dc.contributor.author |
Theodorou, NJ |
en |
dc.date.accessioned |
2014-03-01T01:07:31Z |
|
dc.date.available |
2014-03-01T01:07:31Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0018-9286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10044 |
|
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Mathematical Techniques--Matrix Algebra |
en |
dc.subject.other |
Cayley-Hamilton Theorem |
en |
dc.subject.other |
Matrix Characteristic Polynomial |
en |
dc.subject.other |
Multidimensional Systems |
en |
dc.subject.other |
State Space Matrix |
en |
dc.subject.other |
Control Systems |
en |
dc.title |
M-dimensional Cayley-Hamilton theorem. |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/9.24217 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/9.24217 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
This theorem states that every block square matrix satisfies its own m-D (m-dimensional, m ≥ 1) matrix characteristic polynomial. The exact statement and a simple proof of this theorem are given. The theorem refers to a matrix A subdivided into m blocks, and hence having dimension at least m. The conclusion is that every square matrix A with dimension M satisfies several m-D characteristic matrix polynomials with degrees N1,..., Nm, such that N1 + ... + Nm ≤ M. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Automatic Control |
en |
dc.identifier.doi |
10.1109/9.24217 |
en |
dc.identifier.isi |
ISI:A1989U703000019 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
563 |
en |
dc.identifier.epage |
565 |
en |