dc.contributor.author |
Lazopoulos, KA |
en |
dc.contributor.author |
Lazopoulos, AK |
en |
dc.date.accessioned |
2014-03-01T01:32:56Z |
|
dc.date.available |
2014-03-01T01:32:56Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0997-7538 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20241 |
|
dc.subject |
Bending |
en |
dc.subject |
Buckling |
en |
dc.subject |
Strain gradient elasticity |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Beam equation |
en |
dc.subject.other |
Beam theories |
en |
dc.subject.other |
Bernoulli-Euler principle |
en |
dc.subject.other |
Buckling strain |
en |
dc.subject.other |
Cross-section area |
en |
dc.subject.other |
Elastic beam |
en |
dc.subject.other |
Elastic theory |
en |
dc.subject.other |
Linear strains |
en |
dc.subject.other |
Strain gradients |
en |
dc.subject.other |
Surface energies |
en |
dc.subject.other |
Thin beam |
en |
dc.subject.other |
Variational methods |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Elastohydrodynamics |
en |
dc.subject.other |
Strain measurement |
en |
dc.subject.other |
Surface chemistry |
en |
dc.subject.other |
Surface tension |
en |
dc.subject.other |
Buckling |
en |
dc.title |
Bending and buckling of thin strain gradient elastic beams |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.euromechsol.2010.04.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.euromechsol.2010.04.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Bending of strain gradient elastic thin beams is studied adopting Bernoulli-Euler principle. Simple linear strain gradient elastic theory with surface energy is employed. The governing beam equations with its boundary conditions are derived through a variational method. It turns out that new terms are introduced, indicating the importance of the cross-section area in bending of thin beams. Those terms are missing from the existing strain gradient beam theories. Those terms increase highly the stiffness of the thin beam. The buckling problem of the thin beams is also discussed. (C) 2010 Elsevier Masson SAS. All rights reserved. |
en |
heal.publisher |
GAUTHIER-VILLARS/EDITIONS ELSEVIER |
en |
heal.journalName |
European Journal of Mechanics, A/Solids |
en |
dc.identifier.doi |
10.1016/j.euromechsol.2010.04.001 |
en |
dc.identifier.isi |
ISI:000280659900008 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
837 |
en |
dc.identifier.epage |
843 |
en |