dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Lazopoulos, C |
en |
dc.date.accessioned |
2014-03-01T01:07:40Z |
|
dc.date.available |
2014-03-01T01:07:40Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
00015970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10101 |
|
dc.subject |
Variational Problem |
en |
dc.subject.other |
Elasticity--Theory |
en |
dc.subject.other |
Fracture Mechanics |
en |
dc.subject.other |
Plasticity--Calculations |
en |
dc.subject.other |
Plates--Crack Propagation |
en |
dc.subject.other |
Crack Tip |
en |
dc.subject.other |
Elastic Anisotropy |
en |
dc.subject.other |
Stress Intensity Factor |
en |
dc.subject.other |
Stresses |
en |
dc.title |
Singularities and perturbations for far-field caustics in the neighborhood of a crack tip |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01178322 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01178322 |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
Adapting the principle of least time by Fermat, the farfield caustics around a crack tip were studied as a variational problem. The singular reflected rays were probed and classified using singularity theory; furthermore the singular directions were also defined. In addition, applying perturbation theory the stress intensity factor at a crack tip is evaluated, considering higher-order terms of the Muskhelishvili complex potential. It was shown that higher approximations can be achieved with this method from caustics engendered from initial curves of a larger than usual radius convenient for problems of plasticity and elastic anisotropy. © 1989 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01178322 |
en |
dc.identifier.volume |
77 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
197 |
en |
dc.identifier.epage |
212 |
en |