HEAL DSpace

A standardised protocol for texture feature analysis of endoscopic images in gynaecological cancer

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Neofytou, MS en
dc.contributor.author Tanos, V en
dc.contributor.author Pattichis, MS en
dc.contributor.author Pattichis, CS en
dc.contributor.author Kyriacou, EC en
dc.contributor.author Koutsouris, DD en
dc.date.accessioned 2014-03-01T01:25:51Z
dc.date.available 2014-03-01T01:25:51Z
dc.date.issued 2007 en
dc.identifier.issn 1475-925X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17766
dc.subject Color Correction en
dc.subject Difference Set en
dc.subject Image Acquisition en
dc.subject Standardisation en
dc.subject Statistical Test en
dc.subject Texture Features en
dc.subject Tissue Classification en
dc.subject.classification Engineering, Biomedical en
dc.subject.other Gray Level Difference Statistics en
dc.subject.other Spatial Gray Level Dependence Matrices en
dc.subject.other Texture feature analysis en
dc.subject.other Tissue classification methods en
dc.subject.other Approximation theory en
dc.subject.other Feature extraction en
dc.subject.other Image acquisition en
dc.subject.other Image analysis en
dc.subject.other Optical correlation en
dc.subject.other Statistical methods en
dc.subject.other Tissue en
dc.subject.other Biomedical engineering en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other clinical protocol en
dc.subject.other color discrimination en
dc.subject.other controlled study en
dc.subject.other endometrium cancer en
dc.subject.other endoscopy en
dc.subject.other female en
dc.subject.other gynecologic cancer en
dc.subject.other human en
dc.subject.other illumination en
dc.subject.other image analysis en
dc.subject.other image quality en
dc.subject.other process optimization en
dc.subject.other standardization en
dc.subject.other statistical analysis en
dc.subject.other statistical significance en
dc.subject.other videorecording en
dc.subject.other animal en
dc.subject.other artifact en
dc.subject.other automated pattern recognition en
dc.subject.other calibration en
dc.subject.other cattle en
dc.subject.other chicken en
dc.subject.other color en
dc.subject.other darkness en
dc.subject.other diagnosis, measurement and analysis en
dc.subject.other discriminant analysis en
dc.subject.other endometrium tumor en
dc.subject.other image enhancement en
dc.subject.other image subtraction en
dc.subject.other methodology en
dc.subject.other microscopy en
dc.subject.other pathology en
dc.subject.other reproducibility en
dc.subject.other signal processing en
dc.subject.other standard en
dc.subject.other Animals en
dc.subject.other Artifacts en
dc.subject.other Calibration en
dc.subject.other Cattle en
dc.subject.other Chickens en
dc.subject.other Color en
dc.subject.other Darkness en
dc.subject.other Discriminant Analysis en
dc.subject.other Endometrial Neoplasms en
dc.subject.other Endoscopy en
dc.subject.other Female en
dc.subject.other Humans en
dc.subject.other Image Enhancement en
dc.subject.other Laboratory Techniques and Procedures en
dc.subject.other Microscopy, Video en
dc.subject.other Pattern Recognition, Automated en
dc.subject.other Reference Standards en
dc.subject.other Reproducibility of Results en
dc.subject.other Signal Processing, Computer-Assisted en
dc.subject.other Subtraction Technique en
dc.title A standardised protocol for texture feature analysis of endoscopic images in gynaecological cancer en
heal.type journalArticle en
heal.identifier.primary 10.1186/1475-925X-6-44 en
heal.identifier.secondary http://dx.doi.org/10.1186/1475-925X-6-44 en
heal.identifier.secondary 44 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Background: In the development of tissue classification methods, classifiers rely on significant differences between texture features extracted from normal and abnormal regions. Yet, significant differences can arise due to variations in the image acquisition method. For endoscopic imaging of the endometrium, we propose a standardized image acquisition protocol to eliminate significant statistical differences due to variations in: (i) the distance from the tissue (panoramic vs close up), (ii) difference in viewing angles and (iii) color correction. Methods: We investigate texture feature variability for a variety of targets encountered in clinical endoscopy. All images were captured at clinically optimum illumination and focus using 720 × 576 pixels and 24 bits color for: (i) a variety of testing targets from a color palette with a known color distribution, (ii) different viewing angles, (iv) two different distances from a calf endometrial and from a chicken cavity. Also, human images from the endometrium were captured and analysed. For texture feature analysis, three different sets were considered: (i) Statistical Features (SF), (ii) Spatial Gray Level Dependence Matrices (SGLDM), and (iii) Gray Level Difference Statistics (GLDS). All images were gamma corrected and the extracted texture feature values were compared against the texture feature values extracted from the uncorrected images. Statistical tests were applied to compare images from different viewing conditions so as to determine any significant differences. Results: For the proposed acquisition procedure, results indicate that there is no significant difference in texture features between the panoramic and close up views and between angles. For a calibrated target image, gamma correction provided an acquired image that was a significantly better approximation to the original target image. In turn, this implies that the texture features extracted from the corrected images provided for better approximations to the original images. Within the proposed protocol, for human ROIs, we have found that there is a large number of texture features that showed significant differences between normal and abnormal endometrium. Conclusion: This study provides a standardized protocol for avoiding any significant texture feature differences that may arise due to variability in the acquisition procedure or the lack of color correction. After applying the protocol, we have found that significant differences in texture features will only be due to the fact that the features were extracted from different types of tissue (normal vs abnormal). © 2007 Neofytou et al; licensee BioMed Central Ltd. en
heal.publisher BIOMED CENTRAL LTD en
heal.journalName BioMedical Engineering Online en
dc.identifier.doi 10.1186/1475-925X-6-44 en
dc.identifier.isi ISI:000254002300001 en
dc.identifier.volume 6 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής