dc.contributor.author |
Capsalis, CN |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.contributor.author |
Frantzeskakis, DJ |
en |
dc.date.accessioned |
2014-03-01T01:07:38Z |
|
dc.date.available |
2014-03-01T01:07:38Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0272-6343 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10083 |
|
dc.subject |
Electromagnetic Waves |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Mathematical Techniques--Differential Equations |
en |
dc.subject.other |
Optical Communication |
en |
dc.subject.other |
Optical Fibers |
en |
dc.subject.other |
Optics--Nonlinear |
en |
dc.subject.other |
Waveguides, Optical |
en |
dc.subject.other |
Inverse Scattering Method |
en |
dc.subject.other |
N-Soliton Solution |
en |
dc.subject.other |
Nonlinear Dispersive Media |
en |
dc.subject.other |
Nonlinear Schrodinger Equation |
en |
dc.subject.other |
Light |
en |
dc.title |
Propagation of electromagnetic waves in nonlinear dispersive media |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/02726348908915239 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/02726348908915239 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
The propagation in a non-linear dispersive medium is analysed by using differential equation techniques. A dispersive semi-infinite space with a cubic order instantaneous non linearity, is considered. The proposed analysis is based on to transform time dependent Maxwell equations into a slowly varying envelope function differential equation. The derived partial differential equation has many similarities with the so-called Schrodinger equation but it includes an additional term arising from the first order dispersion. This non-linear equation is solved by application of the Inverse Scattering Method for the initial condition |q(x,t=0)| = Asechx. The N-soliton solution is developed analytically in the case of reflectionless potentials. The single and double soliton solution are derived explicitly. Numerical results presenting the pulse propagation inside the non-linear dispersive medium are also given. |
en |
heal.publisher |
HEMISPHERE PUBL CORP |
en |
heal.journalName |
Electromagnetics |
en |
dc.identifier.doi |
10.1080/02726348908915239 |
en |
dc.identifier.isi |
ISI:A1989AJ37400002 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
273 |
en |
dc.identifier.epage |
280 |
en |