dc.contributor.author |
Ladopoulos, EG |
en |
dc.date.accessioned |
2014-03-01T01:07:40Z |
|
dc.date.available |
2014-03-01T01:07:40Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10100 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024910810&partnerID=40&md5=443f73787eba5bc99a4d68c8fa7018bd |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Cylinders--Plasticity |
en |
dc.subject.other |
Mathematical Techniques--Numerical Methods |
en |
dc.subject.other |
Spheres--Plasticity |
en |
dc.subject.other |
Singular Integral Operators Method |
en |
dc.subject.other |
Two-Dimensional Plasticity |
en |
dc.subject.other |
Plasticity |
en |
dc.title |
Singular integral operators method for two-dimensional plasticity problems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
A new numerical method, the Singular Integral Operators Method, is proposed for the numerical evaluation of the singular integral equations used for the formulation of the two-dimensional problem of plasticity. An application is given in the determination of the plastic behaviour of a perforated tension strip in plane stress. Furthermore, a second application is given in the determination of the plastic behaviour of a thick sphere and a thick cylinder in plane strain. © 1989. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.isi |
ISI:A1989CA63900024 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
859 |
en |
dc.identifier.epage |
865 |
en |