dc.contributor.author |
Papadopoulos, E |
en |
dc.contributor.author |
Gonthier, Y |
en |
dc.date.accessioned |
2014-03-01T01:14:18Z |
|
dc.date.available |
2014-03-01T01:14:18Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0741-2223 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12985 |
|
dc.subject.classification |
Robotics |
en |
dc.subject.other |
Actuators |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Control system analysis |
en |
dc.subject.other |
Control system synthesis |
en |
dc.subject.other |
Force control |
en |
dc.subject.other |
Mobile robots |
en |
dc.subject.other |
Motion planning |
en |
dc.subject.other |
Position control |
en |
dc.subject.other |
Redundancy |
en |
dc.subject.other |
Robotics |
en |
dc.subject.other |
Torque control |
en |
dc.subject.other |
Trees (mathematics) |
en |
dc.subject.other |
Cartesian locations |
en |
dc.subject.other |
Force workspace (FW) |
en |
dc.subject.other |
Large-force task planning |
en |
dc.subject.other |
Manipulators |
en |
dc.title |
A Framework for Large-Force Task Planning of Mobile and Redundant Manipulators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1097-4563(199903)16:3<151::AID-ROB2>3.0.CO;2-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1097-4563(199903)16:3<151::AID-ROB2>3.0.CO;2-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A framework tackling the problem of large wrench application using robotic systems with limited force or torque actuators is presented. It is shown that such systems can apply a wrench to a limited set of Cartesian locations called force workspace (FW), and its force capabilities are improved by employing base mobility and redundancy. An efficient numerical algorithm. based on 2(n)-tree decomposition of Cartesian space is designed to generate FW. Based on the FW generation algorithm, a planning method is presented resulting in proper base positioning relative to large-force quasistatic tasks. Additionally, the case of tasks requiring application of a wrench along a given path is considered. Task workspace, the set of Cartesian space locations that are feasible starting positions for such tasks, is shown to be a subset of FW. This workspace is used for identifying prc,per base or task positions guaranteeing task execution along desired paths. Finally, to plan redundant manipulator postures during large-force-tasks, a new method based on a min-max optimization scheme is developed. Unlike norm-based methods, this method guarantees no actuator capabilities are exceeded, and force or torque of the most loaded joint is minimized. Illustrative examples are given demonstrating validity and usefulness of the proposed framework. (C) 1999 John Wiley & Sons, Inc. |
en |
heal.publisher |
JOHN WILEY & SONS INC |
en |
heal.journalName |
Journal of Robotic Systems |
en |
dc.identifier.doi |
10.1002/(SICI)1097-4563(199903)16:3<151::AID-ROB2>3.0.CO;2-7 |
en |
dc.identifier.isi |
ISI:000078983800002 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
2-3 |
en |
dc.identifier.spage |
151 |
en |
dc.identifier.epage |
162 |
en |