HEAL DSpace

Cutoff wavelengths of elliptical metallic waveguides

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsogkas, GD en
dc.contributor.author Roumeliotis, JA en
dc.contributor.author Savaidis, SP en
dc.date.accessioned 2014-03-01T01:30:05Z
dc.date.available 2014-03-01T01:30:05Z
dc.date.issued 2009 en
dc.identifier.issn 0018-9480 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19467
dc.subject Analytical en
dc.subject Closed-form expressions en
dc.subject Cutoff wavelengths en
dc.subject Elliptical metallic waveguides en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algebraic expression en
dc.subject.other Analytical en
dc.subject.other Analytical expressions en
dc.subject.other Closed form en
dc.subject.other Closed-form expressions en
dc.subject.other Cutoff wavelengths en
dc.subject.other Cylindrical wave function en
dc.subject.other Elliptical metallic waveguides en
dc.subject.other Elliptical waveguides en
dc.subject.other Expansion coefficients en
dc.subject.other Major axis en
dc.subject.other Metallic waveguide en
dc.subject.other Numerical results en
dc.subject.other Perfectly conducting walls en
dc.subject.other Perturbation method en
dc.subject.other Polar coordinate en
dc.subject.other Electromagnetic fields en
dc.subject.other Harmonic analysis en
dc.subject.other Perturbation techniques en
dc.subject.other Wave functions en
dc.subject.other Waveguides en
dc.subject.other Wavelength en
dc.title Cutoff wavelengths of elliptical metallic waveguides en
heal.type journalArticle en
heal.identifier.primary 10.1109/TMTT.2009.2029636 en
heal.identifier.secondary http://dx.doi.org/10.1109/TMTT.2009.2029636 en
heal.identifier.secondary 5238616 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The cutoff wavelengths lambda(cmn) of elliptical metallic waveguides with perfectly conducting walls are determined analytically. Two different methods are used for the evaluation. In the first, the electromagnetic field is expressed in terms of elliptical-cylindrical wave functions. In the second, a shape perturbation method, the field is expressed in terms of circular-cylindrical wave functions only, while the equation of the elliptical boundary is given in polar coordinates. Analytical expressions are obtained for the cutoff wavelengths, when the solution is specialized to small values of the eccentricity h = c/2a, (h << 1), with c the interfocal distance of the elliptical waveguide and 2a the length of its major axis. In this case, exact closed-form algebraic expressions, free of Mathieu as well as of Bessel functions, are obtained for the expansion coefficients g(mn)((2)) and g(mn)((4)) in the resulting relation lambda(cmn)(h) = lambda(cmn)(0) [1 + g(mn)((2))h(2) + g(mn)((4))h(4) + O (h(6))] for the cutoff wavelengths. These expressions are valid for each m and n, namely, for the general mode. Numerical results for all types of modes and comparison with existing ones are also included. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Microwave Theory and Techniques en
dc.identifier.doi 10.1109/TMTT.2009.2029636 en
dc.identifier.isi ISI:000271100000013 en
dc.identifier.volume 57 en
dc.identifier.issue 10 en
dc.identifier.spage 2406 en
dc.identifier.epage 2415 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής