dc.contributor.author | Αλεξιάς, Παύλος | el |
dc.contributor.author | Alexias, Pavlos | en |
dc.date.accessioned | 2022-11-02T07:04:07Z | |
dc.date.available | 2022-11-02T07:04:07Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/56056 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.23754 | |
dc.rights | Default License | |
dc.subject | Τεχνητή Νοημοσύνη | el |
dc.subject | Ναυτιλία | el |
dc.subject | Γραμμική Παλινδρόμηση | el |
dc.subject | Νευρωνικά Δίκτυα | el |
dc.subject | Πολυωνυμική Παλινδρόμηση | el |
dc.subject | Artificial Intelligence | en |
dc.subject | Maritime | en |
dc.subject | Linear Regression | en |
dc.subject | Polynomial Regression | en |
dc.subject | Neural Network | en |
dc.title | Πρόβλεψη κατανάλωσης καυσίμου πλοίων με τεχνικές μηχανικής μάθησης | el |
heal.type | bachelorThesis | |
heal.classification | Μηχανική Μάθηση | el |
heal.language | el | |
heal.access | campus | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2022-07-14 | |
heal.abstract | The goal of this thesis is to calculate the fuel needs of a vessel by using machine learning algorithms. More specifically, by using linear regression as well as polynomial regression, in order to accurately predict the dependent variable of fuel consumption was the main goal of this thesis. As independent variables other metrics were considered, such as the deadweight of the vessel and the power of the vessel's machine. Lastly, in order to avoid the linearity that the above algorithms assume, a neural network was created in order to cross check the results. The inputs of the neural network are the same as the independent variables of the machine learning algorithms. Finally, a Graphical User Interface was created, in order for the user to easily and quickly interact with the models. The user, through the use of simple components, can insert the specifications of the vessel that he is interested in. As an output, the user sees the prediction of fuel consumption - both from the linear and the neural network solutions - as well as graphs containing information with vessels similar to the one the user inserted. | en |
heal.advisorName | Ασκούνης, Δημήτριος | el |
heal.committeeMemberName | Ασκούνης, Δημήτριος | el |
heal.committeeMemberName | Ψαράς, Ιωάννης | el |
heal.committeeMemberName | Δούκας, Χρυσόστομος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 58 σ. | el |
heal.fullTextAvailability | false |