avoid
spurious oscillations at very small deformations (nearly elastic response), Rayleigh
damping that represents material damping, was introduced and taken equal to 3%

between period T=0.1 and 1 sec. Figure 6.21 presents the model used for the analyses.

6.3.2.2 3D finite element model

The pile-column is modeled with 3D beam elements placed at its center and
connected with appropriate kinematic restraints with the nodes at the perimeter of the
pile in order to model the complete geometry of the pile. The solid elements inside the
perimeter of the pile have zero stiffness. In this way, each pile section behaves as a rigid
disc: rotation is allowed on the condition that the disc remains always perpendicular to
the beam axis, but stretching cannot occur (Bernoulli hypothesis). The nonlinear behavior
of the pile-column is described by an elasto-plastic law that matches the predefined
moment—curvature relations illustrated in Figure 6.16.

The soil is modeled with 8-node brick elements. The vertical length of the
elements is identical to the Beam-on-nonlinear-Winkler-foundation model in order to
avoid mesh sensitivity differences. Soil behavior is modeled with the constitutive model
for cohesive soils proposed by Gerolymos et al (2005b) and with the constitutive model
of Chapter 2 for cohesionless soils that both take into consideration the nonlinear cyclic
response of the soil through a user subroutine.

For clay, the shear modulus reduction G with shear strain y of the constitutive

model of Gerolymos et al (2005b) through simple shear test is given by:
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For sand, the shear modulus reduction G with shear strain y of the constitutive

model of Chapter 2 at a simple shear test is given by:
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is the shear strain at incipient yielding, Go is the maximum shear modulus, p is the mean
pressure, ¢ is the friction angle, c is the cohesion and a = 5. Based on Equations 6.11 to
6.16 the model parameters are calibrated to fit published G-y and -y curves by Ishibashi
and Zhang (1993) (Figure 6.22). Appropriate kinematic constraints are imposed to the
lateral edges of the model, allowing it to move as the free-field. The acceleration time
histories derived from the site response analysis with SHAKE91 at 30 m depth were used
as the input excitation motion in the fully 3D finite element model. Thus, the 1D
equivalent linear site response analysis is compared to the 3D nonlinear site response
analysis. To avoid spurious oscillations at very small deformations (nearly elastic
response), Rayleigh damping that represents material damping, was introduced and
taken equal to 3% between period T =0.1 and 1 sec.

Initially, the fully 3D finite element model consisted of 60000 elements and the
computational time required for a seismic motion of 20 sec lasted 15 days. Due to
symmetry, only half of the problem was analyzed, thus significantly reducing
computational demands. Figure 6.23 proves that the results of the half model were not
influenced quantitatively. The final model used for the analyses is depicted in Figure

6.24.
6.3.3 Results of parametric analysis

Prior to the dynamic parametric analysis, Pushover Tests took place with both

models used. A horizontal force is gradually applied at the center of the mass of the
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superstructure. At first, the pier of the bridge is fixed in order to verify the similar
structural behavior of the models. At the next phase, Pushover Test was performed for
the whole soil-pile-bridge system response in order to verify the similar response of the
system under static loading (Figure 6.25).

Typical results of the nonlinear parametric analyses referring to the JMA (1995)
record are presented herein. Figures 6.26 to 6.29 present the acceleration time histories
at the ground surface of the free-field for the JMA (1995) record scaled at 0.5 and 0.8 g
and the corresponding elastic response spectra (¢ = 5 %) derived from the Equivalent
Linear Analysis and the 3D Nonlinear Analysis for both clay and sandy soil. The following
conclusions derive:

e There is a difference observed at the acceleration time histories due to the
different damping of the two methods. Apparently the Rayleigh damping in the
fully 3D Finite Element Model should be slightly increased. In addition, the
decreased acceleration amplitude at high frequencies in the Equivalent Linear
Analysis is attributed to the fact that SHAKE overdamps the soil response at high
frequencies and also does not take into consideration surface waves (1D
Analysis).

e In all cases, the 3D Nonlinear Analysis leads to equal or smaller values of the peak
ground acceleration (PGA) in comparison to the Equivalent Linear Analysis,
showing the importance of the actual nonlinear soil behavior in the site response.

e As expected, apart from the site response in high frequencies, the 3D Nonlinear
Analysis reduces the spectral accelerations, while the predominant period is the
same for both methods of Analysis

e In the 3D Nonlinear Analysis, the plastification of the soil increases as the peak
ground acceleration (PGA) increases. Thus, the amplification of the seismic
motion is less than in the Equivalent Linear Analysis.

The evolution of soil yielding around a pile-column of constant diameter d =3 m
with tall (H= 10 m) and short pier (H=5 m) embedded in cohesionless soil is depicted in
Figure 6.30. The plastic strains from both systems are plotted on the same scale at each
time step. It is evident that the larger plastic strains develop around the system with the

shorter pier (H = 5 m). Figure 6.31 illustrates the contours of the active and the passive
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stress state of the sand around the pile in terms of the state parameter k. Results are
presented for the same times step as in Figure 6.30. The red color stands for k = 1
(triaxial compression state, passive state), dark blue for k = 0 (triaxial extension state,
active state), while green sets the boundaries for the active or the passive zone k = 0.5
(simple shear state). From the distribution of the colors around the pile-column the
deformed shape of the pile-column can easily be recognized. The pile pushes the soil (red
color) towards the direction it tends to move, while the soil reaches an active state (blue
color) in the opposite side of the pile. The initial state of the soil in the analyses was the
passive state. As shown from the plastic strain contours, the extension of the active and
passive zone around the pile-column is greater for the case of the short pier (H=5 m).

The influence of the pile diameter on soil yielding around a pile-column with
aboveground height H = 5 m embedded in cohesionless soil is depicted in Figure 6.32.
The plastic strains from both systems are plotted on the same scale at each time step. As
expected, larger plastic strains develop around the system with the smaller diameter d =
1.5 m (e.g maximum plastic strain 5.2 % at time step 8.25) in comparison to the pile-
column with diameter d = 2.0 (e.g maximum plastic strain 3.7 % at time step 8.25). Figure
6.33 illustrates the contours of the active and the passive stress state of the sand around
the pile in terms of the state parameter k. Results are presented for the same times step
as in Figure 6.32. The red color stands for k = 1 (triaxial compression state, passive state),
dark blue for k = 0 (triaxial extension state, active state), while green sets the boundaries
for the active or the passive zone k = 0.5 (simple shear state). From the distribution of
the colors around the pile-column the deformed shape of the pile-column can easily be
recognized. The pile pushes the soil (red color) towards the direction it tends to move,
while the soil reaches an active state (blue color) in the opposite side of the pile. As
shown from the plastic strain contours, the extension of the active and passive zone
around the pile-column is greater for the case of the constant diameter pile-column (d =
1.5 m).

Figure 6.34 depicts the acceleration time histories of a 5 m high pier embedded in
cohesive soil for different pile diameters. Smaller pile diameter leads to higher deck
acceleration. As can be seen, at t = 15 sec of the acceleration time histories (almost free
response of the soil-pile-bridge system) the effective period of the small diameter soil-

pile-bridge system (approximately 1 sec) is less that of the large diameter soil-pile-bridge
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system (> 1.5 sec). This can be attributed to the fact that the small pile-column diameters
(d = 1.5, 2.0 m) correspond to a much smaller deck mass (Table 6.1) than that of the
larger pile-column diameters (d = 3.0, 4.0 m). Furthermore, a small decrease in peak
acceleration values is observed in constant-diameter pile-columns (d = 1.5, 3.0 m)
compared to those from variable-diameter systems (d = 2.0, 4.0 m). The soil plastification
in the former case increases the hysteretic damping and thus decreases the deck
response. These trends are evident with both methods of analysis used. Significant
differences on the response are observed between pile-columns of different
aboveground height as shown in Figure 6.35. For a pile-column embedded in
cohesionless soil with diameter d = 3 m and aboveground height H = 5 m the peak
acceleration is 0.14 g and 0.12 g calculated with the 3D Finite Element Model and the
Beam-on-nonlinear-Winkler-foundation model respectively, while for pier height H = 10
m the peak acceleration is 0.22 g and 0.21 g. Even though both pile-columns have been
designed to have the same fixed base fundamental natural periods T = 0.3 sec, the
effective period of the short soil-pile-bridge system from Fast Fourier Transform analysis
is higher (T = 1.5 sec for this case) than the corresponding value of the soil-pile-bridge
system (T = 0.9 sec for this case). Thus, higher accelerations are developed at the mass
of the longer pier. The calculated response spectra verify the above comments. Figures
6.36 and 6.37 show the lower response of the pile-columns with large diameter and
short piers.

Figures 6.38 and 6.39 depict the influence of the pile diameter and the height of
the pier on the maximum distributions of bending moments. The increase of pile
diameter results in shifting the maximum moment depth to greater depths. It should be
noticed that the maximum bending moment depth does not always coincide with the
plastic hinge position, due to the differences in pile and pier diameters. Both the 3D
Finite Element Model and the Beam-on-nonlinear-Winkler-foundation Model agree well
on the distributions of the maximum moment with depth while the maximum bending
moment depth is identical or slightly larger for the Beam-on-nonlinear-Winkler-
foundation Model.

The position of the plastic hinge is assessed via distributions of pile curvature with
depth. Figures 6.40 and 6.41 show the influence of the pile diameter and the height of

the pier on the distributions of pile curvature with depth. In the case of pile-columns with
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pier smaller than the pile (d = 2.0, 4.0 m) the pier is stressed more than the pile and the
plastic hinge is formed just above the ground surface. Curvature values decrease rapidly
below the ground surface. On the contrary, constant diameter pile-columns (d = 1.5, 3.0
m) develop the plastic hinge below the ground surface and plastic rotations are
distributed at greater length, thus decreasing the maximum curvature. Furthermore, as
the height of the pier increases the position of the plastic hinge moves closer to the
ground surface. Again, both the 3D Finite Element Model and the Beam-on-nonlinear-
Winkler-foundation Model agree well on the shape distributions of the pile curvature
with depth. The greater maximum curvature calculated with the 3D Finite Element
Model is attributed to the higher maximum acceleration values calculated at the deck
with this method. Finally, Figure 6.42 illustrates the hysteretic moment-rotation loops
for pile-columns with diameter d = 2 m and aboveground height H = 5 m embedded in
cohesive soil calculated with both numerical models examined. It is evident that the
hysteretic loops of the 3D Finite Element Model are slightly larger and thus, the energy
destruction in this analysis is greater. On the other hand, the shape of the loops from the
Beam-on-nonlinear-Winkler-foundation Model produced by the BWGG constitutive
model is closer to reality.

In general, the results from the 3D Finite Element Model and the Beam-on-
nonlinear-Winkler-foundation Model compare well. A similar conclusion has been
derived by Wang et al (1998) who compared several implementations of the dynamic p-y
method and showed that calculations can be sensitive to the details of the nonlinear
springs and dashpots but the different codes did produce similar results when similar

modeling details were used.

6.3.4 Local and global ductility demands

Besides the fundamental response amounts that describe the behaviour of a
structure under dynamic loading, other important seismic performance measures are the
local and global ductility demand pg and ps and the drift ratio y. The local curvature
ductility demand pg is defined as the maximum curvature kmax imposed on the structure
by an earthquake, divided by the yield curvature k, which is a pile-column cross-section

property.
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b, = e (6.17)

Ky

For bridge supported on extended piles, the local ductility demand imposed on the pile
shaft might govern the design of the system, because damage to pile (such as buckling of
reinforcement) is related to the local curvature ductility.

Figure 6.43 presents the procedure followed for the assessment of local
curvature ductility demand in the analyses conducted. The moment—curvature curve of
each pile column cross section is approximated by a bilinear elastic-perfectly plastic
relation, in which the first (linear) section is defined as the secant stiffness through the
first yield point kg (yielding of first longitudinal reinforcement bar) and the second
section by the tangent line on the post-yielding section of the actual moment-curvature
curve. The intersection of these two lines defines the cross-section yield curvature k.

Similarly, the global displacement ductility demand ps is the ratio of the
maximum displacement of the system um.x imposed by an earthquake to the yield
displacement uy, which is a soil-pile-structure system property.

u
py = (6.18)

Uy

The yield displacement uy is assessed through static nonlinear analyses (pushover
analyses) according to the procedure depicted in Figure 6.44. A horizontal force is
gradually applied at the center of the mass of the superstructure, while the maximum
displacement and the curvature along the pile-column are continuously monitored. The
measured displacement when the pile curvature reaches the first yield point kg is
defined as the first yield displacement ug,. Then, similarly to the procedure followed for
the determination of the yield curvature, the load—displacement curve is approximated
by a bilinear elastic-perfectly plastic relation, in which the first (linear) section is defined
as the secant stiffness through the first yield point ug and the second section by the
tangent line on the post-yielding section of the load—displacement curve. The
intersection of these two lines defines the system yield displacement u,.

The maximum displacement of the system unmax refers to the part of structure that
is above the ground surface and is defined as

Upee = MaX(U g — U 6,H) (6.19)

pier—base ~ Vel
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where umass the displacement of the deck, upier-base the displacement of the pier at the
ground surface, B¢ the rotation of the pile below the depth of the plastic hinge and H the
aboveground height of the pile-column (Figure 6.45). The maximum elastic rotation of
the soil B is defined with a procedure similar to the one used for the yield displacement
Uy.

The drift ratio y is defined as the maximum displacement of the deck imposed by
an earthquake relative to the pier base displacement divided by the height of the pier

_ max (udeck ~ Upier_base )

H (6.20)

Y

Correlations between the performance measures are presented below. Figure
6.46 demonstrates the correlation of (a) the local curvature ductility pg, (b) the global
curvature ductility us, and (c) the drift ratio y% calculated with the 3D Finite Element
Model and the Beam-on-nonlinear-Winkler-foundation Model. The correlation of all
three parameters to the two methods examined show a stiffer average response of the
3D Finite Element Model in comparison to the Beam-on-nonlinear-Winkler-foundation
Model. This is also verified by the correlation of local curvature ductility demand to the
global displacement ductility demand shown in Figure 6.47. All the analyses resulted in
nonlinear behaviour of the pile-column are categorised according to the method of
analysis used. For a given seismic imposed global ductility demand, the local curvature
ductility demand from the 3D Finite Element Model is higher than the one from the
Beam-on-nonlinear-Winkler-foundation Model.

Figure 6.48 presents the correlation of local curvature ductility demand to the
global displacement ductility demand according to the potential plastic location of the
plastic hinge. For constant diameter pile-columns the plastic hinge is likely developed
below the ground surface whereas for variable diameter pile-columns plastic hinges are
developed at the base of the pier. The average ratio (uy — 1) / (1s — 1) takes a value of 1.9
or 1.0 for plastic hinge below ground surface (according to the 3D Finite Element Model
and the Beam-on-nonlinear-Winkler-foundation Model, respectively) and 2.7 or 2.6 for
plastic hinge above the ground surface. The results encourage the inelastic design of the
pile.

