HEAL DSpace

Multi-level analysis and information extraction considerations for validating 4D models of human function

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Marias, K en
dc.contributor.author Dionysiou, DD en
dc.contributor.author Stamatakos, GS en
dc.contributor.author Zacharopoulou, F en
dc.contributor.author Georgiadi, E en
dc.contributor.author Margaritis, T en
dc.contributor.author Maris, TG en
dc.contributor.author Tollis, IG en
dc.date.accessioned 2014-03-01T02:44:50Z
dc.date.available 2014-03-01T02:44:50Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31971
dc.subject Biomedical data analysis en
dc.subject Modeling en
dc.subject Virtual physiological human en
dc.subject.other Computer simulation en
dc.subject.other Image analysis en
dc.subject.other Medical computing en
dc.subject.other Miniature automobiles en
dc.subject.other Pathology en
dc.subject.other Patient treatment en
dc.subject.other Biomedical data analysis en
dc.subject.other Information extraction en
dc.subject.other Virtual physiological human en
dc.subject.other Information retrieval en
dc.title Multi-level analysis and information extraction considerations for validating 4D models of human function en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-73321-8_81 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-73321-8_81 en
heal.publicationDate 2007 en
heal.abstract Recent research trends focus on how multiscale biomedical information can be modeled and transformed into knowledge, in order to lead to a less interfering but also more individualized diagnosis and therapy. In order to assess the clinical importance of models of human pathology (e.g. cancer), it is necessary to validate them with prior and post treatment clinical data which in turn requires the determination of the tumor size and shape with high resolution, accuracy and precision, as well as structural and physiological information. This paper discusses some of the most important image analysis challenges in order to define an optimal method for extracting more accurate and precise anatomical and functional information related to the underlying pathology, which can be used for initializing and validating models of pathophysiology as well as simulations/predictions of the response to therapeutical regimes. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-73321-8_81 en
dc.identifier.volume 4561 LNCS en
dc.identifier.spage 703 en
dc.identifier.epage 709 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής