dc.contributor.author |
Benardos, PG |
en |
dc.contributor.author |
Vosniakos, GC |
en |
dc.date.accessioned |
2014-03-01T11:44:35Z |
|
dc.date.available |
2014-03-01T11:44:35Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0890-6955 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/37019 |
|
dc.subject |
surface roughness |
en |
dc.subject |
surface roughness prediction |
en |
dc.subject |
machining |
en |
dc.subject |
review |
en |
dc.subject.classification |
Engineering, Manufacturing |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
TURNING OPERATIONS |
en |
dc.subject.other |
TOOL WEAR |
en |
dc.subject.other |
RECOGNITION SYSTEM |
en |
dc.subject.other |
FINISH |
en |
dc.subject.other |
MODEL |
en |
dc.subject.other |
STEEL |
en |
dc.subject.other |
VIBRATIONS |
en |
dc.subject.other |
OPTIMIZATION |
en |
dc.subject.other |
PARAMETERS |
en |
dc.subject.other |
SIMULATION |
en |
dc.title |
Predicting surface roughness in machining: a review |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1016/S0890-6955(03)00059-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0890-6955(03)00059-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. Unfortunately, for some quality characteristics of a product such as surface roughness it is hard to ensure that these requirements will be met. This paper aims at presenting the various methodologies and practices that are being employed for the prediction of surface roughness. The resulting benefits allow for the manufacturing process to become more productive and competitive and at the same time to reduce any re-processing of the machined workpiece so as to satisfy the technical specifications. Each approach with its advantages and disadvantages is outlined and the present and future trends are discussed. The approaches are classified into those based on machining theory, experimental investigation, designed experiments and artificial intelligence (AI). (C) 2003 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE |
en |
dc.identifier.doi |
10.1016/S0890-6955(03)00059-2 |
en |
dc.identifier.isi |
ISI:000183033200009 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
833 |
en |
dc.identifier.epage |
844 |
en |