dc.contributor.author |
Kiriaki, K |
en |
dc.date.accessioned |
2014-03-01T01:07:31Z |
|
dc.date.available |
2014-03-01T01:07:31Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0022-0833 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10041 |
|
dc.subject |
Closed Form Solution |
en |
dc.subject |
Cross Section |
en |
dc.subject |
Scattering Amplitude |
en |
dc.subject |
First Order |
en |
dc.subject |
Low Frequency |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.title |
Low-frequency expansions for a penetrable ellipsoidal scatterer in an elastic medium |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00128904 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00128904 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
In this paper the scattering of a plane longitudinal or transverse wave by a penetrable ellipsoid in an isotropic and homogeneous elastic medium in the low-frequency region is examined. Using low-frequency expansions the scattering problem is reduced to a sequence of potential problems. Explicit closed-form solutions for the zeroth and first-order approximations are obtained. The solution of the problem was made possible by using an analytical technique based on Papkovich-Grodski-Neuber potentials. The normalized scattering amplitudes and the scattering cross-section are evaluated up to k3-order terms, respectively. © 1989 Kluwer Academic Publishers. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Journal of Engineering Mathematics |
en |
dc.identifier.doi |
10.1007/BF00128904 |
en |
dc.identifier.isi |
ISI:A1989CG17600001 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
295 |
en |
dc.identifier.epage |
314 |
en |