dc.contributor.author |
Tsinias, J |
en |
dc.date.accessioned |
2014-03-01T01:07:40Z |
|
dc.date.available |
2014-03-01T01:07:40Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
0265-0754 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10104 |
|
dc.subject |
Discrete Time |
en |
dc.subject |
Nonlinear System |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Control Systems, Discrete Time--Stability |
en |
dc.subject.other |
Control Systems--Controllability |
en |
dc.subject.other |
Mathematical Techniques--Eigenvalues and Eigenfunctions |
en |
dc.subject.other |
System Stability--Lyapunov Methods |
en |
dc.subject.other |
Discrete Time System Stabilization |
en |
dc.subject.other |
Stabilizability Problems |
en |
dc.subject.other |
Control Systems, Nonlinear |
en |
dc.title |
Stabilizability of discrete-time nonlinear systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/imamci/6.2.135 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/imamci/6.2.135 |
en |
heal.language |
English |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
This work deals with the property of stabilizing a nonlinear discrete-time control system to a specified equilibrium point by appropriate state feedback. For the most part, this paper presents Lyapunov-like sufficient conditions for stabilizability of discrete-time systems that are affine in control. Stabilization results for general nonlinear discrete-time systems are also included. © 1989 Oxford University Press. |
en |
heal.publisher |
OXFORD UNIV PRESS UNITED KINGDOM |
en |
heal.journalName |
IMA Journal of Mathematical Control and Information |
en |
dc.identifier.doi |
10.1093/imamci/6.2.135 |
en |
dc.identifier.isi |
ISI:A1989AF91800002 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
135 |
en |
dc.identifier.epage |
150 |
en |