dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T01:07:45Z |
|
dc.date.available |
2014-03-01T01:07:45Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0022-460X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10143 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0025703277&partnerID=40&md5=8a65c0bcf82384795cdd413aa434c7e2 |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computers--Applications |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Equations of Motion |
en |
dc.subject.other |
Mathematical Models |
en |
dc.subject.other |
Mathematical Techniques--Boundary Element Method |
en |
dc.subject.other |
Boundary Element Solution |
en |
dc.subject.other |
Dynamic Analysis |
en |
dc.subject.other |
Gauss Integration Technique |
en |
dc.subject.other |
Mass Matrix |
en |
dc.subject.other |
Thin Elastic Plates |
en |
dc.subject.other |
Vibration Problem of Plates |
en |
dc.subject.other |
Plates |
en |
dc.title |
A boundary element solution to the vibration problem of plates |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
A boundary element method is presented for the dynamic analysis of thin elastic plates of arbitrary shape. In addition to the boundary supportes the plate may be also supported on point or line supports in the interior. Both free and forced vibrations are considered. The case of support excitation is also taken into account. The method utilizes the fundamental solution of the static problem to establish the integral representation for the deflection. The domain integrals involving the inertia forces are evaluated by employing an efficient Gauss integration technique over domains of arbitrary shape. This procedure yields a mass matrix and the equation of motion is derived with respect to the Gauss integration nodal points. Numerical results are presented to illustrate the method and demonstrate its efficiency. © 1990. |
en |
heal.publisher |
ACADEMIC PRESS LTD |
en |
heal.journalName |
Journal of Sound and Vibration |
en |
dc.identifier.isi |
ISI:A1990DZ28900010 |
en |
dc.identifier.volume |
141 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
313 |
en |
dc.identifier.epage |
322 |
en |