HEAL DSpace

An experimental/numerical method for the efficiency calibration of low-energy germanium detectors

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anagnostakis, MJ en
dc.contributor.author Simopoulos, SE en
dc.date.accessioned 2014-03-01T01:11:40Z
dc.date.available 2014-03-01T01:11:40Z
dc.date.issued 1996 en
dc.identifier.issn 0160-4120 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/11771
dc.subject Gamma Ray en
dc.subject Low Energy en
dc.subject Numerical Method en
dc.subject Numerical Technique en
dc.subject Fly Ash en
dc.subject FORTRAN en
dc.subject.classification Environmental Sciences en
dc.subject.other SELF-ABSORPTION en
dc.subject.other SAMPLES en
dc.title An experimental/numerical method for the efficiency calibration of low-energy germanium detectors en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0160-4120(96)00094-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0160-4120(96)00094-3 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract Several radionuclides emit significant gamma rays at energies below 80 keV, which in many cases are essential for their detection in radioenvironmental assays. Gamma spectroscopic analysis at this energy region is conducted using planar Low Energy Germanium detectors, with high and almost constant efficiency in the energy region between 20 and 80 keV. In the analysis of solid and liquid samples, with these detectors, the count rate is highly affected by the intense serf-absorption of the low energy photons. Thus, the difference in the absorption properties between the calibration source and the sample requires the introduction of an efficiency correction factor. A method applicable for cylindrical geometries was adapted for the determination of the above correction factor using a newly developed experimental-numerical. technique and a Fortran program. This program, using as input the source-to-detector geometry and the values of the linear attenuation coefficient (mu) of both the calibration source and the material to be analysed, calculates the efficiency correction factor. The value of the linear attenuation coefficient (mu) needed for this calculation is being experimentally estimated for each material to be analysed. The technique has been cross-checked using standard materials. According to the results obtained, in the case of surface sail samples, lignite, and fly ash, the values of mu ranges from 0.2 to 0.9 cm(-1). This leads to efficiency correction factors, for the geometry used and a 4M HCl mixed radionuclide calibration source, in the range of 0.5 to 1.2 for the photons emitted by Pb-210 at 46.52 keV and Am-241 at 59.54 keV. The correction factor for 185.99 keV photons is slightly lower than 1.0, even for the most absorbing of the materials analysed. Copyright (C) 1996 Elsevier Science Ltd. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName ENVIRONMENT INTERNATIONAL en
dc.identifier.doi 10.1016/S0160-4120(96)00094-3 en
dc.identifier.isi ISI:A1996XK59200012 en
dc.identifier.volume 22 en
dc.identifier.spage S93 en
dc.identifier.epage S99 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής