dc.contributor.author |
Mitropoulou, CC |
en |
dc.contributor.author |
Lagaros, ND |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:32:58Z |
|
dc.date.available |
2014-03-01T01:32:58Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1570-761X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20256 |
|
dc.subject |
Behaviour factor |
en |
dc.subject |
Life-cyclecost analysis |
en |
dc.subject |
Performance-based design |
en |
dc.subject |
RC buildings |
en |
dc.subject |
Structural optimization |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.other |
Behaviour factor |
en |
dc.subject.other |
Building design |
en |
dc.subject.other |
Construction costs |
en |
dc.subject.other |
Critical assessment |
en |
dc.subject.other |
Cross section |
en |
dc.subject.other |
Design variables |
en |
dc.subject.other |
Economical design |
en |
dc.subject.other |
Eurocodes |
en |
dc.subject.other |
Life-cyclecost analysis |
en |
dc.subject.other |
Life-times |
en |
dc.subject.other |
Mathematical formulation |
en |
dc.subject.other |
Multistorey buildings |
en |
dc.subject.other |
Objective functions |
en |
dc.subject.other |
Optimization problems |
en |
dc.subject.other |
Performance based design |
en |
dc.subject.other |
RC buildings |
en |
dc.subject.other |
Seismic design code |
en |
dc.subject.other |
Steel reinforcements |
en |
dc.subject.other |
Total life |
en |
dc.subject.other |
Concrete buildings |
en |
dc.subject.other |
Cost accounting |
en |
dc.subject.other |
Costs |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Energy dissipation |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Life cycle |
en |
dc.subject.other |
Ocean structures |
en |
dc.subject.other |
Reinforced concrete |
en |
dc.subject.other |
Seismic design |
en |
dc.subject.other |
Shape optimization |
en |
dc.subject.other |
Structural analysis |
en |
dc.subject.other |
Structural optimization |
en |
dc.subject.other |
Cost benefit analysis |
en |
dc.subject.other |
architectural design |
en |
dc.subject.other |
assessment method |
en |
dc.subject.other |
building construction |
en |
dc.subject.other |
cost-benefit analysis |
en |
dc.subject.other |
critical analysis |
en |
dc.subject.other |
energy efficiency |
en |
dc.subject.other |
hazard management |
en |
dc.subject.other |
life cycle analysis |
en |
dc.subject.other |
mathematical analysis |
en |
dc.subject.other |
optimization |
en |
dc.subject.other |
reinforced concrete |
en |
dc.subject.other |
seismic design |
en |
dc.subject.other |
Europe |
en |
dc.title |
Building design based on energy dissipation: A critical assessment |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10518-010-9182-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10518-010-9182-x |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The basic objective of this study is the assessment of the European seismic design codes and in particular of EC2 and EC8 with respect to the recommended behaviour factor q. The assessment is performed on two reinforced concrete multi-storey buildings, having symmetrical and non-symmetrical plan view respectively, which were optimally designed under four different values of the behaviour factor. In the mathematical formulation of the optimization problem the initial construction cost is considered as the objective function to be minimized while the cross sections and steel reinforcement of the beams and the columns constitute the design variables. The provisions of Eurocodes 2 and 8 are imposed as constraints to the optimization problem. Life-cycle cost analysis, in conjunction with structural optimization, is believed to be a reliable procedure for assessing the performance of structures during their life time. The two most important findings that can be deduced are summarized as follows: (1) The proposed Eurocode behaviour factor does not lead to a more economical design with respect to the total life-cycle cost compared to other values of q (q = 1, 2). (2) The differences of the total life-cycle cost values may be substantially greater than those observed for the initial construction cost for four different q (q = 1, 2, 3, 4). © 2010 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Bulletin of Earthquake Engineering |
en |
dc.identifier.doi |
10.1007/s10518-010-9182-x |
en |
dc.identifier.isi |
ISI:000284361600007 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1375 |
en |
dc.identifier.epage |
1396 |
en |