HEAL DSpace

Study of the steady and transient temperature field and heat flow in the combustion chamber components of a medium speed diesel engine using finite element analyses

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rakopoulos, CD en
dc.contributor.author Mavropoulos, GC en
dc.date.accessioned 2014-03-01T01:12:21Z
dc.date.available 2014-03-01T01:12:21Z
dc.date.issued 1996 en
dc.identifier.issn 0363-907X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12070
dc.subject Diesel engine components en
dc.subject Finite elements en
dc.subject Transient temperature field en
dc.subject.classification Energy & Fuels en
dc.subject.classification Nuclear Science & Technology en
dc.subject.other Boundary conditions en
dc.subject.other Combustion chambers en
dc.subject.other Computer simulation en
dc.subject.other Finite element method en
dc.subject.other Heat transfer en
dc.subject.other Thermodynamics en
dc.subject.other Steady temperature field en
dc.subject.other Transient temperature field en
dc.subject.other Diesel engines en
dc.title Study of the steady and transient temperature field and heat flow in the combustion chamber components of a medium speed diesel engine using finite element analyses en
heal.type journalArticle en
heal.identifier.primary 10.1002/(SICI)1099-114X(199605)20:5<437::AID-ER169>3.0.CO;2-J en
heal.identifier.secondary http://dx.doi.org/10.1002/(SICI)1099-114X(199605)20:5<437::AID-ER169>3.0.CO;2-J en
heal.language English en
heal.publicationDate 1996 en
heal.abstract The present work describes the development of a model for the calculation of the temperature field and heat flow in the combustion chamber components of internal combustion piston engines, which occur both under steady and transient engine operating conditions. Two and three-dimensional finite-element analyses were implemented for the representation of the complex geometry metal components (piston, liner and cylinder head). The model is applied for the piston and liner of a medium speed diesel engine, for which relevant experimental data exist in the literature. Special care is given for accurately specifying the thermal boundary conditions (temperatures and heat transfer coefficients). Gas side boundary conditions are calculated using a thermodynamic cycle simulation code, including spatial variation of the gas side heat transfer coefficient. Coolant sides (water on the external liner surface and oil on the piston undercrown surface) boundary conditions are calculated using correlations pertaining to real engine conditions. Also an effort is made to model the piston-ring belt-liner complex thermal paths using equivalent thermal circuits. A satisfactory degree of agreement is found between theoretical predictions and experimental measurements, revealing that the finite-element methods presented are successful in formulating this kind of problem, giving accurate results with reasonable computational cost. The utilization of the model reveals very clearly the essential role of engine operating transients (sudden changes in speed and/or load) in the generation of sharp temperature excursions in the metal components until a new steady state is reached. The phenomenon should be taken into account for correct engine design and safe operation (i.e. the avoidance of high local stresses). © 1996 by John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal of Energy Research en
dc.identifier.doi 10.1002/(SICI)1099-114X(199605)20:5<437::AID-ER169>3.0.CO;2-J en
dc.identifier.isi ISI:A1996UL07800006 en
dc.identifier.volume 20 en
dc.identifier.issue 5 en
dc.identifier.spage 437 en
dc.identifier.epage 464 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής