HEAL DSpace

Population-based reversible jump Markov chain Monte Carlo methods for Bayesian variable selection and evaluation under cost limit restrictions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fouskakis, D en
dc.contributor.author Ntzoufras, I en
dc.contributor.author Draper, D en
dc.date.accessioned 2014-03-01T01:31:41Z
dc.date.available 2014-03-01T01:31:41Z
dc.date.issued 2009 en
dc.identifier.issn 0035-9254 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19881
dc.subject Bayesian model comparison en
dc.subject Cost restriction-benefit analysis en
dc.subject Health care evaluation en
dc.subject Population-based Markov chain Monte Carlo algorithms en
dc.subject Reversible jump Markov chain Monte Carlo methods en
dc.subject Simulated tempering en
dc.subject.classification Statistics & Probability en
dc.subject.other PROSPECTIVE PAYMENT SYSTEM en
dc.subject.other HEALTH-CARE en
dc.subject.other MODEL en
dc.subject.other INFERENCE en
dc.subject.other DISTRIBUTIONS en
dc.subject.other PERFORMANCE en
dc.subject.other PROVIDERS en
dc.title Population-based reversible jump Markov chain Monte Carlo methods for Bayesian variable selection and evaluation under cost limit restrictions en
heal.type journalArticle en
heal.identifier.primary 10.1111/j.1467-9876.2008.00658.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.1467-9876.2008.00658.x en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The measurement and improvement of the quality of health care are important areas of current research and development. A judgement of appropriateness of medical outcomes in hospital quality-of-care studies must depend on an assessment of patient sickness at admission to hospital. Indicators of patient sickness often must be abstracted from medical records, and some variables are more expensive to measure than others. Quality-of-care studies are frequently undertaken in an environment of cost restriction; thus any scale measuring patient sickness must simultaneously respect two optimality criteria: high predictive accuracy and low cost. Here we examine a variable selection strategy for construction of a scale of sickness in which predictive accuracy is optimized subject to a bound on cost. Conventional model search algorithms (such as those based on standard reversible jump Markov chain Monte Carlo (RJMCMC) sampling) in our setting will often fail, because of the existence of multiple modes of the criterion function with movement paths that are forbidden because of the cost restriction. We develop a population-based trans-dimensional RJMCMC (population RJMCMC) algorithm, in which ideas from the population-based MCMC and simulated tempering algorithms are combined. Comparing our method with standard RJMCMC sampling, we find that the population-based RJMCMC algorithm moves successfully and more efficiently between distant neighbourhoods of 'good' models, achieves convergence faster and has smaller Monte Carlo standard errors for a given amount of central processor unit time. In a case-study of n=2532 pneumonia patients on whom p=83 sickness indicators were measured, with marginal costs varying from smallest to largest across the predictor variables by a factor of 20, the final model chosen by population RJMCMC sampling, on the basis of both highest posterior probability and specifying the median probability model, was clinically sensible for pneumonia patients and achieved good predictive ability while capping data collection costs. © 2009 Royal Statistical Society. en
heal.publisher WILEY-BLACKWELL PUBLISHING, INC en
heal.journalName Journal of the Royal Statistical Society. Series C: Applied Statistics en
dc.identifier.doi 10.1111/j.1467-9876.2008.00658.x en
dc.identifier.isi ISI:000266340000006 en
dc.identifier.volume 58 en
dc.identifier.issue 3 en
dc.identifier.spage 383 en
dc.identifier.epage 403 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής