HEAL DSpace

Fault diagnosis via local neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Skoundrianos, EN en
dc.contributor.author Tzafestas, SG en
dc.date.accessioned 2014-03-01T01:17:55Z
dc.date.available 2014-03-01T01:17:55Z
dc.date.issued 2002 en
dc.identifier.issn 0378-4754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14699
dc.subject Fault diagnosis en
dc.subject Local neural networks en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Mathematics, Applied en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other Fuzzy sets en
dc.subject.other Problem solving en
dc.subject.other Fault diagnosis en
dc.subject.other Neural networks en
dc.title Fault diagnosis via local neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0378-4754(02)00012-5 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0378-4754(02)00012-5 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract This article deals with the fault diagnosis problem of plants with unknown description. The problem is approached via a modeling technique which is based on the local model network (LMN) structure. Local models (LMs) perform local linearization and their structure is quite similar to the Takagi-Sugeno fuzzy models. Local neural models (LNMs) function as linear estimators, giving a satisfying estimation for the plant's output within parts of the operating regime. Their training is performed off-line, which ensures a reliable method with false alarm avoidance. This is critical since false alarms may cause a production line to pause. Plant modeling is followed by an on-line comparison between plant and model behavior. The model is created on a healthy plant, so any mismatch leads to suspicions concerning the presence of faults. The comparison leads to the creation of residuals. Residuals are signals that trigger a decision mechanism to conclude for presence, size and cause of possible faults. Change detection algorithms are used at this point, to avoid misinterpretation of plant model mismatches not caused by faults. The method is tested via simulation on the three-tank system which is a well-known benchmark. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Mathematics and Computers in Simulation en
dc.identifier.doi 10.1016/S0378-4754(02)00012-5 en
dc.identifier.isi ISI:000178952300004 en
dc.identifier.volume 60 en
dc.identifier.issue 3-5 en
dc.identifier.spage 169 en
dc.identifier.epage 180 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής