dc.contributor.author |
Kioustelidis, JB |
en |
dc.date.accessioned |
2014-03-01T01:07:31Z |
|
dc.date.available |
2014-03-01T01:07:31Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0010-485X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10039 |
|
dc.subject |
AMS Subject Classification: 65L10 |
en |
dc.subject |
Elliptic boundary value problems |
en |
dc.subject |
Error bounds |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.title |
L2-Error bounds for approximate solutions of elliptic partial differential equations with Dirichlet-boundary conditions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02241857 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02241857 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
New a posteriori (computable) upper bounds for the L2-norms, both of D(u-v) and of u-v are proposed, where u is the exact solution of the boundary value problem {Mathematical expression} and v any approximation of it (D is here the vector of partial derivatives with respect to the components of x). It is shown that the new error bounds are better than the classical one, which is proportional to {norm of matrix}Av-f{norm of matrix}, in many cases. This happens, e. g., if q has some zero point in G, as in the case of a Poisson equation. © 1989 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Computing |
en |
dc.identifier.doi |
10.1007/BF02241857 |
en |
dc.identifier.isi |
ISI:A1989CH66500003 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
133 |
en |
dc.identifier.epage |
140 |
en |