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Abstract

This diploma thesis deals with image sonification and addresses the

most common problems found in the field which are dealing with the

sonification of shape, color and texture. While most approaches are

based on user interaction, we have achieved to establish a one-to-

one relationship between the image and the sonified result. By using

perceptually meaningful mappings, the properties of an image are di-

rectly reflected to the audio domain in a very predictable way. If the

task is to convey information, the listener can draw conclusions about

the image by decoding the sonified result. Otherwise, using image

sonification as a tool to aid sound design, can yield many interesting

audio results that are hard to achieve by using only the existing audio

based techniques.

Keywords: Image sonification, auditory display, audio-visual, percep-

tion, sound design, visually impaired, data mapping, additive synthe-

sis, color, shape, texture.
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“We can forgive a man for making a useful thing as long
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Chapter 1

Introduction

This diploma thesis deals with image sonification. More specifically, the main

goal is to find ways of translating the image data which describe shape color

and texture, to sound. In order the reader to understand our approach to the

problem, must be familiar with some concepts that will be used in our final

implementations. In Chapter 2 we present an overview of Sonification regarding

the definitions, its usage and techniques. Chapter 3 deals with the physiology of

the human ear and some topics which are found in the field of psychoacoustics.

Since sonification communicates data through sound, a basic knowledge of our

auditory perception is of vital importance. Chapter 4 starts with the physiology

of the human eye and continues with a presentation of some widely used color

spaces. An understanding of how the data are organized in an image, is as

useful as the understanding of how the data are organized according to various

sound synthesis techniques, which are presented in Chapter 5. In Chapter 6 we

emphasize on the Parameter Mapping Sonification technique, since it is the one

which we believe that gives the most promising results. Finally, in Chapter 7 and

Chapter 8 we present new techniques for sonifying the shape, color and texture

of images. The results can be applicable in various domains, ranging from the

aid of visually impaired to sound design.
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Chapter 2

An Overview of Sonification

Sonification is the translation of data into sound. Though it is a relatively new

discipline, it has been used for over a century by researchers without them being

aware that they were developing a new scientific methodology. The tuning of

a musical instrument for example can be considered as a sonification when ad-

justing the tension of a string or the stiffness of a membrane. One other early

example, is the Geiger counter which was invented in 1908 and informs the listener

about the levels of radioactivity by emitting sound. Some other early sonification

examples can be found at [30]. With the establishment of the International Con-

ference on Auditory Display (ICAD) in 1992, scientists from various disciplines

inspire each other towards an effective use and design of Auditory Displays, with

sonification being one major subfield of research. Related research disciplines

include: Data mining/Statistics, Human Computer Interaction (HCI), Digital

Signal Processing, Physiology/Biology, Auditory Perception and Cognition, Psy-

chology, Psychoacoustics, Music Cognition and Musicology.

2.1 Definitions

One of the first attempts towards a working definition of sonification is made by

Scaletti [30]:

A mapping of numerically represented relations in some domain under study to

relations in an acoustic domain for the purposes of interpreting, understanding,

3



2. AN OVERVIEW OF SONIFICATION

or communicating relations in the domain under study.

S. Barrass revised Scaletti’s definition [4]:

A mapping of information to perceptual relations in the acoustic domain to meet

the information requirements of an information processing activity.

Finally, the widely accepted definition of sonification has been given by G. Kramer

et al. [31]:

Sonification is the use of nonspeech audio to convey information. More specifi-

cally, sonification is the transformation of data relations into perceived relations

in an acoustic signal for the purposes of facilitating communication or interpre-

tation.

However, this definition is criticized as being too general and imprecise, but also

because it excludes the use of speech like sounds which can be used in sonifica-

tions as well, since speech can be very useful for certain tasks [23]. T. Hermann

suggested a more strict definition of sonification [24]:

A technique that uses data as input, and generates sound signals (eventually in

response to optional additional excitation or triggering) may be called sonifica-

tion, if and only if:

Condition 1:The sound reflects objective properties or relations in the input data.

Condition 2:The transformation is systematic. This means that there is a precise

definition provided of how the data (and optional interactions) cause the sound

to change.

Condition 3:The sonification is reproducible: given the same data and identical

interactions (or triggers) the resulting sound has to be structurally identical.

Condition 4:The system can intentionally be used with different data, and also be

used in repetition with the same data.

4



2.2 Usage and Application Fields

This definition has also received criticism [58], especially the 4th condition, since

sonifications aim towards a specific user task and the mappings are defined in

a way that reflect properties among specific datasets and data types, making it

hard to be well suited for different data and tasks. The sonification of a music

score can only be achieved if the notes (the data) belong to the instrument’s pitch

range and the relationships between the data, do not violate the physics of the

instrument. For example, a glissandi can be achieved with stringed instruments

but it is not possible for all the percussive ones.

Sonification is a subtype of Auditory Display, which could be broadly defined

as any display that uses sound to communicate information [25]. S. Barrass,

again based on the definitions of Scaletti, gave the following definition for Audi-

tory Information Design [4]:

Auditory Information Design is the design of sounds to support an information

processing activity, focusing on the specific task like interpreting, understanding

or communicating relations in the data.

2.2 Usage and Application Fields

The human auditory system is very sensitive to rhythm, amplitude and pitch

changes, therefore complex patterns and temporal changes in the data can be

easily and rapidly detected when projected in an Auditory Display. Furthermore

the ear has a much more broader bandwidth than our visual system, therefore

patterns that that are hard to be perceived visually or user tasks that would be

hard to achieve or would be time consuming when using vision, may require less

effort when an Auditory Display is used. There are also some situations where

the eyes are occupied, monitoring a different process than the ears. Consider

as an example driving a car and changing the gears. The pitch and intensity

of the engine, are acting as indicators of when the driver should change a gear.

Another major difference between our visual system and our auditory system, is

that the second is able to monitor (listen to) many streams at the same time,

something which is impossible for our eyes. Background listening [30], is very

useful in monitoring tasks since one can pay attention when only a specific sound

5



2. AN OVERVIEW OF SONIFICATION

occurs, acting for example as an alert function. This sound “awareness” sources

from our ability to easily remember, memorize and recognize melodic, rhythmic

and timbral qualities of various sonic structures. Auditory Displays can be used

for:

• Alarms, notifications, alerts and warnings.

• Status, process, and monitoring messages.

• Scientific data exploration.

• As an aid tool for visually impaired people.

• Educational/didactic purposes.

• Multimodal displays.

• Artistic purposes.

For a thorough description of the above mentioned fields, refer to [7].

2.3 Description and Classification of ‘Classic’ Soni-

fication Techniques

G. Kramer et al. [31] presented four main design issues that should be taken into

consideration:

1. Is there a psychologically-based or application-supported natural taxonomy

of sonification techniques?

2. What types of data or tasks lend themselves naturally to effective sonifica-

tion?

3. Which acoustic cues and data mappings are intuitive and facilitate the

presentation of complex, multidimensional displays?

4. What factors limit how well information can be extracted from a sonifica-

tion?

6



2.3 Description and Classification of ‘Classic’ Sonification Techniques

De Campo [16] classifies sonification approaches in three broad categories:

1. Discrete Point Data Representation

2. Model Based Data Representation

3. Continuous Data Representation

Figure 2.1: The Data Sonification Design Space Map. Image taken from [16].

Sonification techniques that belong to the Discrete Point Data Representation

category include:

Auditory Icons

Auditory Icons are communicative sounds, usually modeled after real world (phys-

ical) sounds, which provide feedback in a user interface. Their meaning can intu-

itively be connected with a specific action such as the sound which occurs when

someone deletes a file from a computer, or empties the trash bin.
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2. AN OVERVIEW OF SONIFICATION

Earcons

Earcons are usually brief melodies or abstract sounds and since they are symbolic

representations of an action, have to be learned by the user before a meaning can

be attached to a sound. As an example, consider the words ’Save’ and ’File’ each

of them being represented by a different earcon. If the earcons are played back

in a sequence, they represent the action ’Save File’.

Spearcons

Spearcons are time compressed spoken phrases often to a point where they become

incomprehensible and are used to facilitate menu navigation, usually through text

to speech software.

Sonification techniques that belong to the Continuous Data representation cate-

gory include:

Parameter Mapping

Parameter Mapping is the most widely used technique for data exploration, em-

ploying most of the times a passive mode of interaction. Data parameters are

mapped to sound parameters such as frequency or pitch, duration, amplitude or

loudness, spatial cues, brightness of the sound, rhythm, etc... Changes in a data

dimension cause changes in the acoustic dimension, but most sound parameters

are not perceptual independent as for example pitch with intensity, therefore there

is a limit in data dimensionality that can be effectively projected in an Auditory

Display.

Audification

Audification is the direct translation of data into sound and is particularly useful

when dealing with very large data sets. Usually the waveforms that result from

the data have to be frequency shifted and time compressed or expanded, to the

audio range.

Model-Based Sonification (MBS) as the name suggests, belongs to the Model
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Based Data Representation. Model-Based Sonification was introduced by Her-

mann [23] as an alternative to the Parameter Mapping Sonification. It is an

inherently interactive technique, in which the user explores the data relations

by exciting a system and listening back its acoustic response. The system is a

virtual acoustic object, whose structure is not only dependent on the data but

also on their interaction, often defined by theoretical acoustics or virtual physics.

Hermann describes MBS as, “Thus the data more or less directly becomes the

sounding instrument, which is examined, excited or played by the listener.” One

major advantage over the Parameter Mapping technique is that it allows for much

more higher data dimensionality.

Besides de Campo’s classification scheme, there are also available some other

approaches for classifying sonifications. These include:

The Semiotic Categorization

Semiotic theory involves the study of signs and their meaning. Since sonification

aims to highlight some properties of the data by making use of sound, there is

space for a semiotic perspective in Auditory Display design, by treating sound

signals as signs. Semiotics can be divided in three categories:

• Semantics, which describe the relationship between a sign and the signified.

Auditory icons, belong to this category, since meaning is attached to sound

through an iconic association.

• Syntactics, which describe the relations between signs in a formal structure,

such as the structuring elements that make up a language. Earcons belong

to this category.

• Pragmatics, which study the way in which meaning arises through a certain

context. In an Auditory Display the qualities of a sound can be described

by a lexical approach, as in Parameter Mapping Sonification in which the

signs (sounds) are created from the data [4].

The Analogic Symbolic continuum

A symbolic representation of information, uses categorical signs with a high level
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of abstraction and the relationships between the representations, do not reflect in-

trinsic relationships between the elements being represented. On the other hand,

in analogic representations there is an immediate and intrinsic correspondence

between the the signifier and the signified. Hermann [23] gives a nice example for

representing temperature. The symbolic representation would make use of words

such as ‘cold - warm - hot’, but other words can also be used once an agreement

is made on what these represent, for example ‘blue - orange - red’. The ana-

logic representation would make use of a thermometer, in which the height of the

quicksilver analogically represents temperature.

Figure 2.2: The Analogic - Symbolic continuum. After Hermann [23]

2.4 The Sonification Operator

Sonifications translate the data from a domain science to sound through a sound

generation technique aiming to a perceptually meaningful result, but the formu-

lation in the domain science is usually different from the formulation describing

the sound generation technique. To overcome this ambiguity in formulation with

respect to the sonification methods, J. Rohrhuber [49] recently introduced the
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sonification operator S̊:

S̊ : A(d)→ ẙ(̊t, d, p) (2.1)

The variables involved in the sonification process are denoted with a ring. A is

a function, relation or in general the domain science, d are the domain variables,

p are the sound parameters set in the sonification. t̊, stands for the sonification

time and is used in order to differentiate from a change in time that could occur

in the data domain. This formalization describes a a transformation from the

data domain into the signal domain but it has been criticized because it does not

take into account any perceptual qualities. A nice example is given in [58] which

describes sampling time versus sonification time.

ts =
n

fs
(2.2)

fs is the sampling rate and n is the number of samples. The sonification time t̊,

according to this formulation corresponds to the number of samples n:

n , t̊ (2.3)

Although sonification (listening) time is perceived as continuous, eventually in-

volving a digital-to-analog conversion, the sonification algorithm is executed in

discrete time.
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Chapter 3

Auditory Perception

An understanding of how our auditory system works, is an essential precondition

for designing effective Auditory Displays and meaningful sonifications. We start

by presenting the physiology and function of the human ear and we continue with

some aspects of psychoacoustics. Pitch and loudness are the perceptual correlates

of frequency and intensity. Dealing with sound from a psychophysical point of

view, can lead to functional mappings. Finally we present an introduction to

Auditory Scene Analysis [12], which describes the strategies that our brain uses

to fuse or to segregate sounds into auditory streams.

3.1 The Human Ear

The human ear consists of three main parts: The outer ear, the middle ear and

the inner ear. The sound from the external environment is collected and filtered

by the outer ear. Later on it propagates to the middle ear through the external

auditory channel, causing vibrations to the eardrum. The middle ear converts

the air pressure waves into liquid waves. The liquid waves will be transformed to

nerve impulses in the inner ear and will be transmitted to the brain through the

auditory nerve.

13



3. AUDITORY PERCEPTION

Figure 3.1: Schematic drawing of the outer, middle and inner ear. Image taken

from [19].

3.1.1 The outer ear

The outer ear consists of the pinna and the concha which collect and filter the

sound before delivering it to the middle ear through the external auditory canal.

It is of high importance for sound source localization, for example many mammals

have the ability to move their pinna in order to focus their hearing. As the sound

reaches our body, reflections take place between the outer ear, the head and

the torso which have an effect to the overall sound pressure that reaches the

eardrum. The differences between level, frequency content and timing (interaural

time differences) of the acoustic cues that arise at each ear, are used by our

auditory system to construct the auditory space.

The external auditory canal is a tube bounded at the end by the tympanic

membrane. It transmits the sound pressure wave from the pinna to the middle

ear. As the sound signal funnels from the large aperture of the pinna towards

the smaller aperture of the auditory canal, it gets amplified in a region around

4 KHz which is why humans are more sensitive to this frequency region. This
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3.1 The Human Ear

spectral filtering is directly related to the direction of the incoming sounds and

enables us to perceive sounds as being outside the head. Listening music with

headphones which emit sound directly to the ear canal, is a different experience

from listening with speakers, where the sound is filtered by the outer ear. The

filtering is also an individualized process since the filter’s characteristics depend

on the precise shape of the outer ear.

3.1.2 The middle ear

The outer ear is filled with air while the inner ear is filled with fluid which sur-

rounds the sensory cells. In order to excite the cells, a transfer function has to

take place which converts the air pressure waves to fluid waves. This is achieved

through the mechanism of the middle ear which is comprised of the ear drum,

the three middle bones (malleus which is attached to the ear drum, incus and

stapes) and the stapes footplate which together with a ring shaped membrane

(oval window), induces fluid movement in the cochlea of the inner ear. Trans-

mission of sound through the middle ear is most efficient at middle frequencies

ranging from 500 Hz to 4 KHz.

As the impedance is much higher in fluids than air, the pressure must be

amplified through an impedance matching mechanism. This is achieved by two

ways; Firstly, the size of the eardrum is about 17 times larger than the size of the

oval window and secondly the three middle bones act as “levers”. Through this

mechanism the vibrations are amplified by a factor of 20.

3.1.3 The inner ear

The cochlea has a coiled structure and converts the sound energy into electro-

chemical impulses which will be transmitted to the brain through the auditory

nerve. It forms 2.5 turns allowing a basilar membrane length of 32mm (high-

lighted in red, Figure 3.2).

The basilar membrane is moved up and down by the pressure changes in the

cochlea induced by the movement of the stapes footplate on the oval window.

When the ear is exposed to a pure tone, a traveling wave propagates along the

basilar membrane, whose envelope shows a maximum at a frequency dependent
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Figure 3.2: The inner ear with the basilar membrane in the cochlea highlighted

in red. Adapted from http://en.wikipedia.org/wiki/File:Gray923.png

position. The stiffness and mass of the basilar membrane varies along its length,

so a high frequency tone will cause a resonance closer to the basal end, which is

located next to the oval window and the middle ear, while a low frequency tone

will cause a resonance at the apical end. The separation by location on the basilar

membrane is known as the place principle. As the maxima of the envelopes of the

basilar membrane are closer together at high frequencies, frequency resolution is

expected to decrease with increasing frequency.

The haircells, which are found within the organ of corti and placed along the

basilar membrane, will transmit to the auditory nerve the excitation locations of

the basilar membrane. As a consequence, haircells respond selectively to specific

frequencies. The frequency that gives maximum response at a particular point on

the basilar membrane is known as the characteristic frequency. These cells have

hairs sticking out of the top, called stereocilia which transduce the sound energy

to electrical energy as their potential changes, depending on their deviation from

the equilibrium position.

There are two kinds of haircells: (a) The inner haircells, which are arranged
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3.2 Loudness

Figure 3.3: Schematic drawing of the transformation of frequency into place

along the basilar membrane. In (a) three simultaneously presented tones of different

frequencies expressed as compound time function produce travelling waves (b), that

reach their maximum at three different places corresponding to the characteristic

frequencies. Image taken from [19].

in a row on the inner side of the organ corti. (b) The outer haircells are arranged

in three rows, near the middle of the corti. Although there are about 12000 outer

haircells and only 3500 inner haircells, more than 90% of the auditory nerves

receive signals from the inner haircells. The outer haircells provide a form of

feedback and operate as amplifiers. At high sound levels, they get saturated and

the adequate stimulus operates almost exclusively on the inner haircells. On the

other hand, at low levels the inner haircells are slightly stimulated in a direct

way. Therefore an interaction between the inner and outer haircells, is assumed

to be responsible for the large dynamic range and the sharp frequency selectivity

at low levels.

3.2 Loudness

Loudness is the apparent or subjective intensity of a sound. A sound is described

by its time varying pressure p(t) measured in PASCAL (Pa). Sound pressure

17



3. AUDITORY PERCEPTION

with intensity I are related by:

I =
˜p(t)

Zo

(3.1)

where Zo = 415 Pa s m−1 is the impedance of air. ˜p(t) is the effective sound

pressure. Our auditory system is sensitive to sound pressure levels ranging from

10−5 Pa (absolute threshold) to 102 Pa (threshold of pain). To cope with this

broad range, loudness is often measured by the Sound Pressure Level (SPL). SPL

is a logarithmic measure of the effective sound pressure of a sound, relative to a

reference value. Sound pressure level L and sound intensity level are related by

the equation:

L = 20 log10

p

po
dB = 10 log10

I

Io
dB (3.2)

The reference value of the sound pressure po is standardized to 20µ Pa and cor-

responds to the lowest intensity sound that we are able to discriminate. The

reference value Io is defined as 10−12 W/m2 . A sound wave of frequency 1 kHz

and intensity Io just exceeds the threshold in quiet.

The perception of loudness strongly depends on frequency. This dependency is

presented in Fig. which shows the equal loudness contours, also known asFletcher

Munson curves or isophones. Equal loudness contours were derived experimen-

tally by asking the listeners to adjust the intensity of pure tones, so that they

become equally loud with a 1 KHz reference tone. By examining these curves we

see that our ear is more sensitive to the region of 2 KHz to 5 KHz.

The subjective loudness level when compared with a 1 kHz sine tone is mea-

sured in phon. In other words, a phon is the perceived loudness at any frequency

that is judged to be equivalent to a reference sound pressure level at 1 kHz. By

definition, 1 phon is equal to 1 dBSPL at a frequency of 1 KHz. The dashed line

in Figure 3.4 shows the threshold in quiet which corresponds to 3 dB at 1 KHz

and not 0 dB, therefore is indicated by 3 phon.

A qualitative comparison between the loudness of two tones is achieved via

the unit sone, which is also derived experimentally. According to the definition,

the loudness of a 1KHz tone at 40 dB SPL is equivalent to 1 sone. Therefore

18



3.3 Pitch

Figure 3.4: At 20 phons the reference level at 1 kHz is by definition 20 dB SPL

but at 100 Hz the sound level has to be nearly 40 dB to be perceived as equally

loud. Image taken from [19].

a tone of 2 sones is perceived twice as loud, a tone of 4 sones is perceived four

times as loud, etc... Our ear is capable of perceiving level changes as small as 1

dB throughout the whole dynamic range which is about 120 dB.

Loudness also depends on the duration of the sound. The sounds used to

estimate the equal loudness contours had a duration around 500 ms. Loudness

stays constant when the duration of the sound is greater than 100 ms and for

shorter durations loudness decreases. On the other hand, if the ear is exposed for

a long period of time to sounds ranging from moderate to high levels, there is a

reduction of the perceived loudness. This is referred to as adaptation or fatigue

and can cause permanent hearing damage if the sound levels are above 110 dB

SPL.

3.3 Pitch

Pitch is a positional perception of frequency. A musical scale represents changes

in pitch and thus one can define pitch relations in terms of pitch height and pitch
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circularity. Frequencies which are spaced at octaves apart, exhibit a perceptual

similarity and have the same names. For example, when comparing C2 with C3,

C3 is higher by an octave (frequency doubling) but both belong to the same pitch

class (as all Cs) and “close” a circle which consists of the intermediate notes D2,

D2#, E2, F2, F2#, G2, G2# A2, A2# and B2.

Figure 3.5: The helical model of pitch. Musical pitch is depicted as varying along

both a linear dimension of height and also a circular dimension of pitch class. The

helix completes one full turn per octave, so that tones that stand in octave relation

are in close spatial proximity, as shown by D#, D# ’, and D# ”. Image taken

from [17].

Though we hear frequencies in the range of 20 Hz to 20 KHz, the sensation

of pitch starts around 50 Hz and extends up to 5 KHz. Beyond that frequency,

pitch discrimination is weakened. This is confirmed through psychoacoustic ex-

periments which make use of pitch ratios. The subjects listen to a tone of a

specific frequency and try to adjust the frequency of a second one, so that it has

double or half the pitch of the first one. At low frequencies the matching is quite

linear (especially for trained musicians) and a halving in pitch corresponds to a

halving in frequency. However at higher frequencies, the linearity between pitch

and frequency is lost. Halving the pitch of a tone at 8 Khz corresponds to a
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frequency of about 1300 Hz not 4 Khz. The unit for measuring ratio pitch is mel,

an abbreviation of the word melody. Mel is defined experimentally by choosing a

reference frequency in a region where pitch ratios are proportional to frequency

ratios and assuming a proportionality factor of 1.

Figure 3.6: At 20 phons the reference level at 1 kHz is by definition 20 dB SPL

but at 100 Hz the sound level has to be nearly 40 dB to be perceived as equally

loud. Image taken from [19].

The graph shown in Figure 3.6 was constructed by taking as a reference point

the frequency of 125 Hz. A reference tone of 125 Hz is equal to 125 mel but a

tone of 1300 Hz produces 1050 mel which is half of the mel produced by a 8 KHz

tone. A formula which is widely used for converting frequency f to mel is the

following:

mel = 2595 log10(1 +
f

700
) (3.3)

Most of the sounds are not pure sinusoids but rather consist of many partials

with each partial having its own frequency and energy. A harmonic complex
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tone consists of partials whose frequencies are integer multiples of a common

frequency, called the fundamental frequency. These partials are called overtones

or harmonics of the fundamental frequency. A complex tone consisting of 1600,

1800 and 2000 Hz will be perceived as having a pitch of 200 Hz i.e the pitch of

its fundamental frequency, even if this frequency is not physically present. This

phenomenon is referred to as residue pitch, periodicity pitch, virtual pitch or the

missing fundamental.

Just noticeable differences (JNDs) in frequency modulation (variation or vi-

brato in musical terms) are different from the JNDs in frequency steps. At low

frequencies the JND in frequency modulation is almost constant, around 3.6 %

and for frequencies over 500 Hz is approximately 0.7%. Our ear is far more sen-

sitive in frequency changes rather than modulations. Surprisingly, our sensitivity

is increased if there is a pause between the presented tones. At frequencies below

500 Hz the JND is 1 Hz or even smaller and above 500 Hz increases approximately

to 0.2 %.

Sound pressure levels have rather a weak effect on pitch perception. In gen-

eral, for high pressure levels, frequencies below 2 KHz seem to decrease with

intensity while frequencies above 4 KHz seem to increase. On the other hand

JNDs in frequency are level dependent only below 25 dB. Below this value the

JND increases with decreasing level.

3.4 Timbre

Timbre is defined by the American Standards Association (ANSI) in terms of

what is not, rather of what it is:

That attribute of sensation in terms of which a listener can judge that two sounds

similarly presented and having the same loudness and pitch are dissimilar.

Timbre is multidimensional and is related to various sensations, such as rough-

ness and brightness. In most cases it is used to describe the perceived quality of

a sound. With respect to the ANSI definition, is worth noting that most research

dissociates timbre from the dimensions of pitch, loudness and duration.
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Timbre dimensions are usually specified through dissimilarity tests in which

the subjects rate the dissimilarity of different sounds. A multidimensional scaling

is then performed on the results to specify the dimensions and their importance.

Sounds are placed along these dimensions and are investigated to find suited

timbre attributes. For example one can describe the timbre verbally, along the

dimension of “Dull - Sharp”. A sound which is described as sharp has its overall

energy concentrated in upper region of the spectrum.

Psychoacoustics associate timbre with models of sharpness (or brightness),

roughness and fluctuation strength [29]. Fluctuation strength describes the sen-

sation caused by slow amplitude modulation (4 Hz) within auditory filters. Sharp-

ness describes the distribution of frequencies in the spectrum (spectral envelope).

Roughness is the sensation caused by rapid amplitude modulation (less than 70

Hz) within auditory filters and is the result of beating between the frequency

components. It is often used as a measure of tonal dissonance or consonance [40].

Sounds that introduce fast beating are considered to be rough or dissonant.

Some dimensions describe the steady portion of the sound in terms of spectral

content and other dimensions describe its temporal evolution. Important timbre

attributes calculated directly from the spectrum of a sound are the spectral cen-

troid, log of the rise time (attack time) and the spectral flux. Spectral flux, shows

how fast the power spectrum changes from frame to frame.

3.5 Auditory Scene Analysis

Auditory Scene Analysis (ASA) was introduced by Albert Bregman [12]. ASA

is the process of the listeners cognition that groups or segregates sounds into

auditory streams, in correspondence with real world phenomena. An auditory

stream is formed by a perceptual grouping of different parts of the sound that seem

to belong together. A nice visual example demonstrating segregated sequences

is given by Bregman (shown in Figure 3.7). The sequence of letters is visually

segregated in two different streams sentences. The one sentence is “A cat sits”,

and the other is “And I sit too”. Another example of stream segregation can

be illustrated through the “cocktail party” effect. One can follow a conversation

despite the ‘noise’ caused by music or other people talking.
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Figure 3.7: Visual stream segregation. After Bregman [12].

Streams are segregated by processing the sound sequentially (in successive

time frames) but also simultaneously. The level of listening attention is also

very important. When listening to an orchestra playing, instruments of the same

timbre can be grouped together but is also possible for one to follow the individual

melodic lines of different instruments.

Segregation is a precondition for auditory grouping and can be seen as a

top-down or bottom up process. As a top-down process schema based segregation

makes use of attention and learning. For example one can easily hear his/her name

being mentioned in a conversation in which he/she is not actively participating.

As a bottom up process primitive stream segregation makes use of acoustic cues

and is considered to be innate. Major acoustic cues for primitive grouping are:

• Proximity in frequency and time

• Periodicity

• Continuity

• Onset and offset

• Amplitude and Frequency modulation

• Rhythm

• Spatial location

Auditory Scene Analysis borrows some concepts found in Gestalt psychology

which were originally developed for examining visual perception. According to

gestalt psychology, our visual perception is based on considering figures as a

whole rather on the examination of their component parts. Some important

gestalt principles used in the auditory domain are:
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• Similarity: The sounds share the same attributes. For example if they

belong to the same timbre family, they are perceived to be similar.

• Proximity: Sound components are spaced close together (e.x in frequency).

The closer the spacing the more probable the grouping.

• Good continuation: A sine wave interrupted (briefly) by white noise will

be perceived as a single sound.

• Common Fate: Sounds that share a common kind of change. For example

if they change at the same rate (e.x onset/offset, modulation) or towards

the same direction (e.x in frequency).

• Closure: Our brain tends to complete forms even if they are presented

incomplete. A good example is the missing fundamental. The fundamental

frequency is perceived in a complex tone, though it may not be physically

present.
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Chapter 4

Color

The visible part of the electromagnetic spectrum spans a region from 400 nm to

700 nm. The sun-light contains almost an equal amount of different wavelengths

and is often referred to as ‘white’. Early color experiments started with Newton,

who showed that white light can be decomposed through a prism into a continuum

of different colors (wavelengths). Monochromatic light (i.e consisting of a single

Figure 4.1: Visible spectrum Adapted from

http://en.wikipedia.org/wiki/File:EMspectrum.svg

wavelength) is very rarely found in nature. What we usually experience as color,
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is a mixture of many different wavelengths in different proportions. As it will

later become evident, the perception of color is a pure psychological phenomenon,

depending both on the spectrum of the emitted light and the physiology of our

visual system.

4.1 The Human Eye and the Sensation of Color

The human eye is a sphere, typically 12mm in radius, enclosed by a protective

membrane, the sclera. The main structures are the iris, lens, pupil, cornea, retina,

vitreous humor, optic disk and optic nerve. The light passes through the cornea

and aqueous humor and reaches the pupil, which regulates the amount of light

admitted to the lens. The ciliary muscle changes the shape of the lens providing

variable focus and distance adaptation. The lens focuses the light on the sense

cells of the retina, which is located to the rear wall of the eye. Between the lens

and the retina is a semi-colorless, viscous material called the vitreous humor,

which absorbs some frequencies of the incoming light.

The retina provides the first layer of “image processing” of our visual system.

There are two types of light - sensitive cells in the retina: rods and cones. Each

retina contains about 120 million rods and 8 million cones. When they respond

to the light beam, they transduce the input into nerve impulses which are trans-

mitted up the optic nerve, through several substructures, to the visual cortex of

the brain.

Rods are mainly concentrated in the periphery of the retina and operate best

at very low light levels. They are extremely sensitive to light and insensitive to

color, thus they provide achromatic vision at low levels of illumination (scotopic

vision, night vision).

Cones are mainly concentrated in the central vision center of the retina, in

particular in the fovea. They are less sensitive to light than rods but they provide

both luminance and color vision in daylight (photopic vision).
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Figure 4.2: The human eye Adapted from

http://en.wikipedia.org/wiki/File:Schematic diagram of the human eye en.svg

4.1.1 The Tristimulus theory

There are three types of cones, which act as band pass filters to the incoming

light:

• S-type (or B) cones get excited by small wavelengths and show a peak

sensitivity around 420nm. Therefore, they make a stronger contribution to

the perception of blue.

• M-type (or G) cones get excited by medium wavelengths and show a peak

sensitivity around 550nm. Therefore, they make a stronger contribution to

the perception of green.

• L-type (or R) cones get excited by long wavelengths and show a peak

sensitivity around 570nm. Therefore, they make a stronger contribution to

the perception of red.
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Figure 4.3: Log of the relative spectral sensitivities of the three kinds of

colour receptor in the human eye. Figures plotted from data available at

http://www.cvrl.org

4.1.2 The Opponent Process theory

The opponent process theory was first proposed by Ewald Hering and it was

later verified by neurobiologists, who discovered the existence of cells responsible

for this process. According to this theory, the photoreceptor outputs interact to

produce the following three color opponent channels:

• Red - Green: This channel is referred to as “Red-or-Green” or “Red minus

Green”. It demonstrates the fact that color is not experienced as “reddish

green” or “greenish red”.

• Yellow - Blue: This channel is referred to as “Yellow-or-Blue” or “Yellow

minus Blue”. It demonstrates the fact that color is not experienced as

“yellowish blue” or “blueish yellow”.

• White - Black: Responsible for the perception of lightness.

Color opponent cells can be single-opponent or double-opponent. Single oppo-

nent cells are divided in:
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• Concentric single-opponent cells: Receive input from R or G cones either in

the center or surround and have opponent actions. Respond to brightness

but also to large spots of monochromatic light.

• Concentric broad-band cells: G and R cones act together in either the center

or antagonistic surround. Mostly respond to brightness.

• Co-extensive single opponent cells: have a uniform receptive field. The B

cones are antagonized by the G and R cones acting together.

Double opponent cells integrate input from single opponent cells and receive input

from both R and G cones (or B with R and G) in the center and the surround of

the receptive field. Therefore, respond to red-green and yellow-blue contrasts.

Figure 4.4: Types of radially symmetrical cells found in the primate visual system

Image taken from [34].
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4.2 Perceptual Attributes of Color

The perception of color is a subjective experience. A stimulus can be defined in

terms of physical variables such as dominant wavelength, intensity and purity.

Purity is the proportion of white-light and a pure-light needed to define a specific

color.

• Hue: Psychophysically responds to the dominant wavelength of light and

is the basic component of color.

• Brightness: This term is used for light sources and psychophysically re-

sponds to the perceived intensity of the emitted light. In color terms it can

be thought of how much ‘black’ is mixed with a color. Brightness varies as

a function of wavelength and therefore some Hues are perceived as brighter

than others (Figure 4.5).

• Lightness: Relative to brightness and usually refers to objects and the

reflected light. More precisely is “The brightness of a stimulus relative

to the brightness of a stimulus that appears white under similar viewing

situations.”

• Colorfulness: “The perceived quantity of hue content (difference from

gray) in a stimulus.” Colorfulness increases with luminance.

• Chroma: Colorfulness compared to white: “The colorfulness of a stimulus

relative to the brightness of a stimulus that appears white under similar

viewing conditions.”

• Saturation: Psychophysically responds to the purity of a color, in terms of

mixture with white or the vividness of Hue. “The colorfulness of a stimulus

relative to its own brightness.”

The perceptual dimensions of Hue, Saturation and Brightness, suffice to de-

scribe a light which is viewed in isolation. The percept of a single isolated light

is called an unrelated color. Some colors though such as ‘brown’ or ‘grey’, only

exist when the light is viewed within the context of at least one another light.
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4.3 Color in context

Figure 4.5: The commonly used luminous efficiency functions of vision defined

by the Commission Internationale de LEclairage (CIE). V (λ) and V ′(λ) is the

photopic and scotopic luminous functions respectively. Image taken from [52].

This percept is called a related color. Hue, Brightness, Lightness, Colorfulness

and Chroma suffice to describe any color.

4.3 Color in context

Color constancy, refers to our ability to perceive the same colors of objects,

despite changes in illumination. However this is only an ability (based mainly on

color memory and chromatic adaptation) and not a fact. Late studies [?] show

that changes in illumination can result in a perceived difference in the color of

objects.

Chromatic induction, occurs when the perception of light is modified by the

presence of a second surrounding light and may result in:

• Chromatic contrast: A chromatic inducing field shifts the color of a patch

away from the color of the inducing light.

• Chromatic assimilation: The appearance of a light shifts toward rather than

away from the color of an inducing field.
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Figure 4.6: Simultaneous Contrast: The internal squares all have the same lumi-

nance but the changes in luminance in the surrounding areas change the perceived

luminance of the internal squares.

Figure 4.7: Illustration of context effects.The x-shaped intersections on the two

sides of the figure appear quite different.The light reaching the eye from these two

regions is the same, however.This can be seen by tracing from one x-shaped region

to the other. Adopted from [52]

Fovea is the central portion of the retina of the eye and is responsible for

central vision and visual acuity. It has a resolution of 2◦ which corresponds

closely to a circular area in the field of view whose diameter is approximately

equal to 3.5 % of the distance. Texture is the sensation of areas that correspond

to this minimum resolution rather than the sensation of single (countable) points

that make up the whole. Some attributes of texture are; uniformity, density,

coarseness, roughness, regularity, linearity, directionality, direction, frequency,

and phase.
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4.4 Color Spaces

4.4 Color Spaces

A color space (also color model) is usually a 3-dimensional space used to describe

a gamut of colors according to some attributes. Color spaces can be broadly

categorized as device-dependent and device-independent. For the purposes of

this thesis we will present only some device-dependent color spaces.

4.4.1 Trichromacy and Color matching

A particular color T (λ) can be described uniquely by a linear combination of

only three primary colors P1(λ), P2(λ) and P3(λ), as long as negative matching is

allowed and the three primaries are independent (i.e none of the three is a match

for the mixture of the other two).

T (λ) ≡ a1P1(λ) + a2P2(λ) + a3P3(λ) (4.1)

This formula is known as Grassmann’s Law and the symbol ‘≡’ indicates a

visual match. The coefficients a indicate the amount of color required for the

match and if they are positive we have an additive matching. As we mentioned,

the matching may require the addition of another primary or white W = P1 +

P2 + P3 in the test color. If we denote d the amount of white we have:

T (λ) + dW (λ) ≡ a1P1(λ) + a2P2(λ) + a3P3(λ) (4.2)

T (λ) ≡ (a1 − d)︸ ︷︷ ︸
b1

P1(λ) + (a2 − d)︸ ︷︷ ︸
b2

P2(λ) + (a3 − d)︸ ︷︷ ︸
b3

P3(λ) (4.3)

The coefficients b may have negative values but at least one must be positive.

In this case we have a subtractive matching.

The spectral distribution of light and the perceived color is a many-to-one

mapping. The essence of trichromacy, is that the perceived hue depends on

the three dimensional vector of signals detected by the three cone mechanisms

in combination. Two spectrally different colors that point to the same vector

can not be distinguished by the human eye. For example, equal excitations of

the G and R cones by a bichromatic light at 530 nm and 630 nm will produce
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the sensation of “yellow”, the exact same sensation that would result from an

excitation by a monochromatic light at 550 nm. This phenomenon is referred to

as color metamerism.

4.4.2 The RGB Color Space

RGB is a linear color space based on additive mixing. It uses as primary colors the

Red, Green and Blue which are typically assigned to wavelengths of 645.16nm,

526.32nm and 444.44nm respectively. Practically though, RGB uses whatever

phosphors a monitor has as primaries. The gamut of available colors is presented

within a cube (often called the RGB color cube) whose edges represent the R, G

and B weights (Figure 4.9)

Figure 4.8: Left: An example of additive mixing based on the RGB colorspace.

Right: An example of subtractive mixing based on the CMY colorspace.

4.4.3 The CMY(K) Color Space

CMY is also a linear color space based on subtractive mixing. It uses as primaries

the Cyan (C), Magenta (M) and Yellow (Y ) which are the complement colors of
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4.4 Color Spaces

the Red, Green and Blue respectively.

(C,M, Y ) = (1−R, 1−G, 1−B) (4.4)

CMY is used in color-printing devices since Cyan, Magenta and Yellow are the

primary colors of pigments. The addition of Black (K) as an extra primary is

very important, since mixing colored inks results to Brown.

4.4.4 The YCbCr Color Space

YCbCr is an orthogonal color space and separates brightness (Y), from a red-

difference chroma component (Cr) and a blue-difference chroma component (Cb).

Since our eye is more sensitive in brightness rather than color, this colorspace is

widely used for image and video compression (e.x JPEG, MPEG). Analogous to

YCbCr is the YPbPr which is used for analog video and is derived from a linear

combination of the R, G, and B analog values (ranging from 0 to 1) using two

defined constants (KB) and (KR):

Y ′ = kRR + (1− kR − kB)G+ kBB (4.5)

Pb =
(B − Y )

2(1− kB)
, Pr =

(R− Y )

2(1− kR)
(4.6)

The values of (KB) and (KR) are typically set to 0.30 and 0.11 respectively. The

digital colorspace YCbCr (with 8 bits per channel per pixel) derives by scaling

and offset the YPbPr :

(Y,Cb, Cr) = (16, 128, 128) + (219Y ′, 224Pb, 224Pr) (4.7)

4.4.5 The HSV, HSL and HSI Color Spaces

These color spaces result from non-linear transformations of the RGB colorspace

and are defined in polar coordinates; Hue (H) is a function of the angle and

Saturation (S) is proportional to radial distance. Value (V, meaning Brightness),
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Lightness (L) and Intensity (I) are the distances along the axis perpendicular to

the polar coordinate plane.

Since we think about color in terms of Hue, Saturation and Brightness, such

color spaces have the advantage to represent color intuitively, as opposed to the

other color models presented above. For example it is very difficult for one to

specify the required weight of primaries (or the coordinate values) in order to

match a target color. If we rotate the RGB color cube so that its neutral (grey)

axis (0,0,0) - (1,1,1) becomes the vertical axis to the new 3-D space (Figure 4.9),

we can define brightness L(c) as a function of a color c = (R,G,B):

LHSV (c) = V = max(R,G,B) (4.8)

LHSL(c) = L =
max(R,G,B) +min(R,G,B)

2
(4.9)

Through the above transforms, the HSV colorspace is geometrically a hexcone

and HSL is a double-hexcone. The primary colors lay on the surface level which

corresponds to white (V=1) in the HSV model and middle gray (L=0.5) in the

HSL model. Chroma (C) is used for defining Saturation (S):

C = max(R,G,B)−min(R,G,B) (4.10)

SHSV =
C

V
, SHSL =

C

1− |2L− 1|
(4.11)

Hue (H) is usually expressed in degrees [0, 360). A transformation from

hexagon to circle is achieved via:

C2 =
√
R2 +G2 +B2 −RG−RB −GB (4.12)

θ = cos−1[0.5(2R−G−B)/C2] (4.13)

H =

{
θ/360, G ≥ B

1− θ/360 G ≤ B
(4.14)

The HSI colorspace is widely used in computer vision:

38



4.5 Gestalt Principles

(a) (b) (c)

Figure 4.9: The HSV hexcone (c) after the rotation of the RGB color cube (a,

b). Image taken from [36].

HHSI = H, LHSI(c) = I =
R +G+B

3
, SHSI = 1− min(R,G,B)

I
(4.15)

Conclusively, the definitions of Saturation in the HSI and HSV models are

closer to the psychometric definition given in paragraph 4.2

4.5 Gestalt Principles

As mentioned in Chapter 3, our visual perception relies on some principles found

in Gestalt psychology. The same principles that were described in the auditory

domain will also be described here.

• Similarity: Elements with similar characteristics will be seen as though

they are grouped together.

• Proximity: Elements located near one another will tend to be seen as a

group or unit.

• Common Fate: Elements engaged in the same pattern motion or common

occupation will be seen as though they are grouped together.
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• Good Continuation: If possible, the perceptual field will be organized

along lines of continuous contour or flow.

• Closure: A field containing broken figure parts, is usually organized to be

seen as a number of closed figures.

Figure 4.10: (a) The Kanisza triangle showing the gestalt principles of good

continuation and closure. (b) Similarity. (c) Proximity. (d) Relative proximity.

Image taken from: http://www.nature.com/nmeth/journal/v7/n11/carousel/

nmeth1110-863-F1.jpg

40

http://www.nature.com/nmeth/journal/v7/n11/carousel/nmeth1110-863-F1.jpg
http://www.nature.com/nmeth/journal/v7/n11/carousel/nmeth1110-863-F1.jpg


4.5 Gestalt Principles

Figure 4.11: Common Fate. Image taken from: http://www.teaching.

louisabufardeci.net/111/files/weblog/designTips/worksheets/gestalt_

common-fate.gif
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Chapter 5

Sound Synthesis

In this chapter we present some classic sound synthesis techniques. In the case

of sonification, some techniques may be more amenable than others, with respect

to the dimensionality and type of the data.

Figure 5.1: Classic synthesis techniques classified according to their principles of

realization. Image taken from [10].

5.1 Additive Synthesis

Additive Synthesis is one of the earliest synthesis techniques. According to Fourier

theory, any signal can be composed by a sum of sinusoids, each one having its

own amplitude, phase and frequency.

s(t) =
∑
i

ai(t)sin(2πfit+ φi) (5.1)

This is digitally implemented as a bank of sine or cosine oscillators with spec-

ified amplitude values, frequencies and phase offsets. The above equation (5.1)
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5. SOUND SYNTHESIS

represents static spectra. A time varying timbre can be achieved by using time

dependent frequency and amplitude values for each oscillator:

s(t) =
∑
i

ai(t)sin(fi(t)t+ φi) (5.2)

Additive synthesis has a highly predictable output, therefore can be effectively

used in Parameter Mapping sonification. For example, data may represent the

frequency ratios of the partials.

In the early years of computer music, additive synthesis was abandoned in

favor of subtractive synthesis, due to the required computational load. Noisy

parts of the signal, such as transients require a huge amount of oscillators for an

adequate reproduction. The computational load can be severely reduced by using

a table look-up oscillator along with interpolation between the values, instead of

sine or cosine functions; A wavetable (whose length is usually a power of 2) is

filled with the values of a sine or cosine function and is read periodically at the

desired speed.

5.2 Subtractive Synthesis

Subtractive Synthesis is the counterpart of additive synthesis and is based on a

source-filter model. The spectral envelope of the source-sound is altered through

a filter, forming a new one. The source can be any waveform, usually rich in

harmonics such as white noise, square waveform or any other arbitrary waveform,

which is afterwards filtered. Filter characteristics such as type, bandwidth, cut-

off or center frequency and peak amplitude, control the overall quality of the

sound and can be effectively used as control parameters in Parameter-Mapping

sonification. Dynamic spectra can be achieved if the parameters of the filter are

time-varying and ‘noisy’ signals can be easily generated, as opposed to additive

synthesis.
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5.3 Modulation Synthesis

Figure 5.2: Source-filter synthesis. The transfer function of the time-varying filter

H(z) is described by filter coefficients a(n) and b(n). Image taken from [54]

5.3 Modulation Synthesis

The multiplication of a carrier signal fc with a modulation signal fm will result in;

Amplitude modulation if the modulator is a uni-polar signal, or in ring modulation

if the modulator is a bipolar signal. When the modulator is in the inaudible

frequency range (i.e frequencies below 20Hz) the perceived effect has a tremolo

quality. Higher modulation frequencies will cause sidebands. In simple amplitude

modulation, the frequency of the carrier signal will be present and the sidebands

(fc + fm), (fc − fm) will have half the amplitude of the carrier frequency. Ring

modulation can be expressed as:

s(t) = sin(2πfmt)sin(2πfct) (5.3)

In this case the carrier frequency is left out from the final spectrum and the

sidebands may be harmonic, if the frequencies of the modulator and the carrier

are an integer ratio of one another, or otherwise inharmonic.

Another type of modulation is the case of applying a transfer function to an

input signal. The shape of the output-waveform depends on the shape of the

input-waveform, the type of the transfer function but mostly on the amplitude of

the incoming signal. This type of modulation is called waveshaping. Figure 5.4
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Figure 5.3: Spectrum of simple amplitude modulation. Image taken from [10].

shows an example of waveshaping: The transfer function

f(x) = x2 (5.4)

is used to square the input signal

x(n) = acos(ωn+ φ) (5.5)

The result will be:

f(x[n]) =
a2

2
(1 + cos(2ωn+ 2φ) (5.6)

Frequency Modulation is a special case of waveshaping in which a modulator

with angular frequency ωm modifies the frequency of a carrier ωc. The resulting

signal is richer in harmonic content than in ring modulation. It can be expressed

as:

s(t) = sin(asin(ωmt) + ωct) (5.7)

The parameter a is called the index of modulation and controls the amount of

distortion applied to the carrier. The resulting spectra can be seen in Figure5.5.

If the modulator varies slowly with time, the perceived effect has the quality of

vibrato, otherwise strong sidebands arise.

As in ring modulation, if the ratio of the carrier fc to modulator fm is not a

rational number the spectrum will be inharmonic. Otherwise, if fc/fm is a ratio

of integers, the spectrum will be harmonic and the fundamental frequency f is

determined by equation 5.8:
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5.3 Modulation Synthesis

Figure 5.4: Waveshaping using a quadratic transfer function f(x) = x2: (a)

the input; (b) the transfer function; (c) the result, sounding at twice the original

frequency. Image taken from [46].

Figure 5.5: The spectrum of frequency modulation. Image taken from [10]
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fc
fm

=
Nc

Nm

, f =
fc
Nc

=
fm
Nm

(5.8)

where fc and fm are the Ncth and Nmth harmonics respectively.

The sound-output of these modulation techniques is often unpredictable, there-

fore are seldom used in sonification. The mapping of data to specific sound qual-

ities is less direct and intuitive when compared to other synthesis techniques.

Furthermore, there is only a limited number of control parameters which makes

it unsuitable for the sonification of high-dimensional data.

5.4 Physical Modeling

In general, physical modeling uses computational models which describe the

physics of natural sound sources such as musical instruments or the human voice.

Some examples of physical modeling are:

• Mass-spring networks, are implemented by using blocks of digital filters.

• Delay lines (usually called digital waveguides) in combination with digital

filters and non linear elements such as scattering junctions which transmit

and reflect part of the wave.

• Modal Synthesis, in which a sound source is analyzed according to its nor-

mal modes, mode frequencies and decay times. Additive synthesis can af-

terwards be used for the sound simulation, according to the analysis data.

A classic, simple and computationally efficient example of physical modeling

synthesis, is the Karplus-Strong algorithm which can be used for the simulation of

plucked-string and drum sounds. Figure (5.6) shows the Karplus-Strong plucked-

string model. A wavetable filled with random numbers, is read periodically and

the output sample y(n) is the average of two consecutive samples of the wavetable:

y(n) =
1

2
[y(n− P ) + y(n− P − 1)],where P is the delay line length. (5.9)
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5.5 Granular Synthesis

The transfer function of this system represents a lowpass filter responsible for the

decay of the tone:

H(z) =
1

2
(1 + z−1) (5.10)

Figure 5.6: A Karplus-Strong model for plucked string tones. Image taken from

[54]

5.5 Granular Synthesis

Granular synthesis was first introduced by Denis Gabor in his classic paper “The-

ory of Communication” [20]. According to this theory, any sound can be described

in terms of short grains with typical durations between 10ms to 100ms. Each grain

is consisted of an amplitude envelope and a waveform. Figure (5.7) shows a sine

wave enveloped by a gaussian window.

The envelope can be of any shape and has a strong impact on the final sound.

Since grains last only a few milliseconds, one has to build a stream of grains (often

called clouds) to get a usable sound output. The generation of such streams is

facilitated when a higher level of organization exists. Sonification can be used to

control parameters such as:

• Grain waveform type

• Grain envelope
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• Grain duration

• Cloud density, which expresses the number of grains per unit time.

• Cloud amplitude envelope

Figure 5.7: A granule of 50ms enveloped by a Gaussian window.

The interested reader can find more information on Granular synthesis and

similar techniques in [48].
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Chapter 6

Parameter Mapping and Image

Sonification

There are at least four different encoding schemes which our brain uses, for the

internal representation of information derived from audible frequencies [42]:

• Verbal

• Visuospatial, where the information is encoded in a ‘picture-like image’.

• Motor, which is associated with rhythm.

• Sensory-Musical representations.

Our approach should exclude the Verbal representation and we will try to sonify

visual representations (images) in a way which the other three encoding schemes

are internally preserved.

S. Barrass in [5] briefly mentions some sonification methods and offers valuable

design tips. Since we found ourselves “Designing a display to support exploration

and discovery of patterns in complex multi-attribute, multi-dimensional and/or

time-varying data”, we will use the Parameter Mapping Sonification (PMSon)

method, in order to get “a perceptually structured information soundscape”.

An effective PMSon should be:

51



6. PARAMETER MAPPING AND IMAGE SONIFICATION

• Intuitive: Intuition is directly related with perceptually valid mappings and

polarity issues. For example, when sonifying the temperature, a positive

polarity would use an increasing frequency for a rising temperature, and a

negative polarity would use a decreasing frequency for a rising temperature.

• Pleasant : The user of the system should not feel uncomfortable or annoyed

even after a long period of listening.

• Precise: The data should be prepared prior to sonification according to the

available sound synthesis parameters but also according to their structure.

In some cases, when data are regarded as noisy, a data reduction step is

required (for example through Principal Component Analysis) otherwise the

sound result will be noisy as well, especially in the case of high dimensional

data.

Data may represent a continuous variable, a statistic process or there are

cases in which the data points are not equidistant. According to the data form, a

suitable sound synthesis technique has to be chosen. For example when sonifying

statistic processes, granular synthesis may be one of the most suitable options,

as done in [11, 59, 47].

6.1 A formalization of Parameter Mapping Soni-

fication

Hermann in [23] introduced the following formalization of PMSon: Given a d-

dimensional dataset [~x1, . . . , ~xN ] and an m-dimensional vector ~p of acoustic at-

tributes (which are parameters of the signal generator), an acoustic event in the

sonification can be described by a signal generation function f : Rm+1 → Rq

which computes a q-channel sound signal s(t) = f(~p, t). A Parameter Mapping

Sonification is then computed by:

s(t) =
N∑
i=1

f(g(~xi), t) (6.1)

where g : Rd → Rm is the parameter mapping function.
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6.2 Mapping Topologies

The shape of the mapping function may have various shapes as seen in Figure

6.1. For example it can be linear (an ideal and rare situation), exponential,

step-function, sigmoid etc...

Figure 6.1: Typical transfer functions for parameter mapping. The black line

shows a piecewise linear transfer function.The blue and green dashed lines are

respectively sigmoid and exponential transfer functions. Image taken from [18].

6.2 Mapping Topologies

Hermann in [23] proposes also a more simple and readable textual representation

of the mapping function. The variable names of the dataset, point to attribute

vectors which are been given a meaningful name as it can be seen in the following
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assignment tables. The mapping topology may be :

• One to One

Data Feature Sound Synthesis Parameters

petal length [ , ] → onset [0, 2]

petal width[3, 5] → pitch [7, 10]

sepal length [ , ] → amplitude [60, 90]

0.5 → duration

Table 6.1: One to One Mapping. Table taken from [23]

• One to Many

Data Feature Sound Synthesis Parameters

datafeature1[0, 30] → ∆ gain [-90 dBV, 0 dBV]

datafeature1[20, 50] → between unvoiced and voiced

datafeature1[40, 70] → blends between the vowels [a:] and [i:]

datafeature1[60, 90 ] → fundamental freq 82 to 116 Hz

datafeature1[80, 100] → brightening of the vowel

Table 6.2: One to Many Mapping. Table taken from [25]

• Many to One

Data Feature Sound Synthesis Parameters

saturation [ , ] → ∆ gain [-50 dBFS, 0 dBFS]

total number of pixels in a region [ , ] → ∆ gain [-50 dBFS, 0 dBFS]

Table 6.3: Many to One Mapping.

The symbol ‘ ’ means that the limits are extracted from the minimum and

maximum values directly from the data and that are not predefined. This has

important consequences on the sound output (as it will be shown in later chapters)

and also reduces the reproducibility of the system.
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6.3 Drawbacks or Advantages?

Though PMSon offers enough flexibility in high-dimensional data, still has some

drawbacks [28]:

1. No unique mapping : Increasing the dimensionality of the data leads to a

larger number of parameter mapping possibilities.

2. Limited Dimensionality : The sonification is limited in dimensions according

to the parameters of the sound engine.

3. Variance: It’s not invariant to rotations or translations of the data.

4. Independence/Perceptual uniformity : The pitch is perceptually nonlinear.

Pitch and duration are perceptually dependent.

5. Relationship: There is no possibility to exploit the relationship between

different data points, for example examining the local density between two

different data points.

In fact, some of these drawbacks can act as advantages in image sonification.

• Comments to 1: In image sonification, (if the image is colored) we have

a total of 2 by 3 dimensions. 2 for the pixel orientation and the other

3 describe the color (for example RGB triplets, Hue/Saturation/Value...),

meaning that the possibilities are quite limited, always with respect to the

sound synthesis method. Furthermore, the options of different mappings

enhance the artistic applications of sonification.

• Comments to 2: We want the output of the sound engine to be as predictable

as possible.

• Comments to 3: Imagine the sonification of a Square. If the image is rotated

by 45 degrees around it’s center the resulting image is called Rhombus. If

it looks different, we want it to sound different as well.

• Comments to 4: In most cases, the whole concept of perception is non-

linear. Dimensional correlations can also be found in vision.
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• Comments to 5: In image sonification, this difficulty can be overridden in

the data preparation step. If the sonification is not a simple superposition

of different events, but is based on rules with respect to the organization of

the data, data relationships can be audible.

Besides, the same author uses PMSon to sonify a stack of images [27].

The final implementations depend on whether we want to sonify an image or

sonify the process of observing an image. As nicely put in [53]: “This metaphor

is thus no longer a sonification of a particle system, but the sonification of the

observation of a particle system”. When we observe an object through multi-

ple views in 2 dimensions, we can discover its structure in the 3 dimensional

space. Likewise, when we ‘move’ through acoustic scenes, we can discover the

relationship that exists between multi-dimensional data [26].

56



Chapter 7

Sonification of Shape

In this chapter we present a technique to sonify the shape of an object in an

image, with the restriction that the curve is piecewise smooth, simple and closed.

For tracing the curve we use the Moore’s Contour Tracing Algorithm with Jacob’s

stopping criteria, and then each pixel is sonified by the order that was traced.

We construct a new curve, based on the spatial datasets, which describes an

amplitude envelope or the instantaneous frequency of a signal, and in which each

tracked pixel has a specific duration, and a spatial position in the stereo field.

The listener can draw conclusions about the shape of the curve by decoding the

sonified result.

7.1 Related work

While many image sonification approaches have been presented since the begin-

ning of ICAD (International Community for Auditory Display), little research

has been done in sonifying the shape of an object within an image. Furthermore,

the latter attempts are based on user interaction, so a direct relationship between

the image and the sonified result is missing. This approach aims to establish a

direct, one to one relationship between the image and the sonified result.

SoundView [56] is an experimental vision substitution system for the blind.

The users of this system explore an image by using a pointer device which acts

like a virtual gramophone needle. The sonified result depends both on the color

of the area been explored, as well as on the velocity of the pointer. In a later
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experiment which tested the usability of SoundView [57], users were asked to

identify binary shapes. Though the results were encouraging, curved shapes were

harder to recognize, due to the linear movement of the pointing device, which

is the most usual exploration motion used. Two quite similar approaches are

presented in [50] and [62]. In [50] the workspace is divided between sound areas

and no sound areas. As the user points over a region close to the curve, the

sound amplitude increases, reaching the maximum value when the pointer lies on

the curve. Furthermore, the pitch varies according to the shape of the curve, for

example a straight line would produce a steady pitch whose intensity would vary

according to the proximity of the pointer to the curve. In [62], another similar

shape sonification scheme is used, to aid the visually impaired in basic shape

recognition tasks. The image should be binary, and the shape is extracted using

the Canny edge detector. When the pointer is placed on a pixel that belongs

to the curve, a pitched sound occurs whose frequency depends on the vertical

position of the pointer (local area sonification). The shape recognition task is

further enhanced by also sonifying the pointer’s location to edge distance, using

the Felzenszwalb algorithm, where distance is mapped to a pulse train frequency,

reaching its maximum whenever the distance to edge is minimum.

The authors of [13] sonify line graphs which contain two data series. The users

try to decode the sound and sketch back the two data series, with their possible

intersection points, the shape of the curves and the minimal and maximum points.

The authors propose the x horizontal coordinate to represent time, while the y

vertical coordinate is mapped to MIDI notes.

When sonifying more complex graphs or curves, the mapping of time to a

dimension of the image is not profound. A challenging task is how can one

achieve a dimensional reduction, in our case from 2D to 1D. One transform that

allows that, and has been used in the past for texture sonification [38], is the

Radon transform. By taking projections in several angles the original image can

be reproduced by using the inverse transform. Sonifying these projections is more

likely to distract the listener from a shape recognition task. Consider for example

two projections of a square shape the first being in 0 degrees and the second at

45 degrees as shown in Figure 7.1. While the 0 degree projection would result

in a steady situation, if pitch is used for example as a mapping parameter, the
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7.2 Contour Tracing

second one would evolve as a triangle i.e with an increasing and then decreasing

pitch.

Another tempting approach would be to sonify the curvature of a shape.

Sonifying the magnitude of curvature is presented in [51], in order to detect

curvature discontinuities which are important cues for 3D perception [32] . The

users of this system explore the shape of a virtual object haptically and hear

the sonified result at the same time. Sonification is an important feature of the

system because curvature discontinuities are difficult to detect by touching the

object or by using the visual feedback of the system. The system calculates the

minimum and the maximum absolute values of the curvature and then maps them

to a frequency range of 3 octaves. The sign of the curvature (positive for concave

and negative for convex curves) is mapped to stereo panning. Discontinuities

in curvature resolve to a frequency modulated sound and are the only points in

the curve that the sound is not stable over time. Shapes that look smooth may

have curvature discontinues and furthermore the magnitude of curvature does

not always evolve. For example, the curvature of a circle is a constant i.e the

reciprocal of the radius.

7.2 Contour Tracing

The listener should be able to perceive the sonified result, using a visuospatial

encoding strategy [42], therefore a perceptually meaningful mapping from the

spatial coordinates to time is of vital importance.

Given a curve, f : < → <2 and its parametric representation f(t) = (x(t), y(t)),

its derivatives dx/dt and dy/dt, provide information about the evolution of the

curve. In order to take them into account in our proposed sonification scheme, we

use the Moore’s Contour Tracing Algorithm with Jacob’s stopping criteria [45].

The algorithm searches for neighboring pixels in a clockwise direction, starting

from bottom to top and from left to right, though in this implementation we

start from top to bottom. In order to avoid tracing the same pixels as seen in

Figure 7.2, we limit our approach for sonifying piecewise smooth, simple, closed

curves and positively oriented because of the clockwise search direction. Another

restriction is that the Moore’s Contour Tracing algorithm works only on lines that
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(a) A square shape
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(b) Projections at 0 and 45 degrees

Figure 7.1: A square and its projections at 0 and 45 degrees based on the Radon

Transform.
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7.2 Contour Tracing

have single pixel width, so the object has to undergo thinning. The output of the

algorithm is a series of x[n] and y[n] values representing the x and y coordinates

respectively, of the tracked pixels. By calculating the derivatives x[n]− x[n− 1]

and y[n]− y[n− 1] we have a description of the evolution of the curve at a given

moment.

x[n]− x[n− 1] =


−1 the curve evolves from right to left,

0 no movement in the x axis,
1 the curve evolves from left to right.

(7.1)

y[n]− y[n− 1] =


−1 the curve evolves from bottom to top,

0 no movement in the y axis,
1 the curve evolves from top to bottom.

(7.2)

Figure 7.2: The Moore’s Contour Tracing Algorithm.
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Figure 7.3: A curve (left) and the output of Moore’s Contour Tracing Algorithm

(right).

7.3 Mapping Spatial Datasets to sound

From now on, the sonification scheme is very straightforward, and when the

coordinate values or their derivatives, are mapped to a different sound quality,

the sonified result should be easily encoded in a visuospatial way. Mapping pitch

to one coordinate versus amplitude to the other could be problematic, since pitch

and amplitude are correlated in human perception. In general, tones below 2

Khz are perceived to decrease with increasing amplitude while tones above 4 Khz

increase with increasing amplitude [40]. Furthermore, pitch affects the perception

of direction but so does the intensity of a sound, as long as there is no conflict

between them. If both are changing, then the perception of pitch dominates the

perception of intensity [43]. We continue by presenting two different sonification

techniques based on two different mappings: amplitude and pitch versus stereo

position. Since we have not taken into account the overall size of the image, the

scalings are arbitrary, still meaningful.

Using amplitude as a mapping parameter has the advantage of offering fre-

quency and time independence but on the other hand the sonified data could

be heavily compressed, since there is a limited bandwidth in which a 3 decibel

difference is perceived as being only one step louder. It might also be undesirable

to make use of the full bandwidth because there is always a noise floor in the

listening space, so moving towards the lower end of the decibel scale would not
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7.3 Mapping Spatial Datasets to sound

be practically useful, but also because high audio levels could be uncomfortable,

or even dangerous for the listener. Because of these limitations we scale the coor-

dinate values according to a power law, before normalizing them into a suitable

range. For preliminary testing and demonstration purposes we found the func-

tion f(x) = xe, to behave well before normalizing the values in the range 0.001

(-60dBFS) to 1 (0dBFS). Pixels are sonified one by one, in the order that were

detected by the Moore’s Contour Tracing Algorithm. If each pixel is mapped to

a constant duration, over its mapped amplitude level, we construct an amplitude

envelope a(t) which is then applied to a 1 Khz sine wave. The listener should

draw conclusions about the shape of the curve by decoding the amplitude enve-

lope a(t) of the final signal (equation 7.3), with respect to panning strategies that

will be described in the next sections. Of course, the smaller the pixel grid (the

workspace) the easier the shape recognition would be, because the values which

are mapped to each pixel would vary greatly and consequently their difference

would be easier to perceive.

f(t) = a(t)sin(2π1000t) (7.3)

If the size of the image is big enough to cause data compression when ampli-

tude mapping is used, then a mapping to pitch is a better solution. The tracked

pixels are divided into regions which are mapped to a base frequency value and

then each pixel represents an increment in cents according to the region it belongs.

The system of cents is a logarithmic scale used for measuring frequency ratios.

There are 1200 cents in an octave, 200 in a whole tone and 100 in a semitone.

An interval between two notes with frequencies f1, f2 can be measured in n cents

with the following formula:

n = 1200 · log2(
f2
f1

) (7.4)

For preliminary testing and demonstration purposes, each region consists of

120 pixels, starting from a base frequency of 120 Hz, and each pixel represents

a 10 cent increment, as seen in (4) where i = 0...(total pixels) and r = 1...(total

regions):
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7. SONIFICATION OF SHAPE

p(i) = (120 · 2r−1) · 2(i−(r−1)·120)·10/1200 (7.5)

In this case the listener should draw conclusions about the shape of the curve,

by decoding the instantaneous frequency envelope of the signal,

f(t) = sin(2πp(i)t) (7.6)

along with panning.

Each pixel has a duration mapping of 50 ms, because durations between 50 ms

to 70 ms are found to be effective in graph sonification [14], though we found it

also practical and effective to use even smaller durations as the image gets larger

(relative to the axes).

Figure 7.4: An example curve with labeled breakpoints. The sonification starts

from point D, since it is the first point traced by the algorithm.
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7.3 Mapping Spatial Datasets to sound

7.3.1 Vertical axis to amplitude or pitch, horizontal di-

rection to stereo position

In this sonification scheme, the derivative of the x coordinate is mapped to pan-

ning while the y coordinate is mapped to amplitude or frequency, after being

normalized to the above mentioned ranges. We apply the following rules:

x[n]− x[n− 1] =


−1 panning is set to the left channel,

0 panning is set to the centre,
1 panning is set to the right channel .

(7.7)

Translating quantitatively the Figure 7.4 in terms of amplitude and stereo

position we have: From A to E the amplitude increases starting from its mini-

mum value and reaching its maximum at E. From E to I the amplitude decreases

reaching its minimum value again, and from I to A remains at its previous mini-

mum value. Describing the first few breakpoints for the stereo position we have,

from A to B the sound is panned in the centre, from B to C the sound is panned

to the right channel and from C to D the sound is panned to the left channel.

7.3.2 Defining a new curve for amplitude or frequency,

horizontal direction to stereo position

In this sonification scheme we construct a new curve based on the derivatives

of the x and y coordinates. If we denote: c(k) = x(n) − x(n − 1) and d(k) =

y(n)− y(n− 1), then we define a new curve T (k) by applying the following rules

with T (1) = 0 and k = 2 . . . (n− 1) :

T (k) = c(k)d(k) + T (k − 1), if c(k) 6= 0 (7.8)

T (k) = d(k) + T (k − 1), if c(k) = 0 and d(k) 6= 0 (7.9)

The new curve can then be sonified after being scaled to start from zero

and normalized to the values described above using amplitude or frequency, as

mapping parameters. The difference between two curves one having c(k) > 0 ,

d(k) > 0 and the other having c(k) < 0, d(k) < 0 is their orientation. The first

is read in a clockwise direction while the other is read anti-clockwise. In order
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Figure 7.5: The instantaneous frequency envelope, as described in paragraph

7.3.2
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the listener to be able to distinguish between these two modes, we also sonify the

derivative of the x coordinate separately and mapping it to stereo position as we

did in the previous approach described by (6).

Translating again quantitatively the Figure 7.4 in terms of amplitude and

stereo position we have: From A to B the amplitude increases and the sound

is panned to the centre. From B to C the amplitude increases further with the

sound panned to the right channel. From C to D the amplitude decreases by the

same amount that had increased from B to C, and the the sound is panned to

the left channel. From D to F the sound is panned to the right channel and the

amplitude increases from D to E and decreases from E to F by the same amount.

From F to G the the amplitude increases and the sound is panned to the left

channel and from G to H decreases by the same amount with the sound panned

to the right channel. From H to I the amplitude decreases with the sound panned

to the centre, and from I to A the amplitude remains the same with the sound

panned to the left channel.

Intuitively speaking, this scheme will represent better in the audio domain

symmetries that exist or not in the shape.

7.4 Conclusions

In this chapter we have presented a new technique for sonifying the shape of

an object in an image and a one to one relationship is established between the

amplitude envelope or the instantaneous frequency of a signal and its spatial

position in the stereo field versus the visual shape of the object. Instead of

using only pitch and panning as mapping parameters, the intensity of a sound

is perceptually correlated with the motion along a curve in an image as well,

so extracting an amplitude envelope from datasets that belong to the curve is

meaningful for a shape recognition task. The datasets not only consist of the

x and y coordinate values but also from their inter relationship as described

by the value of their derivatives. Experiments should be done in order to test

the usability of our proposed scheme and lead to more perceptually meaningful

scalings in terms of pitch and amplitude.
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Figure 7.6: A stereo wave file using amplitude and panning as mapping parame-

ters, as described in paragraph 7.3.1
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Chapter 8

Creative Aspects of Image

Sonification

In this chapter we emphasize on the creative aspect of image sonification and how

it can be effectively used as a sound design tool. The most commonly encountered

problems in the field, are addressed by using perceptually meaningful mappings,

so that the properties of an image are directly reflected to the audio domain. We

start by expanding the method presented in chapter 7 which is used to sonify

the shape of an object, and later on we address the problems of dealing with

color. Gray level images are sonified in a way which could be classified as a non-

standard synthesis, paying also attention to the importance of the scan path. For

color sonification, the HSV (Hue, Saturation, Value) colorspace is used and finally,

we associate texture-sonification of colored images, with additive synthesis.

An image is far more than a simple collection of pixel values, as sound is not

just a collection of sample amplitude levels. Mapping the parameters from one

domain to the other is only limited by our imagination, but in this approach

we are after perceptually meaningful associations that would lead to predictable

sound results, therefore simplicity in the design plays a key role. We do not

attempt to set the right boundaries in terms of scaling the data, but rather

describing effective ways to organize them, emphasizing on the creative aspect of

image sonification.
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8. CREATIVE ASPECTS OF IMAGE SONIFICATION

8.1 Related Work

In [39] P. Meijer sonifies a grey scale [64, 64] image. Each pixel is represented by

a sinusoidal oscillator whose amplitude is proportional to the gray level, while

the frequency depends on the vertical position of the pixel. The image is scanned

from left to right, column by column and the sound generated by each column,

is the sum of its oscillator outputs. A sonification of stacked images is presented

in [27] using a color coding strategy. The intensities of an RGB triplet represent

the pitch of an instrument on a diatonic scale and the rhythm is based on a set

of markers placed on the stacked image. The resulting sound can be a rhythmic

pattern, a harmonic representation or by combining both, a melody. In [55] the

author tries to make a qualitative sonification of portrait pictures by mapping

distance (for example the distance between the eyes) to MIDI frequency and the

size of the objects to tempo.

Considerations regarding the scan-path versus the spot of a glance can be

found in [21], where the author pays attention to the streaming of audio data,

with respect to what we are supposed to see. Though scan-path theory suggests

a “top-down internal cognitive model”, in [35] is suggested that the scan should

be done from left to right, since we are used to read this way, and from bottom

to top, because bottom presents the foreground and top the background of a

picture. By this way “the user gets the impression that he is located at the edge

of the scan-line”. Another viewpoint on time versus scan-path is presented in

[60]. A ‘pointer’ is defined as “a data element, or a set of data elements, which

is mapped to auditory domain at the same time.” ‘Paths’ include a number of

‘pointers’ over time. A ‘path’ can be a straight line, a set of distributed points,

or arbitrary curves which span the image. If time is fixed during the sonification

process, it is called ‘scanning’, else if the user alters the time stamp during the

sonification, it is called ‘probing’. Two different time mapping schemes are also

presented. In the first one, the horizontal and vertical position of the pixel define

the pitch, while the brightness of the pixel is associated with its duration. In

the second approach, a pointer has a rectangular shape with a time-varying size,

increasing or decreasing while moving along a perpendicular path. By this way,

the screen provides a new dimension to which “any sonic properties, including
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8.2 Tracing and Reshaping the Shape of an Object

pointer paths, can be assigned”. In [61], Raster mapping is proposed for the

sonification of texture. The image is raster scanned and each pixel corresponds

to one audio sample by linearly mapping the range of gray level Values, to audio

sample levels [−1, 1]. The authors claim that “Sonified sounds preserve the feeling

of the original images quite similarly in the auditory domain”.

Many color sonification techniques make use of the HSV or the HSL color

model. Most mappings associate Hue with Pitch and Lightness or Value with

Amplitude. In [22] Lightness is mapped to Pitch and Colorfulness (i.e Satura-

tion) to Loudness. A mapping based on Subtractive Synthesis can be found in

[56]. White noise passes through a lowpass filter whose cut-off frequency depends

on Brightness, representing the grey levels, while color is added by passing the

same signal through 12 parallel resonant filters spaced at octaves apart, whose

frequencies depend on Hue. Some other, more arbitrary mapping choices, can be

found in [37, 9].

8.2 Tracing and Reshaping the Shape of an Ob-

ject

While most image to sound approaches map the spatial coordinates that describe

the shape of an object to time (horizontal axis) and frequency (vertical axis),

we will use the method described in chapter 7, because it offers a unique way to

“read” the shape and easily manipulate the spatial datasets, even if the curve

is closed. Since we do not use panning as a mapping parameter in the current

approach, we need to expand the algorithm which describes a new curve in the

time domain based on the traced one, in order to have a distinction between

curves that evolve vertically, from those that evolve diagonally. As an horizontal

evolving curve implies a steady state, a vertical one should imply an abrupt

change. The construction of the new curve is based on the following rules:

T [1] = c, where c is a constant (8.1)

T [k] = T [k − 1], if y′[n] = 0 (8.2)
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T [k] = T [k − 1] +
∑

x′[n]=0

y′[n], if x′[n] = 0 (8.3)

T [k] = T [k − 1] + x′[n]y′[n], if x′[n] 6= 0 and y′[n] 6= 0 (8.4)

8.2.1 Shape as an Amplitude Envelope

The new shape defined above, can be used as an amplitude envelope after be-

ing linearly scaled or according to a power law to the range of [0, 1], though in

some cases it might be undesirable to reach zero. In general, the resulting audio

envelope corresponds better to its visual interpretation if the values are scaled

according to a power law, such as the xe, before being normalized. The duration

of the envelope can be of any length, by assigning a constant duration to the

points that make up the curve.

8.2.2 Shape as a Wavetable

Though there are many software platforms that allow the user to draw by hand

a waveshape, it might be desirable to audify shapes that are part of a scientific

result or are designed very accurately, with the aid of mathematical functions,

or specialized drawing/cad programs. In this case, the spatial datasets of the

reshaped curve are linearly scaled to the range of [−1, 1], with each tracked pixel

representing one audio sample. The result is a wavetable, whose length depends

on the tracked pixels but if desirable, resampling the data at higher rates with

interpolation is an option, in order to increase the wavetable’s length, making it

possible to scan it in different frequencies while maintaining the original quality

of the pixel-form.

8.3 Gray Level Images

Each pixel can be represented as a single sample in the audio domain, by linearly

scaling the pixel Values which range from [0, 1] to the audio sample levels ranging

from [−1, 1] as done in [?]. This way we have a description of the oscillating
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8.3 Gray Level Images

points around middle gray, but a normalization process should also be taken into

consideration, by finding the minimum and maximum pixel Values present in the

image, before scaling them to audio levels. Stretching the original waveform is

also an option, either as described in 8.2.2 or by ‘Sample and Hold’ the Value of

a pixel by a desired factor as seen in Figure 8.1.

Gray level Values
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Figure 8.1: Gray level values mapped to audio sample levels.

The process of sonifying gray level images could be described as a non-standard

synthesis method [8], in which the “amplitude values” are directly derived from

the pixel gray level Values, and “time values” are derived from the patterns that

arise by using a particular scan path. Since the scanning process is directly

related with the sound output, we are after a unique mapping that relates the

2-Dimensional image with the 1-Dimensional audio result and is able to transmit

the original feeling of the image in terms of texture to sound, by preserving
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neighboring pixel Value relations. One way to achieve that, is by scanning the

image with the Hilbert Space Filling Curve (Figure 8.2), as it fills an area in a

self similar way without repeating itself. It can be encoded with the initial string

L and the following string rewriting rules:

L→ +RF − LFL− FR+

R→ −LF +RFR + FL−
F → go one pixel forward

+→ turn right

− → turn left

A Hilbert curve of order n is capable of scanning an image with a maximum

size of [2n, 2n], so it can be applied to images of arbitrary sizes as well, with points

of the curve that lie outside of the image being simply ignored.

8.4 Colored Images

Color sonification is directly dependent on the color space that is used to describe

a particular color. Since painters think more in terms of the HSV color space when

building up their color palette, maybe this could be the most ideal color space for

image sonification, because it offers a very predictable way to construct a sound

palette. HSV is widely used in computer vision techniques, mainly because it can

be easily segmented and creatively manipulated as in [?] for example, where is

used for automatic color harmonization. Furthermore, its relationship with sound

apart from being constructive can also be descriptive, considering as an example

S. Barrass’ Timbre Brightness Pitch model (TBP) [6] in which the geometry of

the model is derived from the HSL color space.

However, one major limitation of using this color space should be mentioned,

which will also be inherited in the sound design process. The Euclidean distance

between two points in the Hue plane is not perceptually uniform, considering as

an example the green color which spans a wide range of degrees, when compared

to yellow which spans only a few.
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Figure 8.2: A Hilbert curve of order 4 filling a [16, 16] image. The image could

be roughly segmented in 4 regions, each one describing the order of the curve.
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8.4.1 Color Sonification

Since we are using the HSV color space we need to find the perceptually mean-

ingful counterparts of Hue Saturation and Value in the audio domain. Saturation

is a measure of purity of a given color, and could be associated with ”how much”

a given color, stands out of a given zero point. Therefore it can be mapped to

audio amplitude levels by using the decibel scale, because this way the linearity

of Saturation levels could be reflected on linearly perceived amplitude changes.

The range of [0, 1] is scaled linearly to dBFS values ranging from a user speci-

fied minimum to a maximum. The use of thresholding functions can be of great

importance, because a direct mapping from the inaudible -90 dBFS to the max-

imum of 0 dBFS could be problematic for sound design purposes. Instead, a

thresholding function can be used which reduces Saturation values below a limit

to the inaudible audio level, and for values above this limit, a scaling can be ap-

plied. For demonstration purposes we used a threshold of 0.05 and used a range

of [−50, 0]dBFS.

Associating pitch circularity with Hue circularity leads to the possibility that

a pixel’s Value could be regarded as a transposition factor, acting upon the Hue

values. In the presented scheme, the range of Value is divided in 10 equal re-

gions each one setting a base frequency in octave bands, starting from 20 Hz up

to 10.240 Khz, therefore a change in region represents octave transpositions in

frequency, as demonstrated in Fig. 4.

bn = 20 · 2n, n = 0 . . . 9 (8.5)

Values above region 9 (5.12 Khz) are not perceptually meaningful, because

the sense of pitch is weakened as we move towards higher frequencies, but it may

be practically useful in sound design, since the upper region of the frequency

spectrum contributes largely to the perceived quality of a sound.

The frequency values which span each octave, are defined by Hue which is

mapped to cents. The 360 degrees Hue plane, is linearly scaled to the range of

[0, 1199] which represent cents. This way we get a perceptually meaningful map-

ping from Hue to frequency, since the distance between 30 degrees is represented

by a 100 cents increment (i.e a semitone), and 1 degree increment represents
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Figure 8.3: 10 saturation levels ranging from 0.1 to 1, mapped to amplitude dBFS

units.
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Figure 8.4: 10 value levels ranging from 0.1 to 1, mapped to octave ranges.
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about a 3.3 cents increment in frequency, well within the Just Noticeable Dif-

ference (JND) of pitch, but on the other hand the resolution of a pixel’s Value

is heavily compressed. By using this mapping the corresponding frequency of a

pixel is given by equation (6) where c is the value in cents and bn is described by

equation (5).

f = bn · 2c/1200 (8.6)

Figure 8.5: A major scale. All squares have a Value of 0.5 which sets the base

frequency at 320 Hz except the last one which has a value of 0.6 setting the base

frequency at 640 Hz. The Hue values in degrees are [0 60 120 150 210 270 330 0]

which correspond in frequencies of [320.0000 359.2688 403.3564 427.3894 479.8364

538.7195 604.8284 640.0000] Hz

Of course, the scalings can be altered according to the image’s quality param-

eters that we want to emphasize. If for example the variation is grater in Value

rather than Hue, pixel Values can be mapped to smaller regions than octaves

and the Hue values would fill the frequency space in between. This way a better

frequency resolution is achieved but the perception of the sonified color in terms

of Hue, is suppressed by the perception of Value.

8.4.2 Texture Sonification

The above presented color sonification scheme can be used for sonifying the tex-

ture of an image by using additive synthesis, which offers the possibility to move

from pure tones, to highly complex sounds. The scanning process is from top

to bottom as the eye scan path theory suggests, and all pixels which belong in

the same line are sonified at the same time, a process which results in additive

synthesis. A bank of sine oscillators is used, all having the same phase offset,
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whose number is defined by the width (rows) of the image and their frequen-

cies depend on Value and Hue of the corresponding pixels. All pixels have the

same duration, which offers frequency versus time independence, but could lead

to problems unless special care is taken for the phase advance in each wavetable,

when moving from one line to the next. If the pointer’s position that reads the

wavetable is reset (i.e starting from the beginning of the wavetable) when moving

from line to line, audible clicks arise resulting in a metronome like effect, which

could be very useful if the goal is to convey information, but unwanted in sound

design. One possible solution to this problem could be achieved, by reading the

current pointer’s position in the wavetable and transmit the phase information as

we progressively scan the lines, so that we continue reading the wavetable from

the point it stopped, instead of reseting it. By using this approach, the audible

amplitude discontinuities will only be a result of varying Saturation between suc-

cessive pixels. What we essentially end up with, is a bank of oscillators, each one

having its own instantaneous frequency and amplitude envelope. For an image of

size [M,N ] we have:

s(t) =
N∑
j=1

aij
N
sin(φj(t)) (8.7)

Where aij is the instantaneous amplitude of the jth oscillator derived from the

Saturation of each pixel, as described in section 5.1 and converted from the decibel

scale to amplitude values. φj is the instantaneous phase of the jth oscillator:

φj(t) = 2π

∫ t

0

fj(τ)dτ (8.8)

Where fj is the instantaneous frequency of the jth oscillator as described by

equation (6). The scanning process is from top to bottom therefore t satisfies:

t+ (i− 1)T ≤ t < t+ iT, i = 1 . . .M (8.9)

T is a time constant which controls the speed of the scanning process. By ex-

perimenting with different scanning speeds, if the spectral content of the image is

suitable, we can move between harmonic or inharmonic sounds (longer durations)

to noisy ones (shorter durations).
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8.5 Conclusions

We have addressed the most common problems found in image sonification which

are dealing with sonification of shape, color and texture, and by using perceptually

meaningful mappings, the properties of an image are directly reflected to the

audio domain in a very predictable way. Using image sonification as a tool to aid

sound design, can yield many interesting audio results that are hard to achieve

by only using the existing audio based techniques. It gives rise to new sound

manipulation approaches, since effects that were only applicable in the visual

domain, may now have their audio counterpart. All the sounds which accompany

this thesis were created using MATLAB [3], mainly for image feature extraction

and mapping definitions, Csound [1] as the main sound engine and AC Toolbox

[2] for generating the Csound score based on the data.
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Appendix: Sound Results

Sounds 1 to 5 are generated from figure 7.4 with the methods presented in para-

graph 7.3.1.

1: White Noise. No scaling prior to sonification. Number of pixels: 1123. pixel

duration: 0.05 sec. Amplitude Levels in dBFS: [0.005, 1].

2: White Noise. Scaling prior to sonification with f(x) = xe. Number of pixels:

1123. pixel duration: 0.05 sec. Amplitude Levels in dBFS: [0.005, 1].

3: Same as above but each pixel has a duration of 0.01sec.

4: 1 KHz sine wave. Scaling prior to sonification with f(x) = xe. Number

of pixels: 1123. pixel duration: 0.01 sec. Amplitude Levels in dBFS: [0.005, 1].

5: Sonification with music cents (Figure 9.1).

6: Sonification with music cents as described in paragraph 7.3.2.

7: Shape as an amplitude envelope (Figure 9.2) with the algorithm presented in

paragraph 8.2. Sonification of figure 7.4. White Noise. Scaling prior to sonifica-

tion with f(x) = xe. Number of pixels: 1123. pixel duration: 0.01sec. Amplitude

Levels in dBFS: [0.005, 1].
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9. APPENDIX: SOUND RESULTS

Figure 9.1: Frequency envelope of sound (5).

8: Generating a wavetable from figure 7.4. Playback frequency at 80 Hz.

9: Same as above. Playback frequency at 160 Hz. (Figure 9.3)

10: Scaning Figure 9.4 (a) with the Hilbert Space Filling Curve as described in

paragraph 8.3. Sonified image dimensions: 512x512.

11: Scaning Figure 9.4 (b) with the Hilbert Space Filling Curve as described

in paragraph 8.3. Sonified image dimensions: 512x512.

12: Scaning Figure 9.4 (c) with the Hilbert Space Filling Curve as described

in paragraph 8.3. Sonified image dimensions: 512x512.

13: Scaning Figure 9.4 (c) with the Hilbert Space Filling Curve as described

in paragraph 8.3. Sonified image dimensions: 2024x2024.
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Figure 9.2: Amplitude envelope of sound (7).

Figure 9.3: First few samples of sound (9).

85



9. APPENDIX: SOUND RESULTS

(a) (b) (c)

Figure 9.4: Sample images.

(a) (b)

Figure 9.5: Sample images.

14: Scaning Figure 9.5 (a) with the Hilbert Space Filling Curve as described

in paragraph 8.3. Sonified image dimensions: 450x450.

Sounds 15 to 19 are sonified with the same procedure but the images are scanned

row by row instead of using the Hilbert Space Filling curves.

15: From figure 9.4 (a).

16: From figure 9.4 (b).
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17: From figure 9.4 (c).

18: From figure 9.5 (b).

19: From figure 9.5 (a).

20: Saturation Levels. From figure 8.3

21: Octaves. From figure 8.4

22: Major Octave. From figure 8.5

The following sounds were created according to paragraph 8.4 and by using the

mappings shown in table 9.1.

23: From figure 9.6 (a).

24: From figure 9.6 (b).

25: From figure 9.6 (c).

26: From figure 9.7 (a).

27: From figure 9.7 (b).

28: From figure 9.7 (c).

29: From figure 9.8

The following sounds were created by using the mappings shown in table 9.1 but

now all pixels are sonified at the same time. Since the sound can have an infinite

duration, we present only the first few seconds.
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(a) (b) (c)

Figure 9.6: Sample images.

(a) (b) (c)

Figure 9.7: Sample images.
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Figure 9.8: Sample Image.

30: From figure 9.6 (a).

31: From figure 9.6 (b).

32: From figure 9.6 (c).

33: From figure 9.7 (a).

34: From figure 9.7 (b).

35: From figure 9.7 (c).
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Data Feature Sound Synthesis Parameters

Saturation [0, 1] → Amplitude [-1, 1]

Total Saturation of pixels in a row [ , ] → Amplitude [-1, 1]

Value [0, 0.3) → Base Frequency [10]

Value [0.3, 0.36) → Base Frequency [20]

Value [0.36, 0.42) → Base Frequency [40]

Value [0.42, 0.48) → Base Frequency [80]

Value [0.48, 0.54) → Base Frequency [160]

Value [0.54, 0.66) → Base Frequency [320]

Value [0.66, 0.72) → Base Frequency [640]

Value [0.72, 0.78) → Base Frequency [1280]

Value [0.78, 0.84) → Base Frequency [2560]

Value [0.84, 0.9) → Base Frequency [5120]

Value [0.9, 1] → Base Frequency [10240]

Hue [0, 30) → Cents [0, 100)

Hue [30, 60) → Cents [100, 200)

Hue [60, 90) → Cents [200, 300)

Hue [90, 120) → Cents [300, 400)

Hue [120, 150) → Cents [400, 500)

Hue [150, 180) → Cents [500, 600)

Hue [180, 210) → Cents [600, 700)

Hue [210, 240) → Cents [700, 800)

Hue [240, 270) → Cents [800, 900)

Hue [270, 300) → Cents [900, 1000)

Hue [300, 330) → Cents [1000, 1100)

Hue [330, 360) → Cents [1100, 1200)

Table 9.1: Used Mappings
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