HEAL DSpace

Further properties of reflected caustics for solving problems with several unknowns

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theocaris, PS en
dc.contributor.author Lazopoulos, C en
dc.date.accessioned 2014-03-01T01:07:29Z
dc.date.available 2014-03-01T01:07:29Z
dc.date.issued 1989 en
dc.identifier.issn 00137944 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10014
dc.subject.other Mathematical Techniques--Approximation Theory en
dc.subject.other Plasticity en
dc.subject.other Complex Muskhelishvili Potential en
dc.subject.other Large Initial Curves en
dc.subject.other Reflected Caustics en
dc.subject.other Stress Intensity Factor en
dc.subject.other Fracture Mechanics en
dc.title Further properties of reflected caustics for solving problems with several unknowns en
heal.type journalArticle en
heal.identifier.primary 10.1016/0013-7944(89)90085-4 en
heal.identifier.secondary http://dx.doi.org/10.1016/0013-7944(89)90085-4 en
heal.publicationDate 1989 en
heal.abstract An improved method for evaluating the stress intensity factor around a crack tip is developed considering the first five terms of the complex Muskhelishvili potential. This approximation is convenient for the accurate definition of the caustics engendered by large initial curves (LIC) and therefore the method becomes suitable to be applied to problems of plasticity and elastic anisotropy. © 1989. en
heal.journalName Engineering Fracture Mechanics en
dc.identifier.doi 10.1016/0013-7944(89)90085-4 en
dc.identifier.volume 33 en
dc.identifier.issue 3 en
dc.identifier.spage 345 en
dc.identifier.epage 354 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής