HEAL DSpace

Liquid gated graphene field effect transistors for biomedical applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ηλιόπουλος, Γεώργιος el
dc.contributor.author Iliopoulos, Georgios en
dc.date.accessioned 2024-12-20T08:44:18Z
dc.date.available 2024-12-20T08:44:18Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/60580
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28276
dc.rights Default License
dc.subject Graphene en
dc.subject GFET en
dc.subject Liquid gate en
dc.subject pH sensor en
dc.subject Ion sensitivity en
dc.subject Biosensor en
dc.title Liquid gated graphene field effect transistors for biomedical applications en
heal.type bachelorThesis
heal.classification Μικροηλεκτρονική el
heal.classification Νανοτεχνολογία el
heal.classification Γραφένιο el
heal.classification Αισθητήρες el
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-03-29
heal.abstract Graphene's exceptional properties, including strength, flexibility, and electrical conductivity, have propelled it to the forefront of materials science since its isolation in 2004. Graphene field effect transistors (GFETs), and particularly those utilizing liquid gating techniques (LG-GFETs), have emerged as superb tools in biosensing and neural interface technology. This thesis explores the potential of LG-GFET array chips, taking advantage of graphene's unique properties to enable sensitive, real-time detection of biological signals. Through electrical characterization and ion sensitivity experiments the foundation for the integration of LG-GFETs to be integrated into next-generation biosensors and neural signal processing devices has been laid. The presented findings not only deepen the understanding of LG-GFETs but also propel the usage of LG-GFETs in neural cells data acquisition. en
heal.advisorName Χριστοφόρου, Ευάγγελος el
heal.committeeMemberName Χουρδάκης, Εμμανουήλ el
heal.committeeMemberName Δημητράκης, Παναγιώτης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής el
heal.academicPublisherID ntua
heal.numberOfPages 116 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής