dc.contributor.author |
Papadopoulos, PG |
en |
dc.contributor.author |
Stavrakakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:57:09Z |
|
dc.date.available |
2014-03-01T01:57:09Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
19371632 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28362 |
|
dc.subject |
Blow-up |
en |
dc.subject |
Concavity method |
en |
dc.subject |
Dissipation |
en |
dc.subject |
Generalised sobolev spaces |
en |
dc.subject |
Global solution |
en |
dc.subject |
Kirchhoff strings |
en |
dc.subject |
Potential well |
en |
dc.subject |
Quasilinear hyperbolic equations |
en |
dc.subject |
Unbounded domains |
en |
dc.subject |
Weighted Lp spaces |
en |
dc.title |
Global existence for a wave equation on ℝN |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/dcdss.2008.1.139 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/dcdss.2008.1.139 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We study the initial value problem for some degenerate non-linear dissipative wave equations of Kirchhoff type: (Equation Presented) with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), in the case where N ≥ 3, δ > 0, γ ≥ 1, f(u) = |u|au with a > 0 and (φ(x))-1 = g(x) is a positive function lying in LN/2(ℝN) ∩ L∞(ℝN). If the initial data {u0,u1} are small and ∥ ∇ u0∥ > 0, then the unique solution exists globally and has certain decay properties. |
en |
heal.journalName |
Discrete and Continuous Dynamical Systems - Series S |
en |
dc.identifier.doi |
10.3934/dcdss.2008.1.139 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
139 |
en |
dc.identifier.epage |
149 |
en |