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Περίληψη 

Η επικράτηση των πολυπύρηνων αρχιτεκτονικών στο σύγχρονο υπολογιστικό γίγνεσθαι επα-

νάφερε το συναρτησιακό προγραμματισμό στο προσκήνιο ως το προφανές πλαίσιο απλοποίη-

σης και αφαίρεσης. Υπάρχουσες συναρτησιακές γλώσσες, όπως η Erlang και η Haskell, υπέ-

στησαν μετατροπές ή επεκτάθηκαν προς εκμετάλλευση του παράλληλου υλικού, ενώ νέες, 

όπως η F#, η Scala και η Clojure, δημιουργήθηκαν προς διαχείριση της πολυπλοκότητας σε 

δημοφιλείς εικονικές μηχανές.  

Οι εν λόγω γλώσσες προσφέρουν ένα ευρύ φάσμα χαρακτηριστικών που σχετίζονται με τον 

ταυτοχρονισμό και την παραλληλία, ωστόσο μια συστηματική παρουσίαση και σύγκριση αυτών 

απουσιάζει από τη σύγχρονη βιβλιογραφία. Η συνεισφορά μας συνίσταται σε μια συγκριτική 

μελέτη των γλωσσών Erlang, F# και Scala ως προς την εκφραστικότητα, την ευκολία χρή-

σης, την επίδοση και την κλιμακωσιμότητα. Συγκεκριμένα, αξιολογούμε τα μέσα που παρέ-

χουν οι γλώσσες αυτές για παράλληλο μετασχηματισμό συλλογών στοιχείων, ταυτοχρονισμό 

βασιζόμενο σε futures και το μοντέλο των actors, κάνοντας χρήση τους σε υλοποιήσεις που 

επιλύουν ένα απλό υπολογιστικό πρόβλημα ονόματι Orbit. Η μελέτη μας καταλήγει στα ακό-

λουθα βασικά συμπεράσματα για τις γλώσσες που εξετάζουμε ως προς τον ταυτοχρονισμό 

και την παραλληλία: η Erlang αποτελεί μια ώριμη λύση με καλή κλιμακωσιμότητα αλλά χαμη-

λές επιδόσεις σε αριθμητικούς υπολογισμούς, η F# παρέχει σταθερή βάση για την αντιμετώ-

πιση των εξεταζόμενων ζητημάτων αλλά κλιμακώνει μέτρια, ενώ η Scala, παρά τα προβλήματα 

που ανακύπτουν από τον επί του παρόντος γρήγορο ρυθμό εξέλιξής της, συνδυάζει πλήθος 

σχετικών χαρακτηριστικών με πολύ καλές επιδόσεις και κλιμακωσιμότητα. 
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Abstract 

In the contemporary reign of multicore computing, functional programming has regained 

attention as the obvious paradigm to simplify and abstract. Existing functional languages, 

like Erlang and Haskell, have been modified or extended to exploit parallel hardware, while 

new ones, like F#, Scala and Clojure, have been created to tackle complexity on popular 

virtual machines.  

These languages offer a vast range of features that are related to concurrency and paral-

lelism, yet current literature lacks a systematic demonstration and comparison of those 

offerings. Our contribution is a comparative investigation of Erlang, F# and Scala in terms 

of expressiveness, ease-of-use, performance and scalability. In particular we evaluate their 

language constructs that facilitate parallel collection transformations, future-based concur-

rency and the actor model, by employing them in implementations that solve a simple 

computational problem named Orbit. Our study reaches the following conclusions for the 

examined languages regarding concurrency and parallelism: Erlang is a mature solution 

with good scalability but low performance in arithmetic computations; F# provides a solid 

base for handling the examined matters, yet with medium scaling; and Scala, despite the 

problems that arise from its currently agile evolution pace, combines numerous related 

features with good performance and scalability. 

Keywords 

Concurrency, Parallelism, Functional Programming, Erlang, Scala, F#, Future-Based 

Concurrency, Actor Model.
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Chapter 1  

Introduction 

For decades programming was determined by the twofold increase in processor performance 

every 18 months, a trend first observed by G. E. Moore [1]. Since this trend was synonym 

to equivalent clock-frequency increases, programmers were accustomed to expect better 

performance from their programs that required little or no effort. However, around 2003 

clock-frequency reached its physical limit; while processor performance kept its ascending 

course, it would no longer be translated into higher frequency and consequently program-

mers could not rely on it any more for better execution of their sequential programs.  

In “The free lunch is over” [2], H. Sutter observed the era of concurrency arising, as the 

additional computational power comes in the forms of multithreaded and multicore pro-

cessors. As a result, programmers need to evolve and employ concurrency to harness per-

formance benefits for their applications – thus concurrency becomes mainstream.  

Unfortunately programming concurrency is hard, especially in the established imperative 

context. Traditional tools require significant cognitive effort to master; yet threads, locks, 

mutexes, critical sections, synchronized methods and the like are not helpful enough in the 

struggle against low performance, data races, deadlocks or – even worse – data corruption. 

Furthermore, as machines gain computational power in the form of additional cores, the 

requirement for scalability emerges; software should take advantage of extra computational 

resources without modifications.  

As with every complexity in computer science, concurrency is tackled with simplification 

and abstraction. Numerous languages and frameworks have been proposed over the course 

of years and claim to provide at least a partial solution to the problem. Among them, 

functional programming has resurfaced as the obvious paradigm to simplify and abstract; 

mature languages like Erlang gained support for multicore environments while new hybrid 

languages have emerged in major ecosystems – Scala on the JVM and F# on the CLI – to 

entice programmers into the functional paradigm with the promise of better concurrent 

tools and interoperability with existing investments. 
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Objectives 

In this thesis we examine the concurrent and parallel offerings of Scala, F# and Erlang in 

an attempt to provide a thorough comparison in terms of expressivity, ease of use, perfor-

mance and scalability. To that end we provide implementations that follow slightly differ-

ent approaches to solve a computational problem called Orbit and demonstrate several 

language features. Nonetheless we only investigate language constructs that support par-

allel collection transformations, future-based concurrency and the actor model. 

Thesis Outline 

The rest of the thesis is organized as follows: 

 Chapter 2 gives a basic background for the notions mentioned and concurrent/par-

allel tools used in our study. It introduces definitions for concurrency and paral-

lelism along with a description of future-based concurrency and the actor model, 

and also presents and compares the features of Scala, F# and Erlang that are 

employed in our implementations; however this is not a full-fledged presentation 

of the languages. 

 Chapter 3 deals with the implementation part of our study. First a definition of 

the Orbit problem is given and then some notes that are common for all imple-

mentations. The main body of this chapter consists of the analysis of the four 

implementation approaches we followed and the corresponding code in each of the 

three languages, along with a brief comparison regarding two code metrics. Finally, 

the chapter concludes with remarks from our implementation experiences. 

 Chapter 4 reflects the experimental evaluation of the implementations. After ex-

plaining the benchmarking configurations and describing the execution environ-

ment, we examine the results from the execution of those configurations, together 

with some additional ones. Similarly to the previous chapter, we wrap up with 

overall remarks. 

 Chapter 5 presents some work that is similar to ours, and future directions for 

continuing the study of concurrency and parallelism in languages that support 

functional programming. 

 Chapter 6 concludes this thesis with an overview of our investigation and some 

final comments on each language.



 

 

Chapter 2  

Background 

In this chapter we provide a basic background for the notions and constructs that appear 

in the rest of the thesis. First, we distinguish between concurrency and parallelism by 

defining those two terms, and describe the concurrency models that are used in this work, 

namely future-based concurrency and the actor model. Subsequently we demonstrate each 

of the three languages and particularly present their constructs and libraries related to 

concurrency and parallelism. 

2.1 Concurrency & Parallelism 

Concurrency and Parallelism are two frequently occurring terms that are often used with 

the same meaning. In our study each has a separate meaning, the definition of which relies 

in the notion of control flow: a control flow is the order in which the statements or expres-

sions of an imperative or a declarative program are executed or evaluated.  

Based on that notion we define: 

 Concurrency: an inherent property of systems that expresses simultaneous pro-

gress of several control flows and potential interaction among them. 

 Parallelism: a runtime property that refers to simultaneous execution of several 

similar and mutually independent control flows either on multiple cores or on mul-

tiple machines.  

By giving these definitions we do not claim universality or indisputability. We want to 

emphasize nonetheless that parallelism relates to runtime execution whereas concurrency 

is a property independent from the execution environment; manifestation of parallelism 

requires multiple computational units to share the workload, while concurrency emerges 

from only the existence of several control flows and can express situations where they 

progress interchangeably using time-sharing techniques.  

In a manner compatible to the aforementioned definitions and descriptions, parallelism is 

considered to infer concurrency, but not the opposite. 
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2.2 Future-based Concurrency 

In computer science a future is a construct that represents an asynchronous operation. It 

is a container for the eventual result that will occur when the computation completes and 

it is used to decompose sequential operations into independent parts that will progress 

concurrently.  

Future-based concurrency can lead to parallelism when used for computations in environ-

ments that support parallel execution. However, this is not its sole use case; futures are 

also used for managing asynchronous I/O operations. 

Implementations for concurrency constructs similar to futures have appeared lately in 

many mainstream languages like Java, C#, C++ and Python, though their functionality 

differs. 

2.3 Actor Model 

The actor model is an alternative approach to concurrency that was first proposed by C. 

Hewitt [3] and improved by G. Agha [4]. It is a form of message-passing concurrency that 

describes systems and processes in terms of actors and communication between them – 

hence the aphorism, “everything is an actor”.  

An actor is a reactive entity that communicates asynchronously with messages. It consists 

of two basic components: a behavior and a mailbox. All incoming messages are buffered in 

the mailbox waiting to be processed – one at a time. For each message, the actor behavior 

determines, in conjunction with the current state, the reaction; the actor may react in the 

following ways: send a number of messages to other actors, create a number of children, or 

change its state and behavior. 

Actors were first popularized by Erlang [5] and lately similar implementations of the actor 

model have appeared in languages like Scala [6], F# [7] and Haskell [8]. 

2.4 Scala, F# & Erlang 

2.4.1 Scala 
Scala [9, 10] fuses the object-oriented and functional paradigms into a flexible statically-

typed and general-purpose language that runs on the Java Virtual Machine. It benefits 

from the almost seamless interoperability with Java and appends the numerous Java li-

braries to its own ecosystem. One main characteristic of Scala is its extensibility; there are 

language mechanisms that facilitate custom language constructs to be defined as libraries, 

thus providing a great infrastructure for adding functionality in the form of expressive and 

concise internal DSLs. 

Scala offers rich support for concurrency and parallelism on top of the Java concurrency 

model. All related functionality is implemented in libraries that exploit the flexible Scala 
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syntax as well as other language features that are not specific to concurrency. These li-

braries include parallel collections, futures and promises, actors and several other tools 

that are not examined in this study (dataflow concurrency, STM, etc.).  

Futures & Promises 

Scala supports future-based concurrency with the type scala.concurrent.Future in its 

standard library. Scala Futures are created either by starting an asynchronous computa-

tion using the scala.concurrent.future function, or from a promise, which is a write-once 

container that is expected to be filled. Since computations result in either values or excep-

tions, futures are capable of containing each result. That result can be retrieved in three 

ways: by blocking while waiting for the future to complete, by specifying callbacks that 

will be called when the result becomes available, or by creating a chain of futures using 

future-combinators.  

 

In Listing 2.1 we give some simple examples of futures in Scala. We define function f that 

takes a number and returns a future with the next number. Afterwards, we use this func-

tion in a series of transformations, which is presented in two ways: as a method chain and 

using the for-comprehension syntactic construct. Finally we present two ways of retrieving 

the value contained in the future. 

Akka Actors 

The actor model is supported in Scala through various libraries, most importantly through 

the Akka toolkit [11, 12], which is an extended set of libraries designed to support concur-

rent, distributed and fault-tolerant applications. Akka actors are objects with the Actor 

trait; as such, their state is stored in fields and their behavior is encoded in the receive 

method, which is defined only for specific type of messages (partial function). All actors 

are part of an ActorSystem and belong to a supervision hierarchy. They are also identified 

through an ActorRef, the only way referencing them. Moreover, Akka provides also a DSL 

that significantly reduces the code needed to create simple actors.  

import scala.concurrent._, duration._, scala.util._ 

import ExecutionContext.Implicits.global 

 

def f(x: Int) = future { x + 1 } // Future creation 

 

val res = future(1) flatMap f map (_ + 1) // future tranformations 

val res2 = for { x <- future(1); y <- f(x) } yield y + 1 // syntactic sugar 

 

Await.result(res, 1.seconds)            // block waiting 

res2 onComplete {                       // callback 

  case Success(v) => println(v) 

  case Failure(_) => println("error") 

} 

Listing 2.1: Scala Examples with Futures 
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Listing 2.2 contains a simple example of Akka actors. We use the actor DSL to create a 

ping actor that responds to Pong messages by sending Ping to the sender. Similarly we 

define the pong actor that does the opposite, using the main actor API. As we can see, 

both actors need an actor system in which they will be created. 

Concurrency Infrastructure 

Both futures and actors run on ExecutionContexts, which can be viewed as threadpool 

abstractions. Futures require an ExecutionContext to be specified (explicitly or implicitly) 

inside their lexical scope, while actors use either the default dispatcher of the ActorSystem 

where they belong or the one specified during their creation. There are several 

ExecutionContext implementations provided in the Scala library, each implementation with 

its own properties and configuration options. Additionally custom ExecutionContexts can 

be creating using the functionality provided by the ExecutionContext companion object. 

Scala Collections 

Scala offers one of the most comprehensive collection libraries. It contains every basic 

collection and each collection has a vast number of methods that cover most use case 

scenarios. Aside its vastness, a significant property of the Scala collection library is also its 

consistency: there is a single hierarchy where all collections belong and all functionality 

that is shared among collections is provided through the same interfaces. This consistency 

enables code reuse  

Scala collections are organized in four major groups:  

Immutable collections never change - new collection for each alteration - and they 

facilitate functional programming. 

Mutable collections are altered in place and they are used for imperative programming. 

import akka.actor._, ActorDSL._ // necessary imports 

case object Ping // Message types 

case object Pong  

val system = ActorSystem() // the actor system 

 

// using the actor DSL 

// create the ping actor 

val ping = actor(system) (new Act { 

  become { // define the behavior 

    case Pong => sender ! Ping  

  } 

}) 

// define the PongActor class 

class PongActor extends Actor { 

  def receive = { // define the behavior 

    case Ping => sender ! Pong 

  } 

} 

val pong = // create the pong actor 

  system actorOf Props[PongActor] 

 

ping tell (Pong, pong) // send Pong to ping and make it look like pong did it 

Listing 2.2: Infinite Ping-Pong in Scala 
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Parallel collections are transformed in parallel while retaining the usage patterns of 

their sequential (immutable/mutable) counterparts. 

Concurrent collections can be concurrently altered from different threads. 

All collections have strict evaluation semantics but they also provide views, a way to apply 

transformations lazily: when a view on a collection is acquired all operations on it are 

postponed until the elements of the resulting collection are required or the force method 

is called on the result. 

Last but not least, the collection library contains functionality for conversion between 

collections: 

 to[AnotherCollection]: converts a collection to AnotherCollection 

 par, seq: convert a collection to its parallel counterpart and back 

 scala.collection.convert: provides wrappers for disguising Java collections as 

Scala ones and the opposite. 

2.4.2 F# 
F# [13, 14] is a statically-typed, functional-first, general-purpose programming language 

for the popular .NET and Mono implementations of the Common Language Infrastructure. 

It facilitates concurrency and parallelism via libraries that provide such functionality but 

have limited configurability. F# benefits from the CLI in terms of interoperability with 

other languages and access to a vast library pool. It favors immutability and lack of side-

effects but it also supports the CLI object-oriented model and mutation for performance-

critical scenarios. 

Concurrency and parallelism are not part of the F# language specification. F# uses generic 

language features and core CLI concurrency primitives to define its concurrent and parallel 

abstractions, namely asynchronous workflows and the MailboxProcessor<'T>. It also retains 

access to .Net libraries, such as the Task Parallel Library (TPL) [15, 16] and PLINQ [17]. 

Asynchronous Workflows 

Asynchronous workflows [7] are a form of future-based concurrency. They express non-

blocking computations with a syntax similar to their blocking counterparts, without using 

callbacks. That syntax includes constructs for value binding, error-handling, looping and 

computation composition that has modified semantics for asynchronous execution. Some 

of them are showcased in Listing 2.3 which contains simple examples that closely resemble 

the ones in Listing 2.1.  
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Asynchronous workflows are based on a general syntactic mechanism called computation 

expressions [18, 19]; inside their scope one can use custom syntax with target-specific se-

mantics. Included in F# are computation expressions for sequences, asynchronous compu-

tations and queries (Listings Listing 2.3 & Listing 2.4). 

 

Agents 

On top of asynchronous workflows, MailboxProcessor<'T> is defined (usually abbreviated 

as Agent<'T>). This type facilitates actor-based concurrency with a lightweight implemen-

tation; it represents an actor that accepts only messages of a specified type; it is a typed 

actor. 

 In Listing 2.5 we demonstrate the F# version of the ping-pong example we presented for 

Scala actors. Agent is used for the definition of both actors, which are created by providing 

the desired actor behaviors to the Agent.Start static method.  

 

let f x = async { return x + 1 } // Function returning an asynchronous computation 

let res = async { 

    let x = 1     // Ordinary value binding 

    let! y = f x  // Asynchronous value binding: wait for the computation to 

                  // complete asynchronously and bind the result to y 

    return! f y   // Return the asynchronous computation 

} 

let bangedResult = Async.RunSynchronously res  // Block to wait for the res value 

Listing 2.3: Simple Asynchronous Computations in F# 

// a sequence expression that has the argument lst repeated n times 

let repeat n lst = seq {  

    for i = 0 to n do  // loop for n times 

        yield! lst     // returns all values from sequence lst 

} 

 

// a query expression for all names of adult customers in the database 

let q = query {  

    for customer in db.Customers do  // for each customer in db.Customers 

    where (customer.Age >= 18)       // if he/she is an adult 

    select customer.Name             // select his/her name 

} 

Listing 2.4: Examples of Computation Expressions 
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Tasks & PLINQ 

Beside F#-specific concurrency constructs, Base Class Library (BCL) also offers related 

tools such as TPL, PLINQ and concurrent collections. Task Parallel Library (TPL) enables 

another form of future-based concurrency and is optimized for CPU-bound computations. 

It offers two alternatives for concurrency:  the Parallel class that has static methods for 

operations like parallel for, parallel foreach and parallel execution of functions; and the 

Task class that facilitates explicit task creation and execution. Built on TPL, Parallel 

Language Integrated Queries (PLINQ) offer a set of parallel operations for collections that 

resemble functional operators (such as map, fold, filter, group, etc.) using a naming con-

vention closer to SQL queries. These operations come as extension methods to classes that 

implement IEnumerable<'T>. 

Concurrency Infrastructure 

All aforementioned libraries and constructs use the CLI threadpool by default. Each CLI 

instance has a pool of managed threads, each of which resembles an OS thread in current 

.NET and Mono implementations. The CLI threadpool maintains a request queue where 

tasks and asynchronous operations are submitted. Each queue entry is dispatched to a pool 

thread for execution; execution starts immediately using an existing idle thread or a newly 

and thus created one, or it is deferred until a thread becomes available – the heuristic 

decision is based on thread availability and assessed work load. 

Depending on the library in use, one may be able customize the threadpool usage. Asyn-

chronous workflows and, by extension, agents do not offer particular configuration options; 

CLI threadpool usage is hardcoded in the implementation and therefore execution relies 

exclusively on threadpool parameters. TPL, on the contrary, is more configurable: each 

type Agent<'T> = MailboxProcessor<'T> // an alias 

type Ping = Ping of Agent<Pong>       // recursive type for ping/pong messages 

and Pong = Pong of Agent<Ping> 

// ping : Agent<Ping> 

let ping = Agent.Start(fun inbox ->  

    let rec loop() = async {  

        // wait for Pong               

        let! Pong(sender) =  

             inbox.Receive()  

        // reply with Ping 

        sender.Post <| Ping(inbox) 

        // recursive call 

        return! loop()                 

    } 

    loop() 

) 

// pong : Agent<Pong> 

let pong = Agent.Start(fun inbox ->  

    let rec loop() = async {  

        // wait for Ping               

        let! Ping(sender) =  

             inbox.Receive() 

        // reply with Pong 

        sender.Post <| Pong(inbox) 

        // recursive call 

        return! loop()                 

    } 

    loop() 

) 

pong.Post <| Ping(ping) // send Ping to Pong 

Listing 2.5: Infinite Ping-Pong in F# using Agents 
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task execution is managed by a task scheduler (which submits the tasks to the threadpool) 

that can be specified for each task. However only one implementation is provided in BCL. 

Collections 

F# includes basic immutable collections like list, set and map, while arrays are also first 

class citizens. In addition, BCL contains several collections - sequential and concurrent - 

that can be used when there is no F# equivalent, when they offer better performance 

characteristics or when interoperability with other CLI languages is required; BCL collec-

tions are no panacea, however, since they are mutable and relatively odd to use.  

2.4.3 Erlang 
Erlang [20] is a language designed for concurrency. As a language, it provides lightweight 

primitives for straightforward and succinct concurrent solutions; as a runtime, it supports 

their efficient and scalable execution.  

Processes and Actors 

Erlang supports the message-passing type of concurrency, namely the actor model. The so-

called processes have all the attributes of an actor: an unbounded mailbox for incoming 

messages, a behavior for processing a message and reacting accordingly, a private internal 

state and a well-defined lifetime. The behavior of 

a process is defined in a recursive function and 

the state comes in form of function parameters. 

Process creation and message exchange are prim-

itive operations in Erlang that are supported by 

non-blocking built-in operators of the language. 

In Listing 2.6 we demonstrate actors in Erlang 

using the same ping-pong example we used 

previously. 

Processes are lightweight. Each process begins its 

lifetime with a tiny memory space, including a 

private heap space where it stores its data; this 

memory is resized according to usage and it is 

independently garbage collected. Process execu-

tion is regulated by the schedulers of the Erlang 

runtime – by default one scheduler for each core 

available in the machine –, each of which man-

ages its work queue. Every process is assigned to 

one of those work queues and its execution is 

preemptively scheduled: after a specified number 

of so-called reductions the scheduler pauses the running process, returns it back to the 

work queue and resumes the next process (if any). That way the execution of every process 

is ensured.  

ping() -> % ping function 

  % receive pong message 

  receive  

    {pong, Pong_PID} -> 

      Pong_PID ! {ping, self()}, 

      ping() % recursive call 

  end. 

pong() -> % pong function 

  receive  

    {ping, Ping_PID} -> 

      % repond with pong 

      Ping_PID ! {pong, self()}, 

      pong() 

  end. 

start() -> 

  % create ping and pong actors 

  Ping_PID = spawn(fun ping/0), 

  Pong_PID = spawn(fun pong/0), 

  % send ping to pong 

  Pong_PID ! {ping, Ping_PID}. 

Listing 2.6: Infinite Ping-Pong in Erlang 
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Data Structures 

Erlang comes with a comprehensive standard library: several common functional data 

structures such as lists, sets and dictionaries; implementations of reusable concurrent ab-

stractions over the aforementioned language primitives; built-in functions (called BIFs) for 

numerous operations that cannot be expressed or efficiently implemented in Erlang.  

The Erlang Term Storage (ETS), a mechanism for key-value store, is a part of the library 

that deserves special mention. It offers a family of mutable data structures (set, or-

dered_set, bag and duplicate_bag) that are characterized by efficient lookup, addition 

and removal operations. More importantly, ETS tables can be configured to allow concur-

rent access to and mutation of their contents and therefore are invaluable tools for efficient 

parallel programming. 

Another significant part of 

the library consists of ab-

stractions and patterns for 

concurrent and distributed 

programming. Nevertheless, 

Erlang does not include 

ready-to-use parallel con-

structs, neither as primitive functionality nor as part of the standard library, although 

parallel abstractions can be composed using the provided lightweight concurrency con-

structs. (See for example Listing 2.7) 

All things considered, Erlang is built for concurrency. The language simplifies development 

of concurrent solutions and time-tested libraries facilitate productivity and quality. Still, 

all solutions are required to be modeled using actor model – even when a different approach 

is more appropriate – and, as a rule, the programmer has to forget the convenience of 

mutation. 

2.4.4 Comparison 
In the last three paragraphs we gave a brief description of Scala, F# and Erlang and 

presented the features of those languages that we use in our study. Here we demonstrate 

a more detailed comparison of those features in the following tables. 

Table 2.1: Future concurrency 

In Table 2.1 we compare the means to express future-based concurrency in Scala and F# 

– Erlang has no specific feature, although futures can be implemented using processes. 

 Scala F# 
Relevant Feature Futures Async Workflows Tasks 

Execution Mechanism ExecutionContext ThreadPool 
Configurability High Limited Moderate 
Composition Combinators Custom Syntax Task API 

%% Map function F over list L in parallel. 

parallel_map(F, L) -> 

  Root = self(), 

  [ receive Res -> Res end || _ <- [ 

    spawn(fun() -> Root ! F(X) end) || X <- L ] ]. 

Listing 2.7: Simple Parallel Map in Erlang 
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Scala futures run on an ExecutionContext that is specified by the programmer, while both 

F# asynchronous workflows and tasks are executed on the CLI ThreadPool by default. 

Consequently future execution is highly configurable, considering that two futures can be 

configured to run on different ExecutionContexts, each with its own options and execution 

policies. Nonetheless, tasks can use a custom TaskScheduler instead of the default, while 

the execution of asynchronous workflows is rather fixed, since the use of the ThreadPool is 

hardcoded in their implementation. Regarding compositionality, on the other hand, futures 

and async workflows have composable designs, contrary to tasks, whose API provides ra-

ther verbose. 

Table 2.2: Actor Concurrency 

 Scala F# Erlang 
Relevant Feature Akka Actors Agent<'T> Processes 

Support Level Library Library Language 
Behavior Callback Async Workflow Recursive Function

Behavior Change become/unbecome Tail-Recursive Call Tail-Recursive Call
Interface Dynamic Static Dynamic 
Execution Dispatcher ThreadPool Erlang Schedulers 

Configurability 

High; 
Execution Mecha-
nism per Actor, 

Mailbox, Supervision 
Policy 

None 

Limited; 
Parameters of 

Execution Mecha-
nism 

In Table 2.2 we compare the actor implementations of Scala, F# and Erlang. The F# 

library support for actors consist of only the Agent and any actor abstractions (routing, 

supervision, etc.) have to be implemented by the library user, while Akka and Erlang offer 

considerable amount of such functionality out-of-the-box. Each of the two latter actor 

implementations has a different level of configurability: Akka actors offer several configu-

ration options thanks to their implementation as a library, while the configurability of 

Erlang processes is limited to runtime properties. Moreover, these actors have a communi-

cation interface that can change during their lifetime, contrary to the F# Agent whose 

interface is part of its type and thus fixed. Finally, the way the actor behavior is defined 

resembles properties of the underlying runtime: the Erlang and F# runtimes support the 

tail-call optimization so the actor behavior is can be defined as a recursive function, con-

trary to Akka, which defines it as a callback function due to the lack of JVM support for 

tail-call optimization.  

 



 

 

Chapter 3  

Implementation 

In this chapter we present the first part of our thesis, namely the comparative evaluation 

of Scala, F# and Erlang regarding the expression of concurrency and parallelism. First we 

define the problem we use for our purposes and then we compare our implementations; for 

each language we provide a sequential implementation and some concurrent ones that 

follow three different approaches of performing the computation. Finally we make an over-

all assessment about our overall experience of programming in those three languages. 

3.1 The Problem: Orbit 

For our comparative investigation we needed a problem with a simple parallelizable solu-

tion to facilitate the evaluation of the various constructs offered by each language. We 

have chosen the Orbit problem (orbit_int) from the BenchErl Benchmark Suite [21]. 

In Listing 3.1 we present the definition used in our study; it differs from the inductive 

definition given in [21], but it resembles better our implementation approach. 

 
In our study we considered a special case of the Orbit problem where X⊆  and finite. 

Given: 

 a space S 

 a set of generators G	 	 gi:	 → , i ∈ 1…n 	

 a set of initial elements X0 	xj ∈ S,	j ∈ 	 1	...	m 	 

Let: 

 Xk+1 	gj xi ,	gj ∈ G,	xi ∈ Xk  

 Eu 	 ⋃ Xk
u
k 0   

Goal: 

 Compute the set Orb E∞ 

Listing 3.1: Orbit Definition 
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3.2 Solution Overview 

The general algorithm for computing the Orb set uses the above definition with a slight 

modification that avoids re-computation of the same elements: 

Xk+1 	gj xi ∉ Ek,	gj ∈ G,	xi ∈ Xk  

For each k we compute Xk+1 and insert its elements to Ek which is represented by a set 

data structure. This procedure is repeated until the k* where Xk*+1 is empty; k* is ensured 

to exist unless the result Orb has infinity elements. 

In order to examine the different concurrency models we described we examined the fol-

lowing approaches: 

A. Sequential: It is an exact translation of the described algorithm into code. 

B. Parallel: The elements of Xk  are computed in parallel (Scala Parallel Collec-

tions/F# PLINQ). 

C. Futures: Each  is split into chunks Xk
i   of a specified size G and computing 

each Xk+1
i  is a concurrent computation (future). 

D. Persistent Actors: Similar to C, but persistent actors are used to compute Xk+1
i  

instead of futures. 
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3.3 Common Notes 

3.3.1 Representation of the Orbit problem definition and the solver 
 The orbit problem definition is represented as shown in Table 3.1 and Listing 3.2. 

Table 3.1: Problem Definition Representations 

 

In Scala we can represent S also as a type parameter on a generic definition of Definition, 

however we chose to represent it as type member for better encapsulation.  

 
Overall, our solvers are designed to be mostly functional and generic. Every implementa-

tion is a function from a problem definition to the corresponding Orb set (Listing 3.3). 

3.3.2 Sets and Concurrent Sets in Scala, F# and Erlang 
We need an appropriate data structure to represent the resulting Orbit set. Our imple-

mentations use either a simple set (as provided by the standard library of each language) 

or a concurrent one; the choice depends on the accesses to the data structure, if they are 

Language Problem Definition S G X0 

Scala trait type member T method generators initData 
F# generic record type parameter T function generators initData 

Erlang record - function generators init_data 

Scala: 

trait Definition { 

  type T 

  def generators(x: T): Seq[T] 

  val initData: Seq[T] 

} 

F#: 

type Definition<'T> = {  

    generators: 'T -> 'T seq  

    initData: 'T seq 

} 

Erlang: 

-record(definition, {generators, init_data}).

Listing 3.2: Problem Definition Representations 

Scala: 

def solve(p:Definition)(/* other arguments */) : Set[p.T] = { /* body */ } 

F#: 

let solve <'T when 'T: equality> (* other arguments *) 

  { initData = initData; generators = generators } = (* body *) 

Erlang: 

solve(#definition{init_data = InitData, generators = Generators} % other arguments 

) -> % body 

Listing 3.3: Problem Definition Representations
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concurrent or not. To examine the performance characteristics of comparable data struc-

tures we have decided to use only set implementations that have practically constant access 

time. 

In Scala we have the option to use either Scala or Java collections. We created a simple 

abstraction (Listing 3.4) to ease the use of both libraries: we use ScalaSets and JavaSets 

as factories of Scala and Java sets respectively. The Java sets can be used like native Scala 

sets using the thin wrappers provided by the Scala collection library; the import 

collection.convert.WrapAsScala._ statement brings in scope the necessary implicit con-

versions that apply those wrappers.  

 

In F# and Erlang the standard immutable sets are implemented as trees and therefore 

have logarithmic complexity. Thus we use only System.Collections.Generic.HashSet<'T> 

(abbreviated as MutableSet<'T>) in F# and ETS tables of type set in Erlang.  

For the concurrent set functionality the ETS set of Erlang can be configured to allow 

concurrent reads and writes. Unfortunately both F# and Scala lack such a data structure, 

so we use concurrent maps as a workaround; we use the set elements as keys mapped to 

dummy values: 

// Import packages with shorter names 

import collection.{ immutable => i, mutable => m, concurrent => c } 

 

// Common interface for set providing objects 

trait SetProvider { 

  def iSet[A]: i.Set[A] 

  def mSet[A]: m.Set[A] 

  def cMap[A]: c.Map[A, Unit] 

} 

 

// A set provider for Scala sets 

object ScalaSets extends SetProvider { 

  def iSet[A]: i.Set[A] = i.Set[A]() 

  def mSet[A]: m.Set[A] = m.Set[A]() 

  def cMap[A]: c.Map[A, Unit] = c.TrieMap[A, Unit]() 

} 

 

// A set provider for Java sets 

object JavaSets extends SetProvider { 

  import java.{ util => ju }, java.util.{ concurrent => juc } 

  import collection.convert.WrapAsScala._ 

  def iSet[A]: i.Set[A] = throw new NoSuchElementException("Immutable Java Set") 

  def mSet[A]: m.Set[A] = new ju.HashSet[A] 

  def cMap[A]: c.Map[A, Unit] = new juc.ConcurrentHashMap[A, Unit] 

} 

Listing 3.4: Set and ConcurrentMap abstraction for Scala
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 In F# we use the BCL System.Collections.Concurrent.Concurrent-Dictionary  

<'Key, 'Value> with 'Key = 'T and 'Value=obj (with null as value), abbreviated 

as ConcurrentSet<'T >. 

 In Scala we have the option to use either scala.collection.concurrent.Trie-

Map[Key, Value] [22] or java.util.concurrent.ConcurrentHashMap[Key, Value] 

with Key = T. The implementation of scala.collection.concurrent.TrieMap han-

dles null-mapped elements as not included in the Map so we cannot use Value = 

Null; instead we use the similar Value = Unit. 

3.3.3 Partitioning into chunks of specific size 
The last two categories of our implementations need to explicitly partition the data of a 

sequence to chunks of a specified size. Scala collections have such a method: 

grouped(size: Int): Iterator[Repr]. As neither F# nor Erlang have such functionality 

ready to use, we created functions that behave similarly. 

 

In F# we wanted to have on-demand evaluation semantics. We created three partitioning 

functions:  

 one that partitions sequences (System.Collections.Generic.IEnumerable) and is de-

fined in terms of IEnumerator and IEnumerable 

 a second that partitions random-access collections (System.Collections.Ge-

neric.IList abbreviated as IndexedSeq), is also defined in terms of IEnumerator 

and IEnumerable and is more efficient as it reuses the initial data structure for the 

chunks 

 a third that also partitions random-access and retains the benefits of the second 

version while being defined using the comfortable computation expression syntax 

of F# 

In our implementations we used only the third of those functions (Listing 3.5). 

Contrary to Scala, these functions do not retain the type of the partitioned collection, a 

fact that highlights the less expressive F# type system. 

let chunked (chunkSize:int) (sq:#IndexedSeq<_>) :seq<_> =  

    let index = ref 0 

    let length = IndexedSeq.length sq 

    seq { 

        while !index + chunkSize < length do 

            let idx = !index 

            yield seq { for i = idx to idx + chunkSize - 1 do yield sq.[i] } 

            index := !index + chunkSize 

        if !index < length then 

            let idx = !index 

            yield seq { for i = idx to length - 1 do yield sq.[i] } 

    } 

Listing 3.5: F# partitioning function 
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In Erlang we do not have the tools to create similar functionality so we created a simple 

function that eagerly splits a list to lists of the specified ChunkSize and also returns a count 

of the created chunks.  

 

3.3.4 F#-specific libraries versus BCL 
Contrary to F# libraries, the Base Class Library is designed with object oriented principles 

and for use in languages like C#. Most functionality is offered as methods on mutable 

objects and cannot be easily composed. Moreover, using BCL results in non-idiomatic F# 

code and hinders the benefits of key language features like type inference.  

Collections are an area that highlights this remark: operations on F# collections are de-

fined as functions grouped in modules, while BCL collections have the corresponding func-

tionality implemented as methods of each collection instance. Type inference can deduce 

the type of a collection from the former group, based on the functions that operate on it; 

for the latter, it needs a type annotation because it cannot deduce object types from 

method calls.  

 

Aiming for natural F# implementations, we chose to provide wrappers for most of the 

used functionality as helper functions organized in modules resembling their respective 

type. For instance, we present the wrapper module for BCL HashSet (Listing 3.7) and 

ConcurrentDictionary (Listing 3.8). 

split(ChunkSize, List) -> 

  split_helper(List, ChunkSize, ChunkSize, [], [], 0). 

 

split_helper([], _ChunkSize, _Left, [], Result, Count) ->  

  {Count, Result}; 

split_helper([], _ChunkSize, _Left, Acc, Result, Count) ->  

  {Count + 1, [Acc|Result]}; 

split_helper(List, ChunkSize, 0, Acc, ResultAcc, Count) -> 

  split_helper(List, ChunkSize, ChunkSize, [], [Acc|ResultAcc], Count + 1); 

split_helper([H|T], ChunkSize, Left, Acc, Result, Count) -> 

  split_helper(T, ChunkSize, Left - 1, [H|Acc], Result, Count). 

Listing 3.6: Erlang partitioning function 

type MutableSet<'T> = System.Collections.Generic.HashSet<'T>  

 

[<RequireQualifiedAccess>] // forbid usage without the module identifier 

module MutableSet =  

    let unionWith (set:MutableSet<'T>) seq = set.UnionWith seq 

    let add (set:MutableSet<'T>) elem = set.Add elem 

    let contains (set:MutableSet<'T>) elem = set.Contains elem 

    let empty<'T> = MutableSet<'T>() 

    let ofSeq (seq:seq<'T>) = MutableSet<'T>(seq) 

Listing 3.7: HashSet alias and wrapper module 
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type ConcurrentSet<'T> =  

    System.Collections.Concurrent.ConcurrentDictionary<'T, obj> 

 

[<RequireQualifiedAccess>] 

module ConcurrentSet = 

    let add (set:ConcurrentSet<'T>) elem = set.TryAdd (elem, null) 

    let contains (set:ConcurrentSet<'T>) elem = set.ContainsKey elem 

    let empty<'T> = ConcurrentSet<'T,obj>() 

    let create<'T> (concurrencyLevel:int) (initialCapacity:int) =  

        ConcurrentSet<'T, obj>(concurrencyLevel, initialCapacity) 

    let ofSeq (seq:seq<'T>) =  

        ConcurrentSet(seq |> Seq.map ( 

            fun x -> System.Collections.Generic.KeyValuePair(x,null) 

        )) 

Listing 3.8: ConcurrentDictionary alias and wrapper module 
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In the following sections we present our implementations for each category. The actual 

code is slightly different as it also includes code related to configuration and time meas-

urement. 

3.4 Approach A - Sequential  

This is reference implementation for all languages. 

 is computed using a slightly different defini-

tion:  is mapped through  and only the elements 

that are not contained in 	 are kept.  

Each  is a distinct computational step that relies 

on the previous one. The result set is found at the 

step ∗ where ∗ is empty. 

3.4.1 Scala 
There are two sequential Scala implementations, one 

using an immutable set (Scala I, Listing 3.9) and a 

second using a mutable set (Scala M, Listing 3.10). Both sets have a common superclass: 

collection.Set and therefore share common functionality; yet we cannot reuse code be-

tween the two implementations as the mutable set has different usage pattern from the 

immutable one.  

Moreover, the local import statements enable the use the members of p: Definition as if 

they were locally defined. 

 

def simpleLogic(p: Definition) 

  (seq: GenSeq[p.T], results: Set[p.T]): Set[p.T] = { 

  import p._ 

  def helper(currentSeq: GenSeq[T], results: Set[T]): Set[T] = { 

    val nFilteredSeq = 

      currentSeq 

        .flatMap(generators(_)) 

        .filterNot(results.contains) 

        .distinct 

    if (nFilteredSeq.isEmpty) results 

    else helper(nFilteredSeq, results ++ nFilteredSeq) 

  } 

  helper(seq, results) 

} 

 

// Immutable Set 

def solve(p: Definition): Set[p.T] = { 

  simpleLogic(p)(p.initData, iSet ++ p.initData) 

} 

Listing 3.9: Approach A – Scala I 

Figure 3.1: Logic of Approach A 
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3.4.2 F# 
The F# sequential implementation (F# (Sequential)) in Listing 3.11 uses the 

MutableSet.add function to test for inclusion and add an element to the set, instead of 

checking and then adding together all the new elements. 

Note the explicit upcast of foundSoFar to seq<'T>: we want to hide the actual implemen-

tation of the result. Ideally the upcast would be to System.Collections.Generic.ISet<'T> 

but the Keys property System.Collection.Concurrent.ConcurrentDictionary<'K, 'V> we 

use in other implementations does not support it and we wanted to have a common inter-

face for all our implementations. 

Also Seq.toArray is essential to avoid computing of nCurrent at every enumeration. 

3.4.3 Erlang 
The Erlang implementation (Erlang (Sequential)) in Listing 3.12 is similar to the F# one: 

each element is atomically inserted in the set if not already present.  

let solve<'T when 'T: equality>  

  { initData = initData; generators = generators } = 

    let foundSoFar = MutableSet.ofSeq initData 

    let rec helper current = 

        if Seq.isEmpty current then 

            foundSoFar :> seq<'T> 

        else 

            let nCurrent =  

               current  

               |> Seq.collect generators  

               |> Seq.filter (MutableSet.add foundSoFar) 

               |> Seq.toArray 

            helper nCurrent 

     helper <| Seq.toArray initData 

Listing 3.11: Approach A – F# 

def solveMutableSet(p: Definition): (Set[problemDef.T], Long) = { 

  import p._ 

  val results = mSet ++ initData 

  def helper(currentSeq: Seq[T]) { 

    val nFilteredSeq = 

      currentSeq 

        .flatMap(generators(_)) 

        .filterNot(results.contains) 

        .distinct 

    results ++= nFilteredSeq 

    if (!nFilteredSeq.isEmpty) helper(nFilteredSeq) 

  } 

  helper(initData); results 

} 

Listing 3.10: Approach A - Scala M 



Approach A - Sequential  42 

42 
 

 

We use the ets module to: 

 create a set that is configured to accept reads and writes from any process (public) 

and have a globally visible name (named_table) using the new function, 

 atomically insert an element in the set if not already present, using the insert_new 

function, 

 retrieve all elements from the set using the match function, and 

 delete the set at the end of the computation. 

  

solve_helper([], _Generators) ->  

  ets:match(hashset, '$1'); 

solve_helper(Current, Generators) -> 

  NCurrent = lists:flatmap(fun(C) ->  

    [X | X <- Generators(C), ets:insert_new(hashset, {X}) end] 

  end, Current), 

  solve_helper(NCurrent, Generators). 

 

solve(#definition{init_data = InitData, generators = Generators}) -> 

  ets:new(hashset, [set, named_table, public]), 

  Result = solve_helper(InitData, Generators), 

  ets:delete(hashset), 

  Result. 

Listing 3.12: Approach A – Erlang 
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3.5 Approach B - Parallel 

We present two variations: the first is similar to approach A, with  being computed 

in parallel; the second uses a concurrent set where the elements are inserted during the 

parallel section. We present implementations only in Scala and F# which support the 

notion of parallel collection manipulation (we could have implemented a parallel map on 

lists using Erlang processes but we do not find it of value). 

3.5.1 Scala 
The first variation (Scala (ParSeq)) in Listing 3.13 shares its logic with approach A. Before 

passing initData to the logic we transform it to a parallel collection (ParSeq) by calling its 

par method. This is possible because simpleLogic is implemented in terms of GenSeq, a 

common superclass of Seq and ParSeq.  

The second variation in Listing 3.14 (Scala (ParSeq & ConcurrentMap)) uses 

ConcurrentMap[T, Unit] as concurrent set. The putIfAbsent method behaves similarly to 

the ets:insert_new function of Erlang but returns an Option with the old value if there 

was one in place of just a boolean value. At the end of the computation the keySet method 

is called to return the desired Orbit set. 

def simpleLogic(p: Definition) 

  (seq: GenSeq[p.T], results: Set[p.T]): Set[p.T] = { … } 

 

// Sequential 

def solve(p: Definition): (Set[p.T], Long) = { 

  simpleLogic(p)(p.initData, p.initData.to[Set]) 

} 

 

// ParSeq 

def solveParSeq(p: Definition): (Set[p.T], Long) = { 

  simpleLogic(p)(p.initData.par, p.initData.to[Set]) 

} 

Listing 3.13: Approach B – Scala – Variation A and Comparison with Approach A 

Figure 3.2: Logic of Approach B – Variation A Figure 3.3: Logic of Approach B – Variation B
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3.5.2 F# 
The first variation in Listing 3.15 uses PLINQ for parallel processing. Its logic is closer to 

the first Scala variation of this approach: instead of checking for inclusion and 

simultaneously adding the elements to the set, we first check for inclusion and then add 

all unique new elements to the set. 

 

It should be noted that PLINQ has different semantics from Scala parallel collections. The 

AsParallel() method does not parallelize a collection; it creates a parallel query that is 

evaluated upon enumeration of the result. Therefore calling ToList() is essential to avoid 

re-evaluation of nCurrent. 

There is also a stylistic difference with the sequential version: F# does not provide a 

predefined wrapper module for PLINQ contrary to the case of the Seq module and LINQ; 

so instead of the idiomatic piping operators and calls to module functions we use the 

extension methods of PLINQ.  

def solveParSeqWithConcurrentMap(p: Definition): Set[p.T] = { 

  import p._ 

  val results = cMap[T] 

  def helper(currentSeq: GenSeq[T]) { 

    val nFilteredSeq = currentSeq flatMap {  

      generators(_) filter (results.putIfAbsent(_, ()).isEmpty) 

    } 

    if (!nFilteredSeq.isEmpty) helper(nFilteredSeq) 

  } 

  helper(initData.par); results.keySet 

} 

Listing 3.14: Approach B – Scala – Variation B 

let solvePLinq<'T when 'T: equality>  

  { initData = initData; generators = generators } = 

    let foundSoFar = MutableSet.ofSeq initData 

    let rec helper current = 

        if Seq.isEmpty (current:seq<'T>) then 

            foundSoFar :> seq<'T> 

        else 

            let nCurrent =  

                current   

                    .AsParallel()                        

                    .SelectMany(generators) 

                    .Where(not << MutableSet.contains foundSoFar) 

                    .Distinct() 

                    .ToList() 

            MutableSet.unionWith foundSoFar nCurrent 

            helper nCurrent 

Listing 3.15: Approach B – F# – Variation A 
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For the second variation we use ConcurrentSet<T>. We implemented one version (F# 

(PLINQ)) using PLINQ (Listing 3.16) and a second (F# (Parallel.ForEach)) that uses the 

Parallel.ForEach method combined with a ConcurrentBag as a way to simulate a parallel 

collection (Listing 3.17).  

 

 

The Parallel class provides library-based data parallel replacements for common opera-

tions such as for loops, for each loops, and execution of a set of statements. These replace-

ments are designed to be blocking and consequently are rather restrictive. 

let solvePLinq2<'T when 'T: equality> M 

  { initData = initData; generators = generators } = 

    let foundSoFar = ConcurrentSet.create M 1000000 

    let rec helper current = 

        if Seq.isEmpty (current:seq<'T>) then 

            foundSoFar.Keys :> seq<_> 

        else 

            let nCurrent =  

                current   

                   .AsParallel() 

                   .SelectMany(generators) 

                   .Where(ConcurrentSet.add foundSoFar) 

                   .ToList() 

                helper nCurrent 

    for x in initData do  

        ConcurrentSet.add foundSoFar x |> ignore 

    helper initData 

Listing 3.16: Approach B – F# – Variation B (PLINQ) 

let solveParallelForEach<'T when 'T: equality> M 

  { initData = initData; generators = generators } = 

    let foundSoFar = ConcurrentSet.create M 1000000 

    let rec helper current = 

        if Seq.isEmpty (current:seq<'T>) then 

            foundSoFar.Keys :> seq<_> 

        else 

            let res = ConcurrentBag<'T>() 

            Parallel.ForEach(current, 

                generators  

                >> Seq.filter (ConcurrentSet.add foundSoFar) 

                >> Seq.iter res.Add 

            ) |> ignore 

            helper res 

    for x in initData do  

        ConcurrentSet.add foundSoFar x |> ignore 

    helper initData 

Listing 3.17: Approach B – F# – Variation B (Parallel.ForEach) 
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Evident in both versions is the limited API of ConcurrentSet (which resembles the capa-

bilities of the underlying ConcurrentDictionary). For example, there is no function that 

creates a ConcurrentSet with customizable level of concurrency (represented by the M pa-

rameter) and simultaneously bulk loads it with elements from an existing collection; each 

element has to be inserted separately.   
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3.6 Approach C - Futures 

In this approach we abandon the stepwise logic of approaches A and B, aiming to remove 

the bottleneck of waiting for a step to finish before the next step begins. A central role in 

this approach belongs to the coordinator, an actor that: 

 partitions sequences to chunks of a specified size G 

 starts an asynchronous job of computing the new elements  

 determines when the Orbit set has been fully computed 

The coordinator handles the following two messages: 

Start contains the initial data and a way to return the resulting Orbit set 

Result contains the data computed by an asynchronous job 

This approach has also two variations, distinguished by whether the variation uses a con-

current set or not. 

3.6.1 Scala 
The coordinator is defined using the actor domain specific language that is provided by 

Akka that helps to reduce the amount of code needed for simple actors. The coordinator 

has an initial behavior that handles Start messages. Upon receiving the Start message the 

coordinator assumes the main coordinator logic that reacts to Result messages and will 

eventually store the result to the promise when the computation finishes.  

We define the messages as Scala case classes instead of plain classes so that they are 

immutable and can be used in pattern matching. Case classes also provide structural 

equality and hashing, as well as an intutitive override of the toString method, but we do 

not use that functionality. 

 

// Message definition 

case class Result(data: Seq[T]) 

case class Start(data: Seq[T], promise: Promise[Set[T]])

Listing 3.18: Scala Messages 

Figure 3.5: Logic of Approach C – Variation A Figure 3.4: Logic of Approach C – Variation B
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The behavior switch is supported by the become method: the argument of become determines 

the actor reaction to messages henceforth. At least one call to this method is needed inside 

the Act body to designate the initial behavior; the reaction logic may have other become 

calls that alter the desired behavior according to the received messages.  

 

The chunkAndSend function (Listing 3.20) is used by the coordinator to create the asyn-

chronous jobs. It partitions the input to chunks and creates a job for each of them as a 

scala.concurrent.Future. The result of the Future is then piped to the coordinator using 

a predefined Akka pattern for future-actor communication. 

 

Listing 3.19: Scala Coordinator – Variation A (non-concurrent result set) 

new Act { 

  def chunkAndSend(data: Seq[T], coordinator: ActorRef): Int = { 

    … 

    future { Result(chunk.flatMap(generators(_)).distinct) } pipeTo coordinator 

    … 

  } 

  var foundSoFar = iSet[T] // or val foundSoFar = mSet[T] 

  var remaining = 0 

 

  def loop(replyPromise: Promise[Set[T]]): Receive = {  

    case Result(data) => 

      val filteredData = data.filterNot(foundSoFar.contains) 

      foundSoFar ++= filteredData 

      val jobs = chunkAndSend(filteredData, self) 

      if (remaining > 1 || jobs > 0) remaining += jobs - 1 

      else replyPromise.success(foundSoFar) 

  } 

  become {  

    case Start(data, promise) => 

      foundSoFar ++= data 

      become(loop(promise)) 

      val jobs = chunkAndSend(data, self); remaining += jobs 

  } 

} 

// Partition data to chunks, create jobs and return number of created jobs 

def chunkAndSend(data: Seq[T], coordinator: ActorRef): Int = { 

  var jobs = 0 

  for (chunk <- data.grouped(G)) { 

    import akka.pattern.pipe 

    future { … } pipeTo coordinator 

    jobs += 1 

  } 

  jobs 

} 

Listing 3.20: Scala partitioning and job-creating function 
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The Scala implementations are wrappers for the coordinator actor (Listing 3.22). The 

resultPromise is sent along with initData to the coordinator and then we wait for its 

asynchronous completion, when we will be able to access the result contained therein. 

 

 

new Act { 

  def chunkAndSend(data: Seq[T], coordinator: ActorRef): Int = { 

    … 

    future { Result(chunk.flatMap { 

      generators(_).filter(foundSoFar.putIfAbsent(_, ()).isEmpty) 

    })} pipeTo coordinator 

    … 

  }   

 

  val foundSoFar = cMap[T] 

  var remaining = 0 

 

  def loop(replyPromise: Promise[Set[T]]): Receive = { case Result(data) => 

    val jobs = chunkAndSend(data, self) 

    if (remaining > 1 || jobs > 0) remaining += jobs - 1 

    else replyPromise.success(foundSoFar.keySet) 

  } 

  become {  

    case Start(data, promise) => 

      foundSoFar ++= data.map((_, ())) 

      become(loop(promise)) 

      val jobs = chunkAndSend(data, self); remaining += jobs 

  } 

} 

Listing 3.21: Scala Coordinator – Variation B (concurrent result set) 

def solveFutures(p: Definition, G: Int): Set[p.T] = { 

  import p._, concurrenf.{future, duration, promise} 

   

  implicit val system = ActorSystem("system") // Define the actor system 

  val coordinator = actor("coordinator")(new Act { /* coordinator logic */ }) 

   

  val resultPromise = promise[Set[T]] 

 

  coordinator ! Start(initData, resultPromise) // Start computation 

  val res = // Await asynchronous result 

    Await.result(resultPromise.future, duration.Duration.Inf) 

   

  system.shutdown() // Stop all actors and shutdowns the system 

  res // Return result 

} 

Listing 3.22: Approach C – Scala 
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In Listing 3.22 we present the solver of this approach. We can see that even for a simple 

actor several lines of code are required: to create the actor system, to create the actor itself 

and to manually shutdown the whole system at the end of the asynchronous computation.  

3.6.2 F# 
The F# coordinator accepts messages of type Message<'T> as defined in Listing 3.23. 

 

We have defined the chunkAndSend function to take two parameters in addition to the data: 

sendLogic is the functionality that creates the asynchronous jobs and is specific for each 

variation of this implementation approach. 

chunker is the function that partitions the data. 

 

The sendLogic parameter is a function that creates the asynchronous jobs. It has a separate 

implementation for each variation and is defined as a function combination using the >> 

operator of F# (Listing 3.25).  

 

The Seq.toArray function calls force the evaluation of the sequence to happen in the asyn-

chronous jobs; without them, the computation is delayed until the enumeration of the 

sequence at the coordinator, making the execution practically sequential. 

type Message<'T> =  

| Start of array<'T> * AsyncReplyChannel<seq<'T>> 

| Result of array<'T> 

Listing 3.23: F# Messages 

let chunkAndSend sendLogic chunker data =  

    let mutable jobs = 0         

    for chunk in data |> chunker do 

        sendLogic chunk                 

        jobs <- jobs + 1 

    jobs 

Listing 3.24: F# partitioning and job-creating function

let logicMutableSet generators coordinator =  

    Seq.collect generators >> Seq.distinct 

    >> Seq.toArray 

    >> Result  

    >> Agent.post coordinator  

  

let logicConcurrentDictionary generators foundSoFar coordinator = 

    Seq.collect generators >> Seq.filter (ConcurrentSet.add foundSoFar) 

    >> Seq.toArray 

    >> Result 

    >> Agent.post coordinator 

Listing 3.25: Job logic of each variation 
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Like in Scala, the coordinator has an initial behavior accepting a Start message and a main 

behavior that reacts to Result messages. The behavior change in F# is a simple function 

call to the new behavior. But, unlike Scala, the messages that the coordinator accepts are 

part of its type and fixed; hence any possible message needs to be defined as case of a 

discriminated union, which is the type argument of the coordinator. 

The two coordinator variations are shown in Listings Listing 3.26 and Listing 3.27. 

 

 

let coordinatorMutableSet chunkAndSend G inbox =  

    let foundSoFar = MutableSet<'T>() 

    let rec start() =  

        async { 

            let! Start(initData, replyChannel) = Agent.receive inbox 

            MutableSet.unionWith foundSoFar initData 

            let jobs = chunkAndSend inbox (Seq.chunked_opt_2 G) initData 

            return! loop replyChannel jobs 

        } 

    and loop replyChannel remaining = async { 

        let! Result data = inbox.Receive() 

        let data = data |> Array.filter (not << contains foundSoFar) 

        MutableSet.unionWith foundSoFar data 

        let jobs = chunkAndSend inbox (Seq.chunked_opt_2 G) data 

        if remaining > 1 || jobs > 0 then 

            return! loop replyChannel (remaining + jobs - 1) 

        else 

            AsyncReplyChannel.reply replyChannel <| upcast foundSoFar 

    } 

    start() 

Listing 3.26: F# Coordinator – Variation A (non-concurrent result set) 

let coordinatorConcurrentSet foundSoFar chunkAndSend M G inbox =        

    let rec start() =  

        async { 

            let! Start(initData, replyChannel) = Agent.receive inbox 

            let jobs = chunkAndSend inbox (Seq.chunked_opt_2 G) initData 

            return! loop replyChannel jobs 

        } 

   and loop replyChannel remaining = async { 

       let! Result data = inbox.Receive() 

       let jobs = chunkAndSend inbox (Seq.chunked_opt_2 G)  data 

       if remaining > 1 || jobs > 0 then 

           return! loop replyChannel (remaining + jobs - 1) 

       else 

           AsyncReplyChannel.reply replyChannel <| upcast foundSoFar.Keys 

   } 

   start() 

Listing 3.27: F# Coordinator – Variation B (concurrent result set) 
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The coordinator body is implemented as a recursive asynchronous computation. The asyn-

chronous value bindings and function calls are expressed using the F# computation ex-

pression syntax and in particular the keywords let! and return!. 

For the first variation there is one version with the jobs being implemented as asynchro-

nous computation and one version using System.Threading.Tasks.Tasks (Listing 3.28).  

 
The second variation implementation is shown in Listing 3.29. 

 
All implementations of this category use a run function to “ask” the coordinator for the 

result (Listing 3.30). The Agent.postAndAsyncReply function is used to provide a way of 

getting back the result set.  

let solveAsync<'T when 'T: equality> G  

    { initData = (initData:seq<'T>); generators = generators } =  

    let chunkAndSend inbox =  

        let logic = logicWithMutableSet generators inbox 

        genericChunkAndSendComputations <|  

            fun chunk -> Async.Start <| async { logic chunk } 

    let coordinator = Agent.start <| agentLogicMutableSet chunkAndSend G 

    run coordinator initData 

  

let solveTask<'T when 'T: equality> G  

    { initData = (initData:seq<'T>); generators = generators } = 

    let chunkAndSend inbox =  

        let logic = logicWithMutableSet generators inbox 

        genericChunkAndSendComputations <|  

            fun chunk -> Task.Factory.StartNew(fun _ -> logic chunk) |> ignore 

    let coordinator = Agent.start <| agentLogicMutableSet chunkAndSend G 

    run coordinator initData 

Listing 3.28: Approach C – F# – Variation A (Async Workflows & Tasks)  

let solveConcurrentDictionary<'T when 'T: equality> M G  

    { initData = initData; generators = generators } =  

    let chunkAndSend foundSoFar inbox =  

        let logic = logicConcurrentDictionary generators foundSoFar inbox 

        chunkAndSend <| fun chunk ->  

            Task.Factory.StartNew(fun _ -> logic chunk) |> ignore 

    let coordinator = Agent.start <| fun inbox -> 

        let foundSoFar = ConcurrentSet.create<'T> M 100000 

        coordinatorConcurrentSet foundSoFar (chunkAndSend foundSoFar) M G inbox 

    run coordinator initData 

Listing 3.29: Approach C – F# – Variation B (ConcurrentDictionary) 
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3.6.3 Erlang 
Both coordinator and asynchronous jobs are implemented as Erlang processes: the coordi-

nator as a persistent actor (with function solve_conc_helper/4 as body) and the jobs as 

transient computations (that are spawned by the coordinator). 

 
In Listing 3.31 we present the wrapper function for both variations; the parameter 

Implementation is the coordinator logic. Notice the creation of the ETS table beside the 

already described options, the read_concurrency and write_concurrency options enable 

concurrent access. 

The coordinators uses an altered version of the presented split:split/2: split:split/3 

that in addition to partitioning the elements applies a function to each resulting chunk. 

 

let run coordinator initData =  

    Agent.postAndAsyncReply coordinator <| 

        fun channel -> Start(Array.ofSeq initData, channel) 

    |> Async.RunSynchronously 

Listing 3.30: The run function

solve_conc(#definition{init_data = InitData, generators = Generators},  

  G, Implementation) -> 

  ets:new(hashset, [set, named_table, public, {read_concurrency, true},  

    {write_concurrency, true}]), 

  Master = self(), 

  Coordinator = spawn(fun() -> Implementation(Master, Generators, G, 1) end), 

  Coordinator ! InitData, 

  receive finish -> ok end, 

  Result = ets:match(hashset, '$1'), 

  ets:delete(hashset), 

  Result. 

Listing 3.31: Approach C – Erlang 

solve_conc_helper(Master, _Generators, _G, 0) -> 

  Master ! finish; 

solve_conc_helper(Master, Generators, G, Remaining) -> 

  receive Current -> 

    FilteredCurrent = [Elem | Elem <- Current, ets:insert_new(hashset, {Elem})], 

    Coordinator = self(), 

    Count = split:split(G, FilteredCurrent, fun(Chunk) ->  

      spawn(fun() -> 

        Coordinator ! lists:usort(lists:flatmap(Generators, Chunk)) 

      end) 

    end),  

    solve_conc_helper(Master, Generators, G, Remaining + Count - 1)  

  end. 

Listing 3.32: Erlang Coordinator – Variation A (non-concurrent set) 
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In the first variation (Listing 3.32) the coordinator filters the Current elements and creates 

processes that apply the Generators to each Chunk, remove duplicate elements using the 

lists:usort function and send the result back to the Coordinator. 

 

The coordinator in the second variation (Listing 3.33) is limited to creating processes that 

apply Generators to each Chunk, insert the new elements to hashset and send them back 

to the Coordinator. 

  

solve_conc_helper(Master, _Generators, _G, 0) -> 

  Master ! finish; 

solve_conc_helper(Master, Generators, G, Remaining) -> 

  receive Current -> 

    Coordinator = self(), 

    Count = split:split(G, Current, fun(Chunk) ->  

      spawn(fun()-> 

        NCurrent = lists:flatmap(fun(C) ->  

            [X | X <- Generators(C), ets:insert_new(hashset, {X}) end] 

        end, Chunk), 

        Coordinator ! NCurrent 

      end) 

    end),  

    solve_conc_helper(Master, Generators, G, Remaining + Count - 1)  

  end. 

Listing 3.33: Erlang Coordinator – Variation B (concurrent set) 
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3.7 Approach D - Persistent Workers 

The implementations of this approach resemble the second variations of the previous ap-

proach. The distinctive difference is the use of persistent workers in place of transient 

asynchronous jobs for computing the new elements. The coordinator partitions the ele-

ments to chunks, as before, but each chunk is sent to a worker which is chosen according 

to a Round-Robin routing policy. 

This category mainly aims to examine the actor capabilities of Scala, F# and Erlang, so 

for each language we present only one version that uses a concurrent set. 

3.7.1 Scala 
In this implementation we use the full-fledged actor API as it is more flexible than the 

actor DSL we used previously.  

Besides the Start and Result messages (Listing 3.18), there is also the Job message (Listing 

3.34) that contains the chunk to be processed by a worker. We could choose to send the 

chunks without wrapping but due to the erasure of type T the chunk received would be a 

Seq[Any]. Therefore we decided to use the Job message. 

 
In Listing 3.35 we define the Worker class: it is an actor that reacts to Job messages by 

computing the new elements and replying to the sender, which is the actor who sent the 

message. 

 
In Listing 3.36 we present the Coordinator class:  

 M workers are created under a RoundRobinRouter, whose ActorRef is stored in the 

workers value.  

 The chunkAndSend function partitions the data and sends the chunks to the workers 

 The loop and receive functions resemble the states of the corresponding coordina-

tor of the previous category; again become is used for state switching with the dif-

ference that, in this implementation, it is a member of the context value instead of 

a direct member of the actor. 

case class Job(chunk: Seq[T]) 

Listing 3.34: The Job Message 

class Worker(map: collection.concurrent.Map[T, Unit]) extends Actor { 

   def receive = { case Job(chunk) => 

     sender ! Result(chunk.flatMap { 

       generators(_).filter(map.putIfAbsent(_, ()).isEmpty) 

     }) 

   } 

} 

Listing 3.35: The Worker class 
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All the actors of this system belong to a 

single hierarchy: the context.actorOf 

method creates the actor of its arguments 

as child of the current actor while the 

Props(…).withRouter method creates a 

router with the routees (W1-W4) as chil-

dren. As shown in Figure 3.6 the actor hi-

erarchy of this implementation has the co-

ordinator as top-level actor, below it stands the router and at the bottom the workers. 

 
In Listing 3.37 we present the implementation structure. 

class Coordinator extends Actor { 

  val foundSoFar = cMap[T] 

  val workers = context actorOf { 

    Props(new Worker(foundSoFar)) withRouter RoundRobinRouter(nrOfInstances = M) 

  } 

 

  var remaining = 0 

  def chunkAndSend(data: Seq[T]): Int = { 

    var jobs = 0 

    for (chunk <- data.grouped(G)) {  

      workers ! Job(chunk); jobs += 1 

    } 

    jobs 

  } 

 

  def loop(replyPromise: Promise[Set[T]]): Receive = { 

    case Result(data) => 

      val jobs = chunkAndSend(data) 

      if (remaining > 1 || jobs > 0)  

        remaining += jobs - 1 

      else  

        replyPromise.success(foundSoFar.keySet) 

  } 

 

  def receive = { 

    case Start(data, promise) => 

      foundSoFar ++= data.map((_, ())) 

      context become loop(promise) 

      val jobs = chunkAndSend(data); 

      remaining += jobs 

  } 

} 

Listing 3.36: The Coordinator class 

Figure 3.6: Actor Hierarchy & Message Routes 



57  Chapter 3. Implementation 
 

57 
 

 

3.7.2 F# 
The F# implementation, shown in Listing 3.38, shares its core logic with the previous 

approach (Listing 3.25). 

 
The worker actors are stored in an array field of the coordinator and the routing logic is 

embedded in the chunkAndSendToWorkers function (Listing 3.39): the reference i stores the 

index for the to-be-selected actor and is increased at each iteration of the loop, thus provid-

ing the desired routing behavior. 

def solveActorWorkersConcurrentMap(p: Definition, M: Int, G: Int) = { 

  … // Class definitions for messages, coordinator and worker 

 

  // Creates actor system and coordinator 

  val system = ActorSystem("system") 

  val coordinator = system actorOf Props[Coordinator] 

 

  // Creates, sends and waits for the result of the promise 

  val resultPromise = concurrent.promise[Set[T]] 

  coordinator ! Start(initData, resultPromise) 

  val res = Await.result(resultPromise.future, concurrent.duration.Duration.Inf) 

 

  // Shutdowns the system and returns the result 

  system.shutdown() 

  res 

} 

Listing 3.37: Approach D – Scala 

let solveWorkersAndConcurrentSet<'T when 'T:equality> M G  

    { initData = (initData:seq<'T>); generators = generators } = 

    let i = ref 0 

    let chunkAndSend workers _  = chunkAndSendToWorkers M workers i 

    let workPile = Agent.start <| fun inbox -> 

        let foundSoFar = ConcurrentSet.create M 100000 

        let workers = Array.init M <| fun _ -> Agent.start(fun workerInbox -> 

            let rec loop () = async { 

                let! chunk = Agent.receive workerInbox 

                logicConcurrentDictionary generators foundSoFar inbox chunk 

                return! loop() 

            } 

            loop() 

        )             

        agentLogicConcurrentSet foundSoFar (chunkAndSend workers) M G inbox  

    run workPile initData 

Listing 3.38: Approach D – F# 



Approach D - Persistent Workers  58 

58 
 

 

3.7.3 Erlang 
The Erlang implementation uses persistent processes for the coordinator and the workers. 

Similarly to the Scala implementation, the coordinator does not have direct access to the 

workers. In order to implement the round robin policy we need to keep some state, which 

should not be exposed to the coordinator logic; therefore we introduces a router that man-

ages the messages for the worker actors. 

 
In addition to the domain specific functionality, the Erlang coordinator is also responsible 

for terminating the router and the workers. When the result is ready, the coordinator sends 

it back to the wrapper function and sends a stop message to the router, which broadcasts 

stop messages to all the workers. 

In Listing 3.41 we present the worker actor. It reacts to Chunk messages by computing the 

new elements for each Chunk received and to stop messages by stopping itself. 

 

let chunkAndSendToWorkers M workers i chunker data = 

    let mutable jobs = 0 

    for chunk in data |> chunker do 

        (Array.get workers (!i%M), chunk)  ||> Agent.post 

        incr i; jobs <- jobs + 1 

    jobs 

Listing 3.39: The chunkAndSendToWorkers function 

coordinator(Master, Workers, _G, 0) -> 

  Master ! stop, 

  Workers ! stop;   

coordinator(Master, Workers, G, Remaining) -> 

  receive  

    Current -> 

      Count = split:split2(G, Current, fun(Chunk) -> Workers ! Chunk end), 

      coordinator(Master, Workers, G, Remaining + Count - 1)  

  end. 

Listing 3.40: Erlang Coordinator 

worker(Coordinator, Generators) ->  

  receive  

    stop -> ok; 

    Chunk -> 

      NCurrent = lists:flatmap(fun(C) ->  

          [X | X <- Generators(C), ets:insert_new(hashset, {X}) end] 

        end, Chunk), 

      Coordinator ! NCurrent, 

      worker(Coordinator, Generators) 

  end. 

Listing 3.41: Erlang Worker 
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The absence of mutable variables in Erlang dictated that the router would be a separate 

actor (Listing 3.42) whose state is the worker that will be chosen next. All actors are in a 

queue; when a message arrives, a worker is removed from the queue and is put at its end, 

while the received message is forwarded to it. 

 

The wrapper function is presented in Listing 3.41.  

 

  

round_robin_router(Workers) -> 

  receive  

    stop -> 

      lists:foreach(fun(Pid) -> Pid ! stop end, queue:to_list(Workers)); 

    Msg -> 

      {{value, Pid}, NWorkers} = queue:out(Workers), 

      Pid ! Msg, 

      round_robin_router(queue:in(Pid, NWorkers)) 

  end. 

 

create_workers_under_rooter(M, Func) ->  

  spawn(fun() -> 

    Workers = [ spawn(fun() -> Func(I) end) || I <- lists:seq(1, M) ], 

    round_robin_router(queue:from_list(Workers)) 

  end). 

Listing 3.42: Erlang Round-Robin Router 

solve_conc_workers(#definition{init_data = InitData, generators = Gens}, 

 M, G) -> 

  ets:new(hashset, [set, named_table, public, {read_concurrency, true}, 

   {write_concurrency, true}]), 

  Master = self(), 

  Coordinator = spawn(fun() ->  

    Coord = self(), 

    Workers = create_workers_under_rooter(M, fun(_I)-> worker(Coord, Gens) end), 

    coordinator(Master, Workers, G, 1)  

  end), 

  Coordinator ! InitData, 

  receive finish -> ok end, 

  Result = ets:match(hashset, '$1'), 

  ets:delete(hashset), 

  Result. 

Listing 3.43: Approach D – Erlang 
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3.8 Code metrics 

In Table 3.2 we present two metrics for all implementations: lines of code and token count. 

For each metric we provide a breakdown to a part that is shared among two or more 

implementations and a part unique for each of them, along with a total number; those 

numbers contain empty lines and brackets/parentheses. 

Table 3.2: Lines of Code and Token Count for each Implementation 

 

These metrics reflect some interesting aspects:  

 Code sharing between implementations that use concurrent and sequential data 

structures is limited, as the logic differs. 

 In Scala and F#, type inference affects the refactoring of common code to a reus-

able functions. The global type inference algorithm of F# supports that refactoring 

with relatively few added tokens, while the benefits of code reuse in Scala are often 

Implementation 
Total 
LOC 

Total 
Tokens

Unique 
LOC 

Unique 
Tokens

Shared 
LOC 

Shared 
Tokens

F# (Sequential) 14 55 14 55 - - 
F# (PLINQ) 17 55 17 55 - - 

F# (PLINQ & 
ConcurrentDictionary) 

17 63 17 63 - - 

F# (Parallel.Foreach & 
ConcurrentDictionary) 

17 74 17 74 - - 

F# (Persistent Actors) 57 254 15 78 42 176 
F# (Persistent Actors & 
ConcurrentDictionary) 

55 248 17 87 38 161 

F# (Async) 48 215 7 48 41 167 
F# (Task) 48 215 7 48 41 167 

F# (Task & 
ConcurrentDictionary) 

46 216 9 64 37 152 

Scala I/M (Sequential) 17 57 4 17 13 40 
Scala (ParSeq) 20 69 7 29 13 40 

Scala (ParSeq & 
ConcurrentMap) 

12 52 12 52 - - 

Scala I/M (Future) 46 148 46 148 - - 
Scala C (Future & 
ConcurrentMap) 

48 147 48 147 - - 

Scala (Persistent Actors) 57 172 57 172 - - 
Scala (Persistent Actors & 

ConcurrentMap) 
58 178 58 178 - - 

Erlang (Sequential) 13 41 13 41 - - 
Erlang (Process) 25 94 13 51 11 43 

Erlang (Process & 
Concurrent ETS) 

27 97 15 54 11 43 

Erlang (Persistent Actors & 
Concurrent ETS) 

49 154 46 154 - - 
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less important than the incurring token overhead due to mandatory type annota-

tion of function arguments.  

 In Scala, the collection library enables code reuse between sequential and parallel 

implementations by abstracting over the concrete implementation of the collection. 

Because the core implementation function uses an interface, whether the execution 

is sequential or parallel depends only on the object that is passed as argument. 

 Scala I/M (Future) implementations are almost identical; yet the share no code 

due to semantic differences between val and var. 
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3.9 Implementation Remarks 

During the implementation period of this thesis we encountered several surprises, oddities 

and delights that are worth mentioning.  

Types 

In terms of type systems Scala, F# and Erlang have noticeable differences:  

 Scala has a Turing-complete type system with a vast feature set.  

 F# has a type system that resembles its ML heritage, though it does not have the 

expressive module system of its siblings (SML, OCaml). 

 Erlang is dynamically typed so there is not much to say. 

The abundance of features in the type system of Scala is both a blessing and a curse. It 

was enticing to experiment with its capabilities in our implementations. First, we hid the 

element type T from parts of the implementation that did not need it by encapsulating it 

as a member of the problem definition instead of representing it as type parameter. Then 

we used type classes (in form of implicit context in the problem definition) to write one 

implementation that would be used for both Long and BigInteger elements. Last, we used 

subtyping in our main method to unify the cases of Long and BigInteger problem defini-

tions. 

During implementation we encountered several intricacies. Early on we came across the 

beast called type erasure: the element type was erased if we defined auxiliary types using 

generics. We were forced to redefine auxiliary types (like messages) in every implementa-

tion to avoid casts; of course we attempted to extract them as a separate dependency but 

the result was more convoluted than plain code repetition. In addition we witnessed some 

bugs: using path depended types caused the appearance of existential types that prohibited 

a function from passing type checking; and the type inference algorithm would not deduce 

a type as a subtype of another. These bugs were observed using the version 2.10.1 of the 

Scala compiler but they were fortunately both fixed in the 2.10.2 update. 

The F# experience with types was less adventurous. We used plain generics to represent 

our problem definitions and we worked around the absence of type classes with statically 

resolved type parameters that helped us avoid duplicating code between int64 and bigint 

implementations. On the other hand, global type inference assisted the extraction of com-

mon functionality in separate functions as we did not have to declare any argument types. 

However the type inference algorithm of F# does not work with object oriented features: 

it does not automatically subsume a type into its supertypes (explicit upcasts are required) 

and it cannot infer the type of an object based on an access to field or method that this 

type is known to have. 

From our experiences in Scala and F# we were satisfied from their type system capabilities, 

though we would recommend against combining several exotic features from the Scala type 

system since there are still rough edges like the aforementioned bugs. 
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Libraries 

In terms of featured libraries, the experience was similar to the above. Scala has the most 

comprehensive standard library, at least in terms of collection functionality. It offers sev-

eral different collection categories: mutable and immutable, lazy and eager, concurrent and 

parallel, along with wrappers for almost every Java collection, which make them appear 

just like their Scala counterparts. More importantly, all collections belong to a single hier-

archy and therefore have uniform usage patterns, while there is an excess of functionality 

shared among them. In order to benefit from them one has to thoroughly study their 

behavior to find which is better for one’s needs and to be able to reason about their 

behavior. 

Contrary to Scala, F# libraries offer basic functionality and they extensively rely to the 

Base Class Library. There are only immutable F# collections whose implementation is not 

very optimized (for instance: F# immutable set), so one has to use the BCL collection that 

offers the desired functionality. We have to note that BCL collections have an object 

oriented design so their use in F# feels somewhat unnatural and rules out any assistance 

from type inference. Furthermore, sequence expressions are a feature to appreciate, since 

they enable easy sequence manipulation (and every collection is a sequence) and their on-

demand evaluation semantics avoids creation of intermediate collections during sequence 

manipulation; however one has to be careful and most considerate when reasoning about 

their performance as one may encounter surprising performance characteristics arising from 

this on-demand behavior. 

Erlang, on the other hand, has a variety of functional data structures, and ETS, the de 

facto choice when high performance access to shared memory is required. On the other 

hand, it requires plenty of argument forwarding as it does not support global value decla-

rations, and the introduction of additional levels of indirection to implement functionality 

that could be easily implemented if mutable variables were supported – in our case the 

addition of the router actor. Consequently, all implementations are plain and functional in 

nature; which is not necessarily bad, considering that the resulting code is straightforward 

and easy to reason about. 

Feature Maturity and Library Stability 

During the prolonged period we were occupied with this study, we developed an overall 

view regarding the maturity and stability of the language implementations. Erlang and 

F# had a mostly stable feature set: few new features were added in during our observation 

period which were mostly compatible with the previous versions, and few bugs were en-

countered in their libraries. On the contrary, Scala experienced several feature and library 

additions and revisions that were not always backward compatible like modification of the 

future library and its transfer from the Akka binaries to the standard library. As a result, 

Scala is still evolving rapidly and one should be prepared for feature deprecation, function-

ality modification, implementation bugs and features that do not cooperate well with each 

other.  





 

 

Chapter 4  

Experimental Evaluation 

The second part of this thesis involves the study performance, scalability and other execu-

tion characteristics of the examined languages and runtimes. For that purpose we executed 

the implementations of the previous chapter for an Orbit definition we composed and we 

measured the effect of several runtime parameters. In the main body of this chapter we 

comment on the results of that execution and try to explain the observed behavior. Finally 

we provide an overview of those results along with some other remarks.  

4.1 Choosing the right benchmark 

We needed a benchmark that: 

 requires enough time to complete, in order to minimize the effect of “computational” 

noise, 

 computes elements representable with both 64-bit integers and integers of arbitrary 

size, to examine the effect of different number representations (in Erlang integers 

are arbitrary sized so we ), 

 results in an Orbit set of configurable size, and 

 allows the implementations to execute faster in environments with more computa-

tional resources 

Therefore we composed a benchmark that given a number	N computes numbers between 

0 and N, using simple functions, which contain additions and multiplications. These func-

tions have trivial computational cost so we chose to introduce a delay to each of them; 

that delay increases the computation time as needed without affecting the result of the 

computation.  

As simple loop-based delays are optimized away by the lan-

guage/JIT compilers, we devised a delay function that is 

more resistant to optimizations (Listing 4.1). This function 

uses variables h and l, initialized at 2*d and 0 respectively; 

h is decreased and l is increased until their values become 

equal after d iterations.  

def delay(d:Int) = { 

  var h = 2*d 

  var l = 0 

  while (h>l) { 

    h -= 1; l += 1 

  } 

  h-l 

}

Listing 4.1: The delay function



Runtime Parameters  66 

66 
 

 

For most of our measurements we chose the parameters N and d based on trial and error. 

At first we tried using big values (5-20 million) for N but that resulted in out-of-memory 

errors in our Scala implementations. We tried to work around those errors by altering the 

JVM startup parameters. We configured the size of the permanent generation space 

(PermGen) to 256MB instead of the default 64MB, since Scala has high requirements 

regarding this kind of memory, due to the numerous auxiliary classes it uses to support 

higher level constructs like closures and nested class definitions. Notwithstanding this com-

pulsory modification, our experimentation with JVM parameters gave unsatisfying results 

so we decided to follow a different approach: we experimented with different values of 

parameter d, to artificially increase the computation cost of each generator function so 

that the execution times for the sequential implementations in the three languages would 

be similar and long enough for our purposes. This way we managed to increase the parallel 

proportion of the total computation and achieve higher speedups that reflect better the 

limits of the concurrent runtime and libraries rather than the scalability of our algorithm 

and implementation. The final parameter values were: 

 N = 200000 

 d = 10000 for F# and Scala and d = 1000 for Erlang. 

4.2 Runtime Parameters 

In order to examine the scalability of our implementations we needed to limit their execu-

tion on a specified number of CPU cores. To that end we introduced the following param-

eters: 

 Parameter P: the CPU affinity of the OS process in which each implementation 

runs. It is specified using the taskset command on Linux and the affinity param-

eter on Windows. 

 Parameter M: a parallelism or concurrency parameter in the implementation or the 

libraries used; it may be the level of parallelism of a parallel collection, the level of 

concurrency of a concurrent data structure or the number of persistent actors in 

an actor system. 

 Parameter G: the chunk size argument of the partitioning function. We need to 

test several chunk sizes so that we can determine one that is small enough to enable 

parallelism and large enough to produce chucks that have considerable computa-

tional cost. 
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4.3 Execution environment 

For our experimental evaluation we used a Bulldozer-based server and the software de-

scribed in the following subsections. 

4.3.1 Bulldozer Architecture 
The machine we used for our benchmarking has 64-core Bulldozer-based server with the 

following characteristics: 

 4 sockets 

 2 NUMA nodes per socket (8 NUMA nodes in total) 

 8 cores per NUMA node (64 cores in total) 

 cache per core 

 64KB L1-instruction cache per 2 cores 

 2MB L2 cache per 2 cores 

 6MB L3 cache per NUMA node 

 16GB RAM per NUMA node (32GB RAM per socket and 128GB in total) 

 

4.3.2 Language Runtimes, Libraries and Scripting Environment 
The language runtimes and libraries we used for benchmarking are the following: 

 Scala 2.10.2 + Akka 2.1 on Java HotSpot 64-bit Server VM 1.7.0_21 

 F# 3.0 on Mono 3.11 Beta (both Mono and F# were built from the master branch 

of their respective Git repositories) 

 Erlang R16B01 64-bit with natively compiled libraries 

For the execution of the described configurations, we used the F# Interactive (from the 

above F# installation) as a scripting environment. 

  

Figure 4.1: Bulldozer Architecture 
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4.4 Approach A - Sequential 

We ran all implementations of this category for P = {1, 2, 4, 8, 16, 32, 64}. In Scala we 

examined implementations with both Scala and Java sets: Scala I uses an immutable Scala 

set, Scala M a mutable Scala one and Scala J the standard Java HashSet (see Table 4.1). 

 

 

In Figure 4.2 we present the result of the sequential executions. F# exhibited worse per-

formance that Scala, although we expected their corresponding execution times to be sim-

ilar. This result can be attributed to the different implementation approach (see Section 

3.4). Furthermore, Erlang gave times close to Scala but we should keep in mind the order-

of-magnitude difference among the parameter d values of the respective configurations.  

We should also make some remarks particularly about the three Scala implementations. 

In terms of performance the Java HashSet is fastest, second follows the mutable set and 

last comes the immutable one. Although the performance differences are small, Java has 

an apparently more optimized set implementation than Scala. In addition, we noticed that 

sometimes more than one processors were used in the execution of Scala configurations, a 

behavior suggesting that that the JVM uses several processors for internal operations like 

JIT compilation, garbage collection and other maintenance jobs. 

  

Implementation Set 

Scala I scala.collection.immutable.Set 

Scala Μ scala.collection.mutable.Set 

Scala J java.util.HashSet 

Table 4.1: Set type for each Scala implementation 

Figure 4.2: Approach A – Time 

1 2 4 8 16 32 64

F# 18963 18953 18946 18948 18951 18951 18949

Scala I 13965 13982 13961 13959 13964 13959 13961

Scala J 13761 13755 13763 13737 13739 13755 13760

Scala M 13838 13832 13924 13837 13836 13840 13833

Erlang 15469 14729 15485 14757 14715 14714 14712
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4.5 Approach B - Parallel Collections 

In this implementation approach we did not follow a universal benchmarking scheme. First 

of all, we could not run all the implementations; F# Variation A (PLINQ) when run on 

Mono throws a NullPointerException at the ParallelEnumerable.Distinct() call, so we 

were unable to take any measurements for it. We ran the other implementations for P = 

{1, 2, 4, 8, 16, 32, 64}.  

Also we used the M parameter - differently for each implementation. In Scala it represents 

the level of parallelism of the ForkJoinPool that supports the parallel execution on ParSeq 

and we ran the implementations for M = {1, 2, 4, 8, 16, 32, 64}. In F# (PLINQ), M is the 

level of parallelism that we want from the PLINQ library and it took values M = {1, 2, 4, 

8, 16, 32, 63}; in F# (Parallel.ForEach) M is the level of concurrency of the ConcurrentSet 

with values M = {1, 2, 4, 8, 16, 32, 64}. 

 

In Figure 4.3 the effect of parameter P is shown – for the best results regarding parameter 

M. Relatively to the sequential implementations (Scala I and F#), the overhead of this 

approach is tolerable in most cases; only Scala (ParSeq & juc.ConcurrentMap) has an 

overhead of 30% compared with not only the sequential implementation but also Scala 

(ParSeq & cc.TrieMap). This significant overhead is possibly an effect of JIT-compilation. 

After repeated execution of both Scala (ParSeq & cc.TrieMap) and Scala (ParSeq & 

juc.ConcurrentMap) we observed execution times over 19 seconds in some executions, 

while in others it dropped to 14 seconds. We assume that there is a heuristic determining 

whether JIT-compilation would result in faster execution of the running program or not; 

for these configurations the heuristic result differs between executions.  

1 2 4 8 16 32 64

Scala (ParSeq) 14145 9944 5145 2811 1536 1307 898

Scala (ParSeq &
juc.ConcurrentMap)

19360 7380 5012 2619 1519 1038 619

Scala (ParSeq & cc.TrieMap) 14251 9879 3673 2564 1252 676 591

F# (PLINQ & Concurrent
Dictionary)

19932 10367 5386 2971 1980 1501 1297

F# (Parallel.ForEach &
Concurrent Dictionary)

20467 10955 5869 3450 2467 1696 1285
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Figure 4.3: Approach B – Time 
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Except for the Scala (ParSeq & juc.ConcurrentMap) and its initial overhead, no imple-

mentation speedup is remarkable (Figure 4.4). The cause for the witnessed behavior is the 

stepwise logic of this category that impedes parallel execution: the elements of each step 

do not suffice to create enough parallel work to fully utilize the available resources and 

even if there is ready work for the next step it cannot start because of the stepwise logic.  

Nonetheless, the concurrent set in Scala (ParSeq & cc.TrieMap) leads to a speedup of over 

24 for 64 cores comparing to below 16 of Scala (ParSeq). Contrary to that, both F# 

implementations resulted in similar speedups, regardless of the set that was used. It seems 

that Scala features a scalable concurrent set implementation, while F# does not. 

 

  

1 2 4 8 16 32 64

Scala (ParSeq) 1,00 1,42 2,75 5,03 9,21 10,82 15,75

Scala (ParSeq & cc.TrieMap) 1,00 1,44 3,88 5,56 11,38 21,08 24,11

Scala (ParSeq &
juc.ConcurrentMap)

1,00 2,62 3,86 7,39 12,75 18,65 31,28

F# (PLINQ & Concurrent
Dictionary)

1,00 1,92 3,70 6,71 10,07 13,28 15,37

F# (Parallel.ForEach &
Concurrent Dictionary)

1,00 1,87 3,49 5,93 8,30 12,07 15,93
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Figure 4.4: Approach B – Speedup 
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4.6 Approach C - Futures 

The benchmarking configurations for this category were combinations of the following 

parameters: 

 P = {1, 2, 4, 8, 16, 32, 64} 

 G = {1, 10, 100, 500, 1000, 5000, 10000} 

 M = {1, 2, 4, 8, 16, 32, 64} - only for F# (Task & Concurrent Dictionary) 

Due to the overwhelming amount of possible configurations for each implementation we 

present mainly the diagrams that show the effect of parameter P on the execution times, 

for the best values regarding parameters M and G. We present each variation separately 

to avoid congested diagrams and thereafter we comment the effect of parameters M and 

G. 

Variation A 

We present the times for Variation A in Figure 4.5. This approach introduces relatively 

small overheads as we can deduce by comparing the execution times for P = 1 and the 

corresponding sequential times (Figure 4.2).  

 

By comparing F# (Task) with F# (Async) we observe that tasks do not offer any perfor-

mance gains over asynchronous workflows, while they are less idiomatic to use. In Scala, 

better raw performance is achieved by using a mutable set (Scala M) instead of the default 

immutable one (Scala I), a behavior that agrees with the one observed in the sequential 

implementations. 

1 2 4 8 16 32 64

F# (Async) 19596 10027 6686 2594 1880 1121 951

F# (Task) 19583 10159 6712 3360 1898 1127 1140

Scala I (Future) 16332 8840 4844 2506 1760 938 703

Scala M (Future) 15360 8346 4585 2474 1738 895 504

Erlang (ETS) 15985 8220 4228 2273 1569 1505 1495
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Figure 4.5: Approach C – Variation A - Time
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In Figure 4.6 we present the corresponding speedups; interestingly all implementations 

scaled up to 16 cores and then each language behaved differently:  

 Erlang (ETS) scaled only up to 16 cores after which speedup was fixed. 

 F# implementations showed significant speedup increases up to 32 cores; for 64 

cores F# (Tasks) speedup declined a bit and F# (Async) climbed up to 20. 

 Scala implementations scaled up to 64 cores: Scala M (Future) had speedup over 

30 and Scala I (Future) over 23.  

Next we present the results for Variation B. 

Variation B 

 

1 2 4 8 16 32 64

F# (Async) 1,00 1,95 2,93 7,55 10,42 17,48 20,61

F# (Task) 1,00 1,93 2,92 5,83 10,32 17,38 17,18

Scala I (Future) 1,00 1,85 3,37 6,52 9,28 17,41 23,23

Scala M (Future) 1,00 1,84 3,35 6,21 8,84 17,16 30,48

Erlang (ETS) 1,00 1,94 3,78 7,03 10,19 10,62 10,69
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Figure 4.6: Approach C – Variation A - Speedup 

1 2 4 8 16 32 64

F# (Task & Concurrent
Dictionary)

19671 10311 5289 2780 1989 1194 1039

Scala (Future & cc.TrieMap) 15685 8715 4720 2519 1756 893 450

Erlang (Concurrent ETS) 15883 8362 4308 2297 1357 796 576
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Figure 4.7: Approach C – Variation B – Execution Time 
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In Figure 4.7 we present execution times. As expected, performance is better than in Var-

iation A because of the reduced sequential part of the implementation logic: the concurrent 

set enables more work to happen in parallel thus relieving the coordinator from inserting 

elements to the result set and leading to greater speedup (Figure 4.8). 

 

As observed, Scala (Future & cc.TrieMap) and Erlang (Concurrent ETS) scale up to 64 

cores with Scala showing the greatest speedup, while F# (Task & ConcurrentDictionary) 

shows only a slight speedup increase after 32 cores. The concurrent set constitutes a key 

part of this implementation group as it is concurrently accessed by several concurrent 

threads and undergoes a great deal of contention. Consequently the implementation of 

each concurrent set is resembled in the observed scaling behavior. 

Execution Parameters M and G 

Parameter M is used only in F# (Task & Concurrent Set) 

where it represents the level of concurrency of the concurrent 

set – the Scala and Erlang implementations do not provide 

any similar configuration options. As presented in Table 3.1 

the concurrent set can scale up to 16 concurrent accesses, a 

number after which its performance decreases. 

Parameter G on the other hand is used in all implementations 

of this category and while we have measurements showing its 

effect for all of them, there is little significance in listing them 

all. Instead we present a case were its influence is manifested 

most evidently. 

1 2 4 8 16 32 64

F# (Task & Concurrent
Dictionary)

1,00 1,91 3,72 7,08 9,89 16,47 18,93

Scala (Future & cc.TrieMap) 1,00 1,80 3,32 6,23 8,93 17,56 34,86

Erlang (Concurrent ETS) 1,00 1,90 3,69 6,91 11,70 19,95 27,57
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Figure 4.8: Approach C – Variation B - Speedup 

M Time (ms)

1 1142 

2 1049 

4 1160 

8 1096 

16 1039 

32 1102 

64 1199 

Table 4.2: F# (Task & Con-
current Dictionary) – Effect 
of M (A = 64 and G = 100) 
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Figure 4.9 shows the effect of parameter G on the execution time. We can estimate the 

best chunk size for our benchmark to be approximately 100 elements. This size can be 

associated with chunks that have enough computational work to benefit from parallel ex-

ecution but are small enough to facilitate use of all available cores.  
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Figure 4.9: Approach C – Variation B – Effect of G (A = 64) 
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4.7 Approach D - Persistent Actors 

We examined the simple actor systems we created for this approach using the same con-

figurations described in the previous section. Parameters A and G are unchanged, while 

parameter M represents the number of persistent worker actors that were created in each 

configuration, and the level of concurrency for the concurrent set (where appropriate). 

In Figures Figure 4.10 and Figure 4.11 we present the best results regarding parameters 

M and G for all values of parameter P. Unexpectedly, F# (Persistent Actors) exhibited 

better performance than F# (Persistent Actors and Concurrent Dictionary), which had a 

significant initial overhead. That result hints towards a bad cooperation between the 

ConcurrentDictionary and the MailboxProcessor implementations.  

We can observe that all other implementations behaved similarly to their counterparts of 

the previous category. Considering that the only change was the use of persistent workers 

in place of the transient ones, it should not be surprising; even the slightly worse perfor-

mance of some cases can be explained. In Erlang the router implementation is not opti-

mized; it requires message handling which adds an overhead in comparison to the F# and 

Scala implementations. Moreover it should be mentioned that all implementations use the 

default configuration for the actor systems; while in F# there are no configuration options 

of the actor runtime, in Erlang and Scala several related options have to be considered.  

 

Figure 4.11 presents the corresponding speedups. With the exception of F#, implementa-

tions with concurrent sets are the most scalable, as expected. In addition, F# (Persistent 

Actors & Concurrent set) initially shows abnormal speedup (up to 8 cores) – this is not 

confusing considering the initial overhead.  

1 2 4 8 16 32 64

Erlang (Persistent Actors &
Concurrent ETS)

15781 8333 4283 2277 1364 838 637

F# (Persistent Actors &
Concurrent Dictionary)

23250 10203 5318 2873 2058 1325 1238

F# (Persistent Actors) 19542 10000 5103 2642 1912 1169 1081

Scala (Persistent Actors &
cc.TrieMap)

14142 8053 3654 2522 1329 668 481

Scala (Persistent Actors) 15777 8496 4769 2566 1807 968 770
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Figure 4.10: Approach D – Time 
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In principle, actors aim for efficient message handling, not heavy computations. The afore-

mentioned results indicate that the examined actor implementations can be used to design 

systems that perform serious computations with only minor overhead, even though futures 

are more suitable for this kind of work. 

Parameters G and M 

As shown in Figure 4.12, the best value for parameter G is around 10 and 100, similarly 

to the results of Approach D. 

 

Regarding parameter M the results are as expected: best is to choose a number of workers 

that is equal or higher than the number of available cores. As an example, in Figure 4.13 

we present the influence of parameter M for A = 32. As we can see, peak performance is 

1 2 4 8 16 32 64

Scala (Persistent Actors) 1,00 1,86 3,31 6,15 8,73 16,30 20,49

F# (Persistent Actors) 1,00 1,95 3,83 7,40 10,22 16,72 18,08

Scala (Persistent Actors &
cc.TrieMap)

1,00 1,76 3,87 5,61 10,64 21,17 29,40

F# (Persistent Actors &
Concurrent Dictionary)

1,00 2,28 4,37 8,09 11,30 17,55 18,78

Erlang (Persistent Actors &
Concurrent ETS)

1,00 1,89 3,68 6,93 11,57 18,83 24,77
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Figure 4.11: Approach D – Speedup 
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achieved for a number of workers that is equal or higher than the number available cores, 

a result that is consistent with intuition. 
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Figure 4.13: Approach D – Effect of M (A = 32) 
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4.8 Additional Results 

4.8.1 Iterations needed for stable execution times 
F# implementations had considerably worse performance than the corresponding Scala 

ones. This remark was quite unexpected considering that high proportion of the measured 

times involved arithmetic operations; one would expect Mono and JVM to perform likewise 

under such load. 

Trying to explain this behavior we suspected two components of Mono: the Sgen garbage 

collector and the JIT compiler. Sgen is a recently-introduced generational garbage collector 

destined to replace the default non-generational Boehm collector. In our benchmarking we 

used the first which is deemed to offer better performance but is also not as mature as the 

latter. On the other hand, the JIT compiler of Mono is not as optimized as the JVM one.  

Our suspicions were enhanced by the actual results: for F# implementations, performance 

was still improving at the 10th execution iteration, while for Scala implementations it was 

stabilized several iterations before. We decided to repeat execution of Approach C imple-

mentations for 50 iterations and only for A = 64; for F# we used both garbage collectors 

of Mono and for Scala both mutable and immutable sets. 

In Figures Figure 4.14 and Figure 4.15 we present the results for Variation A and B re-

spectively. 

 

In Variation A, Scala M times were rather unstable, probably due to reallocations and 

copying of inner data structures of the mutable set. Furthermore, Scala times reached a 
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Figure 4.14: Approach C - Variation A - Times for 50 iterations 
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minimum at the 3rd iteration while F# times were still declining after the 40th iteration, a 

number that is unrealistic for our computation scenario; around the 22nd iteration, however, 

F# Boehm overcame Scala I in becoming the implementation with the best performance. 

 

In Variation B the concurrent set of the F# implementation resulted in highly unstable 

performance as the nondeterministic access patterns were combined with the effect of gar-

bage collection. Both F# garbage collectors showed similar behavior with Boehm giving 

slightly better times that Sgen. In any case, both F# configurations were left far behind 

as Scala was the clear winner in terms of performance. 

All in all, each variation behaved differently, yet JIT compilation had evident positive 

effects on the performance of both Scala and F# configurations (though much more on the 

latter), while the trend lines of Erlang execution times signified the absence of any JIT 

optimization. Finally, minor and scarce divergences in the time measurement were wit-

nessed even in stable executions denoting indeterminism in concurrent scheduling, pro-

longed garbage collection sessions and concurrent execution of other processes running on 

the same machine. 

4.8.2 Integers of arbitrary size 
Erlang integers have arbitrary-precision and are subject to garbage collection, contrary to 

the 64-bit integers we used in Scala and F# implementations. In this section we investigate 

the performance of integers with arbitrary-precision in Scala and F#. 

For A = 64 and d = 10000 we executed the following for 10 iterations: 

 Scala M/I (Sequential) and F# (Sequential) - Figure 4.16 
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Figure 4.15: Approach C - Variation B - Times for 50 iterations 
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 Scala M/I (Future), F# (Task) and F# (Async) with M = 64 & G = 100 - Figure 

4.17 

 

 

We see that integers with arbitrary-precision do not imply serious drops of performance 

compared to the 64-bit integers we used for the main body of our benchmarks – 

performance is still much better that in Erlang. 

As a side-note we should mention that, in addition to the above configurations, we tried 

implementations with concurrent sets but unfortunately F# implementations run into 

deadlocks, due to buggy Mono libraries.  
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Figure 4.17: Integers of Arbitrary Size - Futures 
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4.9 Experimental Evaluation Remarks 

For the evaluation part of this study we have the following remarks:  

 Erlang and Scala scale up the most, especially in the variations that use concurrent 

sets. Scala concurrent TrieMap facilitates implementations that scaled up the most, 

while the Erlang concurrent set using ETS tables also exhibits an excellent scaling. 

On the contrary, ConcurrentDictionary shows unremarkable scaling that is minimal 

after 16-32 cores. 

 Scala implementations have the best performance. It is followed by F# implemen-

tations which show lower performance contrary to our expectations. Nevertheless, 

Erlang implementations are the slowest considering the parameter d values for the 

configurations of each language - Erlang is clearly not suited for arithmetic com-

putations.  

 Using arbitrary-precision arithmetic in F# and Scala does not cause significantly 

slower performance, though it results in deadlocks for F# implementations that 

use a concurrent set. 

 Regarding JIT compilation: JVM provides its most optimized machine code before 

the 4th execution iteration while Mono needs over 20 iterations to show similar 

performance, a number which is clearly unacceptable for realistic scenarios.





 

 

Chapter 5  

Related & Future Work 

5.1 Related Work 

Similar to our work, P. Totoo, P. Deligiannis and H.-W. Loidl presented a thorough 

comparison of Haskell, F# and Scala regarding parallelism [23]. For their evaluation they 

provided several Barnes-Hut implementations of the n-body problem in each of these 

languages. Their implementations were executed on both Linux and Windows 

environments and detailed measurements were taken regarding time and memory 

consumption. Moreover, one of their objectives was to present reusable data parallel 

patterns so their methodology was mainly limited in experimenting with parallel-map 

implementations that used appropriate tools of each language and did not contain any 

actor-based approaches. Their main result: “near best speedups are achieved using the 

highest level abstraction”. 

5.2 Future Work 

Our investigation is far from complete and can be extended to several directions that 

include: 

 Execution evaluation on Windows. It is a major platform for programming multi-

core concurrency and its evaluation is sine qua non for a complete study of concur-

rency and parallelism on modern systems. Moreover, F# was designed on the .NET 

framework that has a far more mature implementation on the CLI, so it would be 

fair to evaluate F# on Windows. 

 Detailed memory and execution time measurements. A more comprehensive re-

source-consumption evaluation of our implementations is important for a conclusive 

assessment of language and runtime efficiency. 

 Experimentation with more configuration parameters. In this thesis we used mostly 

the default library and runtime settings; it would be interesting to consider different 

option values, especially for the Akka library that provides numerous configuration 

options. 

 Investigation of additional functional languages like Haskell and Clojure to broaden 

the scope of the study. 
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 Comparison with popular imperative tools for concurrency and parallelism, like 

Cilk++ and Thread Building Blocks. This comparison is essential to assess the 

performance of functional languages in comparison to imperative solutions. 

 Evaluation on concurrent problems that are better suited for the actor model. The 

computational nature of the Orbit problem does not highlight any actor benefits 

that are related to error-handling or systems with dynamic topology. 



 

 

Chapter 6  

Conclusion 

In this thesis we investigated concurrency and parallelism in languages that support the 

functional programming paradigm. Aiming to provide a thorough comparison of Scala, F# 

and Erlang on concurrency and parallelism, we evaluated four different implementation 

approaches for solving a simple, yet non-trivial computational problem.  

Below we provide an overview of our experience along with our final judgment: 

Scala exhibits the largest feature set, the broadest library offerings, the best performance 

and the most scalability. Its rich feature set and comprehensive libraries facilitate high 

productivity but also may lead to programs whose comprehension requires serious mental 

effort - with great power comes great responsibility and pain, and one has to be meticulous 

when deciding which features to use and how. There is also a significant learning curve 

before being able to benefit from Scala and its currently agile evolution pace implies that 

one must be ready to modify or even replace code and libraries; this is only balanced by 

the promises for power, productivity, and performance gains. 

F# facilitates concurrency and parallelism by providing a competitive feature set and 

adequate standard library while retaining access to all CLI libraries. Although it is not as 

rich in features as Scala, F# facilitates interesting, expressive and concise code with less 

choices for the programmer to consider. Unfortunately we cannot recommend its usage in 

Linux for developing concurrent and scalable applications due to several bugs of the Mono 

implementation. 

Erlang is a mature language designed for concurrent programming. It comes with a library 

that contains all the necessary functionality for highly scalable concurrent solutions. None-

theless we cannot recommended Erlang for heavy arithmetic computations or when in-

teroperability with other languages is a main requirement. The absence of variable muta-

tion and global variables are irritating traits of Erlang but its functional nature helps in 

developing code which is correct and easy to reason about. 
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