HEAL DSpace

Low-frequency expansions for a penetrable ellipsoidal scatterer in an elastic medium

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kiriaki, K en
dc.date.accessioned 2014-03-01T01:07:31Z
dc.date.available 2014-03-01T01:07:31Z
dc.date.issued 1989 en
dc.identifier.issn 0022-0833 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10041
dc.subject Closed Form Solution en
dc.subject Cross Section en
dc.subject Scattering Amplitude en
dc.subject First Order en
dc.subject Low Frequency en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.title Low-frequency expansions for a penetrable ellipsoidal scatterer in an elastic medium en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF00128904 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF00128904 en
heal.language English en
heal.publicationDate 1989 en
heal.abstract In this paper the scattering of a plane longitudinal or transverse wave by a penetrable ellipsoid in an isotropic and homogeneous elastic medium in the low-frequency region is examined. Using low-frequency expansions the scattering problem is reduced to a sequence of potential problems. Explicit closed-form solutions for the zeroth and first-order approximations are obtained. The solution of the problem was made possible by using an analytical technique based on Papkovich-Grodski-Neuber potentials. The normalized scattering amplitudes and the scattering cross-section are evaluated up to k3-order terms, respectively. © 1989 Kluwer Academic Publishers. en
heal.publisher Kluwer Academic Publishers en
heal.journalName Journal of Engineering Mathematics en
dc.identifier.doi 10.1007/BF00128904 en
dc.identifier.isi ISI:A1989CG17600001 en
dc.identifier.volume 23 en
dc.identifier.issue 4 en
dc.identifier.spage 295 en
dc.identifier.epage 314 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής