dc.contributor.author |
Simos, TE |
en |
dc.date.accessioned |
2014-03-01T01:41:13Z |
|
dc.date.available |
2014-03-01T01:41:13Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
03770427 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23427 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0002586288&partnerID=40&md5=d5d5bcc3cec1a5b2fec3ed9f5f98747a |
en |
dc.subject |
phase-lag |
en |
dc.subject |
resonance problem |
en |
dc.subject |
Schrödinger equation |
en |
dc.title |
Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional Schrödinger equation |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
Two-step sixth-order methods with phase-lag of order eight, ten and twelve are developed for the numerical integration of the special second-order initial-value sproblem. An application to the one-dimensional Schrödinger equation on the resonance problem indicates that these new methods are generally more accurate than methods developed by Chawla, Rao and Neta (this journal, 1986, 1987). © 1992. |
en |
heal.journalName |
Journal of Computational and Applied Mathematics |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
89 |
en |
dc.identifier.epage |
94 |
en |