HEAL DSpace

Adjoint-Based Optimization of Hydrodynamic Lubrication Problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κουκολόπουλος, Ελευθέριος el
dc.contributor.author Koukoulopoulos, Eleftherios en
dc.date.accessioned 2017-06-01T06:54:57Z
dc.date.available 2017-06-01T06:54:57Z
dc.date.issued 2017-06-01
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/44967
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.6260
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Adjoint, Optimization, Non-Parameterized,Tribology, Reynolds en
dc.title Adjoint-Based Optimization of Hydrodynamic Lubrication Problems en
heal.type masterThesis
heal.classification Engineering Optimization en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2016-09-20
heal.abstract In the present thesis, hydrodynamically lubricated contacts are optimized using the continuous adjoint method and a simplified (1D) flow model. Such contacts can be found in almost any mechanical system and they are the main source of friction, which is responsible for power losses, material wear and even total failure of the component. Friction contacts operate under the regime of hydrodynamic lubrication, meaning that a thin fluid film separates the two interacting surfaces, in order to avoid metal to metal contact. So, optimization of the geometry design of sliding surfaces is critical for the reduction of power loss and wear. Optimization is performed aims either the maximization of load capacity or the minimization of the friction coefficient. For the purposes of optimization, the continuous adjoint-based method has been selected. Adjoint-methods belong to the wider category of deterministic optimization methods, which compute and use the derivative of the objective function. They are mathematical tools for the calculation of the gradient of an objective function, satisfying at the same time the primal equations describing the problem. The equation describing the hydrodynamic lubrication problem will be the Reynolds equation. The main benefit of the adjoint method is that the cost of the computation of the derivatives is almost equal to the cost of numerically solving the primal equation and completely independent of the number of design variables. So, several different geometries have been studied, representing the hydrodynamic slider found in mechanical components, with the use of the adjoint optimization method, aiming at the maximization of load capacity and for one case the minimization of friction coefficient additionally. For each different geometry case, the amount of design variables varies and the mathematical formulation is different and for that it is explained for each geometry in detail in the sub-chapters of Chapter 4. The chosen slider geometries are: simple converging slider (optimized for both load capacity and friction coefficient), converging and diverging slider and step slider (only load capacity). One last case has also been studied, where the design variables are the film thickness of each discretization point, meaning that their amount is equal to the number of grid points. Ideally with this method the geometry could take any possible shape and self-adjust to each case. en
heal.advisorName Γιαννάκογλου, Κυριάκος en
heal.committeeMemberName Παπαδόπουλος, Χρήστος en
heal.committeeMemberName Βουτσινάς, Σπυρίδων el
heal.committeeMemberName Γιαννάκογλου, Κυριάκος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 72 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα