HEAL DSpace

Inverse scattering via low-frequency moments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charalambopoulos, A en
dc.contributor.author Dassios, G en
dc.date.accessioned 2014-03-01T01:08:54Z
dc.date.available 2014-03-01T01:08:54Z
dc.date.issued 1992 en
dc.identifier.issn 0022-2488 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10723
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-21144470078&partnerID=40&md5=4128bc1bec2239d1da4ac23c3d46bb87 en
dc.subject.classification Physics, Mathematical en
dc.subject.other ACOUSTIC-WAVES en
dc.title Inverse scattering via low-frequency moments en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1992 en
heal.abstract An acoustically soft scatterer defined by a closed and star shape polynomial surface of any degree disturbs the propagation of a time harmonic plane incident wave. It is demonstrated that, under the hypotheses of Schiffer's uniqueness theorem, all the generalized low-frequency moments corresponding to the capacity potential can be obtained from the scattering amplitude. An analytic algorithm is proposed that recovers the geometry of the body whenever a finite number of generalized moments generated by the leading low-frequency approximation are given. What is striking here is the fact that a surface measure generated by a potential problem is enough to recover the geometry of the scatterer. The idea here is to relate the given moments to a set of particular combined spherical moments that appear as coefficients of an algebraic linear system, whose solution provides the coefficients of the scattering surface in spherical harmonics. This is done with the help of an inner product defined over the surface of the unit sphere with respect to an unknown positive surface measure. In contrast to other existing techniques of shape reconstruction, the one proposed here does not involve the solution of any optimization problem. Instead, only some finite expansions in spherical harmonics and the solution of a linear algebraic system is involved. Tikhonov regularization is used to treat the case of inexact data. The proposed method is illustrated in the case of second degree surfaces where exact analytical data are available. © 1992 American Institute of Physics. en
heal.publisher AMER INST PHYSICS en
heal.journalName Journal of Mathematical Physics en
dc.identifier.isi ISI:A1992JZ84600029 en
dc.identifier.volume 33 en
dc.identifier.issue 12 en
dc.identifier.spage 4206 en
dc.identifier.epage 4216 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής