HEAL DSpace

On block matrices associated with discrete Trigonometric transforms and their use in the theory of wave propagation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsitsas, N-L en
dc.date.accessioned 2014-03-01T01:34:00Z
dc.date.available 2014-03-01T01:34:00Z
dc.date.issued 2010 en
dc.identifier.issn 0254-9409 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20639
dc.subject Block matrices en
dc.subject Discrete Trigonometric transforms en
dc.subject Efficient inversion algorithms en
dc.subject Numerical methods in wave propagation theory en
dc.subject Wave radiation and scattering en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other AUXILIARY SOURCES MAS en
dc.subject.other OBLIQUE-INCIDENCE en
dc.subject.other SMALL-VOLUME en
dc.subject.other SCATTERING en
dc.subject.other ALGORITHMS en
dc.subject.other OPTIMIZATION en
dc.subject.other CYLINDER en
dc.subject.other COSINE en
dc.title On block matrices associated with discrete Trigonometric transforms and their use in the theory of wave propagation en
heal.type journalArticle en
heal.identifier.primary 10.4208/jcm.l004-m3193 en
heal.identifier.secondary http://dx.doi.org/10.4208/jcm.l004-m3193 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Block matrices associated with discrete Trigonometric transforms (DTT's) arise in the mathematical modelling of several applications of wave propagation theory including discretizations of scatterers and radiators with the Method of Moments, the Boundary Element Method, and the Method of Auxiliary Sources. The DTT's are represented by the Fourier, Hartley, Cosine, and Sine matrices, which are unitary and offer simultaneous diagonalizations of specific matrix algebras. The main tool for the investigation of the aforementioned wave applications is the efficient inversion of such types of block matrices. To this direction, in this paper we develop an efficient algorithm for the inversion of matrices with U-diagonalizable blocks (U a fixed unitary matrix) by utilizing the U-diagonalization of each block and subsequently a similarity transformation procedure. We determine the developed method's computational complexity and point out its high efficiency compared to standard inversion techniques. An implementation of the algorithm in Matlab is given. Several numerical results are presented demonstrating the CPU-time efficiency and accuracy for ill-conditioned matrices of the method. The investigated matrices stem from real-world wave propagation applications. © Copyright 2010 by AMSS, Chinese Academy of Sciences. en
heal.publisher VSP BV en
heal.journalName Journal of Computational Mathematics en
dc.identifier.doi 10.4208/jcm.l004-m3193 en
dc.identifier.isi ISI:000286949300009 en
dc.identifier.volume 28 en
dc.identifier.issue 6 en
dc.identifier.spage 864 en
dc.identifier.epage 878 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής