HEAL DSpace

A scalable framework for content replication in multicast-based content distribution networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Matalas, Y en
dc.contributor.author Dragios, ND en
dc.contributor.author Karetsos, GT en
dc.date.accessioned 2014-03-01T02:43:52Z
dc.date.available 2014-03-01T02:43:52Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31533
dc.subject Content Distribution Network en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Content based retrieval en
dc.subject.other Control system analysis en
dc.subject.other Multicasting en
dc.subject.other Robustness (control systems) en
dc.subject.other Servers en
dc.subject.other Content distribution networks (CDN) en
dc.subject.other Distributed replication decisions en
dc.subject.other Robust systems en
dc.subject.other Surrogate servers en
dc.subject.other Network protocols en
dc.title A scalable framework for content replication in multicast-based content distribution networks en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11907381_10 en
heal.identifier.secondary http://dx.doi.org/10.1007/11907381_10 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This paper proposes a framework for replicating content in multicast-based CDNs. We focus on the design of a scalable and robust system that provides local availability and redundancy of content. The system takes on-line and distributed replication decisions on a per-object basis. The scalability and local redundancy is achieved by partitioning the overlay of surrogate servers into fully meshed groups. The proposed framework can incorporate any set of local metrics and constraints for deciding the placement of replicas, thus allowing the CDN designer to tune it to his specific deployment characteristics. © IFIP International Federation for Information Processing 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN ARTIFICIAL INTELLIGENCE en
dc.identifier.doi 10.1007/11907381_10 en
dc.identifier.isi ISI:000242560000010 en
dc.identifier.volume 4267 LNCS en
dc.identifier.spage 110 en
dc.identifier.epage 115 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής