dc.contributor.author |
Tsinias, J |
en |
dc.date.accessioned |
2014-03-01T01:07:29Z |
|
dc.date.available |
2014-03-01T01:07:29Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0265-0754 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10016 |
|
dc.subject |
Nonlinear Control System |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Mathematical Techniques--Differential Equations |
en |
dc.subject.other |
System Stability |
en |
dc.subject.other |
Instability Theorem |
en |
dc.subject.other |
Control Systems, Nonlinear |
en |
dc.title |
Generalizations of the instability theorem of chetaev to nonlinear control systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/imamci/6.2.151 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/imamci/6.2.151 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
In this paper, we generalize the well-known instability theorem of N.G. Chetaev concering instability of a differential equation, to derive sufficient conditions for instability at a specified equilibrium point of nonlinear systems that are affine in control. © 1989 Oxford University Press. |
en |
heal.publisher |
OXFORD UNIV PRESS UNITED KINGDOM |
en |
heal.journalName |
IMA Journal of Mathematical Control and Information |
en |
dc.identifier.doi |
10.1093/imamci/6.2.151 |
en |
dc.identifier.isi |
ISI:A1989AF91800003 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
151 |
en |
dc.identifier.epage |
165 |
en |