dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Lazopoulos, C |
en |
dc.date.accessioned |
2014-03-01T01:07:29Z |
|
dc.date.available |
2014-03-01T01:07:29Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
00137944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10014 |
|
dc.subject.other |
Mathematical Techniques--Approximation Theory |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Complex Muskhelishvili Potential |
en |
dc.subject.other |
Large Initial Curves |
en |
dc.subject.other |
Reflected Caustics |
en |
dc.subject.other |
Stress Intensity Factor |
en |
dc.subject.other |
Fracture Mechanics |
en |
dc.title |
Further properties of reflected caustics for solving problems with several unknowns |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0013-7944(89)90085-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0013-7944(89)90085-4 |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
An improved method for evaluating the stress intensity factor around a crack tip is developed considering the first five terms of the complex Muskhelishvili potential. This approximation is convenient for the accurate definition of the caustics engendered by large initial curves (LIC) and therefore the method becomes suitable to be applied to problems of plasticity and elastic anisotropy. © 1989. |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/0013-7944(89)90085-4 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
345 |
en |
dc.identifier.epage |
354 |
en |