dc.contributor.author |
Mamalis, AG |
en |
dc.contributor.author |
Vottea, IN |
en |
dc.contributor.author |
Manolakos, DE |
en |
dc.date.accessioned |
2014-03-01T02:42:46Z |
|
dc.date.available |
2014-03-01T02:42:46Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0921-4534 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31071 |
|
dc.subject |
Explosive compaction/cladding |
en |
dc.subject |
Finite element |
en |
dc.subject |
YBCO superconductor |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Cladding plates |
en |
dc.subject.other |
Critical temperatures |
en |
dc.subject.other |
Explosive compaction/cladding |
en |
dc.subject.other |
Thermomechanical analysis |
en |
dc.subject.other |
Ceramic materials |
en |
dc.subject.other |
Cladding (coating) |
en |
dc.subject.other |
Compaction |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Pressure control |
en |
dc.subject.other |
SQUIDs |
en |
dc.subject.other |
Superconductivity |
en |
dc.subject.other |
Temperature distribution |
en |
dc.subject.other |
Thickness measurement |
en |
dc.subject.other |
Welding |
en |
dc.subject.other |
Yttrium barium copper oxides |
en |
dc.subject.other |
Superconducting materials |
en |
dc.title |
Explosive compaction/cladding of metal sheathed/superconducting grooved plates: FE modeling and validation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.physc.2004.03.230 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.physc.2004.03.230 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Explosive compaction/cladding is a technique that combines explosive welding and compaction and is particularly effective for superconducting materials. In this paper, experimental and numerical investigations were carried out on rectangular grooved plates, filled with superconducting ceramic powder, subjected to explosive loading. The compacts are characterized in terms of SEM observations and T, measurements, showing that the superconducting properties are maintained. The response of the metal and ceramic material during compaction is studied using finite element techniques and the dimensions of the compacts, pressure and temperature distributions during the entire process are predicted. The numerical results obtained are compared with experimental observations, leading to the validation of the 3-dimensional FE model. (C) 2004 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Physica C: Superconductivity and its Applications |
en |
dc.identifier.doi |
10.1016/j.physc.2004.03.230 |
en |
dc.identifier.isi |
ISI:000224051700369 |
en |
dc.identifier.volume |
408-410 |
en |
dc.identifier.issue |
1-4 |
en |
dc.identifier.spage |
881 |
en |
dc.identifier.epage |
883 |
en |