The influence of the pier diameter on the correlation of local curvature ductility

demand to the global displacement ductility demand is illustrated in Figure 6.49. No
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significant influence is observed by the 3D Finite Element Model as the diameter of the
pier increases ((Lp — 1) / (Hs — 1) = 2.4 for both diameters). In the case of the Beam-on-
nonlinear-Winkler-foundation Model the ratio changes from 1.8 (pier diameter d = 1.5 m)
to 2.2 (pier diameter d = 3.0 m).

The correlation of local curvature ductility demand to the global displacement
ductility demand according to the pier height is depicted in Figure 6.50. According to
Eurocode 8 (CEN, 2005) the local curvature ductility demand pg is correlated to the

global displacement ductility demand ps by:
(Hs _1) H’

1
3Lp(H—2ij

where L, the length of the plastic hinge and H the height of the pier. As expected, taller

piers (H = 10 m) exhibit greater local curvature ductility demand for a given displacement
ductility level, since for tall piers (H = 10 m) the (uy — 1) / (4s — 1) ratio equals to 2.7 and
2.1 according to the 3D Finite Element Model and the Beam-on-nonlinear-Winkler-
foundation Model, respectively, while for short piers (H =5 m) the ratio equals to 1.3 and
1.1. This is attributed to the higher effective period of the column pile with the short pier
in comparison to the one with the tall pier, as derived from Fast Fourier Transform
Analysis. Furthermore, the ductility demand from Eurocode 8 is conservative in
comparison to both methods of analysis used.

The correlation of local curvature ductility demand to the maximum drift ratio
derived from the two methods examined is presented in Figure 6.51. For a given
maximum drift ratio, the required curvature ductility is slightly greater with the 3D Finite
Element Model.

The effect of the plastic hinge location on the correlation of local curvature
ductility demand to the maximum drift ratio is presented in Figure 6.52. The local
curvature ductility demand for a given maximum drift ratio for both methods examined is
higher when the pier is plasticized. For the aboveground failure case, the two methods
examined have similar correlation of the local curvature ductility demand to the
maximum drift ratio. For belowground failure, the Beam-on-nonlinear-Winkler-
foundation Model has a higher local curvature ductility demand for a given maximum

drift ratio than 3D Finite Element Model.
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The correlation of local curvature ductility demand to the maximum drift ratio
according to the pier diameter is depicted in Figure 6.53. It is evident that as the pier
diameter increases, for a given maximum drift ratio, the local curvature ductility demand
also increases. The increase of this demand is smaller in the 3D Finite Element Model
since, as already mentioned, it has a stiffer response than the Beam-on-nonlinear-
Winkler-foundation Model. Similar is the influence of the pier height shown in Figure
6.54. Taller piers exhibit greater local curvature ductility demand for a given drift ratio.
Indeed, for a given maximum drift ratio the differential horizontal displacement between
the deck and the pier base decreases with decreasing aboveground height of the pier,
thus leading to smaller pier distress and ductility demand.

In Figures 6.55 to 6.57, the mean and peak values of the factors pg, Hs, Ymax are
illustrated for the various parameters examined. It is clearly observed that the mean and
maximum values of both py and ps are lower for plasticized piles. These figures together
with Figure 6.48 reveal the beneficial influence of belowground failure on the response
of the structure. The increase of the aboveground height H and the pier diameter cause
the increase in the mean and maximum values of ps and pg and decrease in the mean
and maximum value of ynax. There is no certain trend regarding the method of analysis

used, nevertheless it is noted that their results agree qualitatively.

6.3.5 Effect of soil compliance

The influence of near-field soil compliance on the seismic response of the soil-
pile-superstructure system is investigated parametrically considering four different soil
profiles: (a) sand with friction angle ¢ = 40° and cohesion c = 5 kPa constant with depth
(thereinafter called dense), (b) sand with friction angle ¢ = 28° and cohesion ¢ = 5 kPa
constant with depth (thereinafter called loose), (c) clay with undrained shear strength S,
with parabolic distribution with depth (thereinafter called stiff), and (d) clay with
undrained shear strength S,/5 with parabolic distribution with depth (thereinafter called
soft, as shown in Figure 6.58). Because the decrease of the soil strength in the 3D Finite
Element model also affects the dynamic properties of the soil (Equations 6.11 to 6.16)
and thus the peak ground acceleration at the ground surface is less than the target
acceleration, the soil compliance is studied only with the Beam-on-nonlinear-Winkler-

foundation Model.
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Figures 6.59 and 6.60 present the acceleration time histories at the deck for pile-
columns with diameter d = 3 m and aboveground height H = 5 m for the different soil
profiles examined. The amplitude of the acceleration at the deck decreases for the softer
soils. However, the decrease of the response in the case of the loose sand is not as
obvious as in the case of soft clay. This can be attributed to the lateral confinement of
the soil which might be considerable even for smaller values of internal friction angles,
leading to stiffer soil-pile-structure response. In every case, the spectral accelerations are
lower for the case of softer soils, as expected.

The influence of the soil type on the maximum bending moment distribution is
shown in Figure 6.61. As expected, soft soils result in increasing the effective length of
the pile and the depth of the maximum bending moment. The difference of the
maximum bending moments among the four cases is attributed to the difference of the
plastic hinge position on the pile. Similarly, Figure 6.62 illustrates the influence of the soil
type on the position of the plastic hinge. The amplitude of the curvature increases
significantly in stiffer soils.

Figure 6.63 demonstrates the correlation of the local curvature ductility demand
to the global displacement ductility demand. It is obvious that the decrease of the soil
strength for the same soil dynamic properties has no influence on the ductility demand
parameters which are structurally defined. Thus the mean ratio (uy — 1) / (s — 1) is
insensitive to the soil conditions. For this reason, all four lines would be expected to
coincide. The small difference among the behaviour of the sand and clay is attributed to
the definition of the elastic rotation of the soil and the assumption of an equivalent
linear elastic-perfectly plastic response of the system for the determination of
parameters pg and ps. Figures 6.64 and 6.65 depict the correlation of the local curvature
ductility demand to the global displacement ductility demand for different soil types for
aboveground and belowground failure. It is observed that the previous trend remains for
the aboveground failure. When the failure is below ground the (uy — 1) / (1s — 1) ratio for
the stiff clay and the dense sand coincide. The correlation of the local curvature ductility
demand to the maximum drift ratio for different soil profiles is shown in Figure 6.66. For
a given maximum drift ratio, the required curvature ductility is greater for the soft clay.

In Figures 6.67 to 6.69, the mean and peak values of the factors pg, Hs, Ymax are

illustrated for the different soil profiles examined. In general, the mean and maximum
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values of all factors examined decrease slightly when the soil becomes softer. It should
be noted that no great differences are observed in the two sandy deposits examined,
since, even though the sand with friction angle ¢ = 28° and cohesion ¢ = 5 kPa is looser
than the other sand deposit, it is still dense enough in its response. Hence, the soil
stiffness has a slight beneficial influence on the response of the structure, but the more
beneficial influence derives from the location of the plastic hinge below the ground
surface. This is further shown in Figure 6.70 where the mean and peak values of the local
curvature ductility demand ps are illustrated for different soil types for aboveground and
belowground failure. Even though for a given displacement ductility demand the
curvature ductility capacity of a pile-column is insensitive to the soil type, for a given
seismic excitation the absolute values of the local ductility demand g for soft soils and

below ground failure are smaller than for stiff soils and aboveground failure.

6.4 SUMMARY AND CONCLUSIONS

The seismic response of a soil-pile-structure system is investigated with two
numerical methods: (1) with a simplified method based on the Beam-on-nonlinear-
Winkler-foundation Model, and (2) with a 3D Finite Element Model.

Initially, the elastic response of the soil-pile-bridge system embedded in two
layers of clay under different seismic excitations is examined. The influence of the
boundaries on the response of the soil-pile-bridge system on the 3D finite element
Model is investigated. Equivalent damping is also used on the 3D finite element Model in
order to match the damping from the Beam-on-Winkler-foundation Model. Three
different seismic motions are used for the analysis. The results from the two models
examined compare well for all cases. The sequence of significant pulses of the Aegion
(1995) record influences the response of the models examined for the case of
displacement time histories.

Having compared the elastic response of the soil-pile-structure system by two
different methods, a parametric investigation of the nonlinear response of pile-column
bridge systems is conducted with the use of both nonlinear Winkler and 3D continuum

finite element models utilizing advanced inelastic constitutive laws.
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A calibration methodology of the “spring” and “dashpot” coefficients of the
examined hybrid spring configuration of the Beam-on Winkler-foundation Model
is proposed.

Regarding the seismic site response derived from the Equivalent Linear Analysis

and the 3D Nonlinear Analysis:

There is a difference observed at the acceleration time histories due to the
different damping of the two methods. Apparently the Rayleigh damping in the
fully 3D Finite Element Model should be slightly increased. In addition, the
decreased acceleration amplitude at high frequencies in the Equivalent Linear
Analysis is attributed to the fact that SHAKE overdamps the soil response at high
frequencies and also does not take into consideration surface waves (1D
Analysis).

In all cases, the 3D Nonlinear Analysis leads to equal or smaller values of the peak
ground acceleration (PGA) in comparison to the Equivalent Linear Analysis,
showing the importance of the actual nonlinear soil behavior in the site response.
As expected, apart from the site response in high frequencies, the 3D Nonlinear
Analysis reduces the spectral accelerations, while the predominant period is the
same for both methods of Analysis

In the 3D Nonlinear Analysis, the plastification of the soil increases as the peak
ground acceleration (PGA) increases. Thus, the amplification of the seismic

motion is less than in the Equivalent Linear Analysis.

From the parametric analyses, both models examined agree that:

For a given global displacement ductility demand s, the potential formation of
plastic hinge belowground surface decreases the local curvature ductility demand
Uy highlighting the inelastic design of the pile.

The pier diameter has no apparent influence on the correlation of local curvature
ductility demand to the global displacement ductility demand.

As expected, taller piers exhibit greater local curvature ductility demand for a
given displacement ductility level. In addition, the ductility demand according to

Eurocode 8 is conservative in comparison to both methods of analysis used.

276



e Similarly, the local curvature ductility demand for a given maximum drift ratio is
higher when diameter and height of the pier increase and when the pier is
plasticized.

e Regarding the peak values of the factors pg, Ms, and ymax that are reached during
an earthquake, it is observed that the mean and maximum values of both pg and
Us are lower for plasticized piles while the increase of the aboveground height H
and the pier diameter cause the increase in the mean and maximum values of s
and pg and decrease in the mean and maximum value of ymax.

e The correlation of the local curvature ductility demand to the global displacement
ductility demand is slightly sensitive to the soil compliance.

e On the contrary, for a given maximum drift ratio, the required curvature ductility
is greater for softer soils.

It is clear that the soil stiffness has a slight beneficial influence on the response of
the structure, but the more beneficial influence derives from the location of the plastic

hinge below the ground surface.
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Table 6.1 Pile-column characteristics

Height (m) Pile / Pier Diameter (m) Deck mass (tons)

5 1.5/15 450
5 20/1.5 450
5 3.0/3.0 6960
5 4.0/3.0 6960
10 1.5/15 60

10 20/1.5 60

10 3.0/3.0 900

10 4.0/3.0 900
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281

G, (MPa)

86

200



SA (g)

JMA (1995)

Lefkada (2003)

MN\WW Aegion (1995)

0 5 10 15 20 25 sec

Period (sec)

Figure 6.2: Accelerograms scaled to a, = 0.5 used as excitation and corresponding 5

% damped response spectra
282



l_I_|

L
~
<«

G

equivalent-linear

soil response analysis

Figure 6.3: Schematic illustration of the beam-on-Winkler-foundation model used
for the elastic analyses

283



15m

30m

/

3D solid elements

/60 m W“NMM
N

A\

N

N

/

3D beam element

imposed kinematic constraint

node

Figure 6.4: Mesh discretization of the 3D Finite Element Model used for the elastic

analyses

284



l"hor (m)
o

0 (rad)

0.25 t (sec)

0.125 | ﬂ ﬂ ﬂ \

-0.125 | N U

20 25

-0.25

t (sec)
0.025 -

0.0125 - N ﬂ

.0.0125 4 | i

-0.025

20 25

— Dashpot

— MPC

t (sec)

20 25

Figure 6.5: Comparison of the acceleration, displacement and rotation time
histories at the deck of the 3D Finite Element Model with dashpot and mpc

boundaries for the JMA record scaled ata, = 0.5 g

285



Amplitude

25 -
— Free-Field
20 T —— Soil-Pile-Structure System
15 -
10 1
5
0 L] L] L] L] L] L] 1
0.25 0.5 0.75 1 1.25 1.5 1.75 2
T (sec)

Figure 6.6: Fast Fourier Transform Analysis for the free-field and soil-pile-structure
system response

286



(m)

0 (rad)

1 ﬂ

s Lo Wﬂ .

U i\Wv bbby
1 li

0.25 1

(H i L

0.125 - ﬁ
/’ il u * ‘_ EYYY
0 o

w \H, AT
Sl

0.02 .O 5 i t (sec) ) ) 25
:.01 ’/f“’ | “““““““
- Aﬁj[\x mmﬂ At AT

Figure 6.7: Comparison of the acceleration, displacement and rotation time
histories at the deck of the 3D Finite Element Model and the Beam-on-Winkler-
foundation Model for the JMA record scaled ata, = 0.5 g



uhor (m)

0 (rad)

ahor (g)
o

t (sec)

0.25

0.125 -

-0.125 . U

-0.25

t (sec)
0.02

0.01

-0.01 | y

-0.02

t (sec)

Figure 6.8: Comparison of the acceleration, displacement and rotation time
histories at the deck of the 3D Finite Element Model with equivalent damping to
the Beam-on-Winkler-foundation Model for the JMA record scaled ata, =0.5 g

288



2
1
C
F 0
[y°]
-1
-2
Aegion (1995)
-3
0 5 10 15 20 25
3 t (sec)
2 L
A 4 |
1
C:
5 0
[y°]
1
V |
-2
! ! JMA (1995)
-3 .
0 5 10 15 20 25
t (sec)
3
2 — BWF
1 | ; . - —— 3DFE
ED ‘ " i l A . A& R A A A
E 0 “‘ ‘J,"v! v v""AY'V-
© V ¥ v U
1 ' ,
-2
Lefkada (2003)
-3
0 5 10 15 20 25
t (sec)

Figure 6.9: Comparison of the acceleration time histories at the deck of the 3D
Finite Element Model with the Beam-on-Winkler-foundation Model

289



SA (g)

SA (g)

SA (g)

20 -

16

12 |

20 ]
16 ]

12 1

20 ]
16 ]

12 +

Figure 6.10: Comparison of the (€ =5 %) response spectra at the deck of the 3D

Aegion (1995)

1.5

2.5

T (sec)
JMA (1995)
0.5 15 2.5
t (sec)
— BWF
—— 3DFE
Lefkada (2003)
0.5 15 2.5
t (sec)

Finite Element Model with the Beam-on-Winkler-foundation Model

290



0.3 ;

0.2 -

0.1 1

uhor (m)

-0.11

-0.2-
Aegion (1995)

-0.3

0 5 10 15 20 25
03. t (sec)
0.2.

0.1 1

uhor (m)

-0.1;

-0.2

-0.3

0.3.

0.2 |

uhor (m)

-0.2 L

Lefkada (2003)

-0.3
0 5 10 15 20 25

t (sec)

Figure 6.11: Comparison of the displacement time histories at the deck of the 3D
Finite Element Model with the Beam-on-Winkler-foundation Model

291



uhor (m)

0.2 ]
0.1 1
0
-0.1 — Opensees
—— ABAQUS
-0.2 r
0 1 2 3 4 5

t (sec)

Figure 6.12: Comparison of the displacement time histories at the deck of the two
Beam-on-Winkler-foundation Models with Finite Element Codes OpenSees and
ABAQUS

292



Undeformed

Deformed

3D Model

t=1.75sec

u
+1.800e-01

+1.633e-1
+1.467e-01
- +1.300e-01

- +1.123e-01

+9.667e-02
- +8.000e-02
| +6.333e-02

t=2.65 sec

u
+1.000e-01

+8.333e-02
+6.667e-02
- +5.000e-02

- +3.333e-02
+1.667e-02
- -3.725e-09

t=4.5sec

Winkler
Model

Undeformed

Deformed

\

NENNNSN NN NR R

i

|
== |

(NN F RN AN NN
=~ = !

Figure 6.13: Snapshots of the deformed pile-column for the Aegion (1995)
excitation scaled to a, = 0.5 g at: (a) t = 1.75 sec, (b) t = 2.65 sec, and (c) t = 4.5 sec
in comparison to the undeformed state. (Deformation Scale Factor = 50)

293



Depth (m)

Depth (m)

Depth (m)

10

-10

-20

10

-10

-20

10

-10

-20

Ground line

Aegion (1995)

0 3000 6000 9000 12000 15000 18000

Max Moment (kNm)

Ground line
— BWF
—— 3DFE
JMA (1995)
/N
0 3000 6000 9000 12000 15000 18000

Max Moment (kNm)

N

Lefkada (2003)

0 3000 6000 9000 12000 15000 18000

Max Moment (kNm)

Figure 6.14: Comparison of the maximum bending moment distributions
calculated from the 3D Finite Element Model and the Beam-on-Winkler-foundation
Model

294



Clay Sand
— le— b=15,3m
S. (kPa)
50 100 150 200
¢ =40°
c=5kPa

—»] l— d=15,2,3,4m

Figure 6.15: The problem investigated

10

20

30

40

50

295




150
el 7 ——b=30m,H=10m
/' ——-b=40m,H=10m
_ 100 . / ——b=30m,H=5m
g ——-b=40m,H=5m
2
S
0 0.002 0.004 0.006 0.008 0.01
K (rad/m)
10
8 | e —b=15m,H=10m
//’ ——-b=20m,H=10m
—_ i ——b=15m,H=5m
£ 6 - /
2 / ——-b=20m,H=5m
2
S n
2
0 L] L] L] L]
0 0.002 0.004 0.006 0.008 0.01
K (rad/m)

Figure 6.16: Predefined moment-curvature relations used for the analyses

296



Depth (m)

V (m/s)

0 200

400

600

10

15 |

20 |

25 |

30 |

35 |

40 |

45 |

50

Figure 6.17: Shear wave velocity distribution of the adopted soil deposit used for

the wave propagation analyses

Figure 6.18: The examined configuration of springs and dashpots
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histories, and (c) bending moment time histories at the deck calculated with the
half and full 3D Finite Element Model for the case of pile-columns with diameter d
= 1.5 m, aboveground height H =5 m founded in clay (excitation at ground surface:
Lefkada 2003 scaled at a, = 0.5 g)
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Figure 6.24: Mesh discretization of the 3D Finite Element Model used for the
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Figure 6.26: (a) Free-field acceleration time histories for the JMA (1995) record
scaled at 0.5 g, and (b) corresponding (§ = 5 %) response spectrum derived from
the Equivalent Linear Analysis and the 3D Nonlinear Analysis for clay soil

304



-1 T T T T 1
0 5 10 15 20 25
t (sec)
— Equivalent Linear Analysis
3 —— 3D Nonlinear Analysis
C:
<
wv
1 1
0 0.5 1 1.5 2 2.5 3 35 4

Period (sec)

Figure 6.27: (a) Free-field acceleration time histories for the JMA (1995) record

scaled at 0.8 g, and (b) corresponding (§ = 5 %) response spectrum derived from
the Equivalent Linear Analysis and the 3D Nonlinear Analysis for clay soil
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Figure 6.28: (a) Free-field acceleration time histories for the JMA (1995) record
scaled at 0.5 g, and (b) corresponding (§ = 5 %) response spectrum derived from
the Equivalent Linear Analysis and the 3D Nonlinear Analysis for sandy soil
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Figure 6.29: (a) Free-field acceleration time histories for the JMA (1995) record
scaled at 0.8 g, and (b) corresponding (§ = 5 %) response spectrum derived from
the Equivalent Linear Analysis and the 3D Nonlinear Analysis for sandy soil
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Figure 6.30: Contours of plastic strain magnitude (plotted on the deformed mesh)
at different time steps for pile-columns with constant diameter d = 3.0 m founded
in sandy soil. The plastic strains of both systems are plotted on the same scale at
each time step. (Excitation JMA (1995) motion scaled at a, = 0.5 g, deformation
scale factor = 10)
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Figure 6.31: Contours of the active and the passive stress states in terms of the
state parameter k (plotted on the deformed mesh) at different time steps for pile-
columns with constant diameter d = 3.0 m founded in sandy soil. k=1
corresponds to pure triaxial compression loading condition (passive state), and k =
0 to pure triaxial extension loading condition (active state) while k = 0.5 to simple
shear state. (Excitation JMA (1995) motion scaled at a, = 0.5 g, deformation scale
factor = 10)
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Figure 6.32: Contours of plastic strain magnitude (plotted on the deformed mesh)
at different time steps for pile-columns with aboveground height H =5 m founded
in sandy soil. The plastic strains of both systems are plotted on the same scale at
each time step. (Excitation JMA (1995) motion scaled at a, = 0.5 g, deformation
scale factor = 10)
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Figure 6.33: Contours of the active and the passive stress states in terms of the
state parameter k (plotted on the deformed mesh) at different time steps for pile-
columns with aboveground height H = 5 m founded in sandy soil. k=1
corresponds to pure triaxial compression loading condition (passive state), and k =
0 to pure triaxial extension loading condition (active state) while k = 0.5 to simple
shear state. (Excitation JMA (1995) motion scaled at a, = 0.5 g, deformation scale
factor = 10)

311



a(g)

C
©
d=2.0m
'0.4 T T T | 1
0 5 10 15 20 25
t (sec
0.4 - (sec)
0.2 J
— 0 — / \ \H!V\
C ~
(]
-0.2 .
d=3.0m
'0.4 T T T ) 1
0 5 10 15 20 25
0.4 - t (sec)

t (sec)

Figure 6.34: Acceleration time histories at the deck for pile-columns with
aboveground height H =5 m founded in cohesive soil (excitation at ground surface:

JMA 1995 scaled at a, = 0.5 g)
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Figure 6.35: Acceleration time histories at the deck for pile-columns with diameter
d = 3 m founded in cohesionless soil (excitation at ground surface: JMA 1995 scaled
ata,=0.8 g)
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Figure 6.36: Response spectra at the deck (§ = 5%) for pile-columns with
aboveground height H = 5 m founded in cohesive soil (excitation at ground surface:
JMA 1995 scaled at a, = 0.5 g) calculated with (a) the 3D Finite Element model, and

(b) the Beam-on-nonlinear-Winkler-foundation model
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Figure 6.37: Response spectra at the deck (§ = 5%) at the deck for pile-columns
with diameter d = 3 m founded in cohesionless soil (excitation at ground surface:
JMA 1995 scaled at a, = 0.8 g) calculated with (a) the 3D Finite Element Model, and
(b) the Beam-on-nonlinear-Winkler-foundation Model
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aboveground height H =5 m embedded in cohesive soil (excitation at ground
surface: JIMA 1995 scaled at a, = 0.5 g) calculated with the 3D Finite Element
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Figure 6.44: Definition of the yield displacement of the soil-pile-structure system
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Figure 6.59: Acceleration time histories at the deck for pile-columns with diameter
d = 3 m and aboveground height H = 5 m for different soil profiles (excitation at
ground surface: JMA 1995 scaled at a, = 0.8 g)
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Figure 6.60: Response spectra at the deck (§ = 5%) for pile-columns with diameter
d =3 m and aboveground height H = 5 m for different soil profiles

332



10
T 0 Ground line
= ‘
o
(]
a
-10,
-20 |
— Sstiff Clay
//’
—— Soft Clay
30 L
0 10 20 30 40 50 60 70 80
Max Moment (MNm)
10
T Ground line
< 0 ‘
o
(]
Q N
\
-10]
‘ 5
-20 - -
/\3 —— Dense Sand
\”J —— Loose Sand
-30 -
0 10 20 30 40 50 60 70 80

Max Moment (MNm)

Figure 6.61: Maximum bending moment distributions for pile-columns with
diameter d = 3 m and aboveground height H = 5 m for different soil profiles
(excitation at ground surface: JMA 1995 scaled at a, = 0.8 g)
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