HEAL DSpace

Bayesian multinomial logit

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Washington, S en
dc.contributor.author Congdon, P en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Mannering, FL en
dc.date.accessioned 2014-03-01T01:29:54Z
dc.date.available 2014-03-01T01:29:54Z
dc.date.issued 2009 en
dc.identifier.issn 03611981 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19401
dc.subject Multinomial Logit en
dc.subject.other Bayesian en
dc.subject.other Bayesian approaches en
dc.subject.other Bayesian frameworks en
dc.subject.other Bayesian inference en
dc.subject.other Covariates en
dc.subject.other Crash outcomes en
dc.subject.other Discrete choice models en
dc.subject.other Gibbs samplers en
dc.subject.other Markov chain Monte Carlo en
dc.subject.other Model choice en
dc.subject.other Model specifications en
dc.subject.other Multinomial Logit en
dc.subject.other Prior information en
dc.subject.other Random parameter model en
dc.subject.other Route choice en
dc.subject.other Statistical models en
dc.subject.other Transportation research en
dc.subject.other Estimation en
dc.subject.other Inference engines en
dc.subject.other Markov processes en
dc.subject.other Monte Carlo methods en
dc.subject.other Research en
dc.subject.other Bayesian networks en
dc.title Bayesian multinomial logit en
heal.type journalArticle en
heal.identifier.primary 10.3141/2136-04 en
heal.identifier.secondary http://dx.doi.org/10.3141/2136-04 en
heal.publicationDate 2009 en
heal.abstract Statisticians along with other scientists have made significant computational advances that enable the estimation of formerly complex statistical models. The Bayesian inference framework combined with Markov chain Monte Carlo estimation methods such as the Gibbs sampler enable the estimation of discrete choice models such as the multinomial logit (MNL) model. MNL models are frequently applied in transportation research to model choice outcomes such as mode, destination, or route choices or to model categorical outcomes such as crash outcomes. Recent developments allow for the modification of the potentially limiting assumptions of MNL such as the independence from irrelevant alternatives (IIA) property. However, relatively little transportation-related research has focused on Bayesian MNL models, the tractability of which is of great value to researchers and practitioners alike. This paper addresses MNL model specification issues in the Bayesian framework, such as the value of including prior information on parameters, allowing for nonlinear covariate effects, and extensions to random parameter models, so changing the usual limiting IIA assumption. This paper also provides an example that demonstrates, using route-choice data, the considerable potential of the Bayesian MNL approach with many transportation applications. This paper then concludes with a discussion of the pros and cons of this Bayesian approach and identifies when its application is worthwhile. en
heal.journalName Transportation Research Record en
dc.identifier.doi 10.3141/2136-04 en
dc.identifier.issue 2136 en
dc.identifier.spage 28 en
dc.identifier.epage 36 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής