HEAL DSpace

Nonlinear elasticity theory with discontinuous internal variables

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lazopoulos, KA en
dc.contributor.author Ogden, RW en
dc.date.accessioned 2014-03-01T01:13:55Z
dc.date.available 2014-03-01T01:13:55Z
dc.date.issued 1998 en
dc.identifier.issn 1081-2865 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12793
dc.subject Nonlinear Elasticity en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Deformation en
dc.subject.other Mechanics en
dc.subject.other Nonlinear equations en
dc.subject.other Nonlinear elasticity en
dc.subject.other Strain-energy function en
dc.subject.other Elasticity en
dc.title Nonlinear elasticity theory with discontinuous internal variables en
heal.type journalArticle en
heal.identifier.primary 10.1177/108128659800300103 en
heal.identifier.secondary http://dx.doi.org/10.1177/108128659800300103 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract In this paper, a modified theory of nonlinear elasticity in which the strain-energy function depends on discontinuous internal variables is proposed. Specifically, the internal variables are allowed to be discontinuous across one or more surfaces. The objective is to model nonclassical phenomena in which two or more material phases are separated by a surface or surfaces of discontinuity. While in the present theory the internal variables may suffer discontinuities, the deformation itself is smooth, and this distinguishes the theory from that initiated by Ericksen, which involves discontinuities in the deformation gradient. The governing equilibrium equations and jump conditions are derived from a variational principle and then specialized to the case of an incompressible isotropic elastic solid with a single internal variable by application to the equilibrium of the radially symmetric deformation of a thick-walled circular cylindrical tube under combined extension and inflation. The governing equations include an equation relating the deformation implicitly to the internal variables. By taking a suitable model for the dependence of the internal variable on the deformation, it is shown that a jump in the internal variable may occur across a circular cylindrical surface concentric with the cylinder. At a critical value of the internal radius, the jump surface is initiated at the inner boundary and then propagates through the material as inflation proceeds, and the two phases, separated by the jump surface, coexist in equilibrium. It is then shown that for the unloading process, the theory allows for the possibility of a residual strain remaining once the pressure is removed, and this aspect of the theory is illustrated by use of a simple material model. en
heal.publisher SAGE PUBLICATIONS INC en
heal.journalName Mathematics and Mechanics of Solids en
dc.identifier.doi 10.1177/108128659800300103 en
dc.identifier.isi ISI:000071935200003 en
dc.identifier.volume 3 en
dc.identifier.issue 1 en
dc.identifier.spage 29 en
dc.identifier.epage 51 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής