HEAL DSpace

Nonlinear autoregressive conditional duration models for traffic congestion estimation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Kepaptsoglou, K en
dc.date.accessioned 2014-03-01T02:03:02Z
dc.date.available 2014-03-01T02:03:02Z
dc.date.issued 2011 en
dc.identifier.issn 1687952X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29339
dc.title Nonlinear autoregressive conditional duration models for traffic congestion estimation en
heal.type journalArticle en
heal.identifier.primary 10.1155/2011/798953 en
heal.identifier.secondary http://dx.doi.org/10.1155/2011/798953 en
heal.identifier.secondary 798953 en
heal.publicationDate 2011 en
heal.abstract The considerable impact of congestion on transportation networks is reflected by the vast amount of research papers dedicated to congestion identification, modeling, and alleviation. Despite this, the statistical characteristics of congestion, and particularly of its duration, have not been systematically studied, regardless of the fact that they can offer significant insights on its formation, effects and alleviation. We extend previous research by proposing the autoregressive conditional duration (ACD) approach for modeling congestion duration in urban signalized arterials. Results based on data from a signalized arterial indicate that a multiregime nonlinear ACD model best describes the observed congestion duration data while when it lasts longer than 18 minutes, traffic exhibits persistence and slow recovery rate. Copyright © 2011 Eleni I. Vlahogianni et al. en
heal.journalName Journal of Probability and Statistics en
dc.identifier.doi 10.1155/2011/798953 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής