dc.contributor.author |
Novakovic, J |
en |
dc.contributor.author |
Vassiliou, P |
en |
dc.contributor.author |
Dervos, CT |
en |
dc.date.accessioned |
2014-03-01T02:51:37Z |
|
dc.date.available |
2014-03-01T02:51:37Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35589 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84865039156&partnerID=40&md5=c342a1c4c6e17091b2a3261a3ddd1bef |
en |
dc.subject |
Composite |
en |
dc.subject |
Corrosion resistance |
en |
dc.subject |
Electroless Ni-P |
en |
dc.subject |
Hardness |
en |
dc.subject |
TiO2 |
en |
dc.subject.other |
Amorphous structures |
en |
dc.subject.other |
Bath concentrations |
en |
dc.subject.other |
Chemical reduction |
en |
dc.subject.other |
Codeposition |
en |
dc.subject.other |
Corrosion-resistant coating |
en |
dc.subject.other |
Crystalline layers |
en |
dc.subject.other |
Electroless |
en |
dc.subject.other |
Electroless Ni-P |
en |
dc.subject.other |
Electroless nickel plating |
en |
dc.subject.other |
Ni-P coating |
en |
dc.subject.other |
Nickel matrix |
en |
dc.subject.other |
Potentiodynamic polarization measurements |
en |
dc.subject.other |
Sodium chloride solution |
en |
dc.subject.other |
Steel substrate |
en |
dc.subject.other |
TiO |
en |
dc.subject.other |
Vacuum heat treatment |
en |
dc.subject.other |
Composite coatings |
en |
dc.subject.other |
Composite materials |
en |
dc.subject.other |
Corrosion prevention |
en |
dc.subject.other |
Corrosion resistance |
en |
dc.subject.other |
Crystalline materials |
en |
dc.subject.other |
Deposits |
en |
dc.subject.other |
Electroless plating |
en |
dc.subject.other |
Hardness |
en |
dc.subject.other |
Nanocomposite films |
en |
dc.subject.other |
Nickel |
en |
dc.subject.other |
Nickel plating |
en |
dc.subject.other |
Optical microscopy |
en |
dc.subject.other |
Scanning electron microscopy |
en |
dc.subject.other |
Sodium chloride |
en |
dc.subject.other |
Suspensions (fluids) |
en |
dc.subject.other |
Titanium |
en |
dc.subject.other |
Vacuum |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
Titanium dioxide |
en |
dc.title |
Electroless Ni-P-TiO2 composites vacuum heated: Preparation and characterization |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Electroless nickel plating has been an elegant method of producing corrosion-resistant coatings without the use of eternal electric current, by chemical reduction on different surfaces. Composite coatings can also be produced by codeposition of powders in the nickel matrix. Composite NiP-TiO2 layers were prepared by simultaneous electroless deposition of Ni-P and TiO2 on steel substrate, from a solution in which TiO2 particles were kept in suspension by stirring. Deposits were characterized for its structure, morphology and hardness by optical microscopy, scanning electron microscopy and microanalysis and X-ray diffraction. It was found that TiO2 particle incorporation increases with their increase in the bath concentrations (0.5-2.0 g/l). An improvement (up to 20 %) in microhardness was observed in both as plated and vacuum heat-treated composite coatings compared to Ni-P coatings. Electroless deposited composite coatings exhibit an amorphous structure of the nickel matrix in which crystalline titanium oxide is incorporated. Vacuum heat treatment leads to the formation of a crystalline layer in which the Ni and Ni3P crystallites appear apart from those of the TiO2 (anatase). Potentiodynamic polarization measurements made on these deposits in 3.5 wt.% sodium chloride solution showed decrease in the corrosion resistance for the heat-treated composite coatings. © 2009 by NACE International. |
en |
heal.journalName |
17th International Corrosion Congress 2008: Corrosion Control in the Service of Society |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1055 |
en |
dc.identifier.epage |
1065 |
en |