dc.contributor.author |
Dimarogonas, DV |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T02:44:00Z |
|
dc.date.available |
2014-03-01T02:44:00Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
01912216 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31615 |
|
dc.subject |
Algebraic Graph Theory |
en |
dc.subject |
Collision Avoidance |
en |
dc.subject |
Common Value |
en |
dc.subject |
Control Strategy |
en |
dc.subject |
Cooperative Control |
en |
dc.subject |
Distributed Control |
en |
dc.subject |
State Space |
en |
dc.subject |
Steady State |
en |
dc.subject |
Multi Agent System |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Multi agent systems |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Velocity measurement |
en |
dc.subject.other |
Distributed cooperative control |
en |
dc.subject.other |
Multiple kinematic agents |
en |
dc.subject.other |
Velocity vectors |
en |
dc.subject.other |
Distributed computer systems |
en |
dc.title |
Distributed cooperative control and collision avoidance for multiple kinematic agents |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CDC.2006.376884 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CDC.2006.376884 |
en |
heal.identifier.secondary |
4177320 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This paper contains two main contributions: (i) a provably correct distributed control strategy for collision avoidance and convergence of multiple holonomic agents to a desired feasible formation configuration and (ii) a connection between formation infeasibility and flocking behavior in holonomic kinematic multi-agent systems. In particular, it is shown that when inter-agent formation objectives cannot occur simultaneously in the state-space then, under certain assumptions, the agents velocity vectors and orientations converge to a common value at steady state, under the same control strategy that would lead to a feasible formation. Convergence guarantees are provided in both cases using tools from algebraic graph theory and Lyapunov analysis. © 2006 IEEE. |
en |
heal.journalName |
Proceedings of the IEEE Conference on Decision and Control |
en |
dc.identifier.doi |
10.1109/CDC.2006.376884 |
en |
dc.identifier.spage |
721 |
en |
dc.identifier.epage |
726 |
en |