£

W

K
ro
s

@‘!' .

X

i
W’y

eT508 A
ME 20
-3/
. rd =\
W@
PAMBEY §
=§|
nVPPoro

|

Edvixoé Metoofio 1lohuteyvelo
Eyoh) Hiextporhdywv Mnyovixdv xow Mrnyovixoyv Troloylotmy

Topéag Teyvoroyiac IIAnpogopixhc xou YTnohoylotwy

Tavtoypoviowog xau ITagarAniio o Erlang,
F# xow Scala — Mot cuyxpLTtixy] REAETT

Aimhwpatiny, Epyootia

Tov

I'ewpyiouv PapdnovAou

EnBAenwv: Kootic Yayovag
Avaminpwtic Kadnyntic E.M.IL

Epyaotripio Teyvoloylac Aoyiouxo
Advva, Tobhog 2013

Edvixd Metodfio Ilohuteyvelo
Yyor) Hiextpoldywv Minyovixwy xou Mnyovixoy Trohoylotody
Touéag Teyvoloylac ITAnpogopinric xou Trohoyiotwdv

Epyaotripio Teyvoloylac Aoyiouixo

Tavtoyxpoviowog xo Ilagariniio o Erlang,
F# xow Scala — Mo cuyxpLTtixy] REAETT

Awmhwpatiny Epyooio

I'ewpyiouv PoagdTOLAOL

EnBArenwv: Kwotic Yayovag
Avaminpwtic Kadnyntic E.M.IL

Eyxpldnxe and v tewperq efetaotnd emtpony) v 18" Toukiou, 2013.

Kwothg Xoaydvog Nuwbdraog Hamaonbeou Evotdtioc Zdyoc
Av. Kadnyntric E.M.IL Av. Kadnyntric E.M.IL Kodnynthc E.M.IL

Adva, Tobhog 2013

I'ewpeyiog Papdmoviog

Awmhopoatodyoc Hhextpordyoc Mnyovixde xow Mrnyovixde Trnoroyiotodv E.M.IL

Copyright (©) — All rights reserved I'ewpyloc Wapdmourog, 2013.
Me emupOAan TavToOC SIXaMUATOC.

Arnoyopebetan 1 avTiypagy), anothxeuor xou dlavour Tne mapolcog epyaciag, €& ohoxhripou
7} TUWAUATOC QUTAG, Yia EUTOPIXG OoXOoTo. Emtpéneton 1 avatOnwaoy, anoixeuor xou Slovou
Yot OXOTO YN XEEBOOXOTUXNOG, EXTUOELTIXNG 1) EPELVNTIXNG QUOME, LTS TNV Teolndleor va
AVOUPERETAL 1) TNYT| TEOEAELUOTC Xou VoL Batneeiton To Topdy urvupa. Epontiuata tou agpopoly
N XENOT TNG EQYUCIAS YLl XEEDOOKOTUXO GXOTO TEENEL VoL AMELVVVOVTOL TPOG TOV CUYYYRd-

peaL.

Ou amdelg xou Tor GUUTERAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYEUPO EXPEALOUY TOV GUY-
yoopéa xou dev mpEnel vor epunvevdel 6TL avTinpocwtebouy Tig entonueg Yéoelc Tou Edvixol

Metoo6fiou Iloduteyvelou.

IepiAndn

H emuxpdtnon twv moAunipnvmy dpyLtTEXTOVIXWOY GTO GUYYEOVO UTOAOYLoTIXO YiyvecUo emo-
VAPERE TO CUVOPTNCLIXO TEOYPAUUHUATIONO GTO TEOCKNVLO WG TO TEOPAVES TAaioLo amhomoln-
ong xan aalpeong. Tndpyouoes cuvapTnolaxég YAwooes, 6nwe 1 Erlang xou n Haskell, uné-
OTNOOY UETATEOTES 1| EMEXTAVNUOV TEOS EXYETAAAEUCT) TOU TOESIAANAOU LAXOU, €V VEEC,
onwe n F#, n Scala xou n Clojure, dnuovpyinxayv mpog dloyelplon Tne TOAUTAOXOTNTAC O
ONUOPLAE(C EXOVIXES UMY aVEC.

Ou ev Moyw YADOGOES TPOGREROUYV €Val EVPY PACUI YARAXTNELOTXDY Tou oyetilovTal Ue Tov
TAUTOYPOVIOUO ol TNV TUPUAANALY, WGTOCO ULot GUOTNUATLXY TUEOVGLACT) o GUYXELOT) AUTEOV
amouctdlel and TN abyyeovn BiBhoypapia. H cuvelopopd pag cuvicTaton o€ Uiot GUYXELTIXN
HEAETN TV YAwooov Erlang, F# xou Scala we npog tnv exgpoactixdtnra, tnv euxolla yer-
oNG, TNV ENBOON XU TNV XAWAXWOWOTNTA. LUYXEXPWEVA, a&LONOYOUUE To UECH TOU TORE-
YOUV Ol YAWOOES AUTES VLo TORAAANAO UETACY NUATIOUO GUAAOY WY GTOLYEIWY, TAUTOYPOVLOUO
Baowobuevo oe futures xon o povtého Twv actors, x&vovtac yeror ToUS GE UNOTIOLACELS TOU
emAOoLY €va amAd LTOAOYLOTIXG TEOBANUe ovouatt Orbit. H uelétn yog xotodfyel ota oxod-
houvda Booixd cupnepdopota Yot TS YAOooeS Tou e€eTALOUUE WS TEOSC TOV TAUTOYPOVLOUO
xon TNV mapaAAniio:) Erlang amotehel wa dpudn AOom e xohy| XAUAXWOWOTNTA GG Youn-
¢ emdodoelg ot apriunTxols utoloylopous, n F# mapéyel otadepr Bdomn yio Ty avTiueto-
Tom Twv e€eTalOUeVKY INTNUATLY 0AAS XAWaxOVEL PETELA, eV 1) Scala, Topd Ta tpofifuata
TIOL OVOXUTTOLY A6 TOV €Nl TOLU ToEOVTOS YeNyopo pudud e€€MENC Tng, cuvdudlel Thdog

OYETIXWY YORAXTNPLOTIXOV UE TOAD XOAEC ETUOOTELS Xall XALUOXWOLOTNTA.

Ag€Zeic-KAedid

Tavtoypovioude, Ioparknila, Xuvaptnolmdc llpoypoupatiopde, Erlang, Scala, F#, Fu-
tures, Actors.

Abstract

In the contemporary reign of multicore computing, functional programming has regained
attention as the obvious paradigm to simplify and abstract. Existing functional languages,
like Erlang and Haskell, have been modified or extended to exploit parallel hardware, while
new ones, like F#, Scala and Clojure, have been created to tackle complexity on popular

virtual machines.

These languages offer a vast range of features that are related to concurrency and paral-
lelism, yet current literature lacks a systematic demonstration and comparison of those
offerings. Our contribution is a comparative investigation of Erlang, F# and Scala in terms
of expressiveness, ease-of-use, performance and scalability. In particular we evaluate their
language constructs that facilitate parallel collection transformations, future-based concur-
rency and the actor model, by employing them in implementations that solve a simple
computational problem named Orbit. Our study reaches the following conclusions for the
examined languages regarding concurrency and parallelism: Erlang is a mature solution
with good scalability but low performance in arithmetic computations; F# provides a solid
base for handling the examined matters, yet with medium scaling; and Scala, despite the
problems that arise from its currently agile evolution pace, combines numerous related

features with good performance and scalability.

Keywords

Concurrency, Parallelism, Functional Programming, Erlang, Scala, F#, Future-Based

Concurrency, Actor Model.

Euvyapiotieg

Apywd Yo Hleha var euyoploThAow Toug xonyNnTég pou, x. Kwoth Maywva xow x. Nixo Ilo-
TOoTOPOU YLl TNV oYAT!) TOU UOU UETEDWOUY UEGL TNG OLOACKAAOS TOUG Yidl TO ovTIXELUEVO

Twv Nwooov Hpoypaupatiopol xodde xat Yoo TV cuvepyaoio Yog o TEAeLTalo Ypovia.

ISwadtepn pvelo ailer otov mp®TO €X TV B0 xau eBAEROVTA XNy NTH oTNY Tapovoa dL-
ThwuaT epyaoia, x. Maydva, yior TNV xadodriynom, Ty oThelln xou TNV EUTLGTOCUVY] ToU

Hou €delle xatd TNV EXTOVNGY| TNG.

Enlong Yo delav va euyapiotiow toug @iloug xan cuvadérpoug Yo Ta yedvia tou (Hoaue
w¢ gortntég otn oyohy HMMTY xou Tig euneipieg — xahég 1) xoxég — TOU UOLRACTHAXOYE.

Télog Yo fidehar VoL exppdon Vo HEYHAO EUYOPLOTE GTNY OOYEVELY LoV, XIS Xl OE OAOUG
Toug plhoug Yoo TN opéploTn OTARLEY), CUUTOEAGTACY Xl XATAVONGT Tou Hou delyvouv dha

oaUTE TaL YEOVLL.

Table of Contents

TLE@UATIDT o 5
N 0T Y1 7
BUy0RUOTIEG i 9
TADLE Of COMTENTS. - 11
LLST Of TADIES ettt ettt e 15
LS Of FIGUIES - 17
LST Of LASTITIES +evvvuuneeeeeeetiiiiiiee e ettt e e e e e ettt e e e e e e et ea bbb e e e e e e e eeasat e e eeeeeeeessnnnnnes 19
Chapter 1T IntrodUCtion ...cccoeviiieiii e 21
Chapter 2 BacKZIOUNduuuiiiiiiiiiiiiiiiiiiiiiiiiii 23
2.1 Concurrency & ParalleliSImuuuiiiiiiiiiiiiiiiiii e 23

2.2 Future-based CONCUITEIICY .. .ceettiiiiitiiieeee ettt e et eeeeeeeaes 24

2.3 ACEOT MOEL ... 24

2.4 Scala, FA & EITAngovcoiiiiiiiiiiiee e 24
2041 SCALA ettt 24

24,2 B o 27

2:4.3 BETLAINE coiiiiiie e 30

2.4. 4 COIMPATISOIL .ttt ee ettt ettt e e ettt e e e e e et eeatbbi e e e e eeeeeaene 31
Chapter 3 Implementationooveeeiiieiiiiee et e e 33
3.1 The Problem: Orbitcccoeiiiiiiiiiiiee e 33

3.2 SOIULION OVEIVIEW ..ttt e e ettt ettt e e ettt e e e e e e eeeenes 34

3.3 ComMIMOIL INOTES ...eeiiiiiiiiiie ettt e e e e ettt e e e e e eeeeaeans 35
3.3.1 Representation of the Orbit problem definition and the solver 35

3.3.2 Sets and Concurrent Sets in Scala, F# and Erlang..........cccccocoeooiiiiii. 35

3.3.3 Partitioning into chunks of specific size.......ccccccccciiiiiiiiiiiinnn. 37

3.3.4 F+#-specific libraries versus BCL ... 38

Table of Contents 12

3.4 Approach A - SeqUENTIALuuuueiiiiiiiiiiiiiiiiiiiiiei ittt 40
BuA L SCALA ceeee et 40
B2 F A e 41
B3.4.3 EILANE e 41

3.5 Approach B - Parallel............uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiaeeiaseeaeeseesesssesesesesaeneees 43
351 SCALA e 43
B 0.2 F A e 44

3.6 APPTOACH C = FUBUTES ..uuttitiiiiiiiiiiiiiiiiitiiittteeeeeeeteeeteetesetaesaaeess s ssasssssssssssssnsnnees 47
3.6.1 SCALA vt 47
B6.2 F A e 50
3.6.3 BTl e e 53

3.7 Approach D - Persistent WOTKerS............uuuuuuueiuiuiiiiiiiiiiiiiiiiiiieiiiiieieineeeneeenenennees 55
B.T.1 0 SCALA coeeeee e 55
BT B e 57
.73 ErLANG ceeiiiiii e 58

3.8 (0OA@ TNIETTICS .ttt 60

3.9 Implementation REMATrKS........ccoiiiiiiiiiieiiee e e 62

Chapter 4 Experimental Evaluation..............cco 65

4.1 Choosing the right benchmark.............ooooiiii e 65

4.2 Runtime Parameterscoooooii 66

4.3 Execution environment ...ttt 67
4.3.1 Bulldozer Architecture........cccuvviiiiiiiiiiiiiiiciieeeeee e 67
4.3.2 Language Runtimes, Libraries and Scripting Environment................... 67

4.4 Approach A - Sequential.......cooooioii oo 68

4.5 Approach B - Parallel ColleCtions.......cooeeeeeeeeeeeieee e 69

4.6 Approach C - FUBULES ..ottt 71

4.7 Approach D - Persistent ACTOrS....oooooiooe oo 75

4.8 Additional RESUIS ...uuuueeeeeeeeeeeeee e 78
4.8.1 TIterations needed for stable execution times.............ccccccceiiiniiiiinn. 78
4.8.2 Integers of arbitrary SiZe.........cviiiiiiiiiiii 79

4.9 Experimental Evaluation Remarkscccooiiiiiiiiiiiiiiii e 81

Chapter 5 Related & Future Workooooiiiiiiiiiiiii e 83

12

13 Table of Contents

5.1 Related WOrk....oooooiiiiii 83
5.2 FUUTE WOTK .eeniiie et e e e 83
(O aF=0 oy e R @0} 0 Ted 1 =3 101 NS 85
BIDHOGTADIY ettt 87

13

List

Table 2.1:
Table 2.2:
Table 3.1:
Table 3.2:
Table 4.1:
Table 4.2:

of Tables

FUbUTE CONCUTTEINCY ettt e e e eeees 31
AcCtOr CONCUTTENCY .oeieeeeeeeeeeeee e, 32
Problem Definition Representations.............uveeiiiiiiieeiiiiiieeeiiee e 35
Lines of Code and Token Count for each Implementation...........ccccccccceeieieie. 60
Set type for each Scala implementationccceevveieieeeeiiiiiiiiiien e, 68
F# (Task & Concurrent Dictionary) — Effect of M (A = 64 and G = 100) ...73

List

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:

of Figures

Logic of APpProach Aooooiiiiiiiiie e 40
Logic of Approach B — Variation Acccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeiieiees 43
Logic of Approach B — Variation Bccccooviiiiiiiiiiiie e, 43
Logic of Approach C — Variation Bccccooiiiiiiiiiie e 47
Logic of Approach C — Variation Acccooeeeiiiiiiiiiiiiieeeeeeie e 47
Actor Hierarchy & Message ROULESuuuuiuiiiiiiiiiiiiiiiiiie 56
Bulldozer Archit@Ctureoovviiviiiiieee e e e e e 67
APPTOACH A — THITIE ©eeeiiiiiiiiiiiii e 68
Approach B — THINE.....coouiiiiiiiie e 69
Approach B — Speedup.......eeeeeeiieiiiiiiiiiiiiiiiiiiieeeeeeee e 70
Approach C — Variation A - Tie ..ooooooiviiiiiiiiii e 71
Approach C — Variation A - Speedupccovvvviiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeee 72
Approach C — Variation B — Execution Time.........cccccoeevvreriiiiiiiiiiinineeeeneeinns 72
Approach C — Variation B - SPeedupuuuueuueuimmmiimiiiiiiiiiiiiiiiiiiiiiiiiieinnennnns 73
Approach C — Variation B — Effect of G (A = 64) ...ocooeivviiiiiiiiiiiiiiicie 74

Approach D — Time.....coooiiiiiiii 75
Approach D — SPeedup......ueeiieeeiiiiiiiieiee e 76
Approach D — Effect of G (A = 64) c.eeeviiiiiiiiiiiiiieeceeec e 76
Approach D — Effect of M (A = 32)..ccoiiiiiiiiiiiiiiiiciiiceeicece 7
Approach C - Variation A - Times for 50 iterationscccccccceeiiinnnnnnnnn. 78
Approach C - Variation B - Times for 50 iterationsccccoeeereeerrirrnvnnnnnn. 79
Integers of Arbitrary Size — Sequentialccccooiiiiiiiii 80
Integers of Arbitrary Size - Futurescccccccooiiiiiiiiiiiii 80

List of Listings

Listing 2.1:
Listing 2.2:
Listing 2.3:
Listing 2.4:
Listing 2.5:
Listing 2.6:
Listing 2.7:
Listing 3.1:
Listing 3.2:
Listing 3.3:
Listing 3.4:
Listing 3.5:

Scala Examples with FUuturescooeeiiiiiii e 25
Infinite Ping-Pong in Scala..........coooiiiiiiiii e 26
Simple Asynchronous Computations in F# ..o 28
Examples of Computation EXPressionsooooeeeiiiiiiiiiiiiiieiiiiiiiiiiiieeeeeeeeeees 28
Infinite Ping-Pong in F# using Agentsccooeveeviiiiiiiiiiiineeeeeieiiiiieiee e 29
Infinite Ping-Pong in Erlang ... 30
Simple Parallel Map in Erlangcccooooviiiiiiiiiiiiieiieies e 31
Orbit Definition ...cccuuueiiiiiiie e 33
Problem Definition Representations............ccevreeeeriviiiiiiinneeeeeieiiiiiieieeeeeeeeennnns 35
Problem Definition Representationsooooeiiiiiiiiiiiiieiiiiiiiiiieeeeeeeeiiin, 35
Set and ConcurrentMap abstraction for Scala............ccoeeviveriiiiiiiiiiiininennniinn, 36

F+# partitioning functioncoooooiiiiiiii e 37

Listing 3.6: Erlang partitioning functionccccoerireiiiiiiiiiiin e 38
Listing 3.7: HashSet alias and wrapper modulecoouuuiiiiiiiiiiiiiiiie e 38
Listing 3.8: ConcurrentDictionary alias and wrapper module...........ccccoeeeeiiiiiiinninnne.e. 39
Listing 3.9: Approach A —Scala T ... 40
Listing 3.10: Approach A - Scala Mcoooieiiiiiiiiiiiee e 41
Listing 3.11: Approach A — F#f .o 41
Listing 3.12: Approach A — Erlang..........ccooiiii 42
Listing 3.13: Approach B — Scala — Variation A and Comparison with Approach A....... 43
Listing 3.14: Approach B — Scala — Variation Bccccooiiiiiiiiiiiii e 44
Listing 3.15: Approach B — F# — Variation Accccooiiiiii 44
Listing 3.16: Approach B — F# — Variation B (PLINQ)......ccoooiiiiiiiniiiiiiiiiiiiieeecee 45
Listing 3.17: Approach B — F# — Variation B (Parallel. ForEach)..........c..cccccccoiii 45
Listing 3.18: Scala MeSSAZES ..ccceiiiiiieiee e 47
Listing 3.19: Scala Coordinator — Variation A (non-concurrent result set)...................... 48
Listing 3.20: Scala partitioning and job-creating function...............ccccccl. 48
Listing 3.21: Scala Coordinator — Variation B (concurrent result set).........ccccceevueeennnee. 49
Listing 3.22: Approach C — SCalauuuiiiieiiiiiiiiieie e 49
Listing 3.23: F MeESSAZES.ccceiiiiiiiiiiiiiiiiiiiiiiie e 50
Listing 3.24: F# partitioning and job-creating functionccccceeiiii . 50
Listing 3.25: Job logic of each variation...........cccccoiiiii 50

Listing 3.26: F# Coordinator — Variation A (non-concurrent result set)..........c.cccoccoc.e.e. o1

List of Listings 20
Listing 3.27: F# Coordinator — Variation B (concurrent result set).........ccccoocvevvniennnee. 51
Listing 3.28: Approach C — F# — Variation A (Async Workflows & Tasks)c......... 52
Listing 3.29: Approach C — F# — Variation B (ConcurrentDictionary)..........c.cccceeeennee. 52
Listing 3.30: The rumn fUnCHIONeeeeiiiiiiiiiie e e e e e e e e e e e e eeeeeeneeens 53
Listing 3.31: Approach C — ErLamg. ... 53
Listing 3.32: Erlang Coordinator — Variation A (non-concurrent set)cccccoeceeenene 93
Listing 3.33: Erlang Coordinator — Variation B (concurrent set)..........ccocceeevviieniniennnnee. 54
Listing 3.34: The JOb MESSAZE «.uueeeiunnieeiiiiee et et e et e e et e e et eeeeaannees 95
Listing 3.35: The WOTKeT ClASSoiieiiiiiiiiiiiie e 55
Listing 3.36: The Coordinator ClaSs.........coiviiiiiiiiiiiiiiie e 56
Listing 3.37: Approach D — SCAla. ..o 57
Listing 3.38: Approach D — Ff . 57
Listing 3.39: The chunkAndSendToWorkers functioncccccccoviiiiiieiiiiiiiiiiinineeeeeeceeie, 58
Listing 3.40: Erlang Coordinator...........uuuuuuiieeeeerieiiiiiieeeeeee ettt e e eeeeeeensiieeeeeeeeessenenns 58
Listing 3.41: Erlang WOTKETcoiiiiiiiiiii e 58
Listing 3.42: Erlang Round-Robin RoOUter..........cooiiiiiiiiiiii e 59
Listing 3.43: Approach D — Erlang......cccooooiiioieeeeeeee e 59
Listing 4.1: The delay functionccccoiiiiiiiiiiiiii e 65

20

Chapter 1

Introduction

For decades programming was determined by the twofold increase in processor performance
every 18 months, a trend first observed by G. E. Moore [1]. Since this trend was synonym
to equivalent clock-frequency increases, programmers were accustomed to expect better
performance from their programs that required little or no effort. However, around 2003
clock-frequency reached its physical limit; while processor performance kept its ascending
course, it would no longer be translated into higher frequency and consequently program-

mers could not rely on it any more for better execution of their sequential programs.

In “The free lunch is over” [2|, H. Sutter observed the era of concurrency arising, as the
additional computational power comes in the forms of multithreaded and multicore pro-
cessors. As a result, programmers need to evolve and employ concurrency to harness per-

formance benefits for their applications — thus concurrency becomes mainstream.

Unfortunately programming concurrency is hard, especially in the established imperative
context. Traditional tools require significant cognitive effort to master; yet threads, locks,
mutexes, critical sections, synchronized methods and the like are not helpful enough in the
struggle against low performance, data races, deadlocks or — even worse — data corruption.
Furthermore, as machines gain computational power in the form of additional cores, the
requirement for scalability emerges; software should take advantage of extra computational

resources without modifications.

As with every complexity in computer science, concurrency is tackled with simplification
and abstraction. Numerous languages and frameworks have been proposed over the course
of years and claim to provide at least a partial solution to the problem. Among them,
functional programming has resurfaced as the obvious paradigm to simplify and abstract;
mature languages like Erlang gained support for multicore environments while new hybrid
languages have emerged in major ecosystems — Scala on the JVM and F+# on the CLI - to
entice programmers into the functional paradigm with the promise of better concurrent

tools and interoperability with existing investments.

Introduction 22

Objectives

In this thesis we examine the concurrent and parallel offerings of Scala, F# and Erlang in
an attempt to provide a thorough comparison in terms of expressivity, ease of use, perfor-
mance and scalability. To that end we provide implementations that follow slightly differ-
ent approaches to solve a computational problem called Orbit and demonstrate several
language features. Nonetheless we only investigate language constructs that support par-

allel collection transformations, future-based concurrency and the actor model.
Thesis Outline
The rest of the thesis is organized as follows:

e Chapter 2 gives a basic background for the notions mentioned and concurrent/par-
allel tools used in our study. It introduces definitions for concurrency and paral-
lelism along with a description of future-based concurrency and the actor model,
and also presents and compares the features of Scala, F# and Erlang that are
employed in our implementations; however this is not a full-fledged presentation
of the languages.

e Chapter 3 deals with the implementation part of our study. First a definition of
the Orbit problem is given and then some notes that are common for all imple-
mentations. The main body of this chapter consists of the analysis of the four
implementation approaches we followed and the corresponding code in each of the
three languages, along with a brief comparison regarding two code metrics. Finally,
the chapter concludes with remarks from our implementation experiences.

e Chapter 4 reflects the experimental evaluation of the implementations. After ex-
plaining the benchmarking configurations and describing the execution environ-
ment, we examine the results from the execution of those configurations, together
with some additional ones. Similarly to the previous chapter, we wrap up with
overall remarks.

e Chapter 5 presents some work that is similar to ours, and future directions for
continuing the study of concurrency and parallelism in languages that support
functional programming.

e Chapter 6 concludes this thesis with an overview of our investigation and some

final comments on each language.

22

Chapter 2

Background

In this chapter we provide a basic background for the notions and constructs that appear
in the rest of the thesis. First, we distinguish between concurrency and parallelism by
defining those two terms, and describe the concurrency models that are used in this work,
namely future-based concurrency and the actor model. Subsequently we demonstrate each
of the three languages and particularly present their constructs and libraries related to

concurrency and parallelism.

2.1 Concurrency & Parallelism

Concurrency and Parallelism are two frequently occurring terms that are often used with
the same meaning. In our study each has a separate meaning, the definition of which relies
in the notion of control flow: a control flow is the order in which the statements or expres-

sions of an imperative or a declarative program are executed or evaluated.
Based on that notion we define:

e Concurrency: an inherent property of systems that expresses simultaneous pro-
gress of several control flows and potential interaction among them.

e Parallelism: a runtime property that refers to simultaneous execution of several
similar and mutually independent control flows either on multiple cores or on mul-

tiple machines.

By giving these definitions we do not claim universality or indisputability. We want to
emphasize nonetheless that parallelism relates to runtime execution whereas concurrency
is a property independent from the execution environment; manifestation of parallelism
requires multiple computational units to share the workload, while concurrency emerges
from only the existence of several control flows and can express situations where they

progress interchangeably using time-sharing techniques.

In a manner compatible to the aforementioned definitions and descriptions, parallelism is

considered to infer concurrency, but not the opposite.

Future-based Concurrency 24

2.2 Future-based Concurrency

In computer science a future is a construct that represents an asynchronous operation. It
is a container for the eventual result that will occur when the computation completes and
it is used to decompose sequential operations into independent parts that will progress

concurrently.

Future-based concurrency can lead to parallelism when used for computations in environ-
ments that support parallel execution. However, this is not its sole use case; futures are

also used for managing asynchronous I/O operations.

Implementations for concurrency constructs similar to futures have appeared lately in
many mainstream languages like Java, C#, C++ and Python, though their functionality
differs.

2.3 Actor Model

The actor model is an alternative approach to concurrency that was first proposed by C.
Hewitt [3] and improved by G. Agha [4]. It is a form of message-passing concurrency that
describes systems and processes in terms of actors and communication between them —

hence the aphorism, “everything is an actor”.

An actor is a reactive entity that communicates asynchronously with messages. It consists
of two basic components: a behavior and a mailbox. All incoming messages are buffered in
the mailbox waiting to be processed — one at a time. For each message, the actor behavior
determines, in conjunction with the current state, the reaction; the actor may react in the
following ways: send a number of messages to other actors, create a number of children, or

change its state and behavior.

Actors were first popularized by Erlang [5] and lately similar implementations of the actor

model have appeared in languages like Scala [6], F# |7] and Haskell [8].

2.4 Scala, F# & Erlang

2.4.1 Scala

Scala [9, 10] fuses the object-oriented and functional paradigms into a flexible statically-
typed and general-purpose language that runs on the Java Virtual Machine. It benefits
from the almost seamless interoperability with Java and appends the numerous Java li-
braries to its own ecosystem. One main characteristic of Scala is its extensibility; there are
language mechanisms that facilitate custom language constructs to be defined as libraries,
thus providing a great infrastructure for adding functionality in the form of expressive and

concise internal DSLs.

Scala offers rich support for concurrency and parallelism on top of the Java concurrency

model. All related functionality is implemented in libraries that exploit the flexible Scala

24

25 Chapter 2. Background

syntax as well as other language features that are not specific to concurrency. These li-
braries include parallel collections, futures and promises, actors and several other tools

that are not examined in this study (dataflow concurrency, STM, etc.).

Futures & Promises

Scala supports future-based concurrency with the type scala.concurrent.Future in its
standard library. Scala Futures are created either by starting an asynchronous computa-
tion using the scala.concurrent.future function, or from a promise, which is a write-once
container that is expected to be filled. Since computations result in either values or excep-
tions, futures are capable of containing each result. That result can be retrieved in three
ways: by blocking while waiting for the future to complete, by specifying callbacks that
will be called when the result becomes available, or by creating a chain of futures using

future-combinators.

import scala.concurrent._, duration._, scala.util._

import ExecutionContext.Implicits.global

def f(x: Int) = future { x + 1 } // Future creation

val res = future(l) flatMap f map (_ + 1) // future tranformations
val res2 = for { x <- future(l); y <- f(x) } yield y + 1 // syntactic sugar

Await.result(res, 1.seconds) // block waiting
res2 onComplete { // callback
case Success(v) => println(v)

case Failure(_) => println("error"

}

Listing 2.1: Scala Examples with Futures

In Listing 2.1 we give some simple examples of futures in Scala. We define function £ that
takes a number and returns a future with the next number. Afterwards, we use this func-
tion in a series of transformations, which is presented in two ways: as a method chain and
using the for-comprehension syntactic construct. Finally we present two ways of retrieving

the value contained in the future.

Akka Actors

The actor model is supported in Scala through various libraries, most importantly through
the Akka toolkit [11, 12], which is an extended set of libraries designed to support concur-
rent, distributed and fault-tolerant applications. Akka actors are objects with the Actor
trait; as such, their state is stored in fields and their behavior is encoded in the receive
method, which is defined only for specific type of messages (partial function). All actors
are part of an ActorSystem and belong to a supervision hierarchy. They are also identified
through an ActorRef, the only way referencing them. Moreover, Akka provides also a DSL

that significantly reduces the code needed to create simple actors.

25

Scala, F# & Erlang 26

import akka.actor._, ActorDSL._ // necessary imports
case object Ping // Message types
case object Pong

val system = ActorSystem() // the actor system

. // define the PongActor class
// using the actor DSL
. class PongActor extends Actor {
// create the ping actor]))
) def receive = { // define the behavior
val ping = actor(system) (new Act {]
case Ping => sender ! Pong

3

become { // define the behavior
case Pong => sender ! Ping
b
b

}
val pong = // create the pong actor
system actor0f Props[PongActor]

ping tell (Pong, pong) // send Pong to ping and make it look like pong did it

Listing 2.2: Infinite Ping-Pong in Scala
Listing 2.2 contains a simple example of Akka actors. We use the actor DSL to create a
ping actor that responds to Pong messages by sending Ping to the sender. Similarly we
define the pong actor that does the opposite, using the main actor API. As we can see,

both actors need an actor system in which they will be created.

Concurrency Infrastructure

Both futures and actors run on ExecutionContexts, which can be viewed as threadpool
abstractions. Futures require an ExecutionContext to be specified (explicitly or implicitly)
inside their lexical scope, while actors use either the default dispatcher of the ActorSystem
where they belong or the one specified during their creation. There are several
ExecutionContext implementations provided in the Scala library, each implementation with
its own properties and configuration options. Additionally custom ExecutionContexts can

be creating using the functionality provided by the ExecutionContext companion object.

Scala Collections

Scala offers one of the most comprehensive collection libraries. It contains every basic
collection and each collection has a vast number of methods that cover most use case
scenarios. Aside its vastness, a significant property of the Scala collection library is also its
consistency: there is a single hierarchy where all collections belong and all functionality
that is shared among collections is provided through the same interfaces. This consistency

enables code reuse
Scala collections are organized in four major groups:

Immutable collections never change - new collection for each alteration - and they

facilitate functional programming.

Mutable collections are altered in place and they are used for imperative programming.

26

27 Chapter 2. Background

Parallel collections are transformed in parallel while retaining the usage patterns of

their sequential (immutable/mutable) counterparts.
Concurrent collections can be concurrently altered from different threads.

All collections have strict evaluation semantics but they also provide views, a way to apply
transformations lazily: when a view on a collection is acquired all operations on it are
postponed until the elements of the resulting collection are required or the force method

is called on the result.

Last but not least, the collection library contains functionality for conversion between

collections:

e to[AnotherCollection]: converts a collection to AnotherCollection
e par, seq: convert a collection to its parallel counterpart and back
e scala.collection.convert: provides wrappers for disguising Java collections as

Scala ones and the opposite.

2.4.2 F#

F# [13, 14] is a statically-typed, functional-first, general-purpose programming language
for the popular .NET and Mono implementations of the Common Language Infrastructure.
It facilitates concurrency and parallelism via libraries that provide such functionality but
have limited configurability. F# benefits from the CLI in terms of interoperability with
other languages and access to a vast library pool. It favors immutability and lack of side-
effects but it also supports the CLI object-oriented model and mutation for performance-

critical scenarios.

Concurrency and parallelism are not part of the F# language specification. F# uses generic
language features and core CLI concurrency primitives to define its concurrent and parallel
abstractions, namely asynchronous workflows and the MailboxProcessor<'T>. It also retains
access to .Net libraries, such as the Task Parallel Library (TPL) [15, 16] and PLINQ [17].

Asynchronous Workflows

Asynchronous workflows [7] are a form of future-based concurrency. They express non-
blocking computations with a syntax similar to their blocking counterparts, without using
callbacks. That syntax includes constructs for value binding, error-handling, looping and
computation composition that has modified semantics for asynchronous execution. Some
of them are showcased in Listing 2.3 which contains simple examples that closely resemble

the ones in Listing 2.1.

27

Scala, F# & Erlang 28

let f x = async { return x + 1 } // Function returning an asynchronous computation
let res = async {
let x =1 // Ordinary value binding
let! y = £ x // Asynchronous value binding: wait for the computation to
// complete asynchronously and bind the result to y
return! f y // Return the asynchronous computation
}

let bangedResult = Async.RunSynchronously res // Block to wait for the res value

Listing 2.3: Simple Asynchronous Computations in F#

Asynchronous workflows are based on a general syntactic mechanism called computation
expressions [18, 19]; inside their scope one can use custom syntax with target-specific se-
mantics. Included in F+# are computation expressions for sequences, asynchronous compu-

tations and queries (Listings Listing 2.3 & Listing 2.4).

// a sequence expression that has the argument lst repeated n times
let repeat n lst = seq {
for i = 0 ton do // loop for n times

yield! 1st // returns all values from sequence lst

// a query expression for all names of adult customers in the database
let q = query {

for customer in db.Customers do // for each customer in db.Customers

where (customer.Age >= 18) // if he/she is an adult
select customer.Name // select his/her name
}
Listing 2.4: Examples of Computation Ezrpressions
Agents

On top of asynchronous workflows, MailboxProcessor<'T> is defined (usually abbreviated
as Agent<'T>). This type facilitates actor-based concurrency with a lightweight implemen-
tation; it represents an actor that accepts only messages of a specified type; it is a typed

actor.

In Listing 2.5 we demonstrate the F# version of the ping-pong example we presented for
Scala actors. Agent is used for the definition of both actors, which are created by providing

the desired actor behaviors to the Agent.Start static method.

28

29 Chapter 2. Background

type Agent<'T> = MailboxProcessor<'T> // an alias

type Ping = Ping of Agent<Pong> // recursive type for ping/pong messages
and Pong = Pong of Agent<Ping>
// ping : Agent<Ping> // pong : Agent<Pong>
let ping = Agent.Start(fun inbox -> let pong = Agent.Start(fun inbox ->
let rec loop() = async { let rec loop() = async {
// wait for Pong // wait for Ping
let! Pong(sender) = let! Ping(sender) =
inbox.Receive() inbox.Receive ()
// reply with Ping // reply with Pong
sender .Post <| Ping(inbox) sender .Post <| Pong(inbox)
// recursive call // recursive call
return! loop() return! loop()
} }
loop() loop()
))

pong.Post <| Ping(ping) // send Ping to Pong

Listing 2.5: Infinite Ping-Pong in F# using Agents

Tasks & PLINQ

Beside F#-specific concurrency constructs, Base Class Library (BCL) also offers related
tools such as TPL, PLINQ and concurrent collections. Task Parallel Library (TPL) enables
another form of future-based concurrency and is optimized for CPU-bound computations.
It offers two alternatives for concurrency: the Parallel class that has static methods for
operations like parallel for, parallel foreach and parallel execution of functions; and the
Task class that facilitates explicit task creation and execution. Built on TPL, Parallel
Language Integrated Queries (PLINQ) offer a set of parallel operations for collections that
resemble functional operators (such as map, fold, filter, group, etc.) using a naming con-
vention closer to SQL queries. These operations come as extension methods to classes that

implement IEnumerable<'T>.

Concurrency Infrastructure

All aforementioned libraries and constructs use the CLI threadpool by default. Each CLI
instance has a pool of managed threads, each of which resembles an OS thread in current
.NET and Mono implementations. The CLI threadpool maintains a request queue where
tasks and asynchronous operations are submitted. Each queue entry is dispatched to a pool
thread for execution; execution starts immediately using an existing idle thread or a newly
and thus created one, or it is deferred until a thread becomes available — the heuristic

decision is based on thread availability and assessed work load.

Depending on the library in use, one may be able customize the threadpool usage. Asyn-
chronous workflows and, by extension, agents do not offer particular configuration options;
CLI threadpool usage is hardcoded in the implementation and therefore execution relies

exclusively on threadpool parameters. TPL, on the contrary, is more configurable: each

29

Scala, F# & Erlang 30

task execution is managed by a task scheduler (which submits the tasks to the threadpool)

that can be specified for each task. However only one implementation is provided in BCL.

Collections

F# includes basic immutable collections like list, set and map, while arrays are also first
class citizens. In addition, BCL contains several collections - sequential and concurrent -
that can be used when there is no F# equivalent, when they offer better performance
characteristics or when interoperability with other CLI languages is required; BCL collec-

tions are no panacea, however, since they are mutable and relatively odd to use.

2.4.3 Erlang
Erlang [20] is a language designed for concurrency. As a language, it provides lightweight
primitives for straightforward and succinct concurrent solutions; as a runtime, it supports

their efficient and scalable execution.

Processes and Actors
Erlang supports the message-passing type of concurrency, namely the actor model. The so-
called processes have all the attributes of an actor: an unbounded mailbox for incoming

messages, a behavior for processing a message and reacting accordingly, a private internal

state and a well-defined lifetime. The behavior of ping() -> % ping function

a process is defined in a recursive function and
the state comes in form of function parameters.
Process creation and message exchange are prim-
itive operations in Erlang that are supported by
non-blocking built-in operators of the language.
In Listing 2.6 we demonstrate actors in Erlang
using the same ping-pong example we used

previously.

Processes are lightweight. Each process begins its
lifetime with a tiny memory space, including a
private heap space where it stores its data; this
memory is resized according to usage and it is
independently garbage collected. Process execu-
tion is regulated by the schedulers of the Erlang
runtime — by default one scheduler for each core
available in the machine —, each of which man-
ages its work queue. Every process is assigned to
one of those work queues and its execution is

preemptively scheduled: after a specified number

of so-called reductions the scheduler pauses the running process, returns it back to the

work queue and resumes the next process (if any). That way the execution of every process

is ensured.

30

% receive pong message
receive
{pong, Pong_PID} ->
Pong_PID ! {ping, self()},
ping() % recursive call
end.
pong() -> 7% pong function
receive
{ping, Ping PID} ->
% repond with pong
Ping PID ! {pong, self()},
pong ()
end.
start() ->
% create ping and pong actors
Ping_PID = spawn(fun ping/0),
Pong_PID
% send ping to pong
Pong_PID ! {ping, Ping PID}.

spawn (fun pong/0),

Listing 2.6: Infinite Ping-Pong in Erlang

31 Chapter 2. Background

Data Structures

Erlang comes with a comprehensive standard library: several common functional data
structures such as lists, sets and dictionaries; implementations of reusable concurrent ab-
stractions over the aforementioned language primitives; built-in functions (called BIF's) for

numerous operations that cannot be expressed or efficiently implemented in Erlang.

The Erlang Term Storage (ETS), a mechanism for key-value store, is a part of the library
that deserves special mention. It offers a family of mutable data structures (set, or-
dered set, bag and duplicate bag) that are characterized by efficient lookup, addition
and removal operations. More importantly, ETS tables can be configured to allow concur-
rent access to and mutation of their contents and therefore are invaluable tools for efficient

parallel programming.

Another significant part of
. . %% Map function F over list L in parallel.
the library consists of ab-
parallel_map(F, L) ->

Root = self(),

[receive Res -> Res end || _ <- [
programming. Nevertheless, spawn(fun() -> Root ! F(X) end) || X <- L]].

Erlang does not include

stractions and patterns for

concurrent and distributed

Listing 2.7: Simple Parallel Map in Erlang
ready-to-use parallel con-

structs, neither as primitive functionality nor as part of the standard library, although
parallel abstractions can be composed using the provided lightweight concurrency con-

structs. (See for example Listing 2.7)

All things considered, Erlang is built for concurrency. The language simplifies development
of concurrent solutions and time-tested libraries facilitate productivity and quality. Still,
all solutions are required to be modeled using actor model — even when a different approach
is more appropriate — and, as a rule, the programmer has to forget the convenience of

mutation.

2.4.4 Comparison
In the last three paragraphs we gave a brief description of Scala, F# and Erlang and
presented the features of those languages that we use in our study. Here we demonstrate

a more detailed comparison of those features in the following tables.

Table 2.1: Future concurrency

Scala F+#
Relevant Feature Futures Async Workflows Tasks
Execution Mechanism ExecutionContext ThreadPool
Configurability High Limited Moderate
Composition Combinators Custom Syntax Task API

In Table 2.1 we compare the means to express future-based concurrency in Scala and F+#

— Erlang has no specific feature, although futures can be implemented using processes.

31

Scala, F# & Erlang 32

Scala futures run on an ExecutionContext that is specified by the programmer, while both
F+# asynchronous workflows and tasks are executed on the CLI ThreadPool by default.
Consequently future execution is highly configurable, considering that two futures can be
configured to run on different ExecutionContexts, each with its own options and execution
policies. Nonetheless, tasks can use a custom TaskScheduler instead of the default, while
the execution of asynchronous workflows is rather fixed, since the use of the ThreadPool is
hardcoded in their implementation. Regarding compositionality, on the other hand, futures
and async workflows have composable designs, contrary to tasks, whose API provides ra-

ther verbose.

Table 2.2: Actor Concurrency

Scala F+# Erlang

Relevant Feature Akka Actors Agent<'T> Processes

Support Level Library Library Language
Behavior Callback Async Workflow Recursive Function
Behavior Change become /unbecome Tail-Recursive Call Tail-Recursive Call

Interface Dynamic Static Dynamic
Execution Dispatcher ThreadPool Erlang Schedulers

High; Limited;

Execution Mecha-

. . Parameters of

Configurability nism per Actor, None)

i L Execution Mecha-

Mailbox, Supervision i

) nism
Policy

In Table 2.2 we compare the actor implementations of Scala, F# and Erlang. The F#
library support for actors consist of only the Agent and any actor abstractions (routing,
supervision, etc.) have to be implemented by the library user, while Akka and Erlang offer
considerable amount of such functionality out-of-the-box. Each of the two latter actor
implementations has a different level of configurability: Akka actors offer several configu-
ration options thanks to their implementation as a library, while the configurability of
Erlang processes is limited to runtime properties. Moreover, these actors have a communi-
cation interface that can change during their lifetime, contrary to the F# Agent whose
interface is part of its type and thus fixed. Finally, the way the actor behavior is defined
resembles properties of the underlying runtime: the Erlang and F# runtimes support the
tail-call optimization so the actor behavior is can be defined as a recursive function, con-
trary to Akka, which defines it as a callback function due to the lack of JVM support for

tail-call optimization.

32

Chapter 3

Implementation

In this chapter we present the first part of our thesis, namely the comparative evaluation
of Scala, F# and Erlang regarding the expression of concurrency and parallelism. First we
define the problem we use for our purposes and then we compare our implementations; for
each language we provide a sequential implementation and some concurrent ones that
follow three different approaches of performing the computation. Finally we make an over-

all assessment about our overall experience of programming in those three languages.

3.1 The Problem: Orbit

For our comparative investigation we needed a problem with a simple parallelizable solu-
tion to facilitate the evaluation of the various constructs offered by each language. We
have chosen the Orbit problem (orbit int) from the BenchErl Benchmark Suite [21].

In Listing 3.1 we present the definition used in our study; it differs from the inductive

definition given in [21], but it resembles better our implementation approach.

Given:
e aspace S

e aset of generators G={g;:S5 - S,i € {1...n}}
e a set of initial elements Xy= { x€8S,j€ {1.. m}}

. Xk-1={gj(xi)' g €Gx € Xk}
i Eu: Uﬂzoxk

Goal:
e Compute the set Orb=E_

Listing 3.1: Orbit Definition

In our study we considered a special case of the Orbit problem where XEN and finite.

Solution Overview 34

3.2 Solution Overview

The general algorithm for computing the Orb set uses the above definition with a slight

modification that avoids re-computation of the same elements:
Xk+1: { gJ (Xi) ¢ Ek; gj € G, X; € Xk}

For each k we compute X, ,; and insert its elements to E, which is represented by a set
data structure. This procedure is repeated until the k* where Xy« ; is empty; k* is ensured

to exist unless the result Orb has infinity elements.

In order to examine the different concurrency models we described we examined the fol-

lowing approaches:

A. Sequential: It is an exact translation of the described algorithm into code.

B. Parallel: The elements of X, are computed in parallel (Scala Parallel Collec-
tions/F# PLINQ).

C. Futures: Each X}, is split into chunks {XL} of a specified size G and computing
each XL is a concurrent computation (future).

D. Persistent Actors: Similar to C, but persistent actors are used to compute Xi(11

instead of futures.

34

35 Chapter 3. Implementation

3.3 Common Notes

3.3.1 Representation of the Orbit problem definition and the solver

The orbit problem definition is represented as shown in Table 3.1 and Listing 3.2.

Language Problem Definition S G Xo
Scala trait type member T method generators initData
F# generic record type parameter T function generators initData
Erlang record - function generators init data

Table 3.1: Problem Definition Representations

Scala:
trait Definition {
type T
def generators(x: T): Seql[T]
val initData: Seq[T]
X
F#:
type Definition<'T> = {
generators: 'T -> 'T seq
initData: 'T seq
¥
Erlang:

-record(definition, {generators, init_datal}).

Listing 3.2: Problem Definition Representations

In Scala we can represent S also as a type parameter on a generic definition of Definition,

however we chose to represent it as type member for better encapsulation.

Scala:
def solve(p:Definition) (/* other arguments */) : Set[p.T] = { /* body */ }
F#:
let solve <'T when 'T: equality> (* other arguments *)
{ initData = initData; generators = generators } = (* body *)
Erlang:
solve(#definition{init_data = InitData, generators = Generators} J, other arguments
) -> % body

Listina 3.3: Problem Definition Revresentations

Overall, our solvers are designed to be mostly functional and generic. Every implementa-

tion is a function from a problem definition to the corresponding Orb set (Listing 3.3).

3.3.2 Sets and Concurrent Sets in Scala, F# and Erlang

We need an appropriate data structure to represent the resulting Orbit set. Our imple-
mentations use either a simple set (as provided by the standard library of each language)

or a concurrent one; the choice depends on the accesses to the data structure, if they are

35

Common Notes 36

concurrent or not. To examine the performance characteristics of comparable data struc-
tures we have decided to use only set implementations that have practically constant access

time.

In Scala we have the option to use either Scala or Java collections. We created a simple
abstraction (Listing 3.4) to ease the use of both libraries: we use ScalaSets and JavaSets
as factories of Scala and Java sets respectively. The Java sets can be used like native Scala
sets using the thin wrappers provided by the Scala collection library; the import
collection.convert.WrapAsScala._ statement brings in scope the necessary implicit con-

versions that apply those wrappers.

// Import packages with shorter names

import collection.{ immutable => i, mutable => m, concurrent => c }

// Common interface for set providing objects
trait SetProvider {

def iSet[A]: i.Set[A]

def mSet[A]: m.Set[A]

def cMap[A]l: c.Map[A, Unit]

// A set provider for Scala sets
object ScalaSets extends SetProvider {
def iSet[A]l: i.Set[A]l = i.Set[A]Q)
def mSet[A]: m.Set[A] = m.Set[A]()
def cMap[Al: c.Map[A, Unit] = c.TrieMap[A, Unit] ()

// A set provider for Java sets
object JavaSets extends SetProvider {
import java.{ util => ju }, java.util.{ concurrent => juc }
import collection.convert.WrapAsScala._
def iSet[A]: i.Set[A] = throw new NoSuchElementException("Immutable Java Set")
def mSet[A]: m.Set[A] = new ju.HashSet[A]
def cMap[A]: c.Map[A, Unit] = new juc.ConcurrentHashMap[A, Unit]

Listina 3.4: Set and ConcurrentMap abstraction for Scala

In F# and Erlang the standard immutable sets are implemented as trees and therefore
have logarithmic complexity. Thus we use only System.Collections.Generic.HashSet<'T>
(abbreviated as MutableSet<'T>) in F# and ETS tables of type set in Erlang.

For the concurrent set functionality the ETS set of Erlang can be configured to allow
concurrent reads and writes. Unfortunately both F# and Scala lack such a data structure,
so we use concurrent maps as a workaround; we use the set elements as keys mapped to

dummy values:

36

37 Chapter 3. Implementation

e In F# we use the BCL System.Collections.Concurrent.Concurrent-Dictionary
<'Key, 'Value> with 'Key = 'T and 'Value=obj (with null as value), abbreviated
as ConcurrentSet<'T >.

e In Scala we have the option to use either scala.collection.concurrent.Trie-
Map[Key, Value] [22] or java.util.concurrent.ConcurrentHashMap[Key, Valuel
with Key = T. The implementation of scala.collection.concurrent.TrieMap han-
dles null-mapped elements as not included in the Map so we cannot use Value =

Null; instead we use the similar Value = Unit.

3.3.3 Partitioning into chunks of specific size

The last two categories of our implementations need to explicitly partition the data of a
sequence to chunks of a specified size. Scala collections have such a method:
grouped(size: Int): Iterator[Repr]. As neither F# nor Erlang have such functionality

ready to use, we created functions that behave similarly.

let chunked (chunkSize:int) (sq:#IndexedSeq<_>) :seq<_> =
let index = ref O
let length = IndexedSeq.length sq
seq {
while !index + chunkSize < length do
let idx = !index
yield seq { for i = idx to idx + chunkSize - 1 do yield sq.[i] }
index := !index + chunkSize
if !index < length then
let idx = !index

yield seq { for i = idx to length - 1 do yield sq.[i] }

Listing 8.5: F# partitioning function

In F# we wanted to have on-demand evaluation semantics. We created three partitioning

functions:

e one that partitions sequences (System.Collections.Generic.IEnumerable) and is de-
fined in terms of IEnumerator and IEnumerable

e a second that partitions random-access collections (System.Collections.Ge-
neric.IList abbreviated as IndexedSeq), is also defined in terms of IEnumerator
and IEnumerable and is more efficient as it reuses the initial data structure for the
chunks

e a third that also partitions random-access and retains the benefits of the second
version while being defined using the comfortable computation expression syntax

of F#
In our implementations we used only the third of those functions (Listing 3.5).

Contrary to Scala, these functions do not retain the type of the partitioned collection, a

fact that highlights the less expressive F# type system.

37

Common Notes 38

In Erlang we do not have the tools to create similar functionality so we created a simple
function that eagerly splits a list to lists of the specified ChunkSize and also returns a count

of the created chunks.

split(ChunkSize, List) ->
split_helper(List, ChunkSize, ChunkSize, [], [], 0).

split_helper([], _ChunkSize, _Left, [], Result, Count) ->
{Count, Result};
split_helper([], _ChunkSize, _Left, Acc, Result, Count) ->
{Count + 1, [Acc|Resultl};
split_helper(List, ChunkSize, 0, Acc, ResultAcc, Count) ->
split_helper(List, ChunkSize, ChunkSize, [], [Acc|ResultAcc], Count + 1);
split_helper([H|T], ChunkSize, Left, Acc, Result, Count) ->
split_helper (T, ChunkSize, Left - 1, [H|Acc], Result, Count).

Listing 3.6: Erlang partitioning function

3.3.4 F+#-specific libraries versus BCL

Contrary to F+# libraries, the Base Class Library is designed with object oriented principles
and for use in languages like C#. Most functionality is offered as methods on mutable
objects and cannot be easily composed. Moreover, using BCL results in non-idiomatic F#

code and hinders the benefits of key language features like type inference.

Collections are an area that highlights this remark: operations on F# collections are de-
fined as functions grouped in modules, while BCL collections have the corresponding func-
tionality implemented as methods of each collection instance. Type inference can deduce
the type of a collection from the former group, based on the functions that operate on it;
for the latter, it needs a type annotation because it cannot deduce object types from

method calls.

type MutableSet<'T> = System.Collections.Generic.HashSet<'T>

[<RequireQualifiedAccess>] // forbid usage without the module identifier
module MutableSet =

let unionWith (set:MutableSet<'T>) seq = set.UnionWith seq

let add (set:MutableSet<'T>) elem = set.Add elem

let contains (set:MutableSet<'T>) elem = set.Contains elem

let empty<'T> = MutableSet<'T>()

let ofSeq (seq:seq<'T>) = MutableSet<'T>(seq)

Listing 3.7: HashSet alias and wrapper module

Aiming for natural F# implementations, we chose to provide wrappers for most of the
used functionality as helper functions organized in modules resembling their respective
type. For instance, we present the wrapper module for BCL HashSet (Listing 3.7) and

ConcurrentDictionary (Listing 3.8).

38

39

Chapter 3. Implementation

let
let
let
let

let

type ConcurrentSet<'T> =
System.Collections.Concurrent.ConcurrentDictionary<'T, obj>

[<RequireQualifiedAccess>]

module ConcurrentSet =

add (set:ConcurrentSet<'T>) elem = set.TryAdd (elem, null)
contains (set:ConcurrentSet<'T>) elem = set.ContainsKey elem
empty<'T> = ConcurrentSet<'T,obj>()
create<'T> (concurrencyLevel:int) (initialCapacity:int) =
ConcurrentSet<'T, obj>(concurrencylevel, initialCapacity)
ofSeq (seq:seq<'T>) =
ConcurrentSet(seq |> Seq.map (

fun x -> System.Collections.Generic.KeyValuePair (x,null)

))

39

Listing 3.8: ConcurrentDictionary alias and wrapper module

Approach A - Sequential 40

In the following sections we present our implementations for each category. The actual
code is slightly different as it also includes code related to configuration and time meas-

urement.

3.4 Approach A - Sequential

This is reference implementation for all languages.
Xy 41 1s computed using a slightly different defini-
tion: X is mapped through G and only the elements

that are not contained in E} are kept.

Each k is a distinct computational step that relies
on the previous one. The result set is found at the

step k* where X~ is empty.

3.4.1 Scala

There are two sequential Scala implementations, one

using an immutable set (Scala I, Listing 3.9) and a Figure 3.1: Logic of Approach A
second using a mutable set (Scala M, Listing 3.10). Both sets have a common superclass:
collection.Set and therefore share common functionality; yet we cannot reuse code be-
tween the two implementations as the mutable set has different usage pattern from the

immutable one.

Moreover, the local import statements enable the use the members of p: Definition as if

they were locally defined.

def simplelogic(p: Definition)
(seq: GenSeq[p.T], results: Set[p.T]): Set[p.T] = {
import p._
def helper(currentSeq: GenSeq[T], results: Set[T]): Set[T] = {
val nFilteredSeq =
currentSeq
.flatMap (generators(_))
.filterNot(results.contains)
.distinct
if (nFilteredSeq.isEmpty) results
else helper(nFilteredSeq, results ++ nFilteredSeq)
}
helper(seq, results)
}

// Immutable Set

def solve(p: Definition): Set[p.T] = {
simpleLogic(p) (p.initData, iSet ++ p.initData)

}

Listing 3.9: Approach A — Scala I

40

41 Chapter 3. Implementation

def solveMutableSet(p: Definition): (Set[problemDef.T], Long) = {
import p._
val results = mSet ++ initData
def helper(currentSeq: Seq[T]) {
val nFilteredSeq =
currentSeq
.flatMap(generators(_))
.filterNot(results.contains)
.distinct
results ++= nFilteredSeq
if (!nFilteredSeq.isEmpty) helper (nFilteredSeq)

}
helper(initData); results
}
Listing 3.10: Approach A - Scala M
3.4.2 F#

The F# sequential implementation (F# (Sequential)) in Listing 3.11 uses the
MutableSet.add function to test for inclusion and add an element to the set, instead of

checking and then adding together all the new elements.

let solve<'T when 'T: equality>
{ initData = initData; generators = generators } =
let foundSoFar = MutableSet.ofSeq initData
let rec helper current =
if Seq.isEmpty current then
foundSoFar :> seq<'T>
else
let nCurrent =
current
|> Seq.collect generators
|> Seq.filter (MutableSet.add foundSoFar)
|> Seq.toArray
helper nCurrent

helper <| Seq.toArray initData

Listing 8.11: Approach A — F#
Note the explicit upcast of foundSoFar to seq<'T>: we want to hide the actual implemen-
tation of the result. Ideally the upcast would be to System.Collections.Generic.ISet<'T>
but the Keys property System.Collection.Concurrent.ConcurrentDictionary<'K, 'V> we
use in other implementations does not support it and we wanted to have a common inter-

face for all our implementations.

Also Seq.toArray is essential to avoid computing of nCurrent at every enumeration.

3.4.3 Erlang
The Erlang implementation (Erlang (Sequential)) in Listing 3.12 is similar to the F# one:

each element is atomically inserted in the set if not already present.

41

Approach A - Sequential 42

solve_helper([], _Generators) ->
ets:match(hashset, '$1');
solve_helper(Current, Generators) ->
NCurrent = lists:flatmap(fun(C) ->
[X | X <- Generators(C), ets:insert_new(hashset, {X}) end]
end, Current),

solve_helper (NCurrent, Generators).

solve(#definition{init_data = InitData, generators = Generatorsl}) ->
ets:new(hashset, [set, named_table, public]),
Result = solve_helper(InitData, Generators),
ets:delete(hashset),
Result.

Listing 8.12: Approach A — Erlang

We use the ets module to:
e create a set that is configured to accept reads and writes from any process (public)
and have a globally visible name (named_table) using the new function,
e atomically insert an element in the set if not already present, using the insert_new
function,
e retrieve all elements from the set using the match function, and

o delete the set at the end of the computation.

42

43 Chapter 3. Implementation

3.5 Approach B - Parallel

We present two variations: the first is similar to approach A, with Xj,; being computed
in parallel; the second uses a concurrent set where the elements are inserted during the
parallel section. We present implementations only in Scala and F# which support the
notion of parallel collection manipulation (we could have implemented a parallel map on

lists using Erlang processes but we do not find it of value).

Figure 3.2: Logic of Approach B — Variation A Figure 3.3: Logic of Approach B — Variation B
3.5.1 Scala
The first variation (Scala (ParSeq)) in Listing 3.13 shares its logic with approach A. Before
passing initData to the logic we transform it to a parallel collection (ParSeq) by calling its
par method. This is possible because simpleLogic is implemented in terms of GenSeq, a

common superclass of Seq and ParSeq.

def simpleLogic(p: Definition)
(seq: GenSeqlp.T], results: Set[p.T]): Set[p.T] = { . }

// Sequential

def solve(p: Definition): (Set[p.T], Long) = {
simpleLogic(p) (p.initData, p.initData.to[Set])

}

// ParSeq

def solveParSeq(p: Definition): (Set[p.T], Long) = {
simpleLogic(p) (p.initData.par, p.initData.to[Set])

}

Listing 3.13: Approach B — Scala — Variation A and Comparison with Approach A

The second variation in Listing 3.14 (Scala (ParSeq €& ConcurrentMap)) uses
ConcurrentMap [T, Unit] as concurrent set. The putIfAbsent method behaves similarly to
the ets:insert_new function of Erlang but returns an Option with the old value if there
was one in place of just a boolean value. At the end of the computation the keySet method

is called to return the desired Orbit set.

43

Approach B - Parallel 44

def solveParSeqWithConcurrentMap(p: Definition): Set[p.T] = {
import p._
val results = cMap[T]
def helper(currentSeq: GenSeq[T]) {
val nFilteredSeq = currentSeq flatMap {
generators(_) filter (results.putIfAbsent(_, ()).isEmpty)

}
if (!nFilteredSeq.isEmpty) helper (nFilteredSeq)
¥
helper(initData.par); results.keySet
t
Listing 3.14: Approach B — Scala — Variation B
3.5.2 F#

The first variation in Listing 3.15 uses PLINQ for parallel processing. Its logic is closer to
the first Scala variation of this approach: instead of checking for inclusion and
simultaneously adding the elements to the set, we first check for inclusion and then add

all unique new elements to the set.

let solvePLing<'T when 'T: equality>
{ initData = initData; generators = generators } =
let foundSoFar = MutableSet.ofSeq initData
let rec helper current =
if Seq.isEmpty (current:seq<'T>) then
foundSoFar :> seq<'T>
else
let nCurrent =
current
.AsParallel()
.SelectMany (generators)
.Where(not << MutableSet.contains foundSoFar)
.Distinct ()
.ToList ()
MutableSet.unionWith foundSoFar nCurrent

helper nCurrent

Listing 3.15: Approach B — F# — Variation A

It should be noted that PLINQ has different semantics from Scala parallel collections. The
AsParallel() method does not parallelize a collection; it creates a parallel query that is
evaluated upon enumeration of the result. Therefore calling ToList () is essential to avoid

re-evaluation of nCurrent.

There is also a stylistic difference with the sequential version: F# does not provide a
predefined wrapper module for PLINQ contrary to the case of the Seq module and LINQ);
so instead of the idiomatic piping operators and calls to module functions we use the
extension methods of PLINQ.

44

45 Chapter 3. Implementation

For the second variation we use ConcurrentSet<T>. We implemented one version (F#
(PLINQ)) using PLINQ (Listing 3.16) and a second (F# (Parallel. ForEach)) that uses the
Parallel.ForEach method combined with a ConcurrentBag as a way to simulate a parallel
collection (Listing 3.17).

let solvePLing2<'T when 'T: equality> M
{ initData = initData; generators = generators } =
let foundSoFar = ConcurrentSet.create M 1000000
let rec helper current =
if Seq.isEmpty (current:seq<'T>) then
foundSoFar.Keys :> seq<_>
else
let nCurrent =
current
.AsParallel()
.SelectMany (generators)
.Where (ConcurrentSet.add foundSoFar)
.ToList ()
helper nCurrent
for x in initData do
ConcurrentSet.add foundSoFar x |> ignore

helper initData

Listing 3.16: Approach B — F# — Variation B (PLINQ)

let solveParallelForEach<'T when 'T: equality> M
{ initData = initData; generators = generators } =
let foundSoFar = ConcurrentSet.create M 1000000
let rec helper current =
if Seq.isEmpty (current:seq<'T>) then
foundSoFar.Keys :> seq<_>
else
let res = ConcurrentBag<'T>()
Parallel.ForEach(current,
generators
>> Seq.filter (ConcurrentSet.add foundSoFar)
>> Seq.iter res.Add
) |> ignore
helper res
for x in initData do
ConcurrentSet.add foundSoFar x |> ignore

helper initData

Listing 3.17: Approach B — F# — Variation B (Parallel. ForEach)

The Parallel class provides library-based data parallel replacements for common opera-
tions such as for loops, for each loops, and execution of a set of statements. These replace-

ments are designed to be blocking and consequently are rather restrictive.

45

Approach B - Parallel 46

Evident in both versions is the limited API of ConcurrentSet (which resembles the capa-
bilities of the underlying ConcurrentDictionary). For example, there is no function that
creates a ConcurrentSet with customizable level of concurrency (represented by the M pa-
rameter) and simultaneously bulk loads it with elements from an existing collection; each

element has to be inserted separately.

46

47 Chapter 3. Implementation

3.6 Approach C - Futures

In this approach we abandon the stepwise logic of approaches A and B, aiming to remove
the bottleneck of waiting for a step to finish before the next step begins. A central role in

this approach belongs to the coordinator, an actor that:

e partitions sequences to chunks of a specified size G
e starts an asynchronous job of computing the new elements

e determines when the Orbit set has been fully computed
The coordinator handles the following two messages:
Start contains the initial data and a way to return the resulting Orbit set
Result contains the data computed by an asynchronous job

This approach has also two variations, distinguished by whether the variation uses a con-

current set or not.

Figure 3.5: Logic of Approach C — Variation A Figure 3.4: Logic of Approach C — Variation B
3.6.1 Scala
The coordinator is defined using the actor domain specific language that is provided by
Akka that helps to reduce the amount of code needed for simple actors. The coordinator
has an initial behavior that handles Start messages. Upon receiving the Start message the
coordinator assumes the main coordinator logic that reacts to Result messages and will

eventually store the result to the promise when the computation finishes.

We define the messages as Scala case classes instead of plain classes so that they are
immutable and can be used in pattern matching. Case classes also provide structural
equality and hashing, as well as an intutitive override of the toString method, but we do

not use that functionality.

// Message definition

case class Result(data: Seq[T])

case class Start(data: Seql[T], promise: Promise[Set[T]])

Listing 3.18: Scala Messages

47

Approach C - Futures 48

The behavior switch is supported by the become method: the argument of become determines
the actor reaction to messages henceforth. At least one call to this method is needed inside
the Act body to designate the initial behavior; the reaction logic may have other become

calls that alter the desired behavior according to the received messages.

new Act {
def chunkAndSend(data: Seq[T], coordinator: ActorRef): Int = {

future { Result(chunk.flatMap(generators(_)).distinct) } pipeTo coordinator

}
var foundSoFar = iSet[T] // or val foundSoFar = mSet[T]

var remaining = 0

def loop(replyPromise: Promise[Set[T]]): Receive = {
case Result(data) =>
val filteredData = data.filterNot(foundSoFar.contains)
foundSoFar ++= filteredData
val jobs = chunkAndSend(filteredData, self)
if (remaining > 1 || jobs > 0) remaining += jobs - 1
else replyPromise.success(foundSoFar)
}
become {
case Start(data, promise) =>
foundSoFar ++= data
become (1loop(promise))

val jobs = chunkAndSend(data, self); remaining += jobs

Listing 3.19: Scala Coordinator — Variation A (non-concurrent result set)

The chunkAndSend function (Listing 3.20) is used by the coordinator to create the asyn-
chronous jobs. It partitions the input to chunks and creates a job for each of them as a
scala.concurrent.Future. The result of the Future is then piped to the coordinator using

a predefined Akka pattern for future-actor communication.

// Partition data to chunks, create jobs and return number of created jobs
def chunkAndSend(data: Seq[T], coordinator: ActorRef): Int = {
var jobs = 0
for (chunk <- data.grouped(G)) {
import akka.pattern.pipe
future { .. } pipeTo coordinator
jobs += 1
}
jobs

Listing 3.20: Scala partitioning and job-creating function

48

49 Chapter 3. Implementation

The Scala implementations are wrappers for the coordinator actor (Listing 3.22). The
resultPromise is sent along with initData to the coordinator and then we wait for its

asynchronous completion, when we will be able to access the result contained therein.

new Act {
def chunkAndSend(data: Seq[T], coordinator: ActorRef): Int = {

future { Result(chunk.flatMap {
generators(_) .filter (foundSoFar.putIfAbsent(_, ()).isEmpty)
1} pipeTo coordinator

val foundSoFar = cMap[T]

var remaining = 0

def loop(replyPromise: Promise[Set[T]]): Receive = { case Result(data) =>
val jobs = chunkAndSend(data, self)
if (remaining > 1 || jobs > 0) remaining += jobs - 1

else replyPromise.success(foundSoFar.keySet)

}
become {
case Start(data, promise) =>

foundSoFar ++= data.map((_, ()))

become (loop (promise))

val jobs = chunkAndSend(data, self); remaining += jobs
}

}

Listing 3.21: Scala Coordinator — Variation B (concurrent result set)

def solveFutures(p: Definition, G: Int): Set[p.T] = {

import p._, concurrenf.{future, duration, promise}

implicit val system = ActorSystem("system") // Define the actor system

val coordinator = actor("coordinator") (new Act { /* coordinator logic */ 1})
val resultPromise = promise[Set[T]]

coordinator ! Start(initData, resultPromise) // Start computation

val res = // Await asynchronous result

Await.result(resultPromise.future, duration.Duration.Inf)

system.shutdown() // Stop all actors and shutdowns the system

res // Return result

Listing 3.22: Approach C — Scala

49

Approach C - Futures 50

In Listing 3.22 we present the solver of this approach. We can see that even for a simple
actor several lines of code are required: to create the actor system, to create the actor itself

and to manually shutdown the whole system at the end of the asynchronous computation.

3.6.2 F#
The F+# coordinator accepts messages of type Message<'T> as defined in Listing 3.23.

type Message<'T> =
| Start of array<'T> * AsyncReplyChannel<seq<'T>>
| Result of array<'T>

Listing 3.23: F# Messages
We have defined the chunkAndSend function to take two parameters in addition to the data:

sendLogic is the functionality that creates the asynchronous jobs and is specific for each

variation of this implementation approach.

chunker is the function that partitions the data.

let chunkAndSend sendLogic chunker data =
let mutable jobs = 0
for chunk in data |> chunker do
sendLogic chunk
jobs <- jobs + 1
jobs

Listina 3.24: F# partitionina and iob-creatina function

The sendLogic parameter is a function that creates the asynchronous jobs. It has a separate
implementation for each variation and is defined as a function combination using the >>
operator of F# (Listing 3.25).

let logicMutableSet generators coordinator =
Seq.collect generators >> Seq.distinct
>> Seq.toArray
>> Result

>> Agent.post coordinator

let logicConcurrentDictionary generators foundSoFar coordinator =
Seq.collect generators >> Seq.filter (ConcurrentSet.add foundSoFar)
>> Seq.toArray
>> Result

>> Agent.post coordinator

Listing 8.25: Job logic of each variation

The Seq.toArray function calls force the evaluation of the sequence to happen in the asyn-
chronous jobs; without them, the computation is delayed until the enumeration of the

sequence at the coordinator, making the execution practically sequential.

50

51 Chapter 3. Implementation

Like in Scala, the coordinator has an initial behavior accepting a Start message and a main
behavior that reacts to Result messages. The behavior change in F+# is a simple function
call to the new behavior. But, unlike Scala, the messages that the coordinator accepts are
part of its type and fixed; hence any possible message needs to be defined as case of a

discriminated union, which is the type argument of the coordinator.

The two coordinator variations are shown in Listings Listing 3.26 and Listing 3.27.

let coordinatorMutableSet chunkAndSend G inbox
let foundSoFar = MutableSet<'T>()
let rec start() =
async {
let! Start(initData, replyChannel) = Agent.receive inbox
MutableSet.unionWith foundSoFar initData
let jobs = chunkAndSend inbox (Seq.chunked_opt_2 G) initData

return! loop replyChannel jobs
}
and loop replyChannel remaining = async {
let! Result data = inbox.Receive()
let data = data |> Array.filter (not << contains foundSoFar)
MutableSet.unionWith foundSoFar data
let jobs = chunkAndSend inbox (Seq.chunked_opt_2 G) data
if remaining > 1 || jobs > O then
return! loop replyChannel (remaining + jobs - 1)
else
AsyncReplyChannel.reply replyChannel <| upcast foundSoFar
¥
start ()

Listing 3.26: F# Coordinator — Variation A (non-concurrent result set)

let coordinatorConcurrentSet foundSoFar chunkAndSend M G inbox =
let rec start() =
async {
let! Start(initData, replyChannel) = Agent.receive inbox
let jobs = chunkAndSend inbox (Seq.chunked_opt_2 G) initData
return! loop replyChannel jobs
}
and loop replyChannel remaining = async {
let! Result data = inbox.Receive()
let jobs = chunkAndSend inbox (Seq.chunked_opt_2 G) data
if remaining > 1 || jobs > O then
return! loop replyChannel (remaining + jobs - 1)
else
AsyncReplyChannel.reply replyChannel <| upcast foundSoFar.Keys
3
start ()

Listing 3.27: F# Coordinator — Variation B (concurrent result set)

o1

Approach C - Futures 52

The coordinator body is implemented as a recursive asynchronous computation. The asyn-
chronous value bindings and function calls are expressed using the F# computation ex-

pression syntax and in particular the keywords let! and return!.

For the first variation there is one version with the jobs being implemented as asynchro-

nous computation and one version using System.Threading.Tasks.Tasks (Listing 3.28).

let solveAsync<'T when 'T: equality> G
{ initData = (initData:seq<'T>); generators = generators } =
let chunkAndSend inbox =
let logic = logicWithMutableSet generators inbox
genericChunkAndSendComputations <|
fun chunk -> Async.Start <| async { logic chunk }
let coordinator = Agent.start <| agentLogicMutableSet chunkAndSend G

run coordinator initData

let solveTask<'T when 'T: equality> G
{ initData = (initData:seq<'T>); generators = generators } =
let chunkAndSend inbox =
let logic = logicWithMutableSet generators inbox
genericChunkAndSendComputations <|
fun chunk -> Task.Factory.StartNew(fun _ -> logic chunk) |> ignore
let coordinator = Agent.start <| agentLogicMutableSet chunkAndSend G

run coordinator initData

Listing 3.28: Approach C — F# — Variation A (Async Workflows € Tasks)
The second variation implementation is shown in Listing 3.29.

let solveConcurrentDictionary<'T when 'T: equality> M G

{ initData = initData; generators = generators } =

let chunkAndSend foundSoFar inbox
let logic = logicConcurrentDictionary generators foundSoFar inbox
chunkAndSend <| fun chunk ->
Task.Factory.StartNew(fun _ -> logic chunk) |> ignore
let coordinator = Agent.start <| fun inbox ->
let foundSoFar = ConcurrentSet.create<'T> M 100000
coordinatorConcurrentSet foundSoFar (chunkAndSend foundSoFar) M G inbox

run coordinator initData

Listing 3.29: Approach C — F# — Variation B (ConcurrentDictionary)
All implementations of this category use a run function to “ask” the coordinator for the
result (Listing 3.30). The Agent.postAndAsyncReply function is used to provide a way of
getting back the result set.

52

53 Chapter 3. Implementation

let run coordinator initData =
Agent .postAndAsyncReply coordinator <|
fun channel -> Start(Array.ofSeq initData, channel)

|> Async.RunSynchronously

Listing 3.30: The run function
3.6.3 Erlang
Both coordinator and asynchronous jobs are implemented as Erlang processes: the coordi-
nator as a persistent actor (with function solve_conc_helper/4 as body) and the jobs as

transient computations (that are spawned by the coordinator).

solve_conc(#definition{init_data = InitData, generators = Generators},
G, Implementation) ->
ets:new(hashset, [set, named_table, public, {read_concurrency, true},
{write_concurrency, truel}]),
Master = self(),
Coordinator = spawn(fun() -> Implementation(Master, Generators, G, 1) end),
Coordinator ! InitData,
receive finish -> ok end,
Result = ets:match(hashset, '$1'),
ets:delete(hashset),
Result.

Listing 8.31: Approach C — Erlang
In Listing 3.31 we present the wrapper function for both variations; the parameter
Implementation is the coordinator logic. Notice the creation of the ETS table beside the
already described options, the read_concurrency and write_concurrency options enable

concurrent access.

The coordinators uses an altered version of the presented split:split/2: split:split/3

that in addition to partitioning the elements applies a function to each resulting chunk.

solve_conc_helper(Master, _Generators, _G, 0) ->
Master ! finish;
solve_conc_helper (Master, Generators, G, Remaining) ->
receive Current ->
FilteredCurrent = [Elem | Elem <- Current, ets:insert_new(hashset, {Elem})],
Coordinator = self(),
Count = split:split(G, FilteredCurrent, fun(Chunk) ->
spawn(fun() ->
Coordinator ! lists:usort(lists:flatmap(Generators, Chunk))
end)
end),
solve_conc_helper (Master, Generators, G, Remaining + Count - 1)

end.

Listing 3.32: Erlang Coordinator — Variation A (non-concurrent set)

93

Approach C - Futures 54

In the first variation (Listing 3.32) the coordinator filters the Current elements and creates
processes that apply the Generators to each Chunk, remove duplicate elements using the

lists:usort function and send the result back to the Coordinator.

solve_conc_helper (Master, _Generators, _G, 0) ->
Master ! finish;
solve_conc_helper (Master, Generators, G, Remaining) ->
receive Current ->
Coordinator = self(),
Count = split:split(G, Current, fun(Chunk) ->
spawn(fun() ->
NCurrent = lists:flatmap(fun(C) ->
[X | X <- Generators(C), ets:insert_new(hashset, {X}) end]

end, Chunk),
Coordinator ! NCurrent
end)
end),

solve_conc_helper(Master, Generators, G, Remaining + Count - 1)

end.

Listing 3.33: Erlang Coordinator — Variation B (concurrent set)

The coordinator in the second variation (Listing 3.33) is limited to creating processes that
apply Generators to each Chunk, insert the new elements to hashset and send them back

to the Coordinator.

54

55 Chapter 3. Implementation

3.7 Approach D - Persistent Workers

The implementations of this approach resemble the second variations of the previous ap-
proach. The distinctive difference is the use of persistent workers in place of transient
asynchronous jobs for computing the new elements. The coordinator partitions the ele-
ments to chunks, as before, but each chunk is sent to a worker which is chosen according

to a Round-Robin routing policy.

This category mainly aims to examine the actor capabilities of Scala, F# and Erlang, so

for each language we present only one version that uses a concurrent set.

3.7.1 Scala

In this implementation we use the full-fledged actor API as it is more flexible than the

actor DSL we used previously.

Besides the start and Result messages (Listing 3.18), there is also the Job message (Listing
3.34) that contains the chunk to be processed by a worker. We could choose to send the
chunks without wrapping but due to the erasure of type T the chunk received would be a

Seq[Any]. Therefore we decided to use the Job message.

case class Job(chunk: Seql[T])

Listing 3.34: The Job Message
In Listing 3.35 we define the Worker class: it is an actor that reacts to Job messages by
computing the new elements and replying to the sender, which is the actor who sent the

message.

class Worker(map: collection.concurrent.Map[T, Unit]) extends Actor {
def receive = { case Job(chunk) =>
sender ! Result(chunk.flatMap {
generators(_) .filter(map.putIfAbsent(_, ()).isEmpty)
)

Listing 3.35: The Worker class

In Listing 3.36 we present the Coordinator class:

e M workers are created under a RoundRobinRouter, whose ActorRef is stored in the
workers value.

e The chunkAndSend function partitions the data and sends the chunks to the workers

e The loop and receive functions resemble the states of the corresponding coordina-
tor of the previous category; again become is used for state switching with the dif-
ference that, in this implementation, it is a member of the context value instead of

a direct member of the actor.

95

Approach D - Persistent Workers

All the actors of this system belong to a
single hierarchy: the context.actor0Of
method creates the actor of its arguments
as child of the current actor while the
Props(..).withRouter method creates a
router with the routees (W1-W4) as chil-
dren. As shown in Figure 3.6 the actor hi-
erarchy of this implementation has the co- Figure 8.6: Actor Hierarchy & Message Routes

ordinator as top-level actor, below it stands the router and at the bottom the workers.

o6

class Coordinator extends Actor {
val foundSoFar = cMap[T]

val workers = context actorOf {

var remaining = 0
def chunkAndSend(data: Seq[T]): Int = {
var jobs =0
for (chunk <- data.grouped(G)) {
workers ! Job(chunk); jobs += 1
}
jobs

def loop(replyPromise: Promise[Set[T]]): Receive = {
case Result(data) =>
val jobs = chunkAndSend(data)
if (remaining > 1 || jobs > 0)
remaining += jobs - 1
else

replyPromise.success(foundSoFar.keySet)

def receive = {
case Start(data, promise) =>
foundSoFar ++= data.map((_, ()))
context become loop(promise)
val jobs = chunkAndSend(data);

remaining += jobs

Props (new Worker (foundSoFar)) withRouter RoundRobinRouter (nrOfInstances = M)

Listing 3.36: The Coordinator class

In Listing 3.37 we present the implementation structure.

56

o7 Chapter 3. Implementation

def solveActorWorkersConcurrentMap(p: Definition, M: Int, G: Int) = {

. // Class definitions for messages, coordinator and worker

// Creates actor system and coordinator
val system = ActorSystem("system")

val coordinator = system actor0f Props[Coordinator]

// Creates, sends and waits for the result of the promise
val resultPromise = concurrent.promise[Set[T]]
coordinator ! Start(initData, resultPromise)

val res = Await.result(resultPromise.future, concurrent.duration.Duration.Inf)

// Shutdowns the system and returns the result
system. shutdown ()

res

Listing 8.87: Approach D — Scala

3.7.2 F#

The F# implementation, shown in Listing 3.38, shares its core logic with the previous

approach (Listing 3.25).

let solveWorkersAndConcurrentSet<'T when 'T:equality> M G
{ initData = (initData:seq<'T>); generators = generators } =
let i = ref O
let chunkAndSend workers _ = chunkAndSendToWorkers M workers i
let workPile = Agent.start <| fun inbox ->
let foundSoFar = ConcurrentSet.create M 100000

let workers = Array.init M <| fun _ -> Agent.start(fun workerInbox ->

let rec loop () = async {
let! chunk = Agent.receive workerInbox
logicConcurrentDictionary generators foundSoFar inbox chunk
return! loop()
X
loop()
)

agentLogicConcurrentSet foundSoFar (chunkAndSend workers) M G inbox

run workPile initData

Listing 8.38: Approach D — F#

The worker actors are stored in an array field of the coordinator and the routing logic is
embedded in the chunkAndSendToWorkers function (Listing 3.39): the reference i stores the
index for the to-be-selected actor and is increased at each iteration of the loop, thus provid-

ing the desired routing behavior.

o7

Approach D - Persistent Workers 58

let chunkAndSendToWorkers M workers i chunker data =
let mutable jobs = 0
for chunk in data |> chunker do
(Array.get workers (!i%M), chunk) ||> Agent.post
incr i; jobs <- jobs + 1

jobs

Listing 3.39: The chunkAndSendToWorkers function

3.7.3 Erlang

The Erlang implementation uses persistent processes for the coordinator and the workers.
Similarly to the Scala implementation, the coordinator does not have direct access to the
workers. In order to implement the round robin policy we need to keep some state, which
should not be exposed to the coordinator logic; therefore we introduces a router that man-

ages the messages for the worker actors.

coordinator(Master, Workers, _G, 0) ->
Master ! stop,
Workers ! stop;
coordinator(Master, Workers, G, Remaining) ->
receive
Current ->
Count = split:split2(G, Current, fun(Chunk) -> Workers ! Chunk end),
coordinator(Master, Workers, G, Remaining + Count - 1)

end.

Listing 3.40: Erlang Coordinator

In addition to the domain specific functionality, the Erlang coordinator is also responsible
for terminating the router and the workers. When the result is ready, the coordinator sends
it back to the wrapper function and sends a stop message to the router, which broadcasts

stop messages to all the workers.

In Listing 3.41 we present the worker actor. It reacts to Chunk messages by computing the

new elements for each Chunk received and to stop messages by stopping itself.

worker (Coordinator, Generators) ->
receive

stop -> ok;

Chunk ->
NCurrent = lists:flatmap(fun(C) ->

[X | X <- Generators(C), ets:insert_new(hashset, {X}) end]
end, Chunk),

Coordinator ! NCurrent,
worker (Coordinator, Generators)

end.

Listing 8.41: Erlang Worker

58

59 Chapter 3. Implementation

The absence of mutable variables in Erlang dictated that the router would be a separate
actor (Listing 3.42) whose state is the worker that will be chosen next. All actors are in a
queue; when a message arrives, a worker is removed from the queue and is put at its end,

while the received message is forwarded to it.

round_robin_router (Workers) ->
receive

stop ->
lists:foreach(fun(Pid) -> Pid ! stop end, queue:to_list(Workers));

Msg ->
{{value, Pid}, NWorkers} = queue:out(Workers),
Pid ! Msg,
round_robin_router(queue:in(Pid, NWorkers))

end.

create_workers_under_rooter (M, Func) ->
spawn(fun() ->
Workers = [spawn(fun() -> Func(I) end) || I <- lists:seq(l, M)],
round_robin_router(queue:from_list (Workers))
end) .

Listing 3.42: Erlang Round-Robin Router

The wrapper function is presented in Listing 3.41.

solve_conc_workers (#definition{init_data = InitData, generators = Gens},
M, G) ->
ets:new(hashset, [set, named_table, public, {read_concurrency, true},
{write_concurrency, truel}]),
Master = self(),
Coordinator = spawn(fun() ->
Coord = self(),
Workers = create_workers_under_rooter(M, fun(_I)-> worker(Coord, Gens) end),
coordinator (Master, Workers, G, 1)
end),
Coordinator ! InitData,
receive finish -> ok end,
Result = ets:match(hashset, '$1'),
ets:delete(hashset),
Result.

Listing 3.43: Approach D — Erlang

99

Code metrics 60

3.8 Code metrics

In Table 3.2 we present two metrics for all implementations: lines of code and token count.
For each metric we provide a breakdown to a part that is shared among two or more
implementations and a part unique for each of them, along with a total number; those

numbers contain empty lines and brackets/parentheses.

Table 3.2: Lines of Code and Token Count for each Implementation

Total Total Unique Unique Shared Shared

Implementation
LOC Tokens LOC Tokens LOC Tokens
F+# (Sequential) 14 55 14 55 - -
F# (PLINQ) 17 55 17 55 - -
F# (PLINQ &
() Q 17 63 17 63 - -
ConcurrentDictionary)
F# (Parallel.Foreach &
17 74 17 74 - -

ConcurrentDictionary)
F# (Persistent Actors) 57 254 15 78 42 176
F+# (Persistent Actors &

55 248 17 87 38 161
ConcurrentDictionary)
F+# (Async) 48 215 7 48 41 167
F+# (Task) 48 215 7 48 11 167
F# (Task &
. . 46 216 9 64 37 152
ConcurrentDictionary)
Scala I/M (Sequential) 17 57 4 17 13 40
Scala (ParSeq) 20 69 7 29 13 40
Scala (ParSeq &
12 52 12 52 - -
ConcurrentMap)
Scala I/M (Future) 46 148 46 148 - -
Scala C (Future &
48 147 48 147 - -
ConcurrentMap)
Scala (Persistent Actors) 57 172 57 172 - -
Scala (Persistent Actors &
58 178 58 178 - -
ConcurrentMap)
Erlang (Sequential) 13 41 13 41 - -
Erlang (Process) 25 94 13 51 11 43
Erlang (Process & o o7 1 54 1 43
Concurrent ETS)
Erlang (Persistent Actors &
49 154 46 154 - -

Concurrent ETS)

These metrics reflect some interesting aspects:
e Code sharing between implementations that use concurrent and sequential data
structures is limited, as the logic differs.
e In Scala and F#, type inference affects the refactoring of common code to a reus-
able functions. The global type inference algorithm of F# supports that refactoring

with relatively few added tokens, while the benefits of code reuse in Scala are often

60

61

61

Chapter 3. Implementation

less important than the incurring token overhead due to mandatory type annota-
tion of function arguments.

In Scala, the collection library enables code reuse between sequential and parallel
implementations by abstracting over the concrete implementation of the collection.
Because the core implementation function uses an interface, whether the execution
is sequential or parallel depends only on the object that is passed as argument.
Scala I/M (Future) implementations are almost identical; yet the share no code

due to semantic differences between val and var.

Implementation Remarks 62

3.9 Implementation Remarks

During the implementation period of this thesis we encountered several surprises, oddities

and delights that are worth mentioning.

Types

In terms of type systems Scala, F# and Erlang have noticeable differences:

e Scala has a Turing-complete type system with a vast feature set.
o F+# has a type system that resembles its ML heritage, though it does not have the
expressive module system of its siblings (SML, OCaml).

e FErlang is dynamically typed so there is not much to say.

The abundance of features in the type system of Scala is both a blessing and a curse. It
was enticing to experiment with its capabilities in our implementations. First, we hid the
element type T from parts of the implementation that did not need it by encapsulating it
as a member of the problem definition instead of representing it as type parameter. Then
we used type classes (in form of implicit context in the problem definition) to write one
implementation that would be used for both Long and BigInteger elements. Last, we used
subtyping in our main method to unify the cases of Long and BigInteger problem defini-

tions.

During implementation we encountered several intricacies. Early on we came across the
beast called type erasure: the element type was erased if we defined auxiliary types using
generics. We were forced to redefine auxiliary types (like messages) in every implementa-
tion to avoid casts; of course we attempted to extract them as a separate dependency but
the result was more convoluted than plain code repetition. In addition we witnessed some
bugs: using path depended types caused the appearance of existential types that prohibited
a function from passing type checking; and the type inference algorithm would not deduce
a type as a subtype of another. These bugs were observed using the version 2.10.1 of the
Scala compiler but they were fortunately both fixed in the 2.10.2 update.

The F+# experience with types was less adventurous. We used plain generics to represent
our problem definitions and we worked around the absence of type classes with statically
resolved type parameters that helped us avoid duplicating code between int64 and bigint
implementations. On the other hand, global type inference assisted the extraction of com-
mon functionality in separate functions as we did not have to declare any argument types.
However the type inference algorithm of F# does not work with object oriented features:
it does not automatically subsume a type into its supertypes (explicit upcasts are required)
and it cannot infer the type of an object based on an access to field or method that this

type is known to have.

From our experiences in Scala and F# we were satisfied from their type system capabilities,
though we would recommend against combining several exotic features from the Scala type

system since there are still rough edges like the aforementioned bugs.

62

63 Chapter 3. Implementation

Libraries

In terms of featured libraries, the experience was similar to the above. Scala has the most
comprehensive standard library, at least in terms of collection functionality. It offers sev-
eral different collection categories: mutable and immutable, lazy and eager, concurrent and
parallel, along with wrappers for almost every Java collection, which make them appear
just like their Scala counterparts. More importantly, all collections belong to a single hier-
archy and therefore have uniform usage patterns, while there is an excess of functionality
shared among them. In order to benefit from them one has to thoroughly study their
behavior to find which is better for one’s needs and to be able to reason about their

behavior.

Contrary to Scala, F# libraries offer basic functionality and they extensively rely to the
Base Class Library. There are only immutable F# collections whose implementation is not
very optimized (for instance: F# immutable set), so one has to use the BCL collection that
offers the desired functionality. We have to note that BCL collections have an object
oriented design so their use in F# feels somewhat unnatural and rules out any assistance
from type inference. Furthermore, sequence expressions are a feature to appreciate, since
they enable easy sequence manipulation (and every collection is a sequence) and their on-
demand evaluation semantics avoids creation of intermediate collections during sequence
manipulation; however one has to be careful and most considerate when reasoning about
their performance as one may encounter surprising performance characteristics arising from

this on-demand behavior.

Erlang, on the other hand, has a variety of functional data structures, and ETS, the de
facto choice when high performance access to shared memory is required. On the other
hand, it requires plenty of argument forwarding as it does not support global value decla-
rations, and the introduction of additional levels of indirection to implement functionality
that could be easily implemented if mutable variables were supported — in our case the
addition of the router actor. Consequently, all implementations are plain and functional in
nature; which is not necessarily bad, considering that the resulting code is straightforward

and easy to reason about.

Feature Maturity and Library Stability

During the prolonged period we were occupied with this study, we developed an overall
view regarding the maturity and stability of the language implementations. Erlang and
F# had a mostly stable feature set: few new features were added in during our observation
period which were mostly compatible with the previous versions, and few bugs were en-
countered in their libraries. On the contrary, Scala experienced several feature and library
additions and revisions that were not always backward compatible like modification of the
future library and its transfer from the Akka binaries to the standard library. As a result,
Scala is still evolving rapidly and one should be prepared for feature deprecation, function-
ality modification, implementation bugs and features that do not cooperate well with each
other.

63

Chapter 4

Experimental Evaluation

The second part of this thesis involves the study performance, scalability and other execu-
tion characteristics of the examined languages and runtimes. For that purpose we executed
the implementations of the previous chapter for an Orbit definition we composed and we
measured the effect of several runtime parameters. In the main body of this chapter we
comment on the results of that execution and try to explain the observed behavior. Finally

we provide an overview of those results along with some other remarks.

4.1 Choosing the right benchmark

We needed a benchmark that:

e requires enough time to complete, in order to minimize the effect of “computational”
noise,

e computes elements representable with both 64-bit integers and integers of arbitrary
size, to examine the effect of different number representations (in Erlang integers
are arbitrary sized so we),

e results in an Orbit set of configurable size, and

o allows the implementations to execute faster in environments with more computa-

tional resources

Therefore we composed a benchmark that given a number N computes numbers between
0 and N, using simple functions, which contain additions and multiplications. These func-
tions have trivial computational cost so we chose to introduce a delay to each of them;

that delay increases the computation time as needed without affecting the result of the

computation. def delay(d:Int) = {

var h = 2xd

var 1 = 0O

while (h>1) {
h-=1;1+=1

As simple loop-based delays are optimized away by the lan-
guage/JIT compilers, we devised a delay function that is

more resistant to optimizations (Listing 4.1). This function

uses variables h and 1, initialized at 2*d and 0 respectively; }
h is decreased and 1 is increased until their values become h-1
equal after d iterations. }

Listing 4.1: The delay function

Runtime Parameters 66

For most of our measurements we chose the parameters N and d based on trial and error.
At first we tried using big values (5-20 million) for N but that resulted in out-of-memory
errors in our Scala implementations. We tried to work around those errors by altering the
JVM startup parameters. We configured the size of the permanent generation space
(PermGen) to 256MB instead of the default 64MB, since Scala has high requirements
regarding this kind of memory, due to the numerous auxiliary classes it uses to support
higher level constructs like closures and nested class definitions. Notwithstanding this com-
pulsory modification, our experimentation with JVM parameters gave unsatisfying results
so we decided to follow a different approach: we experimented with different values of
parameter d, to artificially increase the computation cost of each generator function so
that the execution times for the sequential implementations in the three languages would
be similar and long enough for our purposes. This way we managed to increase the parallel
proportion of the total computation and achieve higher speedups that reflect better the
limits of the concurrent runtime and libraries rather than the scalability of our algorithm

and implementation. The final parameter values were:

e N = 200000
e d=10000 for F# and Scala and d = 1000 for Erlang.

4.2 Runtime Parameters

In order to examine the scalability of our implementations we needed to limit their execu-
tion on a specified number of CPU cores. To that end we introduced the following param-

eters:

o Parameter P: the CPU affinity of the OS process in which each implementation
runs. It is specified using the taskset command on Linux and the affinity param-
eter on Windows.

e Parameter M: a parallelism or concurrency parameter in the implementation or the
libraries used; it may be the level of parallelism of a parallel collection, the level of
concurrency of a concurrent data structure or the number of persistent actors in
an actor system.

e Parameter G: the chunk size argument of the partitioning function. We need to
test several chunk sizes so that we can determine one that is small enough to enable
parallelism and large enough to produce chucks that have considerable computa-

tional cost.

66

67 Chapter 4. Experimental Evaluation

4.3 Execution environment

For our experimental evaluation we used a Bulldozer-based server and the software de-

scribed in the following subsections.

4.3.1 Bulldozer Architecture
The machine we used for our benchmarking has 64-core Bulldozer-based server with the
following characteristics:

e 4 sockets

e 2 NUMA nodes per socket (8§ NUMA nodes in total)

e 8 cores per NUMA node (64 cores in total)

e cache per core

e (64KB Ll-instruction cache per 2 cores

e 2MB L2 cache per 2 cores

e G6MB L3 cache per NUMA node

e 16GB RAM per NUMA node (32GB RAM per socket and 128GB in total)

Bulldozer NUMA node Bulldozer
RAM 4 sockets - 128GB
‘ 16GE ‘
Socket 0 Socket 2
L3
‘ 6MB ‘ Numa || Numa Numa || Numa
Node 0 || Node 1 Node 4 || Node 5
‘ 2MB ‘ ‘ ZMB ‘ 2MB ‘ ‘ zMB ‘ 16GB 16GB 16GB 16GB
L1i L1i L1i L1i
64K B G4K B 64K B G4KB
Socket 1 Socket 3
Lld | Lid Lld | Lid Lld | L1d Lld | L1d
‘lGKBLSKB‘ ‘ISKB‘I.GKB| IGKB‘ISKB‘ ‘1SKB lﬁKB‘ Numa || Numa Numa || Numa
: Node 2 || Node 3 Node 6 || Node 7
Core | Core Core | Core Core | Core Core | Core 16GB 16GB 16GB 16GB
o | 1 2 | 3 4 | s 6 | 7

Figure 4.1: Bulldozer Architecture

4.3.2 Language Runtimes, Libraries and Scripting Environment

The language runtimes and libraries we used for benchmarking are the following:

Scala 2.10.2 + Akka 2.1 on Java HotSpot 64-bit Server VM 1.7.0 21

F# 3.0 on Mono 3.11 Beta (both Mono and F# were built from the master branch
of their respective Git repositories)

Erlang R16B01 64-bit with natively compiled libraries

For the execution of the described configurations, we used the F# Interactive (from the

above F# installation) as a scripting environment.

67

Approach A - Sequential 68

4.4 Approach A - Sequential

We ran all implementations of this category for P = {1, 2, 4, 8, 16, 32, 64}. In Scala we
examined implementations with both Scala and Java sets: Scala I uses an immutable Scala
set, Scala M a mutable Scala one and Scala J the standard Java HashSet (see Table 4.1).

Implementation Set
Scala I scala.collection.immutable.Set
Scala M scala.collection.mutable.Set
Scala J java.util.HashSet

Table 4.1: Set type for each Scala implementation

20000
18000
16000
— 14000
£ 12000
o 10000
g 8000
& 6000
4000
2000
0
1 2 4 8 16 32 64

mF#4 18963 18953 18946 18948 18951 18951 18949

m Scala 13965 13982 13961 13959 13964 13959 13961

m Scala J 13761 13755 13763 13737 13739 13755 13760

Scala M 13838 13832 13924 13837 13836 13840 13833

m Erlang 15469 14729 15485 14757 14715 14714 14712

Figure 4.2: Approach A — Time
In Figure 4.2 we present the result of the sequential executions. F# exhibited worse per-
formance that Scala, although we expected their corresponding execution times to be sim-
ilar. This result can be attributed to the different implementation approach (see Section
3.4). Furthermore, Erlang gave times close to Scala but we should keep in mind the order-

of-magnitude difference among the parameter d values of the respective configurations.

We should also make some remarks particularly about the three Scala implementations.
In terms of performance the Java HashSet is fastest, second follows the mutable set and
last comes the immutable one. Although the performance differences are small, Java has
an apparently more optimized set implementation than Scala. In addition, we noticed that
sometimes more than one processors were used in the execution of Scala configurations, a
behavior suggesting that that the JVM uses several processors for internal operations like

JIT compilation, garbage collection and other maintenance jobs.

68

69 Chapter 4. Experimental Evaluation

4.5 Approach B - Parallel Collections

In this implementation approach we did not follow a universal benchmarking scheme. First
of all, we could not run all the implementations; F# Variation A (PLINQ) when run on
Mono throws a NullPointerException at the ParallelEnumerable.Distinct() call, so we
were unable to take any measurements for it. We ran the other implementations for P =
{1, 2, 4, 8, 16, 32, 64}.

Also we used the M parameter - differently for each implementation. In Scala it represents
the level of parallelism of the ForkJoinPool that supports the parallel execution on ParSeq
and we ran the implementations for M = {1, 2, 4, 8, 16, 32, 64}. In F# (PLINQ), M is the
level of parallelism that we want from the PLINQ library and it took values M = {1, 2, 4,
8, 16, 32, 63}; in F'# (Parallel. ForEach) M is the level of concurrency of the ConcurrentSet
with values M = {1, 2, 4, 8, 16, 32, 64}.

20000
18000
16000
- 14000
E 12000
- 10000
g 8000
& 6000
4000 I I
2000 I
1 2 1 8 16 32 64
B Scala (ParSeq) 14145 9944 5145 2811 1536 1307 898
m Scala (ParSeq &
cala (ParSeq 19360 7380 5012 2619 1519 | 1038 619

juc.ConcurrentMap)
Scala (ParSeq & cc.TrieMap) 14251 9879 3673 2564 1252 676 591
F# (PLINQ & Concurrent
Dictionary)
mF# (Parallel. ForEach &

Concurrent Dictionary)

19932 10367 5386 2971 1980 1501 1297

20467 10955 5869 3450 2467 1696 1285

Figure 4.3: Approach B — Time

In Figure 4.3 the effect of parameter P is shown — for the best results regarding parameter
M. Relatively to the sequential implementations (Scala I and F#), the overhead of this
approach is tolerable in most cases; only Scala (ParSeq & juc.ConcurrentMap) has an
overhead of 30% compared with not only the sequential implementation but also Scala
(ParSeq & cc. TrieMap). This significant overhead is possibly an effect of JIT-compilation.
After repeated execution of both Scala (ParSeq & cc.TrieMap) and Scala (ParSeq &
guc.ConcurrentMap) we observed execution times over 19 seconds in some executions,
while in others it dropped to 14 seconds. We assume that there is a heuristic determining
whether JIT-compilation would result in faster execution of the running program or not;

for these configurations the heuristic result differs between executions.

69

Approach B - Parallel Collections 70

Except for the Scala (ParSeq € juc.ConcurrentMap) and its initial overhead, no imple-
mentation speedup is remarkable (Figure 4.4). The cause for the witnessed behavior is the
stepwise logic of this category that impedes parallel execution: the elements of each step
do not suffice to create enough parallel work to fully utilize the available resources and

even if there is ready work for the next step it cannot start because of the stepwise logic.

Nonetheless, the concurrent set in Scala (ParSeq € cc. TrieMap) leads to a speedup of over
24 for 64 cores comparing to below 16 of Scala (ParSeq). Contrary to that, both F#
implementations resulted in similar speedups, regardless of the set that was used. It seems

that Scala features a scalable concurrent set implementation, while F# does not.

32,00
16,00
= 8,00
]
]
o
) 4,00
2,00
1,00 -
1 2 4 8 16 32 64
—e—Scala (ParSeq) 1,00 1,42 2,75 5,03 921 10,82 15,75

Scala (ParSeq & cc.TrieMap) | 1,00 1,44 3,88 5,56 11,38 21,08 24,11
=@— Scala (ParSeq &
juc.ConcurrentMap)
F# (PLINQ & Concurrent
Dictionary)
—@—1"/ (Parallel.ForEach &
Concurrent Dictionary)

1,00 2,62 3,86 7,39 12,75 18,65 31,28

1,00 1,92 3,70 6,71 10,07 13,28 15,37

1,00 1,87 3,49 5,93 8,30 12,07 1593

Figure 4.4: Approach B — Speedup

70

71 Chapter 4. Experimental Evaluation

4.6 Approach C - Futures

The benchmarking configurations for this category were combinations of the following

parameters:

o P={1,2 4,8, 16,32, 64}
e G = {1, 10, 100, 500, 1000, 5000, 10000}
o M=1{1,2 48,16, 32, 64} - only for F'# (Task & Concurrent Dictionary)

Due to the overwhelming amount of possible configurations for each implementation we
present mainly the diagrams that show the effect of parameter P on the execution times,
for the best values regarding parameters M and G. We present each variation separately
to avoid congested diagrams and thereafter we comment the effect of parameters M and

G.

Variation A
We present the times for Variation A in Figure 4.5. This approach introduces relatively
small overheads as we can deduce by comparing the execution times for P = 1 and the

corresponding sequential times (Figure 4.2).

20000
18000
16000
. 14000
2 12000
qé) 10000
g 8000
6000
2
v I'll.ll--l--l
1 2 4 8 16 32 64
BF# (Async) 19596 10027 6686 2594 1880 1121 951
mE# (Task) 19583 10159 6712 3360 1898 1127 1140
m Scala I (Future) 16332 8840 4844 2506 1760 938 703
Scala M (Futuro) 15360 8346 4585 2474 1738 895 504
H Erlang (ETS) 15985 8220 4228 2273 1569 1505 1495

Figure 4.5: Approach C — Variation A - Time

By comparing F# (Task) with F# (Async) we observe that tasks do not offer any perfor-
mance gains over asynchronous workflows, while they are less idiomatic to use. In Scala,
better raw performance is achieved by using a mutable set (Scala M) instead of the default
immutable one (Scala I), a behavior that agrees with the one observed in the sequential

implementations.

71

Approach C - Futures

32,00
16,00

8,00

Speedup

4,00
2,00

1,00

=@=TF"/# (Async)
=@=F# (Task)
=@=Scala I (Future)
=@—Scala M (Future)
Erlang (ETS)

L 4

1
1,00
1,00
1,00
1,00
1,00

2
1,95
1,93
1,85
1,84
1,94

4
2,93
2,92
3,37
3,35
3,78

8
7,55
5,83
6,52
6,21
7,03

16
10,42
10,32
9,28
8,84
10,19

Figure 4.6: Approach C — Variation A - Speedup

32
17,48
17,38
17,41
17,16
10,62

64
20,61
17,18
23,23
30,48
10,69

72

In Figure 4.6 we present the corresponding speedups; interestingly all implementations

scaled up to 16 cores and then each language behaved differently:

e FErlang (ETS) scaled only up to 16 cores after which speedup was fixed.

e I+ implementations showed significant speedup increases up to 32 cores; for 64
cores F# (Tasks) speedup declined a bit and F# (Async) climbed up to 20.

e Scala implementations scaled up to 64 cores: Scala M (Future) had speedup over

30 and Scala I (Future) over 23.

Next we present the results for Variation B.

1 2 4 8

Variation B

Time (ms)

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0

m b4 (Task & Concurrent

Dictionary)

m Scala (Future & cc.TrieMap)
u Erlang (Concurrent ETS)

Figure 4.7: Approach C — Variation B — Ezecution Time

72

19671

15685
15883

10311

16

1989

1756
1357

32

1194

893
796

64

1039

450
576

73 Chapter 4. Experimental Evaluation

In Figure 4.7 we present execution times. As expected, performance is better than in Var-
iation A because of the reduced sequential part of the implementation logic: the concurrent
set enables more work to happen in parallel thus relieving the coordinator from inserting

elements to the result set and leading to greater speedup (Figure 4.8).

64,00
32,00
16,00

8,00

Speedup

4,00
2,00

1,00
1 2 4 8 16 32 64

F# (Task & Concurrent
Dictionary)

=@ Scala (Future & cc.TrieMap) 1,00 1,80 3,32 6,23 8,93 17,56 34,86

=@—TFrlang (Concurrent ETS) 1,00 1,90 3,69 6,91 11,70 19,95 27,57

1,00 1,91 3,72 7,08 9,89 16,47 18,93

Figure 4.8: Approach C - Variation B - Speedup

As observed, Scala (Future & cc.TrieMap) and Erlang (Concurrent ETS) scale up to 64
cores with Scala showing the greatest speedup, while F# (Task € ConcurrentDictionary)
shows only a slight speedup increase after 32 cores. The concurrent set constitutes a key
part of this implementation group as it is concurrently accessed by several concurrent
threads and undergoes a great deal of contention. Consequently the implementation of

each concurrent set is resembled in the observed scaling behavior.

Execution Parameters M and G

Parameter M is used only in F'# (Task & Concurrent Set) M Time (ms)
where it represents the level of concurrency of the concurrent 1 1149
set — the Scala and Erlang implementations do not provide 2 1049
any similar configuration options. As presented in Table 3.1 4 1160
the concurrent set can scale up to 16 concurrent accesses, a 8 1096
number after which its performance decreases. 16 1039

32 1102
Parameter GG on the other hand is used in all implementations 64 1199

of this category and while we have measurements showing its
Table 4.2: F# (Task & Con-

01 d ‘ts infl . £ d current Dictionary) — Effect
all. Instead we present a case were 1ts influence 1s maniteste of M (A = 64 and G — 100)

effect for all of them, there is little significance in listing them

most evidently.

73

Approach C - Futures 74

Figure 4.9 shows the effect of parameter G on the execution time. We can estimate the
best chunk size for our benchmark to be approximately 100 elements. This size can be
associated with chunks that have enough computational work to benefit from parallel ex-

ecution but are small enough to facilitate use of all available cores.

10000

9000 mF+# (Async)

8000 mF# (Task)

7000
mF# (Task &

6000 Concurrent Dictionary)

5000 Scala I (Future)
4000 m Scala M (Future)
3000

B Scala (Future &
2000 cc.TrieMap)
1000 | | ||| | B Erlang (ETS)

; “I il ||| ull “I ool 1ECEHR
1 10 100 500

Time (ms)

® Erlang (Concurrent
1000 5000 10000 ETS)

64

Figure 4.9: Approach C — Variation B — Effect of G (A = 64)

74

75 Chapter 4. Experimental Evaluation

4.7 Approach D - Persistent Actors

We examined the simple actor systems we created for this approach using the same con-
figurations described in the previous section. Parameters A and G are unchanged, while
parameter M represents the number of persistent worker actors that were created in each

configuration, and the level of concurrency for the concurrent set (where appropriate).

In Figures Figure 4.10 and Figure 4.11 we present the best results regarding parameters
M and G for all values of parameter P. Unexpectedly, F'# (Persistent Actors) exhibited
better performance than F# (Persistent Actors and Concurrent Dictionary), which had a
significant initial overhead. That result hints towards a bad cooperation between the

ConcurrentDictionary and the MailboxProcessor implementations.

We can observe that all other implementations behaved similarly to their counterparts of
the previous category. Considering that the only change was the use of persistent workers
in place of the transient ones, it should not be surprising; even the slightly worse perfor-
mance of some cases can be explained. In Erlang the router implementation is not opti-
mized; it requires message handling which adds an overhead in comparison to the F# and
Scala implementations. Moreover it should be mentioned that all implementations use the
default configuration for the actor systems; while in F# there are no configuration options

of the actor runtime, in Erlang and Scala several related options have to be considered.

25000

20000
)
E/ 15000
]
g 10000
H
5000
0 III.I.III--_--
1 2 4 8 16 32 64
m Erlang (Persistent Actors &) .
15781 8333 4283 2277 1364 838 637

Concurrent ETS)
mF# (Persistent Actors &
Concurrent Dictionary)
F# (Persistent Actors) 19542 10000 5103 2642 1912 1169 1081
Scala (Persistent Actors &
cc.TrieMap)
m Scala (Persistent Actors) 15777 8496 4769 2566 1807 968 770

23250 10203 5318 2873 2058 1325 1238

14142 8053 3654 2522 1329 668 481

Figure 4.10: Approach D — Time

Figure 4.11 presents the corresponding speedups. With the exception of F#, implementa-
tions with concurrent sets are the most scalable, as expected. In addition, F# (Persistent
Actors & Concurrent set) initially shows abnormal speedup (up to 8 cores) — this is not

confusing considering the initial overhead.

75

Approach D - Persistent Actors 76

32,00
16,00
o,
% 8,00
g
2 4,00
n
2,00
1,00
1 2 4 8 16 32 64
=@ Scala (Persistent Actors) 1,00 1,86 3,31 6,15 8,73 16,30 20,49
—=@=1"# (Persistent Actors) 1,00 1,95 3,83 7,40 10,22 16,72 18,08

=@—Scala (Persistent Actors &
cc.TrieMap)
F+# (Persistent Actors &
Concurrent Dictionary)
—0—FErlang (Persistent Actors &
Concurrent ETS)

1,00 1,76 3,87 5,61 10,64 21,17 29,40
1,00 2,28 4,37 8,09 11,30 17,55 18,78

1,00 1,89 3,68 6,93 11,57 18,83 24,77

Figure 4.11: Approach D — Speedup

In principle, actors aim for efficient message handling, not heavy computations. The afore-
mentioned results indicate that the examined actor implementations can be used to design
systems that perform serious computations with only minor overhead, even though futures

are more suitable for this kind of work.

Parameters G and M
As shown in Figure 4.12, the best value for parameter G is around 10 and 100, similarly

to the results of Approach D.

12000
10000
m Erlang (Persistent Actors &
8000 Concurrent ETS)

g mF# (Persistent Actors &
o 6000 Concurrent Dictionary)
E
&

m F# (Persistent Actors)
4000
Scala (Persistent Actors &
5000 cc.TrieMap)
I I m Scala (Persistent Actors)
ol oL ol ot i
1 10 100 500

0 1000 5000 10000
64

Figure 4.12: Approach D — Effect of G (A = 64)

Regarding parameter M the results are as expected: best is to choose a number of workers
that is equal or higher than the number of available cores. As an example, in Figure 4.13

we present the influence of parameter M for A = 32. As we can see, peak performance is

76

77 Chapter 4. Experimental Evaluation

achieved for a number of workers that is equal or higher than the number available cores,

a result that is consistent with intuition.

25000
20000 m Erlang (Persistent Actors &
Concurrent ETS)
= 15000 m F# (Persistent Actors &
E/ Concurrent Dictionary)
qa) m F# (Persistent Actors)
&5 10000
Scala (Persistent Actors &
5000 cc.TrieMap)
II| I B Scala (Persistent Actors)
0 III I il alin slim
1 2 4 8 16 32 64

32

Figure 4.13: Approach D — Effect of M (A = 82)

7

Additional Results 78

4.8 Additional Results

4.8.1 Iterations needed for stable execution times

F# implementations had considerably worse performance than the corresponding Scala
ones. This remark was quite unexpected considering that high proportion of the measured
times involved arithmetic operations; one would expect Mono and JVM to perform likewise

under such load.

Trying to explain this behavior we suspected two components of Mono: the Sgen garbage
collector and the JIT compiler. Sgen is a recently-introduced generational garbage collector
destined to replace the default non-generational Boehm collector. In our benchmarking we
used the first which is deemed to offer better performance but is also not as mature as the
latter. On the other hand, the JIT compiler of Mono is not as optimized as the JVM one.

Our suspicions were enhanced by the actual results: for F# implementations, performance
was still improving at the 10™ execution iteration, while for Scala implementations it was
stabilized several iterations before. We decided to repeat execution of Approach C imple-
mentations for 50 iterations and only for A = 64; for F# we used both garbage collectors

of Mono and for Scala both mutable and immutable sets.

In Figures Figure 4.14 and Figure 4.15 we present the results for Variation A and B re-

spectively.
3000
2500
— 2000
£
[}
£
& 1500
1000 M n ﬁ
o
m ’1 * o
500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

=@={Scala | ==@=Scala M F# Boehm F# Sgen ==@==Frlang

Figure 4.14: Approach C - Variation A - Times for 50 iterations

In Variation A, Scala M times were rather unstable, probably due to reallocations and

copying of inner data structures of the mutable set. Furthermore, Scala times reached a

78

79 Chapter 4. Experimental Evaluation

minimum at the 3" iteration while F+# times were still declining after the 40™ iteration, a
number that is unrealistic for our computation scenario; around the 20" iteration, however,

F# Boehm overcame Scala I in becoming the implementation with the best performance.
3000

2500

? 2000

Time (nx

1500

at

ha \ ¥
1000 R 2N VAT Q
TRRAAAAA NV \ff \

500 L atn o oot et SO SR Iy DU DO SR PO SO

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

=@—Scala ==@=F+ Boehm F# Sgen Erlang
Figure 4.15: Approach C - Variation B - Times for 50 iterations

In Variation B the concurrent set of the F# implementation resulted in highly unstable
performance as the nondeterministic access patterns were combined with the effect of gar-
bage collection. Both F# garbage collectors showed similar behavior with Boehm giving
slightly better times that Sgen. In any case, both F# configurations were left far behind

as Scala was the clear winner in terms of performance.

All in all, each variation behaved differently, yet JIT compilation had evident positive
effects on the performance of both Scala and F# configurations (though much more on the
latter), while the trend lines of Erlang execution times signified the absence of any JIT
optimization. Finally, minor and scarce divergences in the time measurement were wit-
nessed even in stable executions denoting indeterminism in concurrent scheduling, pro-
longed garbage collection sessions and concurrent execution of other processes running on

the same machine.

4.8.2 Integers of arbitrary size
Erlang integers have arbitrary-precision and are subject to garbage collection, contrary to
the 64-bit integers we used in Scala and F# implementations. In this section we investigate

the performance of integers with arbitrary-precision in Scala and F#.
For A = 64 and d = 10000 we executed the following for 10 iterations:

e Scala M/T (Sequential) and F# (Sequential) - Figure 4.16

79

Additional Results 80

o Scala M/I (Future), F# (Task) and F# (Async) with M = 64 & G = 100 - Figure

4.17
21000
C—C=—0—-"r—r—
20000
19000 - O——r—— P P P P P G
=@ Scala I - Biglnt

/é? 18000 =@=Scala M - Biglnt
\@/ 17000 =@ "4/ - bigint
R =@ Scala | - Long
& 16000

Scala M - Long

14000 R
1 2 3 4 5 6 7

13000
8 9 10

Figure 4.16: Integers of Arbitrary Size — Sequential

5400
=@==Scala [(Future) - Biglnt
4400
=@==Scala M (Future) - Biglnt
=@==F+ (Async) - bigint
3400
F# (Task) - bigint
=@=Scala I (Future) - Long
2400
=@=Scala M (Future) - Long
e == =@=["4 (Async) - int64
1400 .
—=@=—F/ (Task) - int64
400

fu—
[N}
w

4 5 6 7 8 9 10

Figure 4.17: Integers of Arbitrary Size - Futures

We see that integers with arbitrary-precision do not imply serious drops of performance
compared to the 64-bit integers we used for the main body of our benchmarks —

performance is still much better that in Erlang.

As a side-note we should mention that, in addition to the above configurations, we tried
implementations with concurrent sets but unfortunately F# implementations run into

deadlocks, due to buggy Mono libraries.

80

81

Chapter 4. Experimental Evaluation

4.9 Experimental Evaluation Remarks

For the evaluation part of this study we have the following remarks:

81

Erlang and Scala scale up the most, especially in the variations that use concurrent
sets. Scala concurrent TrieMap facilitates implementations that scaled up the most,
while the Erlang concurrent set using ETS tables also exhibits an excellent scaling.
On the contrary, ConcurrentDictionary shows unremarkable scaling that is minimal
after 16-32 cores.

Scala implementations have the best performance. It is followed by F# implemen-
tations which show lower performance contrary to our expectations. Nevertheless,
Erlang implementations are the slowest considering the parameter d values for the
configurations of each language - Erlang is clearly not suited for arithmetic com-
putations.

Using arbitrary-precision arithmetic in F# and Scala does not cause significantly
slower performance, though it results in deadlocks for F# implementations that
use a concurrent set.

Regarding JIT compilation: JVM provides its most optimized machine code before
the 4" execution iteration while Mono needs over 20 iterations to show similar

performance, a number which is clearly unacceptable for realistic scenarios.

Chapter 5

Related & Future Work

5.1 Related Work

Similar to our work, P. Totoo, P. Deligiannis and H.-W. Loidl presented a thorough
comparison of Haskell, F# and Scala regarding parallelism [23|. For their evaluation they
provided several Barnes-Hut implementations of the n-body problem in each of these
languages. Their implementations were executed on both Linux and Windows
environments and detailed measurements were taken regarding time and memory
consumption. Moreover, one of their objectives was to present reusable data parallel
patterns so their methodology was mainly limited in experimenting with parallel-map
implementations that used appropriate tools of each language and did not contain any
actor-based approaches. Their main result: “near best speedups are achieved using the

highest level abstraction”.

5.2 Future Work

Our investigation is far from complete and can be extended to several directions that

include:

e Execution evaluation on Windows. It is a major platform for programming multi-
core concurrency and its evaluation is sine qua non for a complete study of concur-
rency and parallelism on modern systems. Moreover, F# was designed on the .NET
framework that has a far more mature implementation on the CLI, so it would be
fair to evaluate F# on Windows.

o Detailed memory and execution time measurements. A more comprehensive re-
source-consumption evaluation of our implementations is important for a conclusive
assessment of language and runtime efficiency.

e Experimentation with more configuration parameters. In this thesis we used mostly
the default library and runtime settings; it would be interesting to consider different
option values, especially for the Akka library that provides numerous configuration
options.

o Investigation of additional functional languages like Haskell and Clojure to broaden

the scope of the study.

Future Work 4

84

Comparison with popular imperative tools for concurrency and parallelism, like
Cilk++ and Thread Building Blocks. This comparison is essential to assess the
performance of functional languages in comparison to imperative solutions.

Evaluation on concurrent problems that are better suited for the actor model. The
computational nature of the Orbit problem does not highlight any actor benefits

that are related to error-handling or systems with dynamic topology.

Chapter 6

Conclusion

In this thesis we investigated concurrency and parallelism in languages that support the
functional programming paradigm. Aiming to provide a thorough comparison of Scala, F+#
and Erlang on concurrency and parallelism, we evaluated four different implementation

approaches for solving a simple, yet non-trivial computational problem.
Below we provide an overview of our experience along with our final judgment:

Scala exhibits the largest feature set, the broadest library offerings, the best performance
and the most scalability. Its rich feature set and comprehensive libraries facilitate high
productivity but also may lead to programs whose comprehension requires serious mental
effort - with great power comes great responsibility and pain, and one has to be meticulous
when deciding which features to use and how. There is also a significant learning curve
before being able to benefit from Scala and its currently agile evolution pace implies that
one must be ready to modify or even replace code and libraries; this is only balanced by

the promises for power, productivity, and performance gains.

F+# facilitates concurrency and parallelism by providing a competitive feature set and
adequate standard library while retaining access to all CLI libraries. Although it is not as
rich in features as Scala, F# facilitates interesting, expressive and concise code with less
choices for the programmer to consider. Unfortunately we cannot recommend its usage in
Linux for developing concurrent and scalable applications due to several bugs of the Mono

implementation.

Erlang is a mature language designed for concurrent programming. It comes with a library
that contains all the necessary functionality for highly scalable concurrent solutions. None-
theless we cannot recommended FErlang for heavy arithmetic computations or when in-
teroperability with other languages is a main requirement. The absence of variable muta-
tion and global variables are irritating traits of Erlang but its functional nature helps in

developing code which is correct and easy to reason about.

Bibliography

[1]

2]

3]

4]

5]

[6]

7]

8]

19]

[10]

G. E. Moore, "Cramming more components onto integrated circuits," Electronics
Magazine, 1965.

H. Sutter, "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software," Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202-210, 2005.

C. Hewitt, "A Universal Modular ACTOR Formalism for Artificial Intelligence," in
1JCAI Stanford, California, USA, 1973.

G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT
Press, 1986.

J. Armstrong, B. O. Dacker, S. Virding and M. Williams, "Implementing a
functional language for highly parallel real time applications," in Proceedings of the
8th International Conference on Software FEngineering for Telecommunication
Systems and Services, pp. 157-163, Florence, Italy, Apr 1992.

P. Haller and M. Odersky, "Scala Actors: Unifying thread-based and event-based
programming," Theor. Comput. Sci., vol. 410, no. 2-3, pp. 202-220, Feb 2009.

D. Syme, T. Petricek and D. Lomov, "The F# asynchronous programming model,"
in Proceedings of the 138th International Conference on Practical Aspects of
Declarative Languages, pp. 175-189, Berlin, Heidelberg, 2011.

M. Sulzmann, E. S. L. Lam and P. V. Weert, "Actors with Multi-headed Message
Receive Patterns," in Proceedings of the 10th International Conference on
Coordination Models and Languages, pp. 315-330, Oslo, Norway, 2008.

"The Scala Programming Language," Ecole Polytechnique Fédérale de Lausanne
(EPFL), 2013. [Online|. Available at: http://www.scala-lang.org/.

M. Odersky, L. Spoon and B. Venners, Programming in Scala, 2nd ed., Artima,
2010.

Bibliography 88

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

88

"Akka," Typesafe Inc., 2011-2013. [Online|. Available at: http://akka.io/.
D. Wyatt, Akka Concurrency, Artima, 2013.

"F# at Microsoft Research," Microsoft, 2013. [Online]. Available at:
http:/ /research. microsoft.com/en-us/projects/fsharp/.

D. Syme, A. Granicz and A. Cisternino, Expert F# 3.0, Apress, 2007.

"Task Parallel Library (TPL)," Microsoft, 2013. [Online|. Available at:
http://msdn. microsoft.com/en-us/library/dd460717.aspx.

D. Leijen, W. Schulte and S. Burckhardt, "The design of a task parallel library," in
Proceedings of the 24th ACM SIGPLAN conference on Object Oriented
Programming, Systems Languages and Applications, pp. 227-242, New York, NY,
USA, 2009.

"Parallel LINQ (PLINQ)," Microsoft, 2013. [Online|. Available at: http://msdn.
microsoft.com /en-us/library /dd460688.aspx.

T. Petricek and D. Syme, "Syntax Matters: Writing abstract computations in F#,"
in Pre-Proceedings of the 2012 Symposium on Trends in Functional Programming,
2012.

"Computation Expressions (F#)," Microsoft, [Online|. Available at: http://msdn.
microsoft.com/en-us/library /dd233182.aspx.

"Erlang Programming Language," erlang.org , 2011. [Online|. Available at: http://

www.erlang.org/.

S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris and I. E. Venetis,
"A scalability benchmark suite for Erlang/OTP," in Proceedings of the eleventh
ACM SIGPLAN workshop on Erlang, pp. 33-42, New York, NY, USA, 2012.

A. Prokopec, N. G. Bronson, P. Bagwell and M. Odersky, "Concurrent tries with
efficient non-blocking snapshots," in Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, pp. 151-160, New
York, NY, USA, 2012.

P. Totoo, P. Deligiannis and H.-W. Loidl, "Haskell vs. F' vs. Scala: A High-level
Language Features and Parallelism Support Comparison,"
ACM SIGPLAN workshop on Functional High-Performance Computing, pp. 49-60,

2012.

in Proceedings of the 1st